1 (** {1 Dijkstra's "Dutch national flag"}
3 Variant with number of occurrences instead of predicate [permut]
13 type color = Blue | White | Red
15 let eq_color (c1 c2 :color) : bool
16 ensures { result <-> c1 = c2 }
18 | Blue,Blue | Red,Red | White,White -> True
22 predicate monochrome (a: map int color) (i: int) (j: int) (c: color) =
23 forall k: int. i <= k < j -> a[k]=c
25 let rec function nb_occ (a: map int color) (i: int) (j: int) (c: color) : int
27 = if i >= j then 0 else
28 if eq_color a[j-1] c then 1 + nb_occ a i (j-1) c else nb_occ a i (j-1) c
30 let rec lemma nb_occ_split (a: map int color) (i j k: int) (c: color)
31 requires { i <= j <= k }
33 ensures { nb_occ a i k c = nb_occ a i j c + nb_occ a j k c }
34 = if k = j then () else nb_occ_split a i j (k-1) c
36 let rec lemma nb_occ_ext (a1 a2: map int color) (i j: int) (c: color)
37 requires { forall k: int. i <= k < j -> a1[k] = a2[k] }
39 ensures { nb_occ a1 i j c = nb_occ a2 i j c }
40 = if i >= j then () else nb_occ_ext a1 a2 i (j-1) c
42 lemma nb_occ_store_outside_up:
43 forall a: map int color, i j k: int, c: color.
44 i <= j <= k -> nb_occ (set a k c) i j c = nb_occ a i j c
46 lemma nb_occ_store_outside_down:
47 forall a: map int color, i j k: int, c: color.
48 k < i <= j -> nb_occ (set a k c) i j c = nb_occ a i j c
50 lemma nb_occ_store_eq_eq:
51 forall a: map int color, i j k: int, c: color.
52 i <= k < j -> a[k] = c ->
53 nb_occ (set a k c) i j c = nb_occ a i j c
55 let rec lemma nb_occ_store_eq_neq (a: map int color) (i j k: int) (c: color)
56 requires { i <= k < j }
57 requires { a[k] <> c }
59 ensures { nb_occ (set a k c) i j c = nb_occ a i j c + 1 }
60 = if k = j - 1 then () else nb_occ_store_eq_neq a i (j-1) k c
62 let lemma nb_occ_store_neq_eq
63 (a: map int color) (i j k: int) (c c': color)
64 requires { i <= k < j } requires { c <> c' } requires { a[k] = c }
65 ensures { nb_occ (set a k c') i j c = nb_occ a i j c - 1 }
66 = nb_occ_split a i k j c; nb_occ_split (set a k c') i k j c;
67 nb_occ_split a k (k + 1) j c; nb_occ_split (set a k c') k (k+1) j c
69 let lemma nb_occ_store_neq_neq
70 (a: map int color) (i j k: int) (c c': color)
71 requires { i <= k < j } requires { c <> c' } requires { a[k] <> c }
72 ensures { nb_occ (set a k c') i j c = nb_occ a i j c }
73 = nb_occ_split a i k j c; nb_occ_split (set a k c') i k j c;
74 nb_occ_split a k (k + 1) j c; nb_occ_split (set a k c') k (k+1) j c
78 let swap (a:array color) (i: int) (j: int) : unit
79 requires { 0 <= i < a.length }
80 requires { 0 <= j < a.length }
81 ensures { a[i] = old a[j] }
82 ensures { a[j] = old a[i] }
83 ensures { forall k: int. k <> i /\ k <> j -> a[k] = old a[k] }
84 ensures { forall k1 k2: int, c: color. k1 <= i < k2 /\ k1 <= j < k2 ->
85 nb_occ a.elts k1 k2 c = nb_occ (old a.elts) k1 k2 c }
92 let dutch_flag (a:array color)
93 ensures { (exists b: int. exists r: int.
94 monochrome a.elts 0 b Blue /\
95 monochrome a.elts b r White /\
96 monochrome a.elts r a.length Red) }
97 ensures { forall c: color.
98 nb_occ a.elts 0 a.length c = nb_occ (old a.elts) 0 a.length c }
101 let r = ref a.length in
103 invariant { 0 <= !b <= !i <= !r <= a.length }
104 invariant { monochrome a.elts 0 !b Blue }
105 invariant { monochrome a.elts !b !i White }
106 invariant { monochrome a.elts !r a.length Red }
109 nb_occ a.elts 0 a.length c = nb_occ (old a.elts) 0 a.length c }
112 | Blue -> swap a !b !i; b := !b + 1; i := !i + 1
113 | White -> i := !i + 1
114 | Red -> r := !r - 1; swap a !r !i