3 {1 VerifyThis @ ETAPS 2018 competition
4 Challenge 2: Le rouge et le noir}
6 Author: Martin Clochard (LRI, Université Paris Sud)
10 use import set.Fset as F
12 (* The part about bijections, preservation of finiteness and cardinality,
13 should be moved somewhere in stdlib. *)
14 predicate bijection (p:fset 'a) (q:'b -> bool) (f:'a -> 'b) (g:'b -> 'a) =
15 (forall x. mem x p -> q (f x) /\ g (f x) = x)
16 /\ (forall x. q x -> mem (g x) p /\ f (g x) = x)
18 let rec ghost bij_preserve (p:fset 'a) (q:'b -> bool)
19 (f:'a -> 'b) (g:'b -> 'a) : fset 'b
20 requires { bijection p q f g }
21 ensures { forall x. q x <-> mem x result }
22 ensures { cardinal p = cardinal result }
23 variant { cardinal p }
24 = if cardinal p = 0 then empty else
26 add (f x) (bij_preserve (remove x p) (fun y -> pure { q y /\ y <> f x}) f g)
28 let rec ghost disjoint_union (p q:fset 'a) : unit
29 requires { forall x. not (mem x p /\ mem x q) }
30 ensures { cardinal (union p q) = cardinal p + cardinal q }
31 variant { cardinal p }
32 = if cardinal p = 0 then assert { union p q == q } else
34 assert { union (remove x p) q == remove x (union p q) };
35 disjoint_union (remove x p) q
37 (* Abstraction layer over the integers. Reduce to standard integers
38 after ghost code erasure (=ghost wrapping of integers operation for
43 } invariant { card = cardinal cset }
44 by { card = 0; cset = empty }
46 let czero () : cardinal 'a
47 ensures { result.cset = empty }
48 ensures { result.card = 0 }
49 = { card = 0; cset = empty }
50 let cone (ghost x:'a) : cardinal 'a
51 ensures { result.cset = singleton x }
52 ensures { result.card = 1 }
53 = { card = 1; cset = singleton x }
55 (* reduce to identity after ghost code erasure. *)
56 let cmap (ghost q:'b -> bool)
58 (ghost g:'b -> 'a) (i:cardinal 'a) : cardinal 'b
59 requires { bijection i.cset q f g }
60 ensures { forall x. mem x result.cset <-> q x }
61 ensures { result.card = i.card }
62 = { card = i.card; cset = bij_preserve i.cset q f g }
64 (* reduce to integer addition after ghost code erasure. *)
65 let cadd (i1 i2:cardinal 'a) : cardinal 'a
66 requires { forall x. not (mem x i1.cset /\ mem x i2.cset) }
67 ensures { result.cset = union i1.cset i2.cset }
68 ensures { result.card = i1.card + i2.card }
69 = ghost disjoint_union i1.cset i2.cset;
70 { card = i1.card + i2.card; cset = union i1.cset i2.cset }
72 (* Specification of colorings:
73 sequence of tiles that can be obtained by catenating unit black tiles
74 or large (>=3 units) red tiles, with red tiles being non-consecutive. *)
75 type color = Red | Black
76 use import seq.Seq as S
77 constant black : seq color = singleton Black
78 function red (n:int) : seq color = create n (fun _ -> Red)
79 (* color is color of first square. Default to black for empty sequence,
80 as a black tile does not give any constraints. *)
81 inductive valid_coloring_f color (seq color) =
82 | ValidEmpty : valid_coloring_f Black empty
83 | ValidBlack : forall c s.
84 valid_coloring_f c s -> valid_coloring_f Black (black++s)
85 | ValidRed : forall n s. n >= 3 /\ valid_coloring_f Black s ->
86 valid_coloring_f Red (red n ++ s)
88 predicate valid_coloring (s:seq color) =
89 valid_coloring_f Red s \/ valid_coloring_f Black s
91 predicate valid_coloring_l (n:int) (s:seq color) =
92 valid_coloring s /\ s.length = n
94 predicate valid_coloring_inter (n:int) (m:int) (s:seq color) =
95 valid_coloring_l n s /\ exists i. 0 <= i < m /\ s[i] = Black
97 predicate valid_coloring_at (n:int) (m:int) (s:seq color) =
98 valid_coloring_l n s /\ s[m] = Black /\ forall i. 0 <= i < m -> s[i] = Red
104 = let count = Array.make 51 (czero ()) in
105 count[0] <- cone S.empty;
106 assert { forall s. mem s count[0].cset <-> valid_coloring_l 0 s };
107 count[1] <- cone (black ++ S.empty);
108 assert { forall s. mem s count[1].cset <-> valid_coloring_l 1 s };
109 count[2] <- cone (black ++ (black ++ S.empty));
110 assert { forall s. mem s count[2].cset <-> valid_coloring_l 2 s };
111 count[3] <- { card = 2;
112 cset = F.add (red 3 ++ S.empty)
113 (F.singleton (black ++ (black ++
114 (black ++ S.empty)))); };
115 assert { forall s. mem s count[3].cset <-> valid_coloring_l 3 s };
117 invariant { forall i s. 0 <= i < n ->
118 valid_coloring_l i s <-> mem s count[i].cset }
120 let ghost q = pure { valid_coloring_inter n 3 } in
121 let ghost f = pure { fun (s:seq color) -> black ++ s } in
122 let ghost g = pure { fun (s:seq color) -> s[1 ..] } in
123 assert { bijection count[n-1].cset q f g
124 by (forall s. valid_coloring_l (n-1) s ->
125 (valid_coloring_inter n 3 (black ++ s)
126 by 0 <= 0 < (black ++ s).S.length /\ S.get (black++s) 0 = Black)
128 /\ (forall s. valid_coloring_inter n 3 s ->
129 (valid_coloring_l (n-1) s[1 ..]
131 by (exists c s'. s = black ++ s' /\ valid_coloring_f c s'
133 \/ (false by exists i s'. 3 <= i /\ s = red i ++ s')
135 count[n] <- cmap q f g count[n-1];
136 for k = 3 to n - 1 do
137 invariant { forall i. 0 <= i < n -> count[i] = (count[i] at L) }
138 invariant { forall s.
139 valid_coloring_inter n k s <-> mem s count[n].cset
141 let ghost q = pure { valid_coloring_at n k } in
142 let ghost f = pure { fun (s:seq color) -> red k ++ (black ++ s) } in
143 let ghost g = pure { fun (s:seq color) -> s[k+1 ..] } in
144 assert { bijection count[n-k-1].cset q f g
145 by (forall s. g (f s) == s
146 by forall i. 0 <= i < s.S.length ->
147 S.get (g (f s)) i = S.get (f s) (i+k+1) = S.get s i)
148 so (forall s. valid_coloring_l (n-k-1) s ->
149 valid_coloring_at n k (f s) /\ g (f s) = s
150 ) /\ (forall s. valid_coloring_at n k s ->
151 valid_coloring_l (n-k-1) (g s) /\ f (g s) = s
152 by (false by exists s'. s = black ++ s'
153 so 0 <= 0 < k /\ S.get s 0 = Black)
155 3 <= i /\ s = red i ++ s' /\ valid_coloring_f Black s'
156 so s' <> empty so exists c s''.
157 s' = black ++ s'' /\ valid_coloring_f c s''
158 so (i = k by not (i < k so S.get s i = Black)
159 /\ not (i > k so S.get s k = Red))
160 so s'' = g s by s = f s'')
162 count[n] <- cadd count[n] (cmap q f g count[n-k-1])
164 count[n] <- cadd count[n] (cone (red n));
165 assert { forall s. valid_coloring_l n s ->
166 s = red n \/ valid_coloring_inter n n s
167 by (exists s'. s = black ++ s'
168 so 0 <= 0 < n /\ S.get s 0 = Black so valid_coloring_inter n n s)
169 \/ (exists i s'. 3 <= i /\ s = red i ++ s' /\ valid_coloring_f Black s'
170 so if i = n then s == red n else
171 (s' <> empty by s'.S.length > 0)
172 so exists s''. s' = black ++ s'' so 0 <= i < n /\ S.get s i = Black
173 so valid_coloring_inter n n s
176 assert { valid_coloring_l n (red n) by red n == red n ++ empty }
178 (* Property asked by the problem. *)
179 assert { forall s. valid_coloring_l 50 s <-> mem s count[50].cset };
180 assert { count[50].card = cardinal count[50].cset }