3 {1 VerifyThis @ ETAPS 2021 competition
4 Challenge 1: Lexicographic Permutations}
5 See https://www.pm.inf.ethz.ch/research/verifythis.html
8 - Jean-Christophe FilliĆ¢tre (CNRS)
9 - Andrei Paskevich (Univ. Paris-Saclay)
15 - only one change in the code, due to the absence of do/while loop in Why3
17 - main idea for proving termination: show that the set of all permutations
18 is finite, by building a finite over-approximation of that set
19 (see function `all_permutations` below)
24 use import array.Array as A
25 use import seq.Seq as S
28 (*** SPECIFICATION STARTS HERE ********************************************)
32 type permutation = seq elt
34 (* lexicographic order on permutations *)
35 predicate lt (p q: permutation) =
36 length p = length q > 0 /\
37 exists i. 0 <= i < length p /\
38 (forall j. 0 <= j < i -> p[j] = q[j]) /\
41 (* lt is a total order *)
43 let lemma lt_trans (p q r: permutation)
44 requires { lt p q } requires { lt q r } ensures { lt p r }
47 let lemma lt_asym (p q: permutation)
48 requires { lt p q } requires { lt q p } ensures { false }
51 let lemma lt_total (p q: permutation) : bool
52 requires { length p = length q }
53 ensures { if result then lt p q else p = q \/ lt q p }
56 invariant { forall j. 0 <= j < i -> p[j] = q[j] }
57 if p[i] < q[i] then return true;
58 if p[i] > q[i] then return false;
62 (* number of occurrences in a (sub-)sequence *)
64 function iseq (x: 'a) (s: seq 'a) : int->bool =
67 function occ (x: 'a) (s: seq 'a) (l u: int) : int =
68 N.numof (iseq x s) l u
70 function occ_all (x: 'a) (s: seq 'a) : int =
73 predicate is_permutation_of (p a: seq elt) =
74 length p = length a /\
75 forall x. occ_all x p = occ_all x a
77 (*** SPECIFICATION STOPS HERE **********************************************)
78 (*** beyond this point, the only thing you need to read are the contracts
79 for functions `next` and `permut` *)
81 predicate descending (s: seq elt) (lo hi: int)
82 = 0 <= lo <= hi <= length s /\
83 forall i j. lo <= i <= j < hi -> s[i] >= s[j]
85 predicate ascending (s: seq elt) (lo hi: int)
86 = 0 <= lo <= hi <= length s /\
87 forall i j. lo <= i <= j < hi -> s[i] <= s[j]
89 let function to_seq (a: array elt) : (s: seq elt)
90 ensures { length s = A.length a }
91 ensures { forall i. 0 <= i < length s -> s[i] = A.(a[i]) }
92 = let ref s = empty in
93 for k = 0 to A.length a - 1 do
94 invariant { length s = k }
95 invariant { forall i. 0 <= i < k -> s[i] = A.(a[i]) }
100 lemma is_permutation_of_refl:
101 forall p. is_permutation_of p p
102 lemma is_permutation_of_sym :
103 forall p q. is_permutation_of p q -> is_permutation_of q p
104 lemma is_permutation_of_tran:
105 forall p q r. is_permutation_of p q -> is_permutation_of q r ->
106 is_permutation_of p r
108 let lemma occ_id (s1 s2: seq elt) (l u: int)
109 requires { 0 <= l <= u <= length s1 = length s2 }
110 requires { forall i. l <= i < u -> s1[i] = s2[i] }
111 ensures { forall x. occ x s1 l u = occ x s2 l u }
114 let lemma occ_split (s: seq elt) (l mid u: int)
115 requires { 0 <= l <= mid <= u <= length s }
116 ensures { forall x. occ x s l u = occ x s l mid + occ x s mid u }
119 let lemma occ_at (s: seq elt) (l i u: int)
120 requires { 0 <= l <= i < u <= length s }
121 ensures { forall x. occ x s l u =
122 occ x s l i + (if x = s[i] then 1 else 0) + occ x s (i+1) u }
124 occ_split s i (i+1) u
126 let lemma occ_none (v: elt) (s: seq elt) (l u: int)
127 requires { 0 <= l <= u <= length s }
128 requires { forall k. l <= k < u -> s[k] <> v }
129 ensures { occ v s l u = 0 }
132 let lemma descending_is_last (s p: seq elt)
133 requires { descending s 0 (length s) }
134 requires { is_permutation_of p s }
135 ensures { not (lt s p) }
136 = let n = length s in
138 invariant { forall j. 0 <= j < i -> s[j] = p[j] }
139 if s[i] > p[i] then return;
140 if s[i] < p[i] then (
144 assert { occ y s (i+1) n > 0 };
145 assert { exists k. i < k < n /\ s[k] = y };
150 let lemma ascending_is_first (s p: seq elt)
151 requires { ascending s 0 (length s) }
152 requires { is_permutation_of p s }
153 ensures { not (lt p s) }
154 = let n = length s in
156 invariant { forall j. 0 <= j < i -> s[j] = p[j] }
157 if s[i] < p[i] then return;
158 if s[i] > p[i] then (
162 assert { occ y s (i+1) n > 0 };
163 assert { exists k. i < k < n /\ s[k] = y };
168 let swap (a: array elt) (i j: int)
169 requires { 0 <= i < A.length a }
170 requires { 0 <= j < A.length a }
171 ensures { A.(a[i] = old a[j]) }
172 ensures { A.(a[j] = old a[i]) }
173 ensures { forall k. 0 <= k < A.length a ->
174 k <> i -> k <> j -> A.(a[k] = old a[k]) }
175 ensures { is_permutation_of (to_seq a) (to_seq (old a)) }
181 let ghost s1 = pure { to_seq (old a) } in
182 let ghost s2 = pure { to_seq a } in
183 let ghost n = A.length a in
186 else (occ_id s1 s2 0 i;
187 occ_at s1 0 i n; occ_at s2 0 i n;
188 occ_at s1 (i+1) j n; occ_at s2 (i+1) j n;
189 occ_id s1 s2 (i+1) j;
190 occ_id s1 s2 (j+1) n)
191 else (occ_id s1 s2 0 j;
192 occ_at s1 0 j n; occ_at s2 0 j n;
193 occ_at s1 (j+1) i n; occ_at s2 (j+1) i n;
194 occ_id s1 s2 (j+1) i;
195 occ_id s1 s2 (i+1) n);
198 let next (ghost a0: seq elt) (a: array elt) : bool
199 (* TASK 1 enforced by Why3 *)
200 (* TASK 2 ensured by absence of `diverges` clause *)
201 requires { A.length a = length a0 }
202 requires { is_permutation_of (to_seq a) a0 }
204 ensures { is_permutation_of (to_seq a) a0 }
206 ensures { not result -> forall i. 0 <= i < A.length a -> A.(a[i] = old a[i]) }
207 ensures { not result -> forall p. is_permutation_of p a0 ->
208 not (lt (to_seq a) p) }
210 ensures { result -> lt (to_seq (old a)) (to_seq a) }
211 ensures { result -> forall p. is_permutation_of p a0 ->
212 not (lt (to_seq (old a)) p /\ lt p (to_seq a)) }
214 let n = A.length a in
216 while i > 0 && A.(a[i-1] >= a[i]) do
217 invariant { -1 <= i < n } variant { i }
218 invariant { i = -1 /\ n = 0 \/ i >= 0 /\ descending (to_seq a) i n }
221 if i <= 0 then return false;
222 let ghost i0 = i - 1 in
223 let ghost x = A.(a[i0]) in
225 while A.(a[j] <= a[i-1]) do
226 invariant { i <= j < n } variant { j }
227 invariant { forall k. j < k < n -> A.(a[k]) <= x }
230 let ghost z = A.(a[j]) in
232 assert { is_permutation_of (to_seq a) a0 };
233 assert { lt (to_seq (old a)) (to_seq a) };
237 invariant { i0 < i && i0 < j < n } variant { j - i }
238 invariant { is_permutation_of (to_seq a) a0 }
239 invariant { forall k. 0 <= k < i0 -> A.(a[k] = a[k] at Init) }
240 invariant { A.(a[i0] = z) }
241 invariant { i - i0 = n - j }
242 invariant { forall k. i <= k <= j -> A.(a[k] = a[k] at L) }
243 invariant { forall k. 0 < k < i-i0 -> A.(a[i0+k] = a[n-k] at L)
244 /\ A.(a[n-k] = a[i0+k] at L) }
249 assert { forall k. i0 < k < n -> A.(a[k] = a[n - (k - i0)] at L) };
250 assert { ascending (to_seq a) (i0+1) n };
251 let lemma is_next (p: permutation)
252 requires { is_permutation_of p a0 }
253 requires { lt (to_seq (a at Init)) p }
254 requires { lt p (to_seq a) }
256 = assert { forall k. 0 <= k < i0 -> p[k] = A.(a[k] at Init) };
257 assert { x <= p[i0] <= z };
258 let a1 = pure { to_seq (a at Init) } in
261 for l = i0+1 to n - 1 do
262 invariant { forall k. i0+1 <= k < l -> p[k] = a1[k] }
263 if p[l] <> a1[l] then (
264 assert { a1[l] < p[l] };
265 occ_id a1 p 0 l; occ_split a1 0 l n; occ_split p 0 l n;
266 occ_at a1 0 l n; occ_at p 0 l n;
267 assert { occ p[l] a1 l n = occ p[l] p l n > 0 };
271 ) else if v = z then (
273 for l = i0+1 to n - 1 do
274 invariant { forall k. i0+1 <= k < l -> p[k] = a2[k] }
275 if p[l] <> a2[l] then (
276 assert { is_permutation_of p a2 };
277 assert { a2[l] > p[l] };
278 occ_id a2 p 0 l; occ_split a2 0 l n; occ_split p 0 l n;
279 occ_at a2 0 l n; occ_at p 0 l n;
280 (* if l <= j0 then (occ_split a2 l j0 n; occ_split p 0 j0 n); *)
281 assert { occ p[l] a2 l n = occ p[l] p l n };
282 assert { occ p[l] p l n > 0 };
283 assert { occ p[l] a2 (l+1) n > 0 };
284 occ_none p[l] a2 (l+1) n;
293 assert { occ v p i0 n = occ v a1 i0 n > 0 };
299 val sort (a: array elt) : unit
301 ensures { forall i j. 0 <= i <= j < A.length a -> A.(a[i] <= a[j]) }
302 ensures { is_permutation_of (to_seq a) (to_seq (old a)) }
303 (* NOTE we could provide an implementation here,
304 but this was not part of the tasks *)
306 use import set.Fset as FS
308 (* this is actually an over-approximation of the sets of all permutations
309 of s, namely the set of all sequences of length |s| made with elements
312 all_permutations (s: permutation) : (all: fset permutation)
313 ensures { forall p. is_permutation_of p s -> mem p all }
314 = let n = length s in
315 let rec enum (k: int) : fset permutation
316 requires { 0 <= k <= n }
318 length p = k /\ (forall i. 0 <= i < k -> occ_all p[i] s > 0)
322 if k = 0 then return FS.singleton empty;
323 let now = enum (k - 1) in
324 let ref acc = FS.empty in
325 for j = 0 to n - 1 do
326 invariant { forall p.
327 length p = k /\ (forall i. 0 <= i < k -> occ_all p[i] s > 0)
328 /\ occ p[0] s 0 j > 0
330 acc <- FS.union acc (FS.map (cons s[j]) now)
335 let lemma final (p: permutation) : unit
336 requires { is_permutation_of p s } ensures { mem p all }
337 = assert { forall i. 0 <= i < n -> occ_all p[i] s > 0
338 by occ_all p[i] p = occ p[i] p 0 i + 1 + occ p[i] p (i+1) n > 0 };
343 let permut (a: array elt) : seq permutation
344 (* TASK 6 enforced by Why3 *)
345 (* TASK 7 ensured by absence of `diverges` clause *)
347 ensures { (* result only contains permutation of a *)
348 forall i. 0 <= i < length result ->
349 is_permutation_of result[i] (to_seq (old a)) }
350 ensures { (* result is sorted in strict ascending order *)
351 forall i j. 0 <= i < j < length result -> lt result[i] result[j] }
352 ensures { (* result contains any permutation of a *)
353 forall p. is_permutation_of p (to_seq (old a)) ->
354 exists i. 0 <= i < length result /\ result[i] = p }
355 = let ghost a0 = to_seq a in
356 let ghost all = all_permutations a0 in
357 let ref result = empty in
359 (* CHANGE: no do/while loop => unroll once *)
360 result <- snoc result (to_seq a);
361 let ghost ref last = to_seq a in
362 let ghost ref sresult = FS.singleton (to_seq a) in
364 invariant { length result > 0 }
365 invariant { is_permutation_of (to_seq a) a0 }
366 invariant { forall i. 0 <= i < length result ->
367 is_permutation_of result[i] a0 }
368 invariant { last = result[length result - 1] = to_seq a }
369 invariant { is_permutation_of last a0 }
370 invariant { forall i j. 0 <= i < j < length result ->
371 lt result[i] result[j] }
372 invariant { forall p. is_permutation_of p a0 -> lt p last ->
373 exists i. 0 <= i < length result - 1 /\ result[i] = p }
374 invariant { forall p. mem p sresult <->
375 exists i. 0 <= i < length result /\ result[i] = p }
376 invariant { subset sresult all }
377 variant { cardinal all - cardinal sresult }
378 result <- snoc result (to_seq a);
380 sresult <- FS.add (to_seq a) sresult