Update bench.
[why3.git] / examples / euler011.mlw
blobb895ee0883560189ac4ed6f10a6955ac80038e2b
2 (** {1 Euler Project, problem11}
4 In the 20×20 grid below, four numbers along a diagonal line have been marked in red.
6 {h <Pre>
7 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
8 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
9 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
10 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
11 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
12 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
13 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
14 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
15 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
16 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
17 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
18 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
19 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
20 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
21 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
22 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
23 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
24 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
25 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
26 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
27 </Pre> }
29 The product of these numbers is 26 × 63 × 78 × 14 = 1788696.
31 What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
35 module ProductFour
37 use int.Int
38 use ref.Ref
39 use matrix.Matrix
40 use option.Option
42 (** Direction of the product checked *)
43 type direction =
44      | Left_bottom
45      | Right_bottom
46      | Bottom
47      | Right
50 (** Math functions about the result of a product. Incomplete product generate None *)
51 function left_diag (m: matrix int) (i: int) (j: int) : option int =
52          if (i < m.rows /\ j >= 0 /\ i >= 3 /\ j < m.columns - 3) then
53             Some (((m.elts i j) * (m.elts (i - 1) (j + 1)) * (m.elts (i - 2) (j + 2)) * (m.elts (i-3) (j+3))))
54          else
55             None
57 function right_diag (m: matrix int) (i: int) (j: int) : option int =
58          if (i < m.rows - 3 /\ i >= 0 /\ j < m.columns - 3 /\ j >= 0) then
59             Some (((m.elts i j) * (m.elts (i + 1) (j + 1)) * (m.elts (i + 2) (j + 2)) * (m.elts (i+3) (j+3))))
60          else
61             None
63 function line (m: matrix int) (i: int) (j: int) : option int =
64          if (0 <= j < m.columns /\ i >= 0 /\ i < m.rows - 3) then
65             Some ((m.elts i j) * (m.elts (i+1) j) * (m.elts (i+2) j) * (m.elts (i+3) j))
66          else
67             None
69 function column (m: matrix int) (i: int) (j: int) : option int =
70          if (0 <= i < m.rows /\ j >= 0 /\ j < m.columns - 3) then
71             Some ((m.elts i j) * (m.elts i (j+1)) * (m.elts i (j+2)) * (m.elts i (j + 3)))
72          else
73             None
75 (** Computational functions for the product in each direction *)
76 let right_diag_c m i j : option int =
77     ensures {result = right_diag m i j}
78     if (i < m.rows - 3 && i >= 0 && j < m.columns - 3 && j >= 0) then
79        Some (((get m i j) * (get m (i + 1) (j + 1)) * (get m (i + 2) (j + 2)) * (get m (i+3) (j+3))))
80     else
81        None
83 let left_diag_c m i j : option int =
84     ensures {result = left_diag m i j}
85     if (i < m.rows && j >= 0 && i >= 3 && j < m.columns - 3) then
86        Some (((get m i j) * (get m (i - 1) (j + 1)) * (get m (i - 2) (j + 2)) * (get m (i-3) (j+3))))
87     else
88        None
91 let line_c m i j : option int =
92     ensures {result = line m i j}
93     if (0 <= j && j < m.columns &&  i >= 0 && i < m.rows - 3) then
94        Some ((get m i j) * (get m (i+1) j) * (get m (i+2) j) * (get m (i+3) j))
95     else
96        None
98 let column_c m i j : option int =
99     ensures {result = column m i j}
100     if (0 <= i && i < m.rows && j >= 0 && j < m.columns - 3) then
101        Some ((get m i j) * (get m i (j+1)) * (get m i (j+2)) * (get m i (j + 3)))
102     else
103        None
105 (* function compute4 (m: matrix int) (i: int) (j: int) (d: direction) : option int = *)
106 (*     match d with *)
107 (*     | Left_bottom -> left_diag m i j *)
108 (*     | Right_bottom -> right_diag m i j *)
109 (*     | Bottom -> column m i j *)
110 (*     | Right -> line m i j *)
111 (*     end *)
113 (* TODO Failed attempt at pattern matching above. Combination of mathematical product result functions *)
114 function compute4 (m: matrix int) (i: int) (j: int) (d: direction) : option int =
115         if (d = Left_bottom) then left_diag m i j
116         else if (d = Right_bottom) then right_diag m i j
117         else if (d = Bottom) then column m i j
118         else if (d = Right) then line m i j
119         else None
121 (** A product is_valid if each elements of the product is in the matrix *)
122 (* predicate is_valid (m: matrix int) (i: int) (j: int) (d: direction) = *)
123 (*   match d with *)
124 (*   | Left_bottom -> i < m.rows /\ j >= 0 /\ i >= 3 /\ j < m.columns - 3 *)
125 (*   | Right_bottom -> i >= 0 /\ j >= 0 /\ i < m.rows - 3 /\ j < m.columns - 3 *)
126 (*   | Bottom -> 0 <= i /\ i < m.rows /\ j >= 0 /\ j < m.columns - 3 *)
127 (*   | Right -> 0 <= j /\ j < m.columns /\ i >= 0 /\ i < m.rows - 3 *)
128 (*   end *)
130 (** Return the maximum product of 4 for matrix m *)
131 let find_max (m: matrix int) =
132     requires {m.rows > 4 /\ m.columns > 4}
133     ensures {forall i j d. match (compute4 m i j d) with
134                              | None -> true
135                              | Some v -> v <= result
136                            end}
137     ensures {exists i j d. Some result = compute4 m i j d}
139 (** Current max and element of the matrix for which it is attained *)
140   let cur_max = ref (
141       match (line_c m 0 0) with
142       | None -> 0 (* TODO should not happen *)
143       | Some v -> v
144       end) in
145   let cur_i = ref 0 in
146   let cur_j = ref 0 in
147   let cur_d = ref Right in
148   for i = 0 to (m.rows - 1) do
149 (* Cur_max is greater than each product already seen *)
150     invariant { forall i' j' d. (0 <= i' < i /\ 0 <= j' < m.columns) ->
151               match (compute4 m i' j' d) with
152               | None -> true
153               | Some v -> v <= !cur_max
154               end}
155 (* cur_max is actually the product at (cur_i, cur_j, cur_d) *)
156     invariant {Some !cur_max = compute4 m !cur_i !cur_j !cur_d}
157     for j = 0 to (m.columns - 1) do
158 (* cur_max is actually the product at (cur_i, cur_j, cur_d) *)
159     invariant {Some !cur_max = compute4 m !cur_i !cur_j !cur_d}
160 (* Cur_max is greater than each product already seen *)
161     invariant { forall i' j' d. ((i' = i /\ 0 <= j' /\ j' < j) \/ (0 <= i' < i /\ 0 <= j' < m.columns)) ->
162               match (compute4 m i' j' d) with
163               | None -> true
164               | Some v -> v <= !cur_max
165               end}
166 (* Computation of the product for each direction *)
167          match (left_diag_c m i j) with
168          | None -> ()
169          | Some v ->
170            if (v > !cur_max) then
171            begin
172                 cur_max := v;
173                 cur_i := i;
174                 cur_j := j;
175                 cur_d := Left_bottom;
176            end
177          end;
179          match (right_diag_c m i j) with
180          | None -> ()
181          | Some v ->
182            if (v > !cur_max) then
183            begin
184                 cur_max := v;
185                 cur_i := i;
186                 cur_j := j;
187                 cur_d := Right_bottom;
188            end
189          end;
191          match (line_c m i j) with
192          | None -> ()
193          | Some v ->
194            if (v > !cur_max) then
195            begin
196                 cur_max := v;
197                 cur_i := i;
198                 cur_j := j;
199                 cur_d := Right;
200            end
201          end;
203          match (column_c m i j) with
204          | None -> ()
205          | Some v ->
206            if (v > !cur_max) then
207            begin
208                 cur_max := v;
209                 cur_i := i;
210                 cur_j := j;
211                 cur_d := Bottom;
212            end
213          end;
214     done;
215   done;
217 (** Assert implying directly the postcondition *)
218   assert { Some !cur_max = compute4 m !cur_i !cur_j !cur_d};
219   !cur_max;;