13 val ( +. ) (x y : t) : t
14 requires {t'isFinite x}
15 requires {t'isFinite y}
16 requires {[@expl:no_overflow] t'isFinite (x .+ y)}
17 ensures {result = x .+ y}
19 val ( *. ) (x y : t) : t
20 requires {t'isFinite x}
21 requires {t'isFinite y}
22 requires {[@expl:no_overflow] t'isFinite (x .* y)}
23 ensures {result = x .* y}
26 requires { t'isFinite x}
27 requires { .- (1.0:t) .<= x .<= (1.0:t)}
28 requires {abs (t'real x) <= 1.0}
29 ensures { abs (t'real result - exp (t'real x)) <= 0x1p-4} (* 1 * 2 ^ - 4 *)
33 abs(0.9890365552 + 1.130258690*x +
34 0.5540440796*x*x - exp(x)) <= 0x0.FFFFp-4};
35 (0x1.FA62FFD643D6Ep-1:t) +. (0x1.2158A22D91DE9p0:t) *. x +.
36 (0x1.1BABAA64D94DBp-1:t) *. x *. x