5 use settheory.InverseDomRan
6 use settheory.Overriding
9 constant f : rel int int = singleton (3,4)
10 constant g : rel int int = f <+ (singleton (5,6))
11 constant h : rel int int = g <+ (singleton (3,7))
13 goal testdom1: mem 3 (dom g)
14 goal testdom2: mem 3 (dom h)
16 goal testapply1: apply f 3 = 4
18 goal testapply2: apply g 3 = 4
19 goal testapply3: apply g 5 = 6
21 goal testapply4: apply h 3 = 7
22 goal testapply5: apply h 5 = 6
24 goal testapply_smoke1: apply h 3 = 8
25 goal testapply_smoke2: apply h 5 = 9
31 use settheory.Relation
32 use settheory.InverseDomRan
33 use settheory.Composition
34 use settheory.Function
36 constant f : rel int int = singleton (3,4)
37 constant g : rel int int = singleton (4,6)
38 constant h : rel int int = semicolon f g
40 use settheory.Interval
42 constant fun_int_int : set (rel int int) = integer +-> integer
45 lemma f_is_fun : mem f fun_int_int
47 lemma g_is_fun : mem g fun_int_int
49 lemma h_is_fun : mem h fun_int_int
52 goal test1: mem (apply h 3) (Interval.mk 0 10)
54 goal test2: 0 <= apply h 3 <= 10
56 goal test3: apply h 3 = 6