1 (* Euler Project, problem 2
3 Each new term in the Fibonacci sequence is generated by adding the
4 previous two terms. By starting with 1 and 2, the first 10 terms will
7 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
9 By considering the terms in the Fibonacci sequence whose values do not
10 exceed four million, find the sum of the even-valued terms. *)
12 (** {2 Sum of even-valued Fibonacci numbers} *)
18 use int.ComputerDivision
20 (* [fib_sum_even m n] is the sum of even-valued terms of the
21 Fibonacci sequence from index 0 to n-1, that do not exceed m *)
22 function fib_sum_even int int : int
24 axiom SumZero: forall m:int. fib_sum_even m 0 = 0
26 axiom SumEvenLe: forall n m:int.
27 n >= 0 -> fib n <= m -> mod (fib n) 2 = 0 ->
28 fib_sum_even m (n+1) = fib_sum_even m n + fib n
30 axiom SumEvenGt: forall n m:int.
31 n >= 0 -> fib n > m -> mod (fib n) 2 = 0 ->
32 fib_sum_even m (n+1) = fib_sum_even m n
34 axiom SumOdd: forall n m:int.
35 n >= 0 -> mod (fib n) 2 <> 0 ->
36 fib_sum_even m (n+1) = fib_sum_even m n
38 predicate is_fib_sum_even (m:int) (sum:int) =
40 sum = fib_sum_even m n /\ fib n > m
41 (* Note: we take for granted that [fib] is an
42 increasing sequence *)
49 use int.ComputerDivision
52 let rec lemma fib_even_3n (n:int)
55 ensures { mod (fib n) 2 = 0 <-> mod n 3 = 0 }
56 = if n > 2 then fib_even_3n (n-3)
58 function fib_even (n: int) : int = fib (3 * n)
60 lemma fib_even0: fib_even 0 = 0
61 lemma fib_even1: fib_even 1 = 2
63 lemma fib_evenn: forall n:int [fib_even n].
64 n >= 2 -> fib_even n = 4 * fib_even (n-1) + fib_even (n-2)
78 ensures { exists n:int. result = fib_sum_even m n /\ fib n > m }
82 let ghost n = ref 0 in
83 let ghost k = ref 0 in
87 invariant { !x = fib_even !n }
88 invariant { !x = fib !k }
89 invariant { !y = fib_even (!n+1) }
90 invariant { !y = fib (!k+3) }
91 invariant { !sum = fib_sum_even m !k }
92 invariant { 0 <= !x < !y }
103 let run () = f 4_000_000 (* should be 4613732 *)
105 exception BenchFailure
107 let bench () raises { BenchFailure -> true } =
109 if x <> 4613732 then raise BenchFailure;