Bug 470455 - test_database_sync_embed_visits.js leaks, r=sdwilsh
[wine-gecko.git] / jpeg / jddctmgr.c
blob3a0e8fd399a1528646df4bda256a35e67e909e48
1 /*
2 * jddctmgr.c
4 * Copyright (C) 1994-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains the inverse-DCT management logic.
9 * This code selects a particular IDCT implementation to be used,
10 * and it performs related housekeeping chores. No code in this file
11 * is executed per IDCT step, only during output pass setup.
13 * Note that the IDCT routines are responsible for performing coefficient
14 * dequantization as well as the IDCT proper. This module sets up the
15 * dequantization multiplier table needed by the IDCT routine.
18 #define JPEG_INTERNALS
19 #include "jinclude.h"
20 #include "jpeglib.h"
21 #include "jdct.h" /* Private declarations for DCT subsystem */
22 #ifdef HAVE_SSE2_INTRINSICS
23 extern int SSE2Available;
24 #endif
27 * The decompressor input side (jdinput.c) saves away the appropriate
28 * quantization table for each component at the start of the first scan
29 * involving that component. (This is necessary in order to correctly
30 * decode files that reuse Q-table slots.)
31 * When we are ready to make an output pass, the saved Q-table is converted
32 * to a multiplier table that will actually be used by the IDCT routine.
33 * The multiplier table contents are IDCT-method-dependent. To support
34 * application changes in IDCT method between scans, we can remake the
35 * multiplier tables if necessary.
36 * In buffered-image mode, the first output pass may occur before any data
37 * has been seen for some components, and thus before their Q-tables have
38 * been saved away. To handle this case, multiplier tables are preset
39 * to zeroes; the result of the IDCT will be a neutral gray level.
43 /* Private subobject for this module */
45 typedef struct {
46 struct jpeg_inverse_dct pub; /* public fields */
48 /* This array contains the IDCT method code that each multiplier table
49 * is currently set up for, or -1 if it's not yet set up.
50 * The actual multiplier tables are pointed to by dct_table in the
51 * per-component comp_info structures.
53 int cur_method[MAX_COMPONENTS];
54 } my_idct_controller;
56 typedef my_idct_controller * my_idct_ptr;
59 /* Allocated multiplier tables: big enough for any supported variant */
61 typedef union {
62 ISLOW_MULT_TYPE islow_array[DCTSIZE2];
63 #ifdef DCT_IFAST_SUPPORTED
64 IFAST_MULT_TYPE ifast_array[DCTSIZE2];
65 #endif
66 #ifdef DCT_FLOAT_SUPPORTED
67 FLOAT_MULT_TYPE float_array[DCTSIZE2];
68 #endif
69 } multiplier_table;
72 /* The current scaled-IDCT routines require ISLOW-style multiplier tables,
73 * so be sure to compile that code if either ISLOW or SCALING is requested.
75 #ifdef DCT_ISLOW_SUPPORTED
76 #define PROVIDE_ISLOW_TABLES
77 #else
78 #ifdef IDCT_SCALING_SUPPORTED
79 #define PROVIDE_ISLOW_TABLES
80 #endif
81 #endif
83 GLOBAL(void)
84 jpeg_idct_islow_sse2 (
85 j_decompress_ptr cinfo,
86 jpeg_component_info * compptr,
87 JCOEFPTR coef_block,
88 JSAMPARRAY output_buf,
89 JDIMENSION output_col);
93 * Prepare for an output pass.
94 * Here we select the proper IDCT routine for each component and build
95 * a matching multiplier table.
98 METHODDEF(void)
99 start_pass (j_decompress_ptr cinfo)
101 my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
102 int ci, i;
103 jpeg_component_info *compptr;
104 int method = 0;
105 inverse_DCT_method_ptr method_ptr = NULL;
106 JQUANT_TBL * qtbl;
108 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
109 ci++, compptr++) {
110 /* Select the proper IDCT routine for this component's scaling */
111 switch (compptr->DCT_scaled_size) {
112 #ifdef IDCT_SCALING_SUPPORTED
113 case 1:
114 method_ptr = jpeg_idct_1x1;
115 method = JDCT_ISLOW; /* jidctred uses islow-style table */
116 break;
117 case 2:
118 method_ptr = jpeg_idct_2x2;
119 method = JDCT_ISLOW; /* jidctred uses islow-style table */
120 break;
121 case 4:
122 method_ptr = jpeg_idct_4x4;
123 method = JDCT_ISLOW; /* jidctred uses islow-style table */
124 break;
125 #endif
126 case DCTSIZE:
127 switch (cinfo->dct_method) {
128 #ifdef DCT_ISLOW_SUPPORTED
129 case JDCT_ISLOW:
130 #ifdef HAVE_SSE2_INTEL_MNEMONICS
131 if(SSE2Available == 1)
133 method_ptr = jpeg_idct_islow_sse2;
134 method = JDCT_ISLOW;
136 else
138 method_ptr = jpeg_idct_islow;
139 method = JDCT_ISLOW;
141 #else
142 method_ptr = jpeg_idct_islow;
143 method = JDCT_ISLOW;
145 #endif /* HAVE_SSE2_INTEL_MNEMONICS */
146 break;
147 #endif
148 #ifdef DCT_IFAST_SUPPORTED
149 case JDCT_IFAST:
150 #ifdef HAVE_SSE2_INTEL_MNEMONICS
151 if (SSE2Available==1)
153 method_ptr = jpeg_idct_islow_sse2;
154 method = JDCT_ISLOW;
156 else
158 method_ptr = jpeg_idct_ifast;
159 method = JDCT_IFAST;
161 #else
162 method_ptr = jpeg_idct_ifast;
163 method = JDCT_IFAST;
164 #endif /* HAVE_SSE2_INTEL_MNEMONICS */
165 break;
167 #endif
168 #ifdef DCT_FLOAT_SUPPORTED
169 case JDCT_FLOAT:
170 method_ptr = jpeg_idct_float;
171 method = JDCT_FLOAT;
172 break;
173 #endif
174 default:
175 ERREXIT(cinfo, JERR_NOT_COMPILED);
176 break;
178 break;
179 default:
180 ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
181 break;
183 idct->pub.inverse_DCT[ci] = method_ptr;
184 /* Create multiplier table from quant table.
185 * However, we can skip this if the component is uninteresting
186 * or if we already built the table. Also, if no quant table
187 * has yet been saved for the component, we leave the
188 * multiplier table all-zero; we'll be reading zeroes from the
189 * coefficient controller's buffer anyway.
191 if (! compptr->component_needed || idct->cur_method[ci] == method)
192 continue;
193 qtbl = compptr->quant_table;
194 if (qtbl == NULL) /* happens if no data yet for component */
195 continue;
196 idct->cur_method[ci] = method;
197 switch (method) {
198 #ifdef PROVIDE_ISLOW_TABLES
199 case JDCT_ISLOW:
201 /* For LL&M IDCT method, multipliers are equal to raw quantization
202 * coefficients, but are stored as ints to ensure access efficiency.
204 ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
205 for (i = 0; i < DCTSIZE2; i++) {
206 ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
209 break;
210 #endif
211 #ifdef DCT_IFAST_SUPPORTED
212 case JDCT_IFAST:
214 /* For AA&N IDCT method, multipliers are equal to quantization
215 * coefficients scaled by scalefactor[row]*scalefactor[col], where
216 * scalefactor[0] = 1
217 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
218 * For integer operation, the multiplier table is to be scaled by
219 * IFAST_SCALE_BITS.
221 IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
222 #define CONST_BITS 14
223 static const INT16 aanscales[DCTSIZE2] = {
224 /* precomputed values scaled up by 14 bits */
225 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
226 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
227 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
228 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
229 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
230 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
231 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
232 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
234 SHIFT_TEMPS
236 for (i = 0; i < DCTSIZE2; i++) {
237 ifmtbl[i] = (IFAST_MULT_TYPE)
238 DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
239 (INT32) aanscales[i]),
240 CONST_BITS-IFAST_SCALE_BITS);
243 break;
244 #endif
245 #ifdef DCT_FLOAT_SUPPORTED
246 case JDCT_FLOAT:
248 /* For float AA&N IDCT method, multipliers are equal to quantization
249 * coefficients scaled by scalefactor[row]*scalefactor[col], where
250 * scalefactor[0] = 1
251 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
253 FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
254 int row, col;
255 static const double aanscalefactor[DCTSIZE] = {
256 1.0, 1.387039845, 1.306562965, 1.175875602,
257 1.0, 0.785694958, 0.541196100, 0.275899379
260 i = 0;
261 for (row = 0; row < DCTSIZE; row++) {
262 for (col = 0; col < DCTSIZE; col++) {
263 fmtbl[i] = (FLOAT_MULT_TYPE)
264 ((double) qtbl->quantval[i] *
265 aanscalefactor[row] * aanscalefactor[col]);
266 i++;
270 break;
271 #endif
272 default:
273 ERREXIT(cinfo, JERR_NOT_COMPILED);
274 break;
281 * Initialize IDCT manager.
284 GLOBAL(void)
285 jinit_inverse_dct (j_decompress_ptr cinfo)
287 my_idct_ptr idct;
288 int ci;
289 jpeg_component_info *compptr;
291 idct = (my_idct_ptr)
292 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
293 SIZEOF(my_idct_controller));
294 cinfo->idct = (struct jpeg_inverse_dct *) idct;
295 idct->pub.start_pass = start_pass;
297 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
298 ci++, compptr++) {
299 /* Allocate and pre-zero a multiplier table for each component */
300 compptr->dct_table =
301 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
302 SIZEOF(multiplier_table));
303 MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
304 /* Mark multiplier table not yet set up for any method */
305 idct->cur_method[ci] = -1;