1 /***************************************************************************/
5 /* FreeType bbox computation (body). */
7 /* Copyright 1996-2001, 2002, 2004, 2006 by */
8 /* David Turner, Robert Wilhelm, and Werner Lemberg. */
10 /* This file is part of the FreeType project, and may only be used */
11 /* modified and distributed under the terms of the FreeType project */
12 /* license, LICENSE.TXT. By continuing to use, modify, or distribute */
13 /* this file you indicate that you have read the license and */
14 /* understand and accept it fully. */
16 /***************************************************************************/
19 /*************************************************************************/
21 /* This component has a _single_ role: to compute exact outline bounding */
24 /*************************************************************************/
31 #include FT_INTERNAL_CALC_H
34 typedef struct TBBox_Rec_
42 /*************************************************************************/
48 /* This function is used as a `move_to' and `line_to' emitter during */
49 /* FT_Outline_Decompose(). It simply records the destination point */
50 /* in `user->last'; no further computations are necessary since we */
51 /* use the cbox as the starting bbox which must be refined. */
54 /* to :: A pointer to the destination vector. */
57 /* user :: A pointer to the current walk context. */
60 /* Always 0. Needed for the interface only. */
63 BBox_Move_To( FT_Vector
* to
,
72 #define CHECK_X( p, bbox ) \
73 ( p->x < bbox.xMin || p->x > bbox.xMax )
75 #define CHECK_Y( p, bbox ) \
76 ( p->y < bbox.yMin || p->y > bbox.yMax )
79 /*************************************************************************/
82 /* BBox_Conic_Check */
85 /* Finds the extrema of a 1-dimensional conic Bezier curve and update */
86 /* a bounding range. This version uses direct computation, as it */
87 /* doesn't need square roots. */
90 /* y1 :: The start coordinate. */
92 /* y2 :: The coordinate of the control point. */
94 /* y3 :: The end coordinate. */
97 /* min :: The address of the current minimum. */
99 /* max :: The address of the current maximum. */
102 BBox_Conic_Check( FT_Pos y1
,
108 if ( y1
<= y3
&& y2
== y1
) /* flat arc */
113 if ( y2
>= y1
&& y2
<= y3
) /* ascending arc */
118 if ( y2
>= y3
&& y2
<= y1
) /* descending arc */
127 y1
= y3
= y1
- FT_MulDiv( y2
- y1
, y2
- y1
, y1
- 2*y2
+ y3
);
130 if ( y1
< *min
) *min
= y1
;
131 if ( y3
> *max
) *max
= y3
;
135 /*************************************************************************/
141 /* This function is used as a `conic_to' emitter during */
142 /* FT_Raster_Decompose(). It checks a conic Bezier curve with the */
143 /* current bounding box, and computes its extrema if necessary to */
147 /* control :: A pointer to a control point. */
149 /* to :: A pointer to the destination vector. */
152 /* user :: The address of the current walk context. */
155 /* Always 0. Needed for the interface only. */
158 /* In the case of a non-monotonous arc, we compute directly the */
159 /* extremum coordinates, as it is sufficiently fast. */
162 BBox_Conic_To( FT_Vector
* control
,
166 /* we don't need to check `to' since it is always an `on' point, thus */
167 /* within the bbox */
169 if ( CHECK_X( control
, user
->bbox
) )
170 BBox_Conic_Check( user
->last
.x
,
176 if ( CHECK_Y( control
, user
->bbox
) )
177 BBox_Conic_Check( user
->last
.y
,
189 /*************************************************************************/
192 /* BBox_Cubic_Check */
195 /* Finds the extrema of a 1-dimensional cubic Bezier curve and */
196 /* updates a bounding range. This version uses splitting because we */
197 /* don't want to use square roots and extra accuracy. */
200 /* p1 :: The start coordinate. */
202 /* p2 :: The coordinate of the first control point. */
204 /* p3 :: The coordinate of the second control point. */
206 /* p4 :: The end coordinate. */
209 /* min :: The address of the current minimum. */
211 /* max :: The address of the current maximum. */
217 BBox_Cubic_Check( FT_Pos p1
,
224 FT_Pos stack
[32*3 + 1], *arc
;
244 if ( y1
== y2
&& y1
== y3
) /* flat */
249 if ( y2
>= y1
&& y2
<= y4
&& y3
>= y1
&& y3
<= y4
) /* ascending */
254 if ( y2
>= y4
&& y2
<= y1
&& y3
>= y4
&& y3
<= y1
) /* descending */
263 /* unknown direction -- split the arc in two */
265 arc
[1] = y1
= ( y1
+ y2
) / 2;
266 arc
[5] = y4
= ( y4
+ y3
) / 2;
267 y2
= ( y2
+ y3
) / 2;
268 arc
[2] = y1
= ( y1
+ y2
) / 2;
269 arc
[4] = y4
= ( y4
+ y2
) / 2;
270 arc
[3] = ( y1
+ y4
) / 2;
276 if ( y1
< *min
) *min
= y1
;
277 if ( y4
> *max
) *max
= y4
;
282 } while ( arc
>= stack
);
288 test_cubic_extrema( FT_Pos y1
,
296 /* FT_Pos a = y4 - 3*y3 + 3*y2 - y1; */
297 FT_Pos b
= y3
- 2*y2
+ y1
;
306 /* The polynomial is */
308 /* P(x) = a*x^3 + 3b*x^2 + 3c*x + d , */
310 /* dP/dx = 3a*x^2 + 6b*x + 3c . */
312 /* However, we also have */
316 /* which implies by subtraction that */
318 /* P(u) = b*u^2 + 2c*u + d . */
320 if ( u
> 0 && u
< 0x10000L
)
322 uu
= FT_MulFix( u
, u
);
323 y
= d
+ FT_MulFix( c
, 2*u
) + FT_MulFix( b
, uu
);
325 if ( y
< *min
) *min
= y
;
326 if ( y
> *max
) *max
= y
;
332 BBox_Cubic_Check( FT_Pos y1
,
339 /* always compare first and last points */
340 if ( y1
< *min
) *min
= y1
;
341 else if ( y1
> *max
) *max
= y1
;
343 if ( y4
< *min
) *min
= y4
;
344 else if ( y4
> *max
) *max
= y4
;
346 /* now, try to see if there are split points here */
349 /* flat or ascending arc test */
350 if ( y1
<= y2
&& y2
<= y4
&& y1
<= y3
&& y3
<= y4
)
355 /* descending arc test */
356 if ( y1
>= y2
&& y2
>= y4
&& y1
>= y3
&& y3
>= y4
)
360 /* There are some split points. Find them. */
362 FT_Pos a
= y4
- 3*y3
+ 3*y2
- y1
;
363 FT_Pos b
= y3
- 2*y2
+ y1
;
369 /* We need to solve `ax^2+2bx+c' here, without floating points! */
370 /* The trick is to normalize to a different representation in order */
371 /* to use our 16.16 fixed point routines. */
373 /* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after normalization. */
374 /* These values must fit into a single 16.16 value. */
376 /* We normalize a, b, and c to `8.16' fixed float values to ensure */
377 /* that its product is held in a `16.16' value. */
384 /* The following computation is based on the fact that for */
385 /* any value `y', if `n' is the position of the most */
386 /* significant bit of `abs(y)' (starting from 0 for the */
387 /* least significant bit), then `y' is in the range */
391 /* We want to shift `a', `b', and `c' concurrently in order */
392 /* to ensure that they all fit in 8.16 values, which maps */
393 /* to the integer range `-2^23..2^23-1'. */
395 /* Necessarily, we need to shift `a', `b', and `c' so that */
396 /* the most significant bit of its absolute values is at */
397 /* _most_ at position 23. */
399 /* We begin by computing `t1' as the bitwise `OR' of the */
400 /* absolute values of `a', `b', `c'. */
402 t1
= (FT_ULong
)( ( a
>= 0 ) ? a
: -a
);
403 t2
= (FT_ULong
)( ( b
>= 0 ) ? b
: -b
);
405 t2
= (FT_ULong
)( ( c
>= 0 ) ? c
: -c
);
408 /* Now we can be sure that the most significant bit of `t1' */
409 /* is the most significant bit of either `a', `b', or `c', */
410 /* depending on the greatest integer range of the particular */
413 /* Next, we compute the `shift', by shifting `t1' as many */
414 /* times as necessary to move its MSB to position 23. This */
415 /* corresponds to a value of `t1' that is in the range */
416 /* 0x40_0000..0x7F_FFFF. */
418 /* Finally, we shift `a', `b', and `c' by the same amount. */
419 /* This ensures that all values are now in the range */
420 /* -2^23..2^23, i.e., they are now expressed as 8.16 */
421 /* fixed-float numbers. This also means that we are using */
422 /* 24 bits of precision to compute the zeros, independently */
423 /* of the range of the original polynomial coefficients. */
425 /* This algorithm should ensure reasonably accurate values */
426 /* for the zeros. Note that they are only expressed with */
427 /* 16 bits when computing the extrema (the zeros need to */
428 /* be in 0..1 exclusive to be considered part of the arc). */
430 if ( t1
== 0 ) /* all coefficients are 0! */
433 if ( t1
> 0x7FFFFFUL
)
440 } while ( t1
> 0x7FFFFFUL
);
442 /* this loses some bits of precision, but we use 24 of them */
443 /* for the computation anyway */
448 else if ( t1
< 0x400000UL
)
455 } while ( t1
< 0x400000UL
);
468 t
= - FT_DivFix( c
, b
) / 2;
469 test_cubic_extrema( y1
, y2
, y3
, y4
, t
, min
, max
);
474 /* solve the equation now */
475 d
= FT_MulFix( b
, b
) - FT_MulFix( a
, c
);
481 /* there is a single split point at -b/a */
482 t
= - FT_DivFix( b
, a
);
483 test_cubic_extrema( y1
, y2
, y3
, y4
, t
, min
, max
);
487 /* there are two solutions; we need to filter them */
488 d
= FT_SqrtFixed( (FT_Int32
)d
);
489 t
= - FT_DivFix( b
- d
, a
);
490 test_cubic_extrema( y1
, y2
, y3
, y4
, t
, min
, max
);
492 t
= - FT_DivFix( b
+ d
, a
);
493 test_cubic_extrema( y1
, y2
, y3
, y4
, t
, min
, max
);
502 /*************************************************************************/
508 /* This function is used as a `cubic_to' emitter during */
509 /* FT_Raster_Decompose(). It checks a cubic Bezier curve with the */
510 /* current bounding box, and computes its extrema if necessary to */
514 /* control1 :: A pointer to the first control point. */
516 /* control2 :: A pointer to the second control point. */
518 /* to :: A pointer to the destination vector. */
521 /* user :: The address of the current walk context. */
524 /* Always 0. Needed for the interface only. */
527 /* In the case of a non-monotonous arc, we don't compute directly */
528 /* extremum coordinates, we subdivide instead. */
531 BBox_Cubic_To( FT_Vector
* control1
,
536 /* we don't need to check `to' since it is always an `on' point, thus */
537 /* within the bbox */
539 if ( CHECK_X( control1
, user
->bbox
) ||
540 CHECK_X( control2
, user
->bbox
) )
541 BBox_Cubic_Check( user
->last
.x
,
548 if ( CHECK_Y( control1
, user
->bbox
) ||
549 CHECK_Y( control2
, user
->bbox
) )
550 BBox_Cubic_Check( user
->last
.y
,
563 /* documentation is in ftbbox.h */
565 FT_EXPORT_DEF( FT_Error
)
566 FT_Outline_Get_BBox( FT_Outline
* outline
,
576 return FT_Err_Invalid_Argument
;
579 return FT_Err_Invalid_Outline
;
581 /* if outline is empty, return (0,0,0,0) */
582 if ( outline
->n_points
== 0 || outline
->n_contours
<= 0 )
584 abbox
->xMin
= abbox
->xMax
= 0;
585 abbox
->yMin
= abbox
->yMax
= 0;
589 /* We compute the control box as well as the bounding box of */
590 /* all `on' points in the outline. Then, if the two boxes */
591 /* coincide, we exit immediately. */
593 vec
= outline
->points
;
594 bbox
.xMin
= bbox
.xMax
= cbox
.xMin
= cbox
.xMax
= vec
->x
;
595 bbox
.yMin
= bbox
.yMax
= cbox
.yMin
= cbox
.yMax
= vec
->y
;
598 for ( n
= 1; n
< outline
->n_points
; n
++ )
604 /* update control box */
605 if ( x
< cbox
.xMin
) cbox
.xMin
= x
;
606 if ( x
> cbox
.xMax
) cbox
.xMax
= x
;
608 if ( y
< cbox
.yMin
) cbox
.yMin
= y
;
609 if ( y
> cbox
.yMax
) cbox
.yMax
= y
;
611 if ( FT_CURVE_TAG( outline
->tags
[n
] ) == FT_CURVE_TAG_ON
)
613 /* update bbox for `on' points only */
614 if ( x
< bbox
.xMin
) bbox
.xMin
= x
;
615 if ( x
> bbox
.xMax
) bbox
.xMax
= x
;
617 if ( y
< bbox
.yMin
) bbox
.yMin
= y
;
618 if ( y
> bbox
.yMax
) bbox
.yMax
= y
;
624 /* test two boxes for equality */
625 if ( cbox
.xMin
< bbox
.xMin
|| cbox
.xMax
> bbox
.xMax
||
626 cbox
.yMin
< bbox
.yMin
|| cbox
.yMax
> bbox
.yMax
)
628 /* the two boxes are different, now walk over the outline to */
629 /* get the Bezier arc extrema. */
631 static const FT_Outline_Funcs bbox_interface
=
633 (FT_Outline_MoveTo_Func
) BBox_Move_To
,
634 (FT_Outline_LineTo_Func
) BBox_Move_To
,
635 (FT_Outline_ConicTo_Func
)BBox_Conic_To
,
636 (FT_Outline_CubicTo_Func
)BBox_Cubic_To
,
646 error
= FT_Outline_Decompose( outline
, &bbox_interface
, &user
);