b=450088 backing out (new reftest failed)
[wine-gecko.git] / modules / lcms / src / cmswtpnt.c
blobf5aec66d4e7596b2a3bc05fa01bcab8ce6d17da9
1 //
2 // Little cms
3 // Copyright (C) 1998-2007 Marti Maria
4 //
5 // Permission is hereby granted, free of charge, to any person obtaining
6 // a copy of this software and associated documentation files (the "Software"),
7 // to deal in the Software without restriction, including without limitation
8 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 // and/or sell copies of the Software, and to permit persons to whom the Software
10 // is furnished to do so, subject to the following conditions:
12 // The above copyright notice and this permission notice shall be included in
13 // all copies or substantial portions of the Software.
15 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
17 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
19 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
20 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
21 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 #include "lcms.h"
26 // Conversions
28 void LCMSEXPORT cmsXYZ2xyY(LPcmsCIExyY Dest, const cmsCIEXYZ* Source)
30 double ISum;
32 ISum = 1./(Source -> X + Source -> Y + Source -> Z);
34 Dest -> x = (Source -> X) * ISum;
35 Dest -> y = (Source -> Y) * ISum;
36 Dest -> Y = Source -> Y;
40 void LCMSEXPORT cmsxyY2XYZ(LPcmsCIEXYZ Dest, const cmsCIExyY* Source)
43 Dest -> X = (Source -> x / Source -> y) * Source -> Y;
44 Dest -> Y = Source -> Y;
45 Dest -> Z = ((1 - Source -> x - Source -> y) / Source -> y) * Source -> Y;
49 // Obtains WhitePoint from Temperature
51 LCMSBOOL LCMSEXPORT cmsWhitePointFromTemp(int TempK, LPcmsCIExyY WhitePoint)
53 double x, y;
54 double T, T2, T3;
55 // double M1, M2;
58 // No optimization provided.
60 T = TempK;
61 T2 = T*T; // Square
62 T3 = T2*T; // Cube
64 // For correlated color temperature (T) between 4000K and 7000K:
66 if (T >= 4000. && T <= 7000.)
68 x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063;
70 else
71 // or for correlated color temperature (T) between 7000K and 25000K:
73 if (T > 7000.0 && T <= 25000.0)
75 x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040;
77 else {
78 cmsSignalError(LCMS_ERRC_ABORTED, "cmsWhitePointFromTemp: invalid temp");
79 return FALSE;
82 // Obtain y(x)
84 y = -3.000*(x*x) + 2.870*x - 0.275;
86 // wave factors (not used, but here for futures extensions)
88 // M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y);
89 // M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y);
93 // Fill WhitePoint struct
95 WhitePoint -> x = x;
96 WhitePoint -> y = y;
97 WhitePoint -> Y = 1.0;
99 return TRUE;
102 // Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
103 // This is just an approximation, I am not handling all the non-linear
104 // aspects of the RGB to XYZ process, and assumming that the gamma correction
105 // has transitive property in the tranformation chain.
107 // the alghoritm:
109 // - First I build the absolute conversion matrix using
110 // primaries in XYZ. This matrix is next inverted
111 // - Then I eval the source white point across this matrix
112 // obtaining the coeficients of the transformation
113 // - Then, I apply these coeficients to the original matrix
116 LCMSBOOL LCMSEXPORT cmsBuildRGB2XYZtransferMatrix(LPMAT3 r, LPcmsCIExyY WhitePt,
117 LPcmsCIExyYTRIPLE Primrs)
119 VEC3 WhitePoint, Coef;
120 MAT3 Result, Primaries;
121 double xn, yn;
122 double xr, yr;
123 double xg, yg;
124 double xb, yb;
127 xn = WhitePt -> x;
128 yn = WhitePt -> y;
129 if (yn == 0.0)
130 return FALSE;
131 xr = Primrs -> Red.x;
132 yr = Primrs -> Red.y;
133 xg = Primrs -> Green.x;
134 yg = Primrs -> Green.y;
135 xb = Primrs -> Blue.x;
136 yb = Primrs -> Blue.y;
139 // Build Primaries matrix
140 VEC3init(&Primaries.v[0], xr, xg, xb);
141 VEC3init(&Primaries.v[1], yr, yg, yb);
142 VEC3init(&Primaries.v[2], (1-xr-yr), (1-xg-yg), (1-xb-yb));
145 // Result = Primaries ^ (-1) inverse matrix
146 if (MAT3inverse(&Primaries, &Result) < 0)
147 return FALSE;
150 VEC3init(&WhitePoint, xn/yn, 1.0, (1.0-xn-yn)/yn);
152 // Across inverse primaries ...
153 MAT3eval(&Coef, &Result, &WhitePoint);
155 // Give us the Coefs, then I build transformation matrix
156 VEC3init(&r -> v[0], Coef.n[VX]*xr, Coef.n[VY]*xg, Coef.n[VZ]*xb);
157 VEC3init(&r -> v[1], Coef.n[VX]*yr, Coef.n[VY]*yg, Coef.n[VZ]*yb);
158 VEC3init(&r -> v[2], Coef.n[VX]*(1.0-xr-yr), Coef.n[VY]*(1.0-xg-yg), Coef.n[VZ]*(1.0-xb-yb));
161 return TRUE;
166 // Compute chromatic adaptation matrix using Chad as cone matrix
168 static
169 void ComputeChromaticAdaptation(LPMAT3 Conversion,
170 LPcmsCIEXYZ SourceWhitePoint,
171 LPcmsCIEXYZ DestWhitePoint,
172 LPMAT3 Chad)
176 MAT3 Chad_Inv;
177 VEC3 ConeSourceXYZ, ConeSourceRGB;
178 VEC3 ConeDestXYZ, ConeDestRGB;
179 MAT3 Cone, Tmp;
182 Tmp = *Chad;
183 MAT3inverse(&Tmp, &Chad_Inv);
185 VEC3init(&ConeSourceXYZ, SourceWhitePoint -> X,
186 SourceWhitePoint -> Y,
187 SourceWhitePoint -> Z);
189 VEC3init(&ConeDestXYZ, DestWhitePoint -> X,
190 DestWhitePoint -> Y,
191 DestWhitePoint -> Z);
193 MAT3eval(&ConeSourceRGB, Chad, &ConeSourceXYZ);
194 MAT3eval(&ConeDestRGB, Chad, &ConeDestXYZ);
196 // Build matrix
198 VEC3init(&Cone.v[0], ConeDestRGB.n[0]/ConeSourceRGB.n[0], 0.0, 0.0);
199 VEC3init(&Cone.v[1], 0.0, ConeDestRGB.n[1]/ConeSourceRGB.n[1], 0.0);
200 VEC3init(&Cone.v[2], 0.0, 0.0, ConeDestRGB.n[2]/ConeSourceRGB.n[2]);
203 // Normalize
204 MAT3per(&Tmp, &Cone, Chad);
205 MAT3per(Conversion, &Chad_Inv, &Tmp);
210 // Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
211 // The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed
213 LCMSBOOL cmsAdaptationMatrix(LPMAT3 r, LPMAT3 ConeMatrix, LPcmsCIEXYZ FromIll, LPcmsCIEXYZ ToIll)
215 MAT3 LamRigg = {{ // Bradford matrix
216 {{ 0.8951, 0.2664, -0.1614 }},
217 {{ -0.7502, 1.7135, 0.0367 }},
218 {{ 0.0389, -0.0685, 1.0296 }}
222 if (ConeMatrix == NULL)
223 ConeMatrix = &LamRigg;
225 ComputeChromaticAdaptation(r, FromIll, ToIll, ConeMatrix);
226 return TRUE;
230 // Same as anterior, but assuming D50 destination. White point is given in xyY
232 LCMSBOOL cmsAdaptMatrixToD50(LPMAT3 r, LPcmsCIExyY SourceWhitePt)
234 cmsCIEXYZ Dn;
235 MAT3 Bradford;
236 MAT3 Tmp;
238 cmsxyY2XYZ(&Dn, SourceWhitePt);
240 cmsAdaptationMatrix(&Bradford, NULL, &Dn, cmsD50_XYZ());
242 Tmp = *r;
243 MAT3per(r, &Bradford, &Tmp);
245 return TRUE;
249 // Same as anterior, but assuming D50 source. White point is given in xyY
251 LCMSBOOL cmsAdaptMatrixFromD50(LPMAT3 r, LPcmsCIExyY DestWhitePt)
253 cmsCIEXYZ Dn;
254 MAT3 Bradford;
255 MAT3 Tmp;
257 cmsxyY2XYZ(&Dn, DestWhitePt);
259 cmsAdaptationMatrix(&Bradford, NULL, cmsD50_XYZ(), &Dn);
261 Tmp = *r;
262 MAT3per(r, &Bradford, &Tmp);
264 return TRUE;
268 // Adapts a color to a given illuminant. Original color is expected to have
269 // a SourceWhitePt white point.
271 LCMSBOOL LCMSEXPORT cmsAdaptToIlluminant(LPcmsCIEXYZ Result,
272 LPcmsCIEXYZ SourceWhitePt,
273 LPcmsCIEXYZ Illuminant,
274 LPcmsCIEXYZ Value)
276 MAT3 Bradford;
277 VEC3 In, Out;
279 // BradfordLamRiggChromaticAdaptation(&Bradford, SourceWhitePt, Illuminant);
281 cmsAdaptationMatrix(&Bradford, NULL, SourceWhitePt, Illuminant);
283 VEC3init(&In, Value -> X, Value -> Y, Value -> Z);
284 MAT3eval(&Out, &Bradford, &In);
286 Result -> X = Out.n[0];
287 Result -> Y = Out.n[1];
288 Result -> Z = Out.n[2];
290 return TRUE;
295 typedef struct {
297 double mirek; // temp (in microreciprocal kelvin)
298 double ut; // u coord of intersection w/ blackbody locus
299 double vt; // v coord of intersection w/ blackbody locus
300 double tt; // slope of ISOTEMPERATURE. line
302 } ISOTEMPERATURE,FAR* LPISOTEMPERATURE;
304 static ISOTEMPERATURE isotempdata[] = {
305 // {Mirek, Ut, Vt, Tt }
306 {0, 0.18006, 0.26352, -0.24341},
307 {10, 0.18066, 0.26589, -0.25479},
308 {20, 0.18133, 0.26846, -0.26876},
309 {30, 0.18208, 0.27119, -0.28539},
310 {40, 0.18293, 0.27407, -0.30470},
311 {50, 0.18388, 0.27709, -0.32675},
312 {60, 0.18494, 0.28021, -0.35156},
313 {70, 0.18611, 0.28342, -0.37915},
314 {80, 0.18740, 0.28668, -0.40955},
315 {90, 0.18880, 0.28997, -0.44278},
316 {100, 0.19032, 0.29326, -0.47888},
317 {125, 0.19462, 0.30141, -0.58204},
318 {150, 0.19962, 0.30921, -0.70471},
319 {175, 0.20525, 0.31647, -0.84901},
320 {200, 0.21142, 0.32312, -1.0182 },
321 {225, 0.21807, 0.32909, -1.2168 },
322 {250, 0.22511, 0.33439, -1.4512 },
323 {275, 0.23247, 0.33904, -1.7298 },
324 {300, 0.24010, 0.34308, -2.0637 },
325 {325, 0.24702, 0.34655, -2.4681 },
326 {350, 0.25591, 0.34951, -2.9641 },
327 {375, 0.26400, 0.35200, -3.5814 },
328 {400, 0.27218, 0.35407, -4.3633 },
329 {425, 0.28039, 0.35577, -5.3762 },
330 {450, 0.28863, 0.35714, -6.7262 },
331 {475, 0.29685, 0.35823, -8.5955 },
332 {500, 0.30505, 0.35907, -11.324 },
333 {525, 0.31320, 0.35968, -15.628 },
334 {550, 0.32129, 0.36011, -23.325 },
335 {575, 0.32931, 0.36038, -40.770 },
336 {600, 0.33724, 0.36051, -116.45 }
339 #define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE)
342 // Robertson's method
344 static
345 double Robertson(LPcmsCIExyY v)
347 int j;
348 double us,vs;
349 double uj,vj,tj,di,dj,mi,mj;
350 double Tc = -1, xs, ys;
352 di = mi = 0;
353 xs = v -> x;
354 ys = v -> y;
356 // convert (x,y) to CIE 1960 (u,v)
358 us = (2*xs) / (-xs + 6*ys + 1.5);
359 vs = (3*ys) / (-xs + 6*ys + 1.5);
362 for (j=0; j < NISO; j++) {
364 uj = isotempdata[j].ut;
365 vj = isotempdata[j].vt;
366 tj = isotempdata[j].tt;
367 mj = isotempdata[j].mirek;
369 dj = ((vs - vj) - tj * (us - uj)) / sqrt(1 + tj*tj);
371 if ((j!=0) && (di/dj < 0.0)) {
372 Tc = 1000000.0 / (mi + (di / (di - dj)) * (mj - mi));
373 break;
376 di = dj;
377 mi = mj;
381 if (j == NISO) return -1;
382 return Tc;
387 static
388 LCMSBOOL InRange(LPcmsCIExyY a, LPcmsCIExyY b, double tolerance)
390 double dist_x, dist_y;
392 dist_x = fabs(a->x - b->x);
393 dist_y = fabs(a->y - b->y);
395 return (tolerance >= dist_x * dist_x + dist_y * dist_y);
400 typedef struct {
401 char Name[30];
402 cmsCIExyY Val;
404 } WHITEPOINTS,FAR *LPWHITEPOINTS;
406 static
407 int FromD40toD150(LPWHITEPOINTS pts)
409 int i, n;
411 n = 0;
412 for (i=40; i < 150; i ++)
414 sprintf(pts[n].Name, "D%d", i);
415 cmsWhitePointFromTemp((int) (i*100.0), &pts[n].Val);
416 n++;
419 return n;
423 // To be removed in future versions
424 void _cmsIdentifyWhitePoint(char *Buffer, LPcmsCIEXYZ WhitePt)
426 int i, n;
427 cmsCIExyY Val;
428 double T;
429 WHITEPOINTS SomeIlluminants[140] = {
431 {"CIE illuminant A", {0.4476, 0.4074, 1.0}},
432 {"CIE illuminant C", {0.3101, 0.3162, 1.0}},
433 {"D65 (daylight)", {0.3127, 0.3291, 1.0}},
436 n = FromD40toD150(&SomeIlluminants[3]) + 3;
438 cmsXYZ2xyY(&Val, WhitePt);
440 Val.Y = 1.;
441 for (i=0; i < n; i++)
444 if (InRange(&Val, &SomeIlluminants[i].Val, 0.000005))
446 strcpy(Buffer, "WhitePoint : ");
447 strcat(Buffer, SomeIlluminants[i].Name);
448 return;
452 T = Robertson(&Val);
454 if (T > 0)
455 sprintf(Buffer, "White point near %dK", (int) T);
456 else
458 sprintf(Buffer, "Unknown white point (X:%1.2g, Y:%1.2g, Z:%1.2g)",
459 WhitePt -> X, WhitePt -> Y, WhitePt -> Z);
466 // Use darker colorant to obtain black point
468 static
469 int BlackPointAsDarkerColorant(cmsHPROFILE hInput,
470 int Intent,
471 LPcmsCIEXYZ BlackPoint,
472 DWORD dwFlags)
474 WORD *Black, *White;
475 cmsHTRANSFORM xform;
476 icColorSpaceSignature Space;
477 int nChannels;
478 DWORD dwFormat;
479 cmsHPROFILE hLab;
480 cmsCIELab Lab;
481 cmsCIEXYZ BlackXYZ, MediaWhite;
483 // If the profile does not support input direction, assume Black point 0
484 if (!cmsIsIntentSupported(hInput, Intent, LCMS_USED_AS_INPUT)) {
486 BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
487 return 0;
491 // Try to get black by using black colorant
492 Space = cmsGetColorSpace(hInput);
494 if (!_cmsEndPointsBySpace(Space, &White, &Black, &nChannels)) {
496 BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
497 return 0;
500 dwFormat = CHANNELS_SH(nChannels)|BYTES_SH(2);
502 hLab = cmsCreateLabProfile(NULL);
504 xform = cmsCreateTransform(hInput, dwFormat,
505 hLab, TYPE_Lab_DBL, Intent, cmsFLAGS_NOTPRECALC);
508 cmsDoTransform(xform, Black, &Lab, 1);
510 // Force it to be neutral, clip to max. L* of 50
512 Lab.a = Lab.b = 0;
513 if (Lab.L > 50) Lab.L = 50;
515 cmsCloseProfile(hLab);
516 cmsDeleteTransform(xform);
518 cmsLab2XYZ(NULL, &BlackXYZ, &Lab);
520 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) {
522 *BlackPoint = BlackXYZ;
524 else {
526 if (!(dwFlags & LCMS_BPFLAGS_D50_ADAPTED)) {
528 cmsTakeMediaWhitePoint(&MediaWhite, hInput);
529 cmsAdaptToIlluminant(BlackPoint, cmsD50_XYZ(), &MediaWhite, &BlackXYZ);
531 else
532 *BlackPoint = BlackXYZ;
535 return 1;
539 // Get a black point of output CMYK profile, discounting any ink-limiting embedded
540 // in the profile. For doing that, use perceptual intent in input direction:
541 // Lab (0, 0, 0) -> [Perceptual] Profile -> CMYK -> [Rel. colorimetric] Profile -> Lab
543 static
544 int BlackPointUsingPerceptualBlack(LPcmsCIEXYZ BlackPoint,
545 cmsHPROFILE hProfile,
546 DWORD dwFlags)
548 cmsHTRANSFORM hPercLab2CMYK, hRelColCMYK2Lab;
549 cmsHPROFILE hLab;
550 cmsCIELab LabIn, LabOut;
551 WORD CMYK[MAXCHANNELS];
552 cmsCIEXYZ BlackXYZ, MediaWhite;
555 if (!cmsIsIntentSupported(hProfile, INTENT_PERCEPTUAL, LCMS_USED_AS_INPUT)) {
557 BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
558 return 0;
561 hLab = cmsCreateLabProfile(NULL);
563 hPercLab2CMYK = cmsCreateTransform(hLab, TYPE_Lab_DBL,
564 hProfile, TYPE_CMYK_16,
565 INTENT_PERCEPTUAL, cmsFLAGS_NOTPRECALC);
567 hRelColCMYK2Lab = cmsCreateTransform(hProfile, TYPE_CMYK_16,
568 hLab, TYPE_Lab_DBL,
569 INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOTPRECALC);
571 LabIn.L = LabIn.a = LabIn.b = 0;
573 cmsDoTransform(hPercLab2CMYK, &LabIn, CMYK, 1);
574 cmsDoTransform(hRelColCMYK2Lab, CMYK, &LabOut, 1);
576 if (LabOut.L > 50) LabOut.L = 50;
577 LabOut.a = LabOut.b = 0;
579 cmsDeleteTransform(hPercLab2CMYK);
580 cmsDeleteTransform(hRelColCMYK2Lab);
581 cmsCloseProfile(hLab);
583 cmsLab2XYZ(NULL, &BlackXYZ, &LabOut);
585 if (!(dwFlags & LCMS_BPFLAGS_D50_ADAPTED)){
586 cmsTakeMediaWhitePoint(&MediaWhite, hProfile);
587 cmsAdaptToIlluminant(BlackPoint, cmsD50_XYZ(), &MediaWhite, &BlackXYZ);
589 else
590 *BlackPoint = BlackXYZ;
592 return 1;
597 // Get Perceptual black of v4 profiles.
598 static
599 int GetV4PerceptualBlack(LPcmsCIEXYZ BlackPoint, cmsHPROFILE hProfile, DWORD dwFlags)
601 if (dwFlags & LCMS_BPFLAGS_D50_ADAPTED) {
603 BlackPoint->X = PERCEPTUAL_BLACK_X;
604 BlackPoint->Y = PERCEPTUAL_BLACK_Y;
605 BlackPoint->Z = PERCEPTUAL_BLACK_Z;
607 else {
609 cmsCIEXYZ D50BlackPoint, MediaWhite;
611 cmsTakeMediaWhitePoint(&MediaWhite, hProfile);
612 D50BlackPoint.X = PERCEPTUAL_BLACK_X;
613 D50BlackPoint.Y = PERCEPTUAL_BLACK_Y;
614 D50BlackPoint.Z = PERCEPTUAL_BLACK_Z;
616 // Obtain the absolute XYZ. Adapt perceptual black back from D50 to whatever media white
617 cmsAdaptToIlluminant(BlackPoint, cmsD50_XYZ(), &MediaWhite, &D50BlackPoint);
621 return 1;
625 // This function shouldn't exist at all -- there is such quantity of broken
626 // profiles on black point tag, that we must somehow fix chromaticity to
627 // avoid huge tint when doing Black point compensation. This function does
628 // just that. There is a special flag for using black point tag, but turned
629 // off by default because it is bogus on most profiles. The detection algorithm
630 // involves to turn BP to neutral and to use only L component.
632 int cmsDetectBlackPoint(LPcmsCIEXYZ BlackPoint, cmsHPROFILE hProfile, int Intent, DWORD dwFlags)
635 // v4 + perceptual & saturation intents does have its own black point, and it is
636 // well specified enough to use it.
638 if ((cmsGetProfileICCversion(hProfile) >= 0x4000000) &&
639 (Intent == INTENT_PERCEPTUAL || Intent == INTENT_SATURATION)) {
641 // Matrix shaper share MRC & perceptual intents
642 if (_cmsIsMatrixShaper(hProfile))
643 return BlackPointAsDarkerColorant(hProfile, INTENT_RELATIVE_COLORIMETRIC, BlackPoint, cmsFLAGS_NOTPRECALC);
645 // CLUT based - Get perceptual black point (fixed value)
646 return GetV4PerceptualBlack(BlackPoint, hProfile, dwFlags);
650 #ifdef HONOR_BLACK_POINT_TAG
652 // v2, v4 rel/abs colorimetric
653 if (cmsIsTag(hProfile, icSigMediaBlackPointTag) &&
654 Intent == INTENT_RELATIVE_COLORIMETRIC) {
656 cmsCIEXYZ BlackXYZ, UntrustedBlackPoint, TrustedBlackPoint, MediaWhite;
657 cmsCIELab Lab;
659 // If black point is specified, then use it,
661 cmsTakeMediaBlackPoint(&BlackXYZ, hProfile);
662 cmsTakeMediaWhitePoint(&MediaWhite, hProfile);
664 // Black point is absolute XYZ, so adapt to D50 to get PCS value
665 cmsAdaptToIlluminant(&UntrustedBlackPoint, &MediaWhite, cmsD50_XYZ(), &BlackXYZ);
667 // Force a=b=0 to get rid of any chroma
669 cmsXYZ2Lab(NULL, &Lab, &UntrustedBlackPoint);
670 Lab.a = Lab.b = 0;
671 if (Lab.L > 50) Lab.L = 50; // Clip to L* <= 50
673 cmsLab2XYZ(NULL, &TrustedBlackPoint, &Lab);
675 // Return BP as D50 relative or absolute XYZ (depends on flags)
676 if (!(dwFlags & LCMS_BPFLAGS_D50_ADAPTED))
677 cmsAdaptToIlluminant(BlackPoint, cmsD50_XYZ(), &MediaWhite, &TrustedBlackPoint);
678 else
679 *BlackPoint = TrustedBlackPoint;
681 return 1;
684 #endif
686 // That is about v2 profiles.
688 // If output profile, discount ink-limiting and that's all
689 if (Intent == INTENT_RELATIVE_COLORIMETRIC &&
690 (cmsGetDeviceClass(hProfile) == icSigOutputClass) &&
691 (cmsGetColorSpace(hProfile) == icSigCmykData))
692 return BlackPointUsingPerceptualBlack(BlackPoint, hProfile, dwFlags);
694 // Nope, compute BP using current intent.
695 return BlackPointAsDarkerColorant(hProfile, Intent, BlackPoint, dwFlags);