2 * GDI region objects. Shamelessly ripped out from the X11 distribution
3 * Thanks for the nice licence.
5 * Copyright 1993, 1994, 1995 Alexandre Julliard
6 * Modifications and additions: Copyright 1998 Huw Davies
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 /************************************************************************
26 Copyright (c) 1987, 1988 X Consortium
28 Permission is hereby granted, free of charge, to any person obtaining a copy
29 of this software and associated documentation files (the "Software"), to deal
30 in the Software without restriction, including without limitation the rights
31 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
32 copies of the Software, and to permit persons to whom the Software is
33 furnished to do so, subject to the following conditions:
35 The above copyright notice and this permission notice shall be included in
36 all copies or substantial portions of the Software.
38 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
39 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
40 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
41 X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
42 AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
43 CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
45 Except as contained in this notice, the name of the X Consortium shall not be
46 used in advertising or otherwise to promote the sale, use or other dealings
47 in this Software without prior written authorization from the X Consortium.
50 Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts.
54 Permission to use, copy, modify, and distribute this software and its
55 documentation for any purpose and without fee is hereby granted,
56 provided that the above copyright notice appear in all copies and that
57 both that copyright notice and this permission notice appear in
58 supporting documentation, and that the name of Digital not be
59 used in advertising or publicity pertaining to distribution of the
60 software without specific, written prior permission.
62 DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
63 ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
64 DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
65 ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
66 WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
67 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
70 ************************************************************************/
72 * The functions in this file implement the Region abstraction, similar to one
73 * used in the X11 sample server. A Region is simply an area, as the name
74 * implies, and is implemented as a "y-x-banded" array of rectangles. To
75 * explain: Each Region is made up of a certain number of rectangles sorted
76 * by y coordinate first, and then by x coordinate.
78 * Furthermore, the rectangles are banded such that every rectangle with a
79 * given upper-left y coordinate (y1) will have the same lower-right y
80 * coordinate (y2) and vice versa. If a rectangle has scanlines in a band, it
81 * will span the entire vertical distance of the band. This means that some
82 * areas that could be merged into a taller rectangle will be represented as
83 * several shorter rectangles to account for shorter rectangles to its left
84 * or right but within its "vertical scope".
86 * An added constraint on the rectangles is that they must cover as much
87 * horizontal area as possible. E.g. no two rectangles in a band are allowed
90 * Whenever possible, bands will be merged together to cover a greater vertical
91 * distance (and thus reduce the number of rectangles). Two bands can be merged
92 * only if the bottom of one touches the top of the other and they have
93 * rectangles in the same places (of the same width, of course). This maintains
94 * the y-x-banding that's so nice to have...
104 #include "gdi_private.h"
105 #include "wine/debug.h"
107 WINE_DEFAULT_DEBUG_CHANNEL(region
);
116 /* GDI logical region object */
124 static HGDIOBJ
REGION_SelectObject( HGDIOBJ handle
, void *obj
, HDC hdc
);
125 static BOOL
REGION_DeleteObject( HGDIOBJ handle
, void *obj
);
127 static const struct gdi_obj_funcs region_funcs
=
129 REGION_SelectObject
, /* pSelectObject */
130 NULL
, /* pGetObject16 */
131 NULL
, /* pGetObjectA */
132 NULL
, /* pGetObjectW */
133 NULL
, /* pUnrealizeObject */
134 REGION_DeleteObject
/* pDeleteObject */
137 /* 1 if two RECTs overlap.
138 * 0 if two RECTs do not overlap.
140 #define EXTENTCHECK(r1, r2) \
141 ((r1)->right > (r2)->left && \
142 (r1)->left < (r2)->right && \
143 (r1)->bottom > (r2)->top && \
144 (r1)->top < (r2)->bottom)
147 * Check to see if there is enough memory in the present region.
150 static inline int xmemcheck(WINEREGION
*reg
, LPRECT
*rect
, LPRECT
*firstrect
) {
151 if (reg
->numRects
>= (reg
->size
- 1)) {
152 *firstrect
= HeapReAlloc( GetProcessHeap(), 0, *firstrect
, (2 * (sizeof(RECT
)) * (reg
->size
)));
156 *rect
= (*firstrect
)+reg
->numRects
;
161 #define MEMCHECK(reg, rect, firstrect) xmemcheck(reg,&(rect),&(firstrect))
163 #define EMPTY_REGION(pReg) { \
164 (pReg)->numRects = 0; \
165 (pReg)->extents.left = (pReg)->extents.top = 0; \
166 (pReg)->extents.right = (pReg)->extents.bottom = 0; \
169 #define REGION_NOT_EMPTY(pReg) pReg->numRects
171 #define INRECT(r, x, y) \
172 ( ( ((r).right > x)) && \
173 ( ((r).left <= x)) && \
174 ( ((r).bottom > y)) && \
179 * number of points to buffer before sending them off
180 * to scanlines() : Must be an even number
182 #define NUMPTSTOBUFFER 200
185 * used to allocate buffers for points and link
186 * the buffers together
189 typedef struct _POINTBLOCK
{
190 POINT pts
[NUMPTSTOBUFFER
];
191 struct _POINTBLOCK
*next
;
197 * This file contains a few macros to help track
198 * the edge of a filled object. The object is assumed
199 * to be filled in scanline order, and thus the
200 * algorithm used is an extension of Bresenham's line
201 * drawing algorithm which assumes that y is always the
203 * Since these pieces of code are the same for any filled shape,
204 * it is more convenient to gather the library in one
205 * place, but since these pieces of code are also in
206 * the inner loops of output primitives, procedure call
207 * overhead is out of the question.
208 * See the author for a derivation if needed.
213 * In scan converting polygons, we want to choose those pixels
214 * which are inside the polygon. Thus, we add .5 to the starting
215 * x coordinate for both left and right edges. Now we choose the
216 * first pixel which is inside the pgon for the left edge and the
217 * first pixel which is outside the pgon for the right edge.
218 * Draw the left pixel, but not the right.
220 * How to add .5 to the starting x coordinate:
221 * If the edge is moving to the right, then subtract dy from the
222 * error term from the general form of the algorithm.
223 * If the edge is moving to the left, then add dy to the error term.
225 * The reason for the difference between edges moving to the left
226 * and edges moving to the right is simple: If an edge is moving
227 * to the right, then we want the algorithm to flip immediately.
228 * If it is moving to the left, then we don't want it to flip until
229 * we traverse an entire pixel.
231 #define BRESINITPGON(dy, x1, x2, xStart, d, m, m1, incr1, incr2) { \
232 int dx; /* local storage */ \
235 * if the edge is horizontal, then it is ignored \
236 * and assumed not to be processed. Otherwise, do this stuff. \
240 dx = (x2) - xStart; \
244 incr1 = -2 * dx + 2 * (dy) * m1; \
245 incr2 = -2 * dx + 2 * (dy) * m; \
246 d = 2 * m * (dy) - 2 * dx - 2 * (dy); \
250 incr1 = 2 * dx - 2 * (dy) * m1; \
251 incr2 = 2 * dx - 2 * (dy) * m; \
252 d = -2 * m * (dy) + 2 * dx; \
257 #define BRESINCRPGON(d, minval, m, m1, incr1, incr2) { \
280 * This structure contains all of the information needed
281 * to run the bresenham algorithm.
282 * The variables may be hardcoded into the declarations
283 * instead of using this structure to make use of
284 * register declarations.
287 INT minor_axis
; /* minor axis */
288 INT d
; /* decision variable */
289 INT m
, m1
; /* slope and slope+1 */
290 INT incr1
, incr2
; /* error increments */
294 #define BRESINITPGONSTRUCT(dmaj, min1, min2, bres) \
295 BRESINITPGON(dmaj, min1, min2, bres.minor_axis, bres.d, \
296 bres.m, bres.m1, bres.incr1, bres.incr2)
298 #define BRESINCRPGONSTRUCT(bres) \
299 BRESINCRPGON(bres.d, bres.minor_axis, bres.m, bres.m1, bres.incr1, bres.incr2)
304 * These are the data structures needed to scan
305 * convert regions. Two different scan conversion
306 * methods are available -- the even-odd method, and
307 * the winding number method.
308 * The even-odd rule states that a point is inside
309 * the polygon if a ray drawn from that point in any
310 * direction will pass through an odd number of
312 * By the winding number rule, a point is decided
313 * to be inside the polygon if a ray drawn from that
314 * point in any direction passes through a different
315 * number of clockwise and counter-clockwise path
318 * These data structures are adapted somewhat from
319 * the algorithm in (Foley/Van Dam) for scan converting
321 * The basic algorithm is to start at the top (smallest y)
322 * of the polygon, stepping down to the bottom of
323 * the polygon by incrementing the y coordinate. We
324 * keep a list of edges which the current scanline crosses,
325 * sorted by x. This list is called the Active Edge Table (AET)
326 * As we change the y-coordinate, we update each entry in
327 * in the active edge table to reflect the edges new xcoord.
328 * This list must be sorted at each scanline in case
329 * two edges intersect.
330 * We also keep a data structure known as the Edge Table (ET),
331 * which keeps track of all the edges which the current
332 * scanline has not yet reached. The ET is basically a
333 * list of ScanLineList structures containing a list of
334 * edges which are entered at a given scanline. There is one
335 * ScanLineList per scanline at which an edge is entered.
336 * When we enter a new edge, we move it from the ET to the AET.
338 * From the AET, we can implement the even-odd rule as in
340 * The winding number rule is a little trickier. We also
341 * keep the EdgeTableEntries in the AET linked by the
342 * nextWETE (winding EdgeTableEntry) link. This allows
343 * the edges to be linked just as before for updating
344 * purposes, but only uses the edges linked by the nextWETE
345 * link as edges representing spans of the polygon to
346 * drawn (as with the even-odd rule).
350 * for the winding number rule
353 #define COUNTERCLOCKWISE -1
355 typedef struct _EdgeTableEntry
{
356 INT ymax
; /* ycoord at which we exit this edge. */
357 BRESINFO bres
; /* Bresenham info to run the edge */
358 struct _EdgeTableEntry
*next
; /* next in the list */
359 struct _EdgeTableEntry
*back
; /* for insertion sort */
360 struct _EdgeTableEntry
*nextWETE
; /* for winding num rule */
361 int ClockWise
; /* flag for winding number rule */
365 typedef struct _ScanLineList
{
366 INT scanline
; /* the scanline represented */
367 EdgeTableEntry
*edgelist
; /* header node */
368 struct _ScanLineList
*next
; /* next in the list */
373 INT ymax
; /* ymax for the polygon */
374 INT ymin
; /* ymin for the polygon */
375 ScanLineList scanlines
; /* header node */
380 * Here is a struct to help with storage allocation
381 * so we can allocate a big chunk at a time, and then take
382 * pieces from this heap when we need to.
384 #define SLLSPERBLOCK 25
386 typedef struct _ScanLineListBlock
{
387 ScanLineList SLLs
[SLLSPERBLOCK
];
388 struct _ScanLineListBlock
*next
;
394 * a few macros for the inner loops of the fill code where
395 * performance considerations don't allow a procedure call.
397 * Evaluate the given edge at the given scanline.
398 * If the edge has expired, then we leave it and fix up
399 * the active edge table; otherwise, we increment the
400 * x value to be ready for the next scanline.
401 * The winding number rule is in effect, so we must notify
402 * the caller when the edge has been removed so he
403 * can reorder the Winding Active Edge Table.
405 #define EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET) { \
406 if (pAET->ymax == y) { /* leaving this edge */ \
407 pPrevAET->next = pAET->next; \
408 pAET = pPrevAET->next; \
411 pAET->back = pPrevAET; \
414 BRESINCRPGONSTRUCT(pAET->bres); \
422 * Evaluate the given edge at the given scanline.
423 * If the edge has expired, then we leave it and fix up
424 * the active edge table; otherwise, we increment the
425 * x value to be ready for the next scanline.
426 * The even-odd rule is in effect.
428 #define EVALUATEEDGEEVENODD(pAET, pPrevAET, y) { \
429 if (pAET->ymax == y) { /* leaving this edge */ \
430 pPrevAET->next = pAET->next; \
431 pAET = pPrevAET->next; \
433 pAET->back = pPrevAET; \
436 BRESINCRPGONSTRUCT(pAET->bres); \
442 typedef void (*voidProcp
)();
444 /* Note the parameter order is different from the X11 equivalents */
446 static void REGION_CopyRegion(WINEREGION
*d
, WINEREGION
*s
);
447 static void REGION_OffsetRegion(WINEREGION
*d
, WINEREGION
*s
, INT x
, INT y
);
448 static void REGION_IntersectRegion(WINEREGION
*d
, WINEREGION
*s1
, WINEREGION
*s2
);
449 static void REGION_UnionRegion(WINEREGION
*d
, WINEREGION
*s1
, WINEREGION
*s2
);
450 static void REGION_SubtractRegion(WINEREGION
*d
, WINEREGION
*s1
, WINEREGION
*s2
);
451 static void REGION_XorRegion(WINEREGION
*d
, WINEREGION
*s1
, WINEREGION
*s2
);
452 static void REGION_UnionRectWithRegion(const RECT
*rect
, WINEREGION
*rgn
);
454 #define RGN_DEFAULT_RECTS 2
457 /***********************************************************************
460 inline static INT
get_region_type( const RGNOBJ
*obj
)
462 switch(obj
->rgn
->numRects
)
464 case 0: return NULLREGION
;
465 case 1: return SIMPLEREGION
;
466 default: return COMPLEXREGION
;
471 /***********************************************************************
473 * Outputs the contents of a WINEREGION
475 static void REGION_DumpRegion(WINEREGION
*pReg
)
477 RECT
*pRect
, *pRectEnd
= pReg
->rects
+ pReg
->numRects
;
479 TRACE("Region %p: %ld,%ld - %ld,%ld %d rects\n", pReg
,
480 pReg
->extents
.left
, pReg
->extents
.top
,
481 pReg
->extents
.right
, pReg
->extents
.bottom
, pReg
->numRects
);
482 for(pRect
= pReg
->rects
; pRect
< pRectEnd
; pRect
++)
483 TRACE("\t%ld,%ld - %ld,%ld\n", pRect
->left
, pRect
->top
,
484 pRect
->right
, pRect
->bottom
);
489 /***********************************************************************
490 * REGION_AllocWineRegion
491 * Create a new empty WINEREGION.
493 static WINEREGION
*REGION_AllocWineRegion( INT n
)
497 if ((pReg
= HeapAlloc(GetProcessHeap(), 0, sizeof( WINEREGION
))))
499 if ((pReg
->rects
= HeapAlloc(GetProcessHeap(), 0, n
* sizeof( RECT
))))
505 HeapFree(GetProcessHeap(), 0, pReg
);
511 /***********************************************************************
512 * REGION_CreateRegion
513 * Create a new empty region.
515 static HRGN
REGION_CreateRegion( INT n
)
520 if(!(obj
= GDI_AllocObject( sizeof(RGNOBJ
), REGION_MAGIC
, (HGDIOBJ
*)&hrgn
,
521 ®ion_funcs
))) return 0;
522 if(!(obj
->rgn
= REGION_AllocWineRegion(n
))) {
523 GDI_FreeObject( hrgn
, obj
);
526 GDI_ReleaseObj( hrgn
);
530 /***********************************************************************
531 * REGION_DestroyWineRegion
533 static void REGION_DestroyWineRegion( WINEREGION
* pReg
)
535 HeapFree( GetProcessHeap(), 0, pReg
->rects
);
536 HeapFree( GetProcessHeap(), 0, pReg
);
539 /***********************************************************************
540 * REGION_DeleteObject
542 static BOOL
REGION_DeleteObject( HGDIOBJ handle
, void *obj
)
546 TRACE(" %p\n", handle
);
548 REGION_DestroyWineRegion( rgn
->rgn
);
549 return GDI_FreeObject( handle
, obj
);
552 /***********************************************************************
553 * REGION_SelectObject
555 static HGDIOBJ
REGION_SelectObject( HGDIOBJ handle
, void *obj
, HDC hdc
)
557 return (HGDIOBJ
)SelectClipRgn( hdc
, handle
);
561 /***********************************************************************
562 * REGION_OffsetRegion
563 * Offset a WINEREGION by x,y
565 static void REGION_OffsetRegion( WINEREGION
*rgn
, WINEREGION
*srcrgn
,
569 REGION_CopyRegion( rgn
, srcrgn
);
571 int nbox
= rgn
->numRects
;
572 RECT
*pbox
= rgn
->rects
;
582 rgn
->extents
.left
+= x
;
583 rgn
->extents
.right
+= x
;
584 rgn
->extents
.top
+= y
;
585 rgn
->extents
.bottom
+= y
;
590 /***********************************************************************
591 * OffsetRgn (GDI32.@)
593 * Moves a region by the specified X- and Y-axis offsets.
596 * hrgn [I] Region to offset.
597 * x [I] Offset right if positive or left if negative.
598 * y [I] Offset down if positive or up if negative.
602 * NULLREGION - The new region is empty.
603 * SIMPLEREGION - The new region can be represented by one rectangle.
604 * COMPLEXREGION - The new region can only be represented by more than
608 INT WINAPI
OffsetRgn( HRGN hrgn
, INT x
, INT y
)
610 RGNOBJ
* obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
);
613 TRACE("%p %d,%d\n", hrgn
, x
, y
);
618 REGION_OffsetRegion( obj
->rgn
, obj
->rgn
, x
, y
);
620 ret
= get_region_type( obj
);
621 GDI_ReleaseObj( hrgn
);
626 /***********************************************************************
627 * GetRgnBox (GDI32.@)
629 * Retrieves the bounding rectangle of the region. The bounding rectangle
630 * is the smallest rectangle that contains the entire region.
633 * hrgn [I] Region to retrieve bounding rectangle from.
634 * rect [O] Rectangle that will receive the coordinates of the bounding
638 * NULLREGION - The new region is empty.
639 * SIMPLEREGION - The new region can be represented by one rectangle.
640 * COMPLEXREGION - The new region can only be represented by more than
643 INT WINAPI
GetRgnBox( HRGN hrgn
, LPRECT rect
)
645 RGNOBJ
* obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
);
649 rect
->left
= obj
->rgn
->extents
.left
;
650 rect
->top
= obj
->rgn
->extents
.top
;
651 rect
->right
= obj
->rgn
->extents
.right
;
652 rect
->bottom
= obj
->rgn
->extents
.bottom
;
653 TRACE("%p (%ld,%ld-%ld,%ld)\n", hrgn
,
654 rect
->left
, rect
->top
, rect
->right
, rect
->bottom
);
655 ret
= get_region_type( obj
);
656 GDI_ReleaseObj(hrgn
);
663 /***********************************************************************
664 * CreateRectRgn (GDI32.@)
666 * Creates a simple rectangular region.
669 * left [I] Left coordinate of rectangle.
670 * top [I] Top coordinate of rectangle.
671 * right [I] Right coordinate of rectangle.
672 * bottom [I] Bottom coordinate of rectangle.
675 * Success: Handle to region.
678 HRGN WINAPI
CreateRectRgn(INT left
, INT top
, INT right
, INT bottom
)
682 /* Allocate 2 rects by default to reduce the number of reallocs */
684 if (!(hrgn
= REGION_CreateRegion(RGN_DEFAULT_RECTS
)))
686 TRACE("%d,%d-%d,%d\n", left
, top
, right
, bottom
);
687 SetRectRgn(hrgn
, left
, top
, right
, bottom
);
692 /***********************************************************************
693 * CreateRectRgnIndirect (GDI32.@)
695 * Creates a simple rectangular region.
698 * rect [I] Coordinates of rectangular region.
701 * Success: Handle to region.
704 HRGN WINAPI
CreateRectRgnIndirect( const RECT
* rect
)
706 return CreateRectRgn( rect
->left
, rect
->top
, rect
->right
, rect
->bottom
);
710 /***********************************************************************
711 * SetRectRgn (GDI32.@)
713 * Sets a region to a simple rectangular region.
716 * hrgn [I] Region to convert.
717 * left [I] Left coordinate of rectangle.
718 * top [I] Top coordinate of rectangle.
719 * right [I] Right coordinate of rectangle.
720 * bottom [I] Bottom coordinate of rectangle.
727 * Allows either or both left and top to be greater than right or bottom.
729 BOOL WINAPI
SetRectRgn( HRGN hrgn
, INT left
, INT top
,
730 INT right
, INT bottom
)
734 TRACE("%p %d,%d-%d,%d\n", hrgn
, left
, top
, right
, bottom
);
736 if (!(obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
))) return FALSE
;
738 if (left
> right
) { INT tmp
= left
; left
= right
; right
= tmp
; }
739 if (top
> bottom
) { INT tmp
= top
; top
= bottom
; bottom
= tmp
; }
741 if((left
!= right
) && (top
!= bottom
))
743 obj
->rgn
->rects
->left
= obj
->rgn
->extents
.left
= left
;
744 obj
->rgn
->rects
->top
= obj
->rgn
->extents
.top
= top
;
745 obj
->rgn
->rects
->right
= obj
->rgn
->extents
.right
= right
;
746 obj
->rgn
->rects
->bottom
= obj
->rgn
->extents
.bottom
= bottom
;
747 obj
->rgn
->numRects
= 1;
750 EMPTY_REGION(obj
->rgn
);
752 GDI_ReleaseObj( hrgn
);
757 /***********************************************************************
758 * CreateRoundRectRgn (GDI32.@)
760 * Creates a rectangular region with rounded corners.
763 * left [I] Left coordinate of rectangle.
764 * top [I] Top coordinate of rectangle.
765 * right [I] Right coordinate of rectangle.
766 * bottom [I] Bottom coordinate of rectangle.
767 * ellipse_width [I] Width of the ellipse at each corner.
768 * ellipse_height [I] Height of the ellipse at each corner.
771 * Success: Handle to region.
775 * If ellipse_width or ellipse_height is less than 2 logical units then
776 * it is treated as though CreateRectRgn() was called instead.
778 HRGN WINAPI
CreateRoundRectRgn( INT left
, INT top
,
779 INT right
, INT bottom
,
780 INT ellipse_width
, INT ellipse_height
)
784 int asq
, bsq
, d
, xd
, yd
;
787 /* Make the dimensions sensible */
789 if (left
> right
) { INT tmp
= left
; left
= right
; right
= tmp
; }
790 if (top
> bottom
) { INT tmp
= top
; top
= bottom
; bottom
= tmp
; }
792 ellipse_width
= abs(ellipse_width
);
793 ellipse_height
= abs(ellipse_height
);
795 /* Check parameters */
797 if (ellipse_width
> right
-left
) ellipse_width
= right
-left
;
798 if (ellipse_height
> bottom
-top
) ellipse_height
= bottom
-top
;
800 /* Check if we can do a normal rectangle instead */
802 if ((ellipse_width
< 2) || (ellipse_height
< 2))
803 return CreateRectRgn( left
, top
, right
, bottom
);
807 d
= (ellipse_height
< 128) ? ((3 * ellipse_height
) >> 2) : 64;
808 if (!(hrgn
= REGION_CreateRegion(d
))) return 0;
809 if (!(obj
= GDI_GetObjPtr( hrgn
, REGION_MAGIC
))) return 0;
810 TRACE("(%d,%d-%d,%d %dx%d): ret=%p\n",
811 left
, top
, right
, bottom
, ellipse_width
, ellipse_height
, hrgn
);
813 /* Ellipse algorithm, based on an article by K. Porter */
814 /* in DDJ Graphics Programming Column, 8/89 */
816 asq
= ellipse_width
* ellipse_width
/ 4; /* a^2 */
817 bsq
= ellipse_height
* ellipse_height
/ 4; /* b^2 */
818 d
= bsq
- asq
* ellipse_height
/ 2 + asq
/ 4; /* b^2 - a^2b + a^2/4 */
820 yd
= asq
* ellipse_height
; /* 2a^2b */
822 rect
.left
= left
+ ellipse_width
/ 2;
823 rect
.right
= right
- ellipse_width
/ 2;
825 /* Loop to draw first half of quadrant */
829 if (d
> 0) /* if nearest pixel is toward the center */
831 /* move toward center */
833 rect
.bottom
= rect
.top
+ 1;
834 REGION_UnionRectWithRegion( &rect
, obj
->rgn
);
836 rect
.bottom
= rect
.top
+ 1;
837 REGION_UnionRectWithRegion( &rect
, obj
->rgn
);
841 rect
.left
--; /* next horiz point */
847 /* Loop to draw second half of quadrant */
849 d
+= (3 * (asq
-bsq
) / 2 - (xd
+yd
)) / 2;
852 /* next vertical point */
854 rect
.bottom
= rect
.top
+ 1;
855 REGION_UnionRectWithRegion( &rect
, obj
->rgn
);
857 rect
.bottom
= rect
.top
+ 1;
858 REGION_UnionRectWithRegion( &rect
, obj
->rgn
);
859 if (d
< 0) /* if nearest pixel is outside ellipse */
861 rect
.left
--; /* move away from center */
870 /* Add the inside rectangle */
875 rect
.bottom
= bottom
;
876 REGION_UnionRectWithRegion( &rect
, obj
->rgn
);
878 GDI_ReleaseObj( hrgn
);
883 /***********************************************************************
884 * CreateEllipticRgn (GDI32.@)
886 * Creates an elliptical region.
889 * left [I] Left coordinate of bounding rectangle.
890 * top [I] Top coordinate of bounding rectangle.
891 * right [I] Right coordinate of bounding rectangle.
892 * bottom [I] Bottom coordinate of bounding rectangle.
895 * Success: Handle to region.
899 * This is a special case of CreateRoundRectRgn() where the width of the
900 * ellipse at each corner is equal to the width the the rectangle and
901 * the same for the height.
903 HRGN WINAPI
CreateEllipticRgn( INT left
, INT top
,
904 INT right
, INT bottom
)
906 return CreateRoundRectRgn( left
, top
, right
, bottom
,
907 right
-left
, bottom
-top
);
911 /***********************************************************************
912 * CreateEllipticRgnIndirect (GDI32.@)
914 * Creates an elliptical region.
917 * rect [I] Pointer to bounding rectangle of the ellipse.
920 * Success: Handle to region.
924 * This is a special case of CreateRoundRectRgn() where the width of the
925 * ellipse at each corner is equal to the width the the rectangle and
926 * the same for the height.
928 HRGN WINAPI
CreateEllipticRgnIndirect( const RECT
*rect
)
930 return CreateRoundRectRgn( rect
->left
, rect
->top
, rect
->right
,
931 rect
->bottom
, rect
->right
- rect
->left
,
932 rect
->bottom
- rect
->top
);
935 /***********************************************************************
936 * GetRegionData (GDI32.@)
938 * Retrieves the data that specifies the region.
941 * hrgn [I] Region to retrieve the region data from.
942 * count [I] The size of the buffer pointed to by rgndata in bytes.
943 * rgndata [I] The buffer to receive data about the region.
946 * Success: If rgndata is NULL then the required number of bytes. Otherwise,
947 * the number of bytes copied to the output buffer.
951 * The format of the Buffer member of RGNDATA is determined by the iType
952 * member of the region data header.
953 * Currently this is always RDH_RECTANGLES, which specifies that the format
954 * is the array of RECT's that specify the region. The length of the array
955 * is specified by the nCount member of the region data header.
957 DWORD WINAPI
GetRegionData(HRGN hrgn
, DWORD count
, LPRGNDATA rgndata
)
960 RGNOBJ
*obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
);
962 TRACE(" %p count = %ld, rgndata = %p\n", hrgn
, count
, rgndata
);
966 size
= obj
->rgn
->numRects
* sizeof(RECT
);
967 if(count
< (size
+ sizeof(RGNDATAHEADER
)) || rgndata
== NULL
)
969 GDI_ReleaseObj( hrgn
);
970 if (rgndata
) /* buffer is too small, signal it by return 0 */
972 else /* user requested buffer size with rgndata NULL */
973 return size
+ sizeof(RGNDATAHEADER
);
976 rgndata
->rdh
.dwSize
= sizeof(RGNDATAHEADER
);
977 rgndata
->rdh
.iType
= RDH_RECTANGLES
;
978 rgndata
->rdh
.nCount
= obj
->rgn
->numRects
;
979 rgndata
->rdh
.nRgnSize
= size
;
980 rgndata
->rdh
.rcBound
.left
= obj
->rgn
->extents
.left
;
981 rgndata
->rdh
.rcBound
.top
= obj
->rgn
->extents
.top
;
982 rgndata
->rdh
.rcBound
.right
= obj
->rgn
->extents
.right
;
983 rgndata
->rdh
.rcBound
.bottom
= obj
->rgn
->extents
.bottom
;
985 memcpy( rgndata
->Buffer
, obj
->rgn
->rects
, size
);
987 GDI_ReleaseObj( hrgn
);
988 return size
+ sizeof(RGNDATAHEADER
);
992 /***********************************************************************
993 * ExtCreateRegion (GDI32.@)
995 * Creates a region as specified by the transformation data and region data.
998 * lpXform [I] World-space to logical-space transformation data.
999 * dwCount [I] Size of the data pointed to by rgndata, in bytes.
1000 * rgndata [I] Data that specifes the region.
1003 * Success: Handle to region.
1007 * See GetRegionData().
1009 HRGN WINAPI
ExtCreateRegion( const XFORM
* lpXform
, DWORD dwCount
, const RGNDATA
* rgndata
)
1013 TRACE(" %p %ld %p\n", lpXform
, dwCount
, rgndata
);
1016 WARN("(Xform not implemented - ignored)\n");
1018 if( rgndata
->rdh
.iType
!= RDH_RECTANGLES
)
1020 /* FIXME: We can use CreatePolyPolygonRgn() here
1021 * for trapezoidal data */
1023 WARN("(Unsupported region data type: %lu)\n", rgndata
->rdh
.iType
);
1027 if( (hrgn
= REGION_CreateRegion( rgndata
->rdh
.nCount
)) )
1029 RECT
*pCurRect
, *pEndRect
;
1030 RGNOBJ
*obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
);
1033 pEndRect
= (RECT
*)rgndata
->Buffer
+ rgndata
->rdh
.nCount
;
1034 for(pCurRect
= (RECT
*)rgndata
->Buffer
; pCurRect
< pEndRect
; pCurRect
++)
1036 if (pCurRect
->left
< pCurRect
->right
&& pCurRect
->top
< pCurRect
->bottom
)
1037 REGION_UnionRectWithRegion( pCurRect
, obj
->rgn
);
1039 GDI_ReleaseObj( hrgn
);
1041 TRACE("-- %p\n", hrgn
);
1044 else ERR("Could not get pointer to newborn Region!\n");
1052 /***********************************************************************
1053 * PtInRegion (GDI32.@)
1055 * Tests whether the specified point is inside a region.
1058 * hrgn [I] Region to test.
1059 * x [I] X-coordinate of point to test.
1060 * y [I] Y-coordinate of point to test.
1063 * Non-zero if the point is inside the region or zero otherwise.
1065 BOOL WINAPI
PtInRegion( HRGN hrgn
, INT x
, INT y
)
1070 if ((obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
)))
1074 if (obj
->rgn
->numRects
> 0 && INRECT(obj
->rgn
->extents
, x
, y
))
1075 for (i
= 0; i
< obj
->rgn
->numRects
; i
++)
1076 if (INRECT (obj
->rgn
->rects
[i
], x
, y
))
1081 GDI_ReleaseObj( hrgn
);
1087 /***********************************************************************
1088 * RectInRegion (GDI32.@)
1090 * Tests if a rectangle is at least partly inside the specified region.
1093 * hrgn [I] Region to test.
1094 * rect [I] Rectangle to test.
1097 * Non-zero if the rectangle is partially inside the region or
1100 BOOL WINAPI
RectInRegion( HRGN hrgn
, const RECT
*rect
)
1105 if ((obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
)))
1107 RECT
*pCurRect
, *pRectEnd
;
1109 /* this is (just) a useful optimization */
1110 if ((obj
->rgn
->numRects
> 0) && EXTENTCHECK(&obj
->rgn
->extents
,
1113 for (pCurRect
= obj
->rgn
->rects
, pRectEnd
= pCurRect
+
1114 obj
->rgn
->numRects
; pCurRect
< pRectEnd
; pCurRect
++)
1116 if (pCurRect
->bottom
<= rect
->top
)
1117 continue; /* not far enough down yet */
1119 if (pCurRect
->top
>= rect
->bottom
)
1120 break; /* too far down */
1122 if (pCurRect
->right
<= rect
->left
)
1123 continue; /* not far enough over yet */
1125 if (pCurRect
->left
>= rect
->right
) {
1133 GDI_ReleaseObj(hrgn
);
1138 /***********************************************************************
1139 * EqualRgn (GDI32.@)
1141 * Tests whether one region is identical to another.
1144 * hrgn1 [I] The first region to compare.
1145 * hrgn2 [I] The second region to compare.
1148 * Non-zero if both regions are identical or zero otherwise.
1150 BOOL WINAPI
EqualRgn( HRGN hrgn1
, HRGN hrgn2
)
1152 RGNOBJ
*obj1
, *obj2
;
1155 if ((obj1
= (RGNOBJ
*) GDI_GetObjPtr( hrgn1
, REGION_MAGIC
)))
1157 if ((obj2
= (RGNOBJ
*) GDI_GetObjPtr( hrgn2
, REGION_MAGIC
)))
1161 if ( obj1
->rgn
->numRects
!= obj2
->rgn
->numRects
) goto done
;
1162 if ( obj1
->rgn
->numRects
== 0 )
1168 if (obj1
->rgn
->extents
.left
!= obj2
->rgn
->extents
.left
) goto done
;
1169 if (obj1
->rgn
->extents
.right
!= obj2
->rgn
->extents
.right
) goto done
;
1170 if (obj1
->rgn
->extents
.top
!= obj2
->rgn
->extents
.top
) goto done
;
1171 if (obj1
->rgn
->extents
.bottom
!= obj2
->rgn
->extents
.bottom
) goto done
;
1172 for( i
= 0; i
< obj1
->rgn
->numRects
; i
++ )
1174 if (obj1
->rgn
->rects
[i
].left
!= obj2
->rgn
->rects
[i
].left
) goto done
;
1175 if (obj1
->rgn
->rects
[i
].right
!= obj2
->rgn
->rects
[i
].right
) goto done
;
1176 if (obj1
->rgn
->rects
[i
].top
!= obj2
->rgn
->rects
[i
].top
) goto done
;
1177 if (obj1
->rgn
->rects
[i
].bottom
!= obj2
->rgn
->rects
[i
].bottom
) goto done
;
1181 GDI_ReleaseObj(hrgn2
);
1183 GDI_ReleaseObj(hrgn1
);
1188 /***********************************************************************
1189 * REGION_UnionRectWithRegion
1190 * Adds a rectangle to a WINEREGION
1192 static void REGION_UnionRectWithRegion(const RECT
*rect
, WINEREGION
*rgn
)
1196 region
.rects
= ®ion
.extents
;
1197 region
.numRects
= 1;
1199 region
.extents
= *rect
;
1200 REGION_UnionRegion(rgn
, rgn
, ®ion
);
1204 /***********************************************************************
1205 * REGION_CreateFrameRgn
1207 * Create a region that is a frame around another region.
1208 * Compute the intersection of the region moved in all 4 directions
1209 * ( +x, -x, +y, -y) and subtract from the original.
1210 * The result looks slightly better than in Windows :)
1212 BOOL
REGION_FrameRgn( HRGN hDest
, HRGN hSrc
, INT x
, INT y
)
1215 RGNOBJ
*srcObj
= (RGNOBJ
*) GDI_GetObjPtr( hSrc
, REGION_MAGIC
);
1217 if (!srcObj
) return FALSE
;
1218 if (srcObj
->rgn
->numRects
!= 0)
1220 RGNOBJ
* destObj
= (RGNOBJ
*) GDI_GetObjPtr( hDest
, REGION_MAGIC
);
1221 WINEREGION
*tmprgn
= REGION_AllocWineRegion( srcObj
->rgn
->numRects
);
1223 REGION_OffsetRegion( destObj
->rgn
, srcObj
->rgn
, -x
, 0);
1224 REGION_OffsetRegion( tmprgn
, srcObj
->rgn
, x
, 0);
1225 REGION_IntersectRegion( destObj
->rgn
, destObj
->rgn
, tmprgn
);
1226 REGION_OffsetRegion( tmprgn
, srcObj
->rgn
, 0, -y
);
1227 REGION_IntersectRegion( destObj
->rgn
, destObj
->rgn
, tmprgn
);
1228 REGION_OffsetRegion( tmprgn
, srcObj
->rgn
, 0, y
);
1229 REGION_IntersectRegion( destObj
->rgn
, destObj
->rgn
, tmprgn
);
1230 REGION_SubtractRegion( destObj
->rgn
, srcObj
->rgn
, destObj
->rgn
);
1232 REGION_DestroyWineRegion(tmprgn
);
1233 GDI_ReleaseObj ( hDest
);
1238 GDI_ReleaseObj( hSrc
);
1243 /***********************************************************************
1244 * CombineRgn (GDI32.@)
1246 * Combines two regions with the specifed operation and stores the result
1247 * in the specified destination region.
1250 * hDest [I] The region that receives the combined result.
1251 * hSrc1 [I] The first source region.
1252 * hSrc2 [I] The second source region.
1253 * mode [I] The way in which the source regions will be combined. See notes.
1257 * NULLREGION - The new region is empty.
1258 * SIMPLEREGION - The new region can be represented by one rectangle.
1259 * COMPLEXREGION - The new region can only be represented by more than
1264 * The two source regions can be the same region.
1265 * The mode can be one of the following:
1266 *| RGN_AND - Intersection of the regions
1267 *| RGN_OR - Union of the regions
1268 *| RGN_XOR - Unions of the regions minus any intersection.
1269 *| RGN_DIFF - Difference (subtraction) of the regions.
1271 INT WINAPI
CombineRgn(HRGN hDest
, HRGN hSrc1
, HRGN hSrc2
, INT mode
)
1273 RGNOBJ
*destObj
= (RGNOBJ
*) GDI_GetObjPtr( hDest
, REGION_MAGIC
);
1276 TRACE(" %p,%p -> %p mode=%x\n", hSrc1
, hSrc2
, hDest
, mode
);
1279 RGNOBJ
*src1Obj
= (RGNOBJ
*) GDI_GetObjPtr( hSrc1
, REGION_MAGIC
);
1283 TRACE("dump src1Obj:\n");
1284 if(TRACE_ON(region
))
1285 REGION_DumpRegion(src1Obj
->rgn
);
1286 if (mode
== RGN_COPY
)
1288 REGION_CopyRegion( destObj
->rgn
, src1Obj
->rgn
);
1289 result
= get_region_type( destObj
);
1293 RGNOBJ
*src2Obj
= (RGNOBJ
*) GDI_GetObjPtr( hSrc2
, REGION_MAGIC
);
1297 TRACE("dump src2Obj:\n");
1298 if(TRACE_ON(region
))
1299 REGION_DumpRegion(src2Obj
->rgn
);
1303 REGION_IntersectRegion( destObj
->rgn
, src1Obj
->rgn
, src2Obj
->rgn
);
1306 REGION_UnionRegion( destObj
->rgn
, src1Obj
->rgn
, src2Obj
->rgn
);
1309 REGION_XorRegion( destObj
->rgn
, src1Obj
->rgn
, src2Obj
->rgn
);
1312 REGION_SubtractRegion( destObj
->rgn
, src1Obj
->rgn
, src2Obj
->rgn
);
1315 result
= get_region_type( destObj
);
1316 GDI_ReleaseObj( hSrc2
);
1319 GDI_ReleaseObj( hSrc1
);
1321 TRACE("dump destObj:\n");
1322 if(TRACE_ON(region
))
1323 REGION_DumpRegion(destObj
->rgn
);
1325 GDI_ReleaseObj( hDest
);
1327 ERR("Invalid rgn=%p\n", hDest
);
1332 /***********************************************************************
1334 * Re-calculate the extents of a region
1336 static void REGION_SetExtents (WINEREGION
*pReg
)
1338 RECT
*pRect
, *pRectEnd
, *pExtents
;
1340 if (pReg
->numRects
== 0)
1342 pReg
->extents
.left
= 0;
1343 pReg
->extents
.top
= 0;
1344 pReg
->extents
.right
= 0;
1345 pReg
->extents
.bottom
= 0;
1349 pExtents
= &pReg
->extents
;
1350 pRect
= pReg
->rects
;
1351 pRectEnd
= &pRect
[pReg
->numRects
- 1];
1354 * Since pRect is the first rectangle in the region, it must have the
1355 * smallest top and since pRectEnd is the last rectangle in the region,
1356 * it must have the largest bottom, because of banding. Initialize left and
1357 * right from pRect and pRectEnd, resp., as good things to initialize them
1360 pExtents
->left
= pRect
->left
;
1361 pExtents
->top
= pRect
->top
;
1362 pExtents
->right
= pRectEnd
->right
;
1363 pExtents
->bottom
= pRectEnd
->bottom
;
1365 while (pRect
<= pRectEnd
)
1367 if (pRect
->left
< pExtents
->left
)
1368 pExtents
->left
= pRect
->left
;
1369 if (pRect
->right
> pExtents
->right
)
1370 pExtents
->right
= pRect
->right
;
1375 /***********************************************************************
1378 static void REGION_CopyRegion(WINEREGION
*dst
, WINEREGION
*src
)
1380 if (dst
!= src
) /* don't want to copy to itself */
1382 if (dst
->size
< src
->numRects
)
1384 if (! (dst
->rects
= HeapReAlloc( GetProcessHeap(), 0, dst
->rects
,
1385 src
->numRects
* sizeof(RECT
) )))
1387 dst
->size
= src
->numRects
;
1389 dst
->numRects
= src
->numRects
;
1390 dst
->extents
.left
= src
->extents
.left
;
1391 dst
->extents
.top
= src
->extents
.top
;
1392 dst
->extents
.right
= src
->extents
.right
;
1393 dst
->extents
.bottom
= src
->extents
.bottom
;
1394 memcpy((char *) dst
->rects
, (char *) src
->rects
,
1395 (int) (src
->numRects
* sizeof(RECT
)));
1400 /***********************************************************************
1403 * Attempt to merge the rects in the current band with those in the
1404 * previous one. Used only by REGION_RegionOp.
1407 * The new index for the previous band.
1410 * If coalescing takes place:
1411 * - rectangles in the previous band will have their bottom fields
1413 * - pReg->numRects will be decreased.
1416 static INT
REGION_Coalesce (
1417 WINEREGION
*pReg
, /* Region to coalesce */
1418 INT prevStart
, /* Index of start of previous band */
1419 INT curStart
/* Index of start of current band */
1421 RECT
*pPrevRect
; /* Current rect in previous band */
1422 RECT
*pCurRect
; /* Current rect in current band */
1423 RECT
*pRegEnd
; /* End of region */
1424 INT curNumRects
; /* Number of rectangles in current band */
1425 INT prevNumRects
; /* Number of rectangles in previous band */
1426 INT bandtop
; /* top coordinate for current band */
1428 pRegEnd
= &pReg
->rects
[pReg
->numRects
];
1430 pPrevRect
= &pReg
->rects
[prevStart
];
1431 prevNumRects
= curStart
- prevStart
;
1434 * Figure out how many rectangles are in the current band. Have to do
1435 * this because multiple bands could have been added in REGION_RegionOp
1436 * at the end when one region has been exhausted.
1438 pCurRect
= &pReg
->rects
[curStart
];
1439 bandtop
= pCurRect
->top
;
1440 for (curNumRects
= 0;
1441 (pCurRect
!= pRegEnd
) && (pCurRect
->top
== bandtop
);
1447 if (pCurRect
!= pRegEnd
)
1450 * If more than one band was added, we have to find the start
1451 * of the last band added so the next coalescing job can start
1452 * at the right place... (given when multiple bands are added,
1453 * this may be pointless -- see above).
1456 while (pRegEnd
[-1].top
== pRegEnd
->top
)
1460 curStart
= pRegEnd
- pReg
->rects
;
1461 pRegEnd
= pReg
->rects
+ pReg
->numRects
;
1464 if ((curNumRects
== prevNumRects
) && (curNumRects
!= 0)) {
1465 pCurRect
-= curNumRects
;
1467 * The bands may only be coalesced if the bottom of the previous
1468 * matches the top scanline of the current.
1470 if (pPrevRect
->bottom
== pCurRect
->top
)
1473 * Make sure the bands have rects in the same places. This
1474 * assumes that rects have been added in such a way that they
1475 * cover the most area possible. I.e. two rects in a band must
1476 * have some horizontal space between them.
1480 if ((pPrevRect
->left
!= pCurRect
->left
) ||
1481 (pPrevRect
->right
!= pCurRect
->right
))
1484 * The bands don't line up so they can't be coalesced.
1491 } while (prevNumRects
!= 0);
1493 pReg
->numRects
-= curNumRects
;
1494 pCurRect
-= curNumRects
;
1495 pPrevRect
-= curNumRects
;
1498 * The bands may be merged, so set the bottom of each rect
1499 * in the previous band to that of the corresponding rect in
1504 pPrevRect
->bottom
= pCurRect
->bottom
;
1508 } while (curNumRects
!= 0);
1511 * If only one band was added to the region, we have to backup
1512 * curStart to the start of the previous band.
1514 * If more than one band was added to the region, copy the
1515 * other bands down. The assumption here is that the other bands
1516 * came from the same region as the current one and no further
1517 * coalescing can be done on them since it's all been done
1518 * already... curStart is already in the right place.
1520 if (pCurRect
== pRegEnd
)
1522 curStart
= prevStart
;
1528 *pPrevRect
++ = *pCurRect
++;
1529 } while (pCurRect
!= pRegEnd
);
1537 /***********************************************************************
1540 * Apply an operation to two regions. Called by REGION_Union,
1541 * REGION_Inverse, REGION_Subtract, REGION_Intersect...
1547 * The new region is overwritten.
1550 * The idea behind this function is to view the two regions as sets.
1551 * Together they cover a rectangle of area that this function divides
1552 * into horizontal bands where points are covered only by one region
1553 * or by both. For the first case, the nonOverlapFunc is called with
1554 * each the band and the band's upper and lower extents. For the
1555 * second, the overlapFunc is called to process the entire band. It
1556 * is responsible for clipping the rectangles in the band, though
1557 * this function provides the boundaries.
1558 * At the end of each band, the new region is coalesced, if possible,
1559 * to reduce the number of rectangles in the region.
1562 static void REGION_RegionOp(
1563 WINEREGION
*newReg
, /* Place to store result */
1564 WINEREGION
*reg1
, /* First region in operation */
1565 WINEREGION
*reg2
, /* 2nd region in operation */
1566 void (*overlapFunc
)(), /* Function to call for over-lapping bands */
1567 void (*nonOverlap1Func
)(), /* Function to call for non-overlapping bands in region 1 */
1568 void (*nonOverlap2Func
)() /* Function to call for non-overlapping bands in region 2 */
1570 RECT
*r1
; /* Pointer into first region */
1571 RECT
*r2
; /* Pointer into 2d region */
1572 RECT
*r1End
; /* End of 1st region */
1573 RECT
*r2End
; /* End of 2d region */
1574 INT ybot
; /* Bottom of intersection */
1575 INT ytop
; /* Top of intersection */
1576 RECT
*oldRects
; /* Old rects for newReg */
1577 INT prevBand
; /* Index of start of
1578 * previous band in newReg */
1579 INT curBand
; /* Index of start of current
1581 RECT
*r1BandEnd
; /* End of current band in r1 */
1582 RECT
*r2BandEnd
; /* End of current band in r2 */
1583 INT top
; /* Top of non-overlapping band */
1584 INT bot
; /* Bottom of non-overlapping band */
1588 * set r1, r2, r1End and r2End appropriately, preserve the important
1589 * parts of the destination region until the end in case it's one of
1590 * the two source regions, then mark the "new" region empty, allocating
1591 * another array of rectangles for it to use.
1595 r1End
= r1
+ reg1
->numRects
;
1596 r2End
= r2
+ reg2
->numRects
;
1600 * newReg may be one of the src regions so we can't empty it. We keep a
1601 * note of its rects pointer (so that we can free them later), preserve its
1602 * extents and simply set numRects to zero.
1605 oldRects
= newReg
->rects
;
1606 newReg
->numRects
= 0;
1609 * Allocate a reasonable number of rectangles for the new region. The idea
1610 * is to allocate enough so the individual functions don't need to
1611 * reallocate and copy the array, which is time consuming, yet we don't
1612 * have to worry about using too much memory. I hope to be able to
1613 * nuke the Xrealloc() at the end of this function eventually.
1615 newReg
->size
= max(reg1
->numRects
,reg2
->numRects
) * 2;
1617 if (! (newReg
->rects
= HeapAlloc( GetProcessHeap(), 0,
1618 sizeof(RECT
) * newReg
->size
)))
1625 * Initialize ybot and ytop.
1626 * In the upcoming loop, ybot and ytop serve different functions depending
1627 * on whether the band being handled is an overlapping or non-overlapping
1629 * In the case of a non-overlapping band (only one of the regions
1630 * has points in the band), ybot is the bottom of the most recent
1631 * intersection and thus clips the top of the rectangles in that band.
1632 * ytop is the top of the next intersection between the two regions and
1633 * serves to clip the bottom of the rectangles in the current band.
1634 * For an overlapping band (where the two regions intersect), ytop clips
1635 * the top of the rectangles of both regions and ybot clips the bottoms.
1637 if (reg1
->extents
.top
< reg2
->extents
.top
)
1638 ybot
= reg1
->extents
.top
;
1640 ybot
= reg2
->extents
.top
;
1643 * prevBand serves to mark the start of the previous band so rectangles
1644 * can be coalesced into larger rectangles. qv. miCoalesce, above.
1645 * In the beginning, there is no previous band, so prevBand == curBand
1646 * (curBand is set later on, of course, but the first band will always
1647 * start at index 0). prevBand and curBand must be indices because of
1648 * the possible expansion, and resultant moving, of the new region's
1649 * array of rectangles.
1655 curBand
= newReg
->numRects
;
1658 * This algorithm proceeds one source-band (as opposed to a
1659 * destination band, which is determined by where the two regions
1660 * intersect) at a time. r1BandEnd and r2BandEnd serve to mark the
1661 * rectangle after the last one in the current band for their
1662 * respective regions.
1665 while ((r1BandEnd
!= r1End
) && (r1BandEnd
->top
== r1
->top
))
1671 while ((r2BandEnd
!= r2End
) && (r2BandEnd
->top
== r2
->top
))
1677 * First handle the band that doesn't intersect, if any.
1679 * Note that attention is restricted to one band in the
1680 * non-intersecting region at once, so if a region has n
1681 * bands between the current position and the next place it overlaps
1682 * the other, this entire loop will be passed through n times.
1684 if (r1
->top
< r2
->top
)
1686 top
= max(r1
->top
,ybot
);
1687 bot
= min(r1
->bottom
,r2
->top
);
1689 if ((top
!= bot
) && (nonOverlap1Func
!= (void (*)())NULL
))
1691 (* nonOverlap1Func
) (newReg
, r1
, r1BandEnd
, top
, bot
);
1696 else if (r2
->top
< r1
->top
)
1698 top
= max(r2
->top
,ybot
);
1699 bot
= min(r2
->bottom
,r1
->top
);
1701 if ((top
!= bot
) && (nonOverlap2Func
!= (void (*)())NULL
))
1703 (* nonOverlap2Func
) (newReg
, r2
, r2BandEnd
, top
, bot
);
1714 * If any rectangles got added to the region, try and coalesce them
1715 * with rectangles from the previous band. Note we could just do
1716 * this test in miCoalesce, but some machines incur a not
1717 * inconsiderable cost for function calls, so...
1719 if (newReg
->numRects
!= curBand
)
1721 prevBand
= REGION_Coalesce (newReg
, prevBand
, curBand
);
1725 * Now see if we've hit an intersecting band. The two bands only
1726 * intersect if ybot > ytop
1728 ybot
= min(r1
->bottom
, r2
->bottom
);
1729 curBand
= newReg
->numRects
;
1732 (* overlapFunc
) (newReg
, r1
, r1BandEnd
, r2
, r2BandEnd
, ytop
, ybot
);
1736 if (newReg
->numRects
!= curBand
)
1738 prevBand
= REGION_Coalesce (newReg
, prevBand
, curBand
);
1742 * If we've finished with a band (bottom == ybot) we skip forward
1743 * in the region to the next band.
1745 if (r1
->bottom
== ybot
)
1749 if (r2
->bottom
== ybot
)
1753 } while ((r1
!= r1End
) && (r2
!= r2End
));
1756 * Deal with whichever region still has rectangles left.
1758 curBand
= newReg
->numRects
;
1761 if (nonOverlap1Func
!= (void (*)())NULL
)
1766 while ((r1BandEnd
< r1End
) && (r1BandEnd
->top
== r1
->top
))
1770 (* nonOverlap1Func
) (newReg
, r1
, r1BandEnd
,
1771 max(r1
->top
,ybot
), r1
->bottom
);
1773 } while (r1
!= r1End
);
1776 else if ((r2
!= r2End
) && (nonOverlap2Func
!= (void (*)())NULL
))
1781 while ((r2BandEnd
< r2End
) && (r2BandEnd
->top
== r2
->top
))
1785 (* nonOverlap2Func
) (newReg
, r2
, r2BandEnd
,
1786 max(r2
->top
,ybot
), r2
->bottom
);
1788 } while (r2
!= r2End
);
1791 if (newReg
->numRects
!= curBand
)
1793 (void) REGION_Coalesce (newReg
, prevBand
, curBand
);
1797 * A bit of cleanup. To keep regions from growing without bound,
1798 * we shrink the array of rectangles to match the new number of
1799 * rectangles in the region. This never goes to 0, however...
1801 * Only do this stuff if the number of rectangles allocated is more than
1802 * twice the number of rectangles in the region (a simple optimization...).
1804 if ((newReg
->numRects
< (newReg
->size
>> 1)) && (newReg
->numRects
> 2))
1806 if (REGION_NOT_EMPTY(newReg
))
1808 RECT
*prev_rects
= newReg
->rects
;
1809 newReg
->size
= newReg
->numRects
;
1810 newReg
->rects
= HeapReAlloc( GetProcessHeap(), 0, newReg
->rects
,
1811 sizeof(RECT
) * newReg
->size
);
1812 if (! newReg
->rects
)
1813 newReg
->rects
= prev_rects
;
1818 * No point in doing the extra work involved in an Xrealloc if
1819 * the region is empty
1822 HeapFree( GetProcessHeap(), 0, newReg
->rects
);
1823 newReg
->rects
= HeapAlloc( GetProcessHeap(), 0, sizeof(RECT
) );
1826 HeapFree( GetProcessHeap(), 0, oldRects
);
1830 /***********************************************************************
1831 * Region Intersection
1832 ***********************************************************************/
1835 /***********************************************************************
1838 * Handle an overlapping band for REGION_Intersect.
1844 * Rectangles may be added to the region.
1847 static void REGION_IntersectO(WINEREGION
*pReg
, RECT
*r1
, RECT
*r1End
,
1848 RECT
*r2
, RECT
*r2End
, INT top
, INT bottom
)
1854 pNextRect
= &pReg
->rects
[pReg
->numRects
];
1856 while ((r1
!= r1End
) && (r2
!= r2End
))
1858 left
= max(r1
->left
, r2
->left
);
1859 right
= min(r1
->right
, r2
->right
);
1862 * If there's any overlap between the two rectangles, add that
1863 * overlap to the new region.
1864 * There's no need to check for subsumption because the only way
1865 * such a need could arise is if some region has two rectangles
1866 * right next to each other. Since that should never happen...
1870 MEMCHECK(pReg
, pNextRect
, pReg
->rects
);
1871 pNextRect
->left
= left
;
1872 pNextRect
->top
= top
;
1873 pNextRect
->right
= right
;
1874 pNextRect
->bottom
= bottom
;
1875 pReg
->numRects
+= 1;
1880 * Need to advance the pointers. Shift the one that extends
1881 * to the right the least, since the other still has a chance to
1882 * overlap with that region's next rectangle, if you see what I mean.
1884 if (r1
->right
< r2
->right
)
1888 else if (r2
->right
< r1
->right
)
1901 /***********************************************************************
1902 * REGION_IntersectRegion
1904 static void REGION_IntersectRegion(WINEREGION
*newReg
, WINEREGION
*reg1
,
1907 /* check for trivial reject */
1908 if ( (!(reg1
->numRects
)) || (!(reg2
->numRects
)) ||
1909 (!EXTENTCHECK(®1
->extents
, ®2
->extents
)))
1910 newReg
->numRects
= 0;
1912 REGION_RegionOp (newReg
, reg1
, reg2
,
1913 (voidProcp
) REGION_IntersectO
, (voidProcp
) NULL
, (voidProcp
) NULL
);
1916 * Can't alter newReg's extents before we call miRegionOp because
1917 * it might be one of the source regions and miRegionOp depends
1918 * on the extents of those regions being the same. Besides, this
1919 * way there's no checking against rectangles that will be nuked
1920 * due to coalescing, so we have to examine fewer rectangles.
1922 REGION_SetExtents(newReg
);
1925 /***********************************************************************
1927 ***********************************************************************/
1929 /***********************************************************************
1932 * Handle a non-overlapping band for the union operation. Just
1933 * Adds the rectangles into the region. Doesn't have to check for
1934 * subsumption or anything.
1940 * pReg->numRects is incremented and the final rectangles overwritten
1941 * with the rectangles we're passed.
1944 static void REGION_UnionNonO (WINEREGION
*pReg
, RECT
*r
, RECT
*rEnd
,
1945 INT top
, INT bottom
)
1949 pNextRect
= &pReg
->rects
[pReg
->numRects
];
1953 MEMCHECK(pReg
, pNextRect
, pReg
->rects
);
1954 pNextRect
->left
= r
->left
;
1955 pNextRect
->top
= top
;
1956 pNextRect
->right
= r
->right
;
1957 pNextRect
->bottom
= bottom
;
1958 pReg
->numRects
+= 1;
1965 /***********************************************************************
1968 * Handle an overlapping band for the union operation. Picks the
1969 * left-most rectangle each time and merges it into the region.
1975 * Rectangles are overwritten in pReg->rects and pReg->numRects will
1979 static void REGION_UnionO (WINEREGION
*pReg
, RECT
*r1
, RECT
*r1End
,
1980 RECT
*r2
, RECT
*r2End
, INT top
, INT bottom
)
1984 pNextRect
= &pReg
->rects
[pReg
->numRects
];
1986 #define MERGERECT(r) \
1987 if ((pReg->numRects != 0) && \
1988 (pNextRect[-1].top == top) && \
1989 (pNextRect[-1].bottom == bottom) && \
1990 (pNextRect[-1].right >= r->left)) \
1992 if (pNextRect[-1].right < r->right) \
1994 pNextRect[-1].right = r->right; \
1999 MEMCHECK(pReg, pNextRect, pReg->rects); \
2000 pNextRect->top = top; \
2001 pNextRect->bottom = bottom; \
2002 pNextRect->left = r->left; \
2003 pNextRect->right = r->right; \
2004 pReg->numRects += 1; \
2009 while ((r1
!= r1End
) && (r2
!= r2End
))
2011 if (r1
->left
< r2
->left
)
2026 } while (r1
!= r1End
);
2028 else while (r2
!= r2End
)
2035 /***********************************************************************
2036 * REGION_UnionRegion
2038 static void REGION_UnionRegion(WINEREGION
*newReg
, WINEREGION
*reg1
,
2041 /* checks all the simple cases */
2044 * Region 1 and 2 are the same or region 1 is empty
2046 if ( (reg1
== reg2
) || (!(reg1
->numRects
)) )
2049 REGION_CopyRegion(newReg
, reg2
);
2054 * if nothing to union (region 2 empty)
2056 if (!(reg2
->numRects
))
2059 REGION_CopyRegion(newReg
, reg1
);
2064 * Region 1 completely subsumes region 2
2066 if ((reg1
->numRects
== 1) &&
2067 (reg1
->extents
.left
<= reg2
->extents
.left
) &&
2068 (reg1
->extents
.top
<= reg2
->extents
.top
) &&
2069 (reg1
->extents
.right
>= reg2
->extents
.right
) &&
2070 (reg1
->extents
.bottom
>= reg2
->extents
.bottom
))
2073 REGION_CopyRegion(newReg
, reg1
);
2078 * Region 2 completely subsumes region 1
2080 if ((reg2
->numRects
== 1) &&
2081 (reg2
->extents
.left
<= reg1
->extents
.left
) &&
2082 (reg2
->extents
.top
<= reg1
->extents
.top
) &&
2083 (reg2
->extents
.right
>= reg1
->extents
.right
) &&
2084 (reg2
->extents
.bottom
>= reg1
->extents
.bottom
))
2087 REGION_CopyRegion(newReg
, reg2
);
2091 REGION_RegionOp (newReg
, reg1
, reg2
, (voidProcp
) REGION_UnionO
,
2092 (voidProcp
) REGION_UnionNonO
, (voidProcp
) REGION_UnionNonO
);
2094 newReg
->extents
.left
= min(reg1
->extents
.left
, reg2
->extents
.left
);
2095 newReg
->extents
.top
= min(reg1
->extents
.top
, reg2
->extents
.top
);
2096 newReg
->extents
.right
= max(reg1
->extents
.right
, reg2
->extents
.right
);
2097 newReg
->extents
.bottom
= max(reg1
->extents
.bottom
, reg2
->extents
.bottom
);
2100 /***********************************************************************
2101 * Region Subtraction
2102 ***********************************************************************/
2104 /***********************************************************************
2105 * REGION_SubtractNonO1
2107 * Deal with non-overlapping band for subtraction. Any parts from
2108 * region 2 we discard. Anything from region 1 we add to the region.
2114 * pReg may be affected.
2117 static void REGION_SubtractNonO1 (WINEREGION
*pReg
, RECT
*r
, RECT
*rEnd
,
2118 INT top
, INT bottom
)
2122 pNextRect
= &pReg
->rects
[pReg
->numRects
];
2126 MEMCHECK(pReg
, pNextRect
, pReg
->rects
);
2127 pNextRect
->left
= r
->left
;
2128 pNextRect
->top
= top
;
2129 pNextRect
->right
= r
->right
;
2130 pNextRect
->bottom
= bottom
;
2131 pReg
->numRects
+= 1;
2139 /***********************************************************************
2142 * Overlapping band subtraction. x1 is the left-most point not yet
2149 * pReg may have rectangles added to it.
2152 static void REGION_SubtractO (WINEREGION
*pReg
, RECT
*r1
, RECT
*r1End
,
2153 RECT
*r2
, RECT
*r2End
, INT top
, INT bottom
)
2159 pNextRect
= &pReg
->rects
[pReg
->numRects
];
2161 while ((r1
!= r1End
) && (r2
!= r2End
))
2163 if (r2
->right
<= left
)
2166 * Subtrahend missed the boat: go to next subtrahend.
2170 else if (r2
->left
<= left
)
2173 * Subtrahend precedes minuend: nuke left edge of minuend.
2176 if (left
>= r1
->right
)
2179 * Minuend completely covered: advance to next minuend and
2180 * reset left fence to edge of new minuend.
2189 * Subtrahend now used up since it doesn't extend beyond
2195 else if (r2
->left
< r1
->right
)
2198 * Left part of subtrahend covers part of minuend: add uncovered
2199 * part of minuend to region and skip to next subtrahend.
2201 MEMCHECK(pReg
, pNextRect
, pReg
->rects
);
2202 pNextRect
->left
= left
;
2203 pNextRect
->top
= top
;
2204 pNextRect
->right
= r2
->left
;
2205 pNextRect
->bottom
= bottom
;
2206 pReg
->numRects
+= 1;
2209 if (left
>= r1
->right
)
2212 * Minuend used up: advance to new...
2221 * Subtrahend used up
2229 * Minuend used up: add any remaining piece before advancing.
2231 if (r1
->right
> left
)
2233 MEMCHECK(pReg
, pNextRect
, pReg
->rects
);
2234 pNextRect
->left
= left
;
2235 pNextRect
->top
= top
;
2236 pNextRect
->right
= r1
->right
;
2237 pNextRect
->bottom
= bottom
;
2238 pReg
->numRects
+= 1;
2247 * Add remaining minuend rectangles to region.
2251 MEMCHECK(pReg
, pNextRect
, pReg
->rects
);
2252 pNextRect
->left
= left
;
2253 pNextRect
->top
= top
;
2254 pNextRect
->right
= r1
->right
;
2255 pNextRect
->bottom
= bottom
;
2256 pReg
->numRects
+= 1;
2267 /***********************************************************************
2268 * REGION_SubtractRegion
2270 * Subtract regS from regM and leave the result in regD.
2271 * S stands for subtrahend, M for minuend and D for difference.
2277 * regD is overwritten.
2280 static void REGION_SubtractRegion(WINEREGION
*regD
, WINEREGION
*regM
,
2283 /* check for trivial reject */
2284 if ( (!(regM
->numRects
)) || (!(regS
->numRects
)) ||
2285 (!EXTENTCHECK(®M
->extents
, ®S
->extents
)) )
2287 REGION_CopyRegion(regD
, regM
);
2291 REGION_RegionOp (regD
, regM
, regS
, (voidProcp
) REGION_SubtractO
,
2292 (voidProcp
) REGION_SubtractNonO1
, (voidProcp
) NULL
);
2295 * Can't alter newReg's extents before we call miRegionOp because
2296 * it might be one of the source regions and miRegionOp depends
2297 * on the extents of those regions being the unaltered. Besides, this
2298 * way there's no checking against rectangles that will be nuked
2299 * due to coalescing, so we have to examine fewer rectangles.
2301 REGION_SetExtents (regD
);
2304 /***********************************************************************
2307 static void REGION_XorRegion(WINEREGION
*dr
, WINEREGION
*sra
,
2310 WINEREGION
*tra
, *trb
;
2312 if ((! (tra
= REGION_AllocWineRegion(sra
->numRects
+ 1))) ||
2313 (! (trb
= REGION_AllocWineRegion(srb
->numRects
+ 1))))
2315 REGION_SubtractRegion(tra
,sra
,srb
);
2316 REGION_SubtractRegion(trb
,srb
,sra
);
2317 REGION_UnionRegion(dr
,tra
,trb
);
2318 REGION_DestroyWineRegion(tra
);
2319 REGION_DestroyWineRegion(trb
);
2323 /**************************************************************************
2327 *************************************************************************/
2329 #define LARGE_COORDINATE 0x7fffffff /* FIXME */
2330 #define SMALL_COORDINATE 0x80000000
2332 /***********************************************************************
2333 * REGION_InsertEdgeInET
2335 * Insert the given edge into the edge table.
2336 * First we must find the correct bucket in the
2337 * Edge table, then find the right slot in the
2338 * bucket. Finally, we can insert it.
2341 static void REGION_InsertEdgeInET(EdgeTable
*ET
, EdgeTableEntry
*ETE
,
2342 INT scanline
, ScanLineListBlock
**SLLBlock
, INT
*iSLLBlock
)
2345 EdgeTableEntry
*start
, *prev
;
2346 ScanLineList
*pSLL
, *pPrevSLL
;
2347 ScanLineListBlock
*tmpSLLBlock
;
2350 * find the right bucket to put the edge into
2352 pPrevSLL
= &ET
->scanlines
;
2353 pSLL
= pPrevSLL
->next
;
2354 while (pSLL
&& (pSLL
->scanline
< scanline
))
2361 * reassign pSLL (pointer to ScanLineList) if necessary
2363 if ((!pSLL
) || (pSLL
->scanline
> scanline
))
2365 if (*iSLLBlock
> SLLSPERBLOCK
-1)
2367 tmpSLLBlock
= HeapAlloc( GetProcessHeap(), 0, sizeof(ScanLineListBlock
));
2370 WARN("Can't alloc SLLB\n");
2373 (*SLLBlock
)->next
= tmpSLLBlock
;
2374 tmpSLLBlock
->next
= (ScanLineListBlock
*)NULL
;
2375 *SLLBlock
= tmpSLLBlock
;
2378 pSLL
= &((*SLLBlock
)->SLLs
[(*iSLLBlock
)++]);
2380 pSLL
->next
= pPrevSLL
->next
;
2381 pSLL
->edgelist
= (EdgeTableEntry
*)NULL
;
2382 pPrevSLL
->next
= pSLL
;
2384 pSLL
->scanline
= scanline
;
2387 * now insert the edge in the right bucket
2389 prev
= (EdgeTableEntry
*)NULL
;
2390 start
= pSLL
->edgelist
;
2391 while (start
&& (start
->bres
.minor_axis
< ETE
->bres
.minor_axis
))
2394 start
= start
->next
;
2401 pSLL
->edgelist
= ETE
;
2404 /***********************************************************************
2405 * REGION_CreateEdgeTable
2407 * This routine creates the edge table for
2408 * scan converting polygons.
2409 * The Edge Table (ET) looks like:
2413 * | ymax | ScanLineLists
2414 * |scanline|-->------------>-------------->...
2415 * -------- |scanline| |scanline|
2416 * |edgelist| |edgelist|
2417 * --------- ---------
2421 * list of ETEs list of ETEs
2423 * where ETE is an EdgeTableEntry data structure,
2424 * and there is one ScanLineList per scanline at
2425 * which an edge is initially entered.
2428 static void REGION_CreateETandAET(const INT
*Count
, INT nbpolygons
,
2429 const POINT
*pts
, EdgeTable
*ET
, EdgeTableEntry
*AET
,
2430 EdgeTableEntry
*pETEs
, ScanLineListBlock
*pSLLBlock
)
2432 const POINT
*top
, *bottom
;
2433 const POINT
*PrevPt
, *CurrPt
, *EndPt
;
2440 * initialize the Active Edge Table
2442 AET
->next
= (EdgeTableEntry
*)NULL
;
2443 AET
->back
= (EdgeTableEntry
*)NULL
;
2444 AET
->nextWETE
= (EdgeTableEntry
*)NULL
;
2445 AET
->bres
.minor_axis
= SMALL_COORDINATE
;
2448 * initialize the Edge Table.
2450 ET
->scanlines
.next
= (ScanLineList
*)NULL
;
2451 ET
->ymax
= SMALL_COORDINATE
;
2452 ET
->ymin
= LARGE_COORDINATE
;
2453 pSLLBlock
->next
= (ScanLineListBlock
*)NULL
;
2456 for(poly
= 0; poly
< nbpolygons
; poly
++)
2458 count
= Count
[poly
];
2466 * for each vertex in the array of points.
2467 * In this loop we are dealing with two vertices at
2468 * a time -- these make up one edge of the polygon.
2475 * find out which point is above and which is below.
2477 if (PrevPt
->y
> CurrPt
->y
)
2479 bottom
= PrevPt
, top
= CurrPt
;
2480 pETEs
->ClockWise
= 0;
2484 bottom
= CurrPt
, top
= PrevPt
;
2485 pETEs
->ClockWise
= 1;
2489 * don't add horizontal edges to the Edge table.
2491 if (bottom
->y
!= top
->y
)
2493 pETEs
->ymax
= bottom
->y
-1;
2494 /* -1 so we don't get last scanline */
2497 * initialize integer edge algorithm
2499 dy
= bottom
->y
- top
->y
;
2500 BRESINITPGONSTRUCT(dy
, top
->x
, bottom
->x
, pETEs
->bres
);
2502 REGION_InsertEdgeInET(ET
, pETEs
, top
->y
, &pSLLBlock
,
2505 if (PrevPt
->y
> ET
->ymax
)
2506 ET
->ymax
= PrevPt
->y
;
2507 if (PrevPt
->y
< ET
->ymin
)
2508 ET
->ymin
= PrevPt
->y
;
2517 /***********************************************************************
2520 * This routine moves EdgeTableEntries from the
2521 * EdgeTable into the Active Edge Table,
2522 * leaving them sorted by smaller x coordinate.
2525 static void REGION_loadAET(EdgeTableEntry
*AET
, EdgeTableEntry
*ETEs
)
2527 EdgeTableEntry
*pPrevAET
;
2528 EdgeTableEntry
*tmp
;
2534 while (AET
&& (AET
->bres
.minor_axis
< ETEs
->bres
.minor_axis
))
2543 ETEs
->back
= pPrevAET
;
2544 pPrevAET
->next
= ETEs
;
2551 /***********************************************************************
2552 * REGION_computeWAET
2554 * This routine links the AET by the
2555 * nextWETE (winding EdgeTableEntry) link for
2556 * use by the winding number rule. The final
2557 * Active Edge Table (AET) might look something
2561 * ---------- --------- ---------
2562 * |ymax | |ymax | |ymax |
2563 * | ... | |... | |... |
2564 * |next |->|next |->|next |->...
2565 * |nextWETE| |nextWETE| |nextWETE|
2566 * --------- --------- ^--------
2568 * V-------------------> V---> ...
2571 static void REGION_computeWAET(EdgeTableEntry
*AET
)
2573 register EdgeTableEntry
*pWETE
;
2574 register int inside
= 1;
2575 register int isInside
= 0;
2577 AET
->nextWETE
= (EdgeTableEntry
*)NULL
;
2587 if ((!inside
&& !isInside
) ||
2588 ( inside
&& isInside
))
2590 pWETE
->nextWETE
= AET
;
2596 pWETE
->nextWETE
= (EdgeTableEntry
*)NULL
;
2599 /***********************************************************************
2600 * REGION_InsertionSort
2602 * Just a simple insertion sort using
2603 * pointers and back pointers to sort the Active
2607 static BOOL
REGION_InsertionSort(EdgeTableEntry
*AET
)
2609 EdgeTableEntry
*pETEchase
;
2610 EdgeTableEntry
*pETEinsert
;
2611 EdgeTableEntry
*pETEchaseBackTMP
;
2612 BOOL changed
= FALSE
;
2619 while (pETEchase
->back
->bres
.minor_axis
> AET
->bres
.minor_axis
)
2620 pETEchase
= pETEchase
->back
;
2623 if (pETEchase
!= pETEinsert
)
2625 pETEchaseBackTMP
= pETEchase
->back
;
2626 pETEinsert
->back
->next
= AET
;
2628 AET
->back
= pETEinsert
->back
;
2629 pETEinsert
->next
= pETEchase
;
2630 pETEchase
->back
->next
= pETEinsert
;
2631 pETEchase
->back
= pETEinsert
;
2632 pETEinsert
->back
= pETEchaseBackTMP
;
2639 /***********************************************************************
2640 * REGION_FreeStorage
2644 static void REGION_FreeStorage(ScanLineListBlock
*pSLLBlock
)
2646 ScanLineListBlock
*tmpSLLBlock
;
2650 tmpSLLBlock
= pSLLBlock
->next
;
2651 HeapFree( GetProcessHeap(), 0, pSLLBlock
);
2652 pSLLBlock
= tmpSLLBlock
;
2657 /***********************************************************************
2658 * REGION_PtsToRegion
2660 * Create an array of rectangles from a list of points.
2662 static int REGION_PtsToRegion(int numFullPtBlocks
, int iCurPtBlock
,
2663 POINTBLOCK
*FirstPtBlock
, WINEREGION
*reg
)
2667 POINTBLOCK
*CurPtBlock
;
2672 extents
= ®
->extents
;
2674 numRects
= ((numFullPtBlocks
* NUMPTSTOBUFFER
) + iCurPtBlock
) >> 1;
2676 if (!(reg
->rects
= HeapReAlloc( GetProcessHeap(), 0, reg
->rects
,
2677 sizeof(RECT
) * numRects
)))
2680 reg
->size
= numRects
;
2681 CurPtBlock
= FirstPtBlock
;
2682 rects
= reg
->rects
- 1;
2684 extents
->left
= LARGE_COORDINATE
, extents
->right
= SMALL_COORDINATE
;
2686 for ( ; numFullPtBlocks
>= 0; numFullPtBlocks
--) {
2687 /* the loop uses 2 points per iteration */
2688 i
= NUMPTSTOBUFFER
>> 1;
2689 if (!numFullPtBlocks
)
2690 i
= iCurPtBlock
>> 1;
2691 for (pts
= CurPtBlock
->pts
; i
--; pts
+= 2) {
2692 if (pts
->x
== pts
[1].x
)
2694 if (numRects
&& pts
->x
== rects
->left
&& pts
->y
== rects
->bottom
&&
2695 pts
[1].x
== rects
->right
&&
2696 (numRects
== 1 || rects
[-1].top
!= rects
->top
) &&
2697 (i
&& pts
[2].y
> pts
[1].y
)) {
2698 rects
->bottom
= pts
[1].y
+ 1;
2703 rects
->left
= pts
->x
; rects
->top
= pts
->y
;
2704 rects
->right
= pts
[1].x
; rects
->bottom
= pts
[1].y
+ 1;
2705 if (rects
->left
< extents
->left
)
2706 extents
->left
= rects
->left
;
2707 if (rects
->right
> extents
->right
)
2708 extents
->right
= rects
->right
;
2710 CurPtBlock
= CurPtBlock
->next
;
2714 extents
->top
= reg
->rects
->top
;
2715 extents
->bottom
= rects
->bottom
;
2720 extents
->bottom
= 0;
2722 reg
->numRects
= numRects
;
2727 /***********************************************************************
2728 * CreatePolyPolygonRgn (GDI32.@)
2730 HRGN WINAPI
CreatePolyPolygonRgn(const POINT
*Pts
, const INT
*Count
,
2731 INT nbpolygons
, INT mode
)
2736 register EdgeTableEntry
*pAET
; /* Active Edge Table */
2737 register INT y
; /* current scanline */
2738 register int iPts
= 0; /* number of pts in buffer */
2739 register EdgeTableEntry
*pWETE
; /* Winding Edge Table Entry*/
2740 register ScanLineList
*pSLL
; /* current scanLineList */
2741 register POINT
*pts
; /* output buffer */
2742 EdgeTableEntry
*pPrevAET
; /* ptr to previous AET */
2743 EdgeTable ET
; /* header node for ET */
2744 EdgeTableEntry AET
; /* header node for AET */
2745 EdgeTableEntry
*pETEs
; /* EdgeTableEntries pool */
2746 ScanLineListBlock SLLBlock
; /* header for scanlinelist */
2747 int fixWAET
= FALSE
;
2748 POINTBLOCK FirstPtBlock
, *curPtBlock
; /* PtBlock buffers */
2749 POINTBLOCK
*tmpPtBlock
;
2750 int numFullPtBlocks
= 0;
2753 if(!(hrgn
= REGION_CreateRegion(nbpolygons
)))
2755 obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
);
2758 /* special case a rectangle */
2760 if (((nbpolygons
== 1) && ((*Count
== 4) ||
2761 ((*Count
== 5) && (Pts
[4].x
== Pts
[0].x
) && (Pts
[4].y
== Pts
[0].y
)))) &&
2762 (((Pts
[0].y
== Pts
[1].y
) &&
2763 (Pts
[1].x
== Pts
[2].x
) &&
2764 (Pts
[2].y
== Pts
[3].y
) &&
2765 (Pts
[3].x
== Pts
[0].x
)) ||
2766 ((Pts
[0].x
== Pts
[1].x
) &&
2767 (Pts
[1].y
== Pts
[2].y
) &&
2768 (Pts
[2].x
== Pts
[3].x
) &&
2769 (Pts
[3].y
== Pts
[0].y
))))
2771 SetRectRgn( hrgn
, min(Pts
[0].x
, Pts
[2].x
), min(Pts
[0].y
, Pts
[2].y
),
2772 max(Pts
[0].x
, Pts
[2].x
), max(Pts
[0].y
, Pts
[2].y
) );
2773 GDI_ReleaseObj( hrgn
);
2777 for(poly
= total
= 0; poly
< nbpolygons
; poly
++)
2778 total
+= Count
[poly
];
2779 if (! (pETEs
= HeapAlloc( GetProcessHeap(), 0, sizeof(EdgeTableEntry
) * total
)))
2781 REGION_DeleteObject( hrgn
, obj
);
2784 pts
= FirstPtBlock
.pts
;
2785 REGION_CreateETandAET(Count
, nbpolygons
, Pts
, &ET
, &AET
, pETEs
, &SLLBlock
);
2786 pSLL
= ET
.scanlines
.next
;
2787 curPtBlock
= &FirstPtBlock
;
2789 if (mode
!= WINDING
) {
2793 for (y
= ET
.ymin
; y
< ET
.ymax
; y
++) {
2795 * Add a new edge to the active edge table when we
2796 * get to the next edge.
2798 if (pSLL
!= NULL
&& y
== pSLL
->scanline
) {
2799 REGION_loadAET(&AET
, pSLL
->edgelist
);
2806 * for each active edge
2809 pts
->x
= pAET
->bres
.minor_axis
, pts
->y
= y
;
2813 * send out the buffer
2815 if (iPts
== NUMPTSTOBUFFER
) {
2816 tmpPtBlock
= HeapAlloc( GetProcessHeap(), 0, sizeof(POINTBLOCK
));
2818 WARN("Can't alloc tPB\n");
2819 HeapFree( GetProcessHeap(), 0, pETEs
);
2822 curPtBlock
->next
= tmpPtBlock
;
2823 curPtBlock
= tmpPtBlock
;
2824 pts
= curPtBlock
->pts
;
2828 EVALUATEEDGEEVENODD(pAET
, pPrevAET
, y
);
2830 REGION_InsertionSort(&AET
);
2837 for (y
= ET
.ymin
; y
< ET
.ymax
; y
++) {
2839 * Add a new edge to the active edge table when we
2840 * get to the next edge.
2842 if (pSLL
!= NULL
&& y
== pSLL
->scanline
) {
2843 REGION_loadAET(&AET
, pSLL
->edgelist
);
2844 REGION_computeWAET(&AET
);
2852 * for each active edge
2856 * add to the buffer only those edges that
2857 * are in the Winding active edge table.
2859 if (pWETE
== pAET
) {
2860 pts
->x
= pAET
->bres
.minor_axis
, pts
->y
= y
;
2864 * send out the buffer
2866 if (iPts
== NUMPTSTOBUFFER
) {
2867 tmpPtBlock
= HeapAlloc( GetProcessHeap(), 0,
2868 sizeof(POINTBLOCK
) );
2870 WARN("Can't alloc tPB\n");
2871 REGION_DeleteObject( hrgn
, obj
);
2872 HeapFree( GetProcessHeap(), 0, pETEs
);
2875 curPtBlock
->next
= tmpPtBlock
;
2876 curPtBlock
= tmpPtBlock
;
2877 pts
= curPtBlock
->pts
;
2878 numFullPtBlocks
++; iPts
= 0;
2880 pWETE
= pWETE
->nextWETE
;
2882 EVALUATEEDGEWINDING(pAET
, pPrevAET
, y
, fixWAET
);
2886 * recompute the winding active edge table if
2887 * we just resorted or have exited an edge.
2889 if (REGION_InsertionSort(&AET
) || fixWAET
) {
2890 REGION_computeWAET(&AET
);
2895 REGION_FreeStorage(SLLBlock
.next
);
2896 REGION_PtsToRegion(numFullPtBlocks
, iPts
, &FirstPtBlock
, region
);
2898 for (curPtBlock
= FirstPtBlock
.next
; --numFullPtBlocks
>= 0;) {
2899 tmpPtBlock
= curPtBlock
->next
;
2900 HeapFree( GetProcessHeap(), 0, curPtBlock
);
2901 curPtBlock
= tmpPtBlock
;
2903 HeapFree( GetProcessHeap(), 0, pETEs
);
2904 GDI_ReleaseObj( hrgn
);
2909 /***********************************************************************
2910 * CreatePolygonRgn (GDI32.@)
2912 HRGN WINAPI
CreatePolygonRgn( const POINT
*points
, INT count
,
2915 return CreatePolyPolygonRgn( points
, &count
, 1, mode
);