4 * Copyright 2000-2002 Stuart Caie
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 * Principal author: Stuart Caie <kyzer@4u.net>
22 * Based on specification documents from Microsoft Corporation
23 * Quantum decompression researched and implemented by Matthew Russoto
24 * Huffman code adapted from unlzx by Dave Tritscher.
25 * InfoZip team's INFLATE implementation adapted to MSZIP by Dirk Stoecker.
26 * Major LZX fixes by Jae Jung.
42 #include "wine/debug.h"
44 WINE_DEFAULT_DEBUG_CHANNEL(cabinet
);
48 /* all the file IO is abstracted into these routines:
49 * cabinet_(open|close|read|seek|skip|getoffset)
50 * file_(open|close|write)
53 /* try to open a cabinet file, returns success */
54 static BOOL
cabinet_open(struct cabinet
*cab
)
56 const char *name
= cab
->filename
;
59 TRACE("(cab == ^%p)\n", cab
);
61 if ((fh
= CreateFileA( name
, GENERIC_READ
, FILE_SHARE_READ
,
62 NULL
, OPEN_EXISTING
, FILE_ATTRIBUTE_NORMAL
, NULL
)) == INVALID_HANDLE_VALUE
) {
63 ERR("Couldn't open %s\n", debugstr_a(name
));
67 /* seek to end of file and get the length */
68 if ((cab
->filelen
= SetFilePointer(fh
, 0, NULL
, FILE_END
)) == INVALID_SET_FILE_POINTER
) {
69 if (GetLastError() != NO_ERROR
) {
70 ERR("Seek END failed: %s\n", debugstr_a(name
));
76 /* return to the start of the file */
77 if (SetFilePointer(fh
, 0, NULL
, FILE_BEGIN
) == INVALID_SET_FILE_POINTER
) {
78 ERR("Seek BEGIN failed: %s\n", debugstr_a(name
));
87 /*******************************************************************
88 * cabinet_close (internal)
90 * close the file handle in a struct cabinet.
92 static void cabinet_close(struct cabinet
*cab
) {
93 TRACE("(cab == ^%p)\n", cab
);
94 if (cab
->fh
) CloseHandle(cab
->fh
);
98 /*******************************************************
99 * ensure_filepath2 (internal)
101 static BOOL
ensure_filepath2(char *path
) {
106 new_path
= HeapAlloc(GetProcessHeap(), 0, (strlen(path
) + 1));
107 strcpy(new_path
, path
);
109 while((len
= strlen(new_path
)) && new_path
[len
- 1] == '\\')
110 new_path
[len
- 1] = 0;
112 TRACE("About to try to create directory %s\n", debugstr_a(new_path
));
113 while(!CreateDirectoryA(new_path
, NULL
)) {
115 DWORD last_error
= GetLastError();
117 if(last_error
== ERROR_ALREADY_EXISTS
)
120 if(last_error
!= ERROR_PATH_NOT_FOUND
) {
125 if(!(slash
= strrchr(new_path
, '\\'))) {
130 len
= slash
- new_path
;
132 if(! ensure_filepath2(new_path
)) {
136 new_path
[len
] = '\\';
137 TRACE("New path in next iteration: %s\n", debugstr_a(new_path
));
140 HeapFree(GetProcessHeap(), 0, new_path
);
145 /**********************************************************************
146 * ensure_filepath (internal)
148 * ensure_filepath("a\b\c\d.txt") ensures a, a\b and a\b\c exist as dirs
150 static BOOL
ensure_filepath(char *path
) {
151 char new_path
[MAX_PATH
];
152 int len
, i
, lastslashpos
= -1;
154 TRACE("(path == %s)\n", debugstr_a(path
));
156 strcpy(new_path
, path
);
157 /* remove trailing slashes (shouldn't need to but wth...) */
158 while ((len
= strlen(new_path
)) && new_path
[len
- 1] == '\\')
159 new_path
[len
- 1] = 0;
160 /* find the position of the last '\\' */
161 for (i
=0; i
<MAX_PATH
; i
++) {
162 if (new_path
[i
] == 0) break;
163 if (new_path
[i
] == '\\')
166 if (lastslashpos
> 0) {
167 new_path
[lastslashpos
] = 0;
168 /* may be trailing slashes but ensure_filepath2 will chop them */
169 return ensure_filepath2(new_path
);
174 /*******************************************************************
175 * file_open (internal)
177 * opens a file for output, returns success
179 static BOOL
file_open(struct cab_file
*fi
, BOOL lower
, LPCSTR dir
)
185 TRACE("(fi == ^%p, lower == %s, dir == %s)\n", fi
, lower
? "TRUE" : "FALSE", debugstr_a(dir
));
187 if (!(name
= malloc(strlen(fi
->filename
) + (dir
? strlen(dir
) : 0) + 2))) {
188 ERR("out of memory!\n");
192 /* start with blank name */
195 /* add output directory if needed */
201 /* remove leading slashes */
202 s
= (char *) fi
->filename
;
203 while (*s
== '\\') s
++;
205 /* copy from fi->filename to new name.
206 * lowercases characters if needed.
208 d
= &name
[strlen(name
)];
211 *d
++ = (lower
? tolower((unsigned char) c
) : c
);
214 /* create directories if needed, attempt to write file */
215 if (ensure_filepath(name
)) {
216 fi
->fh
= CreateFileA(name
, GENERIC_WRITE
, 0, NULL
,
217 CREATE_ALWAYS
, FILE_ATTRIBUTE_NORMAL
, 0);
218 if (fi
->fh
!= INVALID_HANDLE_VALUE
)
221 ERR("CreateFileA returned INVALID_HANDLE_VALUE\n");
225 ERR("Couldn't ensure filepath for %s\n", debugstr_a(name
));
228 ERR("Couldn't open file %s for writing\n", debugstr_a(name
));
231 /* as full filename is no longer needed, free it */
237 /********************************************************
238 * close_file (internal)
240 * closes a completed file
242 static void file_close(struct cab_file
*fi
)
244 TRACE("(fi == ^%p)\n", fi
);
252 /******************************************************************
253 * file_write (internal)
255 * writes from buf to a file specified as a cab_file struct.
256 * returns success/failure
258 static BOOL
file_write(struct cab_file
*fi
, cab_UBYTE
*buf
, cab_off_t length
)
262 TRACE("(fi == ^%p, buf == ^%p, length == %u)\n", fi
, buf
, length
);
264 if ((!WriteFile( fi
->fh
, (LPCVOID
) buf
, length
, &bytes_written
, FALSE
) ||
265 (bytes_written
!= length
))) {
266 ERR("Error writing file: %s\n", debugstr_a(fi
->filename
));
273 /*******************************************************************
274 * cabinet_skip (internal)
276 * advance the file pointer associated with the cab structure
279 static void cabinet_skip(struct cabinet
*cab
, cab_off_t distance
)
281 TRACE("(cab == ^%p, distance == %u)\n", cab
, distance
);
282 if (SetFilePointer(cab
->fh
, distance
, NULL
, FILE_CURRENT
) == INVALID_SET_FILE_POINTER
) {
283 if (distance
!= INVALID_SET_FILE_POINTER
)
284 ERR("%s\n", debugstr_a(cab
->filename
));
288 /*******************************************************************
289 * cabinet_seek (internal)
291 * seek to the specified absolute offset in a cab
293 static void cabinet_seek(struct cabinet
*cab
, cab_off_t offset
) {
294 TRACE("(cab == ^%p, offset == %u)\n", cab
, offset
);
295 if (SetFilePointer(cab
->fh
, offset
, NULL
, FILE_BEGIN
) != offset
)
296 ERR("%s seek failure\n", debugstr_a(cab
->filename
));
299 /*******************************************************************
300 * cabinet_getoffset (internal)
302 * returns the file pointer position of a cab
304 static cab_off_t
cabinet_getoffset(struct cabinet
*cab
)
306 return SetFilePointer(cab
->fh
, 0, NULL
, FILE_CURRENT
);
309 /*******************************************************************
310 * cabinet_read (internal)
312 * read data from a cabinet, returns success
314 static BOOL
cabinet_read(struct cabinet
*cab
, cab_UBYTE
*buf
, cab_off_t length
)
317 cab_off_t avail
= cab
->filelen
- cabinet_getoffset(cab
);
319 TRACE("(cab == ^%p, buf == ^%p, length == %u)\n", cab
, buf
, length
);
321 if (length
> avail
) {
322 WARN("%s: WARNING; cabinet is truncated\n", debugstr_a(cab
->filename
));
326 if (! ReadFile( cab
->fh
, (LPVOID
) buf
, length
, &bytes_read
, NULL
)) {
327 ERR("%s read error\n", debugstr_a(cab
->filename
));
329 } else if (bytes_read
!= length
) {
330 ERR("%s read size mismatch\n", debugstr_a(cab
->filename
));
337 /**********************************************************************
338 * cabinet_read_string (internal)
340 * allocate and read an aribitrarily long string from the cabinet
342 static char *cabinet_read_string(struct cabinet
*cab
)
344 cab_off_t len
=256, base
= cabinet_getoffset(cab
), maxlen
= cab
->filelen
- base
;
347 cab_UBYTE
*buf
= NULL
;
349 TRACE("(cab == ^%p)\n", cab
);
352 if (len
> maxlen
) len
= maxlen
;
353 if (!(buf
= realloc(buf
, (size_t) len
))) break;
354 if (!cabinet_read(cab
, buf
, (size_t) len
)) break;
356 /* search for a null terminator in what we've just read */
357 for (i
=0; i
< len
; i
++) {
358 if (!buf
[i
]) {ok
=TRUE
; break;}
363 ERR("%s: WARNING; cabinet is truncated\n", debugstr_a(cab
->filename
));
367 cabinet_seek(cab
, base
);
375 ERR("out of memory!\n");
379 /* otherwise, set the stream to just after the string and return */
380 cabinet_seek(cab
, base
+ ((cab_off_t
) strlen((char *) buf
)) + 1);
385 /******************************************************************
386 * cabinet_read_entries (internal)
388 * reads the header and all folder and file entries in this cabinet
390 static BOOL
cabinet_read_entries(struct cabinet
*cab
)
392 int num_folders
, num_files
, header_resv
, folder_resv
= 0, i
;
393 struct cab_folder
*fol
, *linkfol
= NULL
;
394 struct cab_file
*file
, *linkfile
= NULL
;
395 cab_off_t base_offset
;
398 TRACE("(cab == ^%p)\n", cab
);
400 /* read in the CFHEADER */
401 base_offset
= cabinet_getoffset(cab
);
402 if (!cabinet_read(cab
, buf
, cfhead_SIZEOF
)) {
406 /* check basic MSCF signature */
407 if (EndGetI32(buf
+cfhead_Signature
) != 0x4643534d) {
408 ERR("%s: not a Microsoft cabinet file\n", debugstr_a(cab
->filename
));
412 /* get the number of folders */
413 num_folders
= EndGetI16(buf
+cfhead_NumFolders
);
414 if (num_folders
== 0) {
415 ERR("%s: no folders in cabinet\n", debugstr_a(cab
->filename
));
419 /* get the number of files */
420 num_files
= EndGetI16(buf
+cfhead_NumFiles
);
421 if (num_files
== 0) {
422 ERR("%s: no files in cabinet\n", debugstr_a(cab
->filename
));
426 /* just check the header revision */
427 if ((buf
[cfhead_MajorVersion
] > 1) ||
428 (buf
[cfhead_MajorVersion
] == 1 && buf
[cfhead_MinorVersion
] > 3))
430 WARN("%s: WARNING; cabinet format version > 1.3\n", debugstr_a(cab
->filename
));
433 /* read the reserved-sizes part of header, if present */
434 cab
->flags
= EndGetI16(buf
+cfhead_Flags
);
435 if (cab
->flags
& cfheadRESERVE_PRESENT
) {
436 if (!cabinet_read(cab
, buf
, cfheadext_SIZEOF
)) return FALSE
;
437 header_resv
= EndGetI16(buf
+cfheadext_HeaderReserved
);
438 folder_resv
= buf
[cfheadext_FolderReserved
];
439 cab
->block_resv
= buf
[cfheadext_DataReserved
];
441 if (header_resv
> 60000) {
442 WARN("%s: WARNING; header reserved space > 60000\n", debugstr_a(cab
->filename
));
445 /* skip the reserved header */
447 if (SetFilePointer(cab
->fh
, (cab_off_t
) header_resv
, NULL
, FILE_CURRENT
) == INVALID_SET_FILE_POINTER
)
448 ERR("seek failure: %s\n", debugstr_a(cab
->filename
));
451 if (cab
->flags
& cfheadPREV_CABINET
) {
452 cab
->prevname
= cabinet_read_string(cab
);
453 if (!cab
->prevname
) return FALSE
;
454 cab
->previnfo
= cabinet_read_string(cab
);
457 if (cab
->flags
& cfheadNEXT_CABINET
) {
458 cab
->nextname
= cabinet_read_string(cab
);
459 if (!cab
->nextname
) return FALSE
;
460 cab
->nextinfo
= cabinet_read_string(cab
);
464 for (i
= 0; i
< num_folders
; i
++) {
465 if (!cabinet_read(cab
, buf
, cffold_SIZEOF
)) return FALSE
;
466 if (folder_resv
) cabinet_skip(cab
, folder_resv
);
468 fol
= (struct cab_folder
*) calloc(1, sizeof(struct cab_folder
));
470 ERR("out of memory!\n");
475 fol
->offset
[0] = base_offset
+ (cab_off_t
) EndGetI32(buf
+cffold_DataOffset
);
476 fol
->num_blocks
= EndGetI16(buf
+cffold_NumBlocks
);
477 fol
->comp_type
= EndGetI16(buf
+cffold_CompType
);
488 for (i
= 0; i
< num_files
; i
++) {
489 if (!cabinet_read(cab
, buf
, cffile_SIZEOF
))
492 file
= (struct cab_file
*) calloc(1, sizeof(struct cab_file
));
494 ERR("out of memory!\n");
498 file
->length
= EndGetI32(buf
+cffile_UncompressedSize
);
499 file
->offset
= EndGetI32(buf
+cffile_FolderOffset
);
500 file
->index
= EndGetI16(buf
+cffile_FolderIndex
);
501 file
->time
= EndGetI16(buf
+cffile_Time
);
502 file
->date
= EndGetI16(buf
+cffile_Date
);
503 file
->attribs
= EndGetI16(buf
+cffile_Attribs
);
504 file
->filename
= cabinet_read_string(cab
);
506 if (!file
->filename
) {
514 linkfile
->next
= file
;
521 /***********************************************************
522 * load_cab_offset (internal)
524 * validates and reads file entries from a cabinet at offset [offset] in
525 * file [name]. Returns a cabinet structure if successful, or NULL
528 static struct cabinet
*load_cab_offset(LPCSTR name
, cab_off_t offset
)
530 struct cabinet
*cab
= (struct cabinet
*) calloc(1, sizeof(struct cabinet
));
533 TRACE("(name == %s, offset == %u)\n", debugstr_a(name
), offset
);
535 if (!cab
) return NULL
;
537 cab
->filename
= name
;
538 if ((ok
= cabinet_open(cab
))) {
539 cabinet_seek(cab
, offset
);
540 ok
= cabinet_read_entries(cab
);
549 /* MSZIP decruncher */
551 /* Dirk Stoecker wrote the ZIP decoder, based on the InfoZip deflate code */
553 /********************************************************
554 * Ziphuft_free (internal)
556 static void Ziphuft_free(struct Ziphuft
*t
)
558 register struct Ziphuft
*p
, *q
;
560 /* Go through linked list, freeing from the allocated (t[-1]) address. */
562 while (p
!= (struct Ziphuft
*)NULL
)
570 /*********************************************************
571 * Ziphuft_build (internal)
573 static cab_LONG
Ziphuft_build(cab_ULONG
*b
, cab_ULONG n
, cab_ULONG s
, cab_UWORD
*d
, cab_UWORD
*e
,
574 struct Ziphuft
**t
, cab_LONG
*m
, cab_decomp_state
*decomp_state
)
576 cab_ULONG a
; /* counter for codes of length k */
577 cab_ULONG el
; /* length of EOB code (value 256) */
578 cab_ULONG f
; /* i repeats in table every f entries */
579 cab_LONG g
; /* maximum code length */
580 cab_LONG h
; /* table level */
581 register cab_ULONG i
; /* counter, current code */
582 register cab_ULONG j
; /* counter */
583 register cab_LONG k
; /* number of bits in current code */
584 cab_LONG
*l
; /* stack of bits per table */
585 register cab_ULONG
*p
; /* pointer into ZIP(c)[],ZIP(b)[],ZIP(v)[] */
586 register struct Ziphuft
*q
; /* points to current table */
587 struct Ziphuft r
; /* table entry for structure assignment */
588 register cab_LONG w
; /* bits before this table == (l * h) */
589 cab_ULONG
*xp
; /* pointer into x */
590 cab_LONG y
; /* number of dummy codes added */
591 cab_ULONG z
; /* number of entries in current table */
595 /* Generate counts for each bit length */
596 el
= n
> 256 ? b
[256] : ZIPBMAX
; /* set length of EOB code, if any */
598 for(i
= 0; i
< ZIPBMAX
+1; ++i
)
603 ZIP(c
)[*p
]++; p
++; /* assume all entries <= ZIPBMAX */
605 if (ZIP(c
)[0] == n
) /* null input--all zero length codes */
607 *t
= (struct Ziphuft
*)NULL
;
612 /* Find minimum and maximum length, bound *m by those */
613 for (j
= 1; j
<= ZIPBMAX
; j
++)
616 k
= j
; /* minimum code length */
617 if ((cab_ULONG
)*m
< j
)
619 for (i
= ZIPBMAX
; i
; i
--)
622 g
= i
; /* maximum code length */
623 if ((cab_ULONG
)*m
> i
)
626 /* Adjust last length count to fill out codes, if needed */
627 for (y
= 1 << j
; j
< i
; j
++, y
<<= 1)
628 if ((y
-= ZIP(c
)[j
]) < 0)
629 return 2; /* bad input: more codes than bits */
630 if ((y
-= ZIP(c
)[i
]) < 0)
634 /* Generate starting offsets LONGo the value table for each length */
636 p
= ZIP(c
) + 1; xp
= ZIP(x
) + 2;
638 { /* note that i == g from above */
642 /* Make a table of values in order of bit lengths */
646 ZIP(v
)[ZIP(x
)[j
]++] = i
;
650 /* Generate the Huffman codes and for each, make the table entries */
651 ZIP(x
)[0] = i
= 0; /* first Huffman code is zero */
652 p
= ZIP(v
); /* grab values in bit order */
653 h
= -1; /* no tables yet--level -1 */
654 w
= l
[-1] = 0; /* no bits decoded yet */
655 ZIP(u
)[0] = (struct Ziphuft
*)NULL
; /* just to keep compilers happy */
656 q
= (struct Ziphuft
*)NULL
; /* ditto */
659 /* go through the bit lengths (k already is bits in shortest code) */
665 /* here i is the Huffman code of length k bits for value *p */
666 /* make tables up to required level */
669 w
+= l
[h
++]; /* add bits already decoded */
671 /* compute minimum size table less than or equal to *m bits */
672 z
= (z
= g
- w
) > (cab_ULONG
)*m
? *m
: z
; /* upper limit */
673 if ((f
= 1 << (j
= k
- w
)) > a
+ 1) /* try a k-w bit table */
674 { /* too few codes for k-w bit table */
675 f
-= a
+ 1; /* deduct codes from patterns left */
677 while (++j
< z
) /* try smaller tables up to z bits */
679 if ((f
<<= 1) <= *++xp
)
680 break; /* enough codes to use up j bits */
681 f
-= *xp
; /* else deduct codes from patterns */
684 if ((cab_ULONG
)w
+ j
> el
&& (cab_ULONG
)w
< el
)
685 j
= el
- w
; /* make EOB code end at table */
686 z
= 1 << j
; /* table entries for j-bit table */
687 l
[h
] = j
; /* set table size in stack */
689 /* allocate and link in new table */
690 if (!(q
= (struct Ziphuft
*) malloc((z
+ 1)*sizeof(struct Ziphuft
))))
693 Ziphuft_free(ZIP(u
)[0]);
694 return 3; /* not enough memory */
696 *t
= q
+ 1; /* link to list for Ziphuft_free() */
697 *(t
= &(q
->v
.t
)) = (struct Ziphuft
*)NULL
;
698 ZIP(u
)[h
] = ++q
; /* table starts after link */
700 /* connect to last table, if there is one */
703 ZIP(x
)[h
] = i
; /* save pattern for backing up */
704 r
.b
= (cab_UBYTE
)l
[h
-1]; /* bits to dump before this table */
705 r
.e
= (cab_UBYTE
)(16 + j
); /* bits in this table */
706 r
.v
.t
= q
; /* pointer to this table */
707 j
= (i
& ((1 << w
) - 1)) >> (w
- l
[h
-1]);
708 ZIP(u
)[h
-1][j
] = r
; /* connect to last table */
712 /* set up table entry in r */
713 r
.b
= (cab_UBYTE
)(k
- w
);
715 r
.e
= 99; /* out of values--invalid code */
718 r
.e
= (cab_UBYTE
)(*p
< 256 ? 16 : 15); /* 256 is end-of-block code */
719 r
.v
.n
= *p
++; /* simple code is just the value */
723 r
.e
= (cab_UBYTE
)e
[*p
- s
]; /* non-simple--look up in lists */
727 /* fill code-like entries with r */
729 for (j
= i
>> w
; j
< z
; j
+= f
)
732 /* backwards increment the k-bit code i */
733 for (j
= 1 << (k
- 1); i
& j
; j
>>= 1)
737 /* backup over finished tables */
738 while ((i
& ((1 << w
) - 1)) != ZIP(x
)[h
])
739 w
-= l
[--h
]; /* don't need to update q */
743 /* return actual size of base table */
746 /* Return true (1) if we were given an incomplete table */
747 return y
!= 0 && g
!= 1;
750 /*********************************************************
751 * Zipinflate_codes (internal)
753 static cab_LONG
Zipinflate_codes(struct Ziphuft
*tl
, struct Ziphuft
*td
,
754 cab_LONG bl
, cab_LONG bd
, cab_decomp_state
*decomp_state
)
756 register cab_ULONG e
; /* table entry flag/number of extra bits */
757 cab_ULONG n
, d
; /* length and index for copy */
758 cab_ULONG w
; /* current window position */
759 struct Ziphuft
*t
; /* pointer to table entry */
760 cab_ULONG ml
, md
; /* masks for bl and bd bits */
761 register cab_ULONG b
; /* bit buffer */
762 register cab_ULONG k
; /* number of bits in bit buffer */
764 /* make local copies of globals */
765 b
= ZIP(bb
); /* initialize bit buffer */
767 w
= ZIP(window_posn
); /* initialize window position */
769 /* inflate the coded data */
770 ml
= Zipmask
[bl
]; /* precompute masks for speed */
775 ZIPNEEDBITS((cab_ULONG
)bl
)
776 if((e
= (t
= tl
+ ((cab_ULONG
)b
& ml
))->e
) > 16)
784 } while ((e
= (t
= t
->v
.t
+ ((cab_ULONG
)b
& Zipmask
[e
]))->e
) > 16);
786 if (e
== 16) /* then it's a literal */
787 CAB(outbuf
)[w
++] = (cab_UBYTE
)t
->v
.n
;
788 else /* it's an EOB or a length */
790 /* exit if end of block */
794 /* get length of block to copy */
796 n
= t
->v
.n
+ ((cab_ULONG
)b
& Zipmask
[e
]);
799 /* decode distance of block to copy */
800 ZIPNEEDBITS((cab_ULONG
)bd
)
801 if ((e
= (t
= td
+ ((cab_ULONG
)b
& md
))->e
) > 16)
808 } while ((e
= (t
= t
->v
.t
+ ((cab_ULONG
)b
& Zipmask
[e
]))->e
) > 16);
811 d
= w
- t
->v
.n
- ((cab_ULONG
)b
& Zipmask
[e
]);
815 n
-= (e
= (e
= ZIPWSIZE
- ((d
&= ZIPWSIZE
-1) > w
? d
: w
)) > n
?n
:e
);
818 CAB(outbuf
)[w
++] = CAB(outbuf
)[d
++];
824 /* restore the globals from the locals */
825 ZIP(window_posn
) = w
; /* restore global window pointer */
826 ZIP(bb
) = b
; /* restore global bit buffer */
833 /***********************************************************
834 * Zipinflate_stored (internal)
836 static cab_LONG
Zipinflate_stored(cab_decomp_state
*decomp_state
)
837 /* "decompress" an inflated type 0 (stored) block. */
839 cab_ULONG n
; /* number of bytes in block */
840 cab_ULONG w
; /* current window position */
841 register cab_ULONG b
; /* bit buffer */
842 register cab_ULONG k
; /* number of bits in bit buffer */
844 /* make local copies of globals */
845 b
= ZIP(bb
); /* initialize bit buffer */
847 w
= ZIP(window_posn
); /* initialize window position */
849 /* go to byte boundary */
853 /* get the length and its complement */
855 n
= ((cab_ULONG
)b
& 0xffff);
858 if (n
!= (cab_ULONG
)((~b
) & 0xffff))
859 return 1; /* error in compressed data */
862 /* read and output the compressed data */
866 CAB(outbuf
)[w
++] = (cab_UBYTE
)b
;
870 /* restore the globals from the locals */
871 ZIP(window_posn
) = w
; /* restore global window pointer */
872 ZIP(bb
) = b
; /* restore global bit buffer */
877 /******************************************************
878 * Zipinflate_fixed (internal)
880 static cab_LONG
Zipinflate_fixed(cab_decomp_state
*decomp_state
)
882 struct Ziphuft
*fixed_tl
;
883 struct Ziphuft
*fixed_td
;
884 cab_LONG fixed_bl
, fixed_bd
;
885 cab_LONG i
; /* temporary variable */
891 for(i
= 0; i
< 144; i
++)
897 for(; i
< 288; i
++) /* make a complete, but wrong code set */
900 if((i
= Ziphuft_build(l
, 288, 257, (cab_UWORD
*) Zipcplens
,
901 (cab_UWORD
*) Zipcplext
, &fixed_tl
, &fixed_bl
, decomp_state
)))
905 for(i
= 0; i
< 30; i
++) /* make an incomplete code set */
908 if((i
= Ziphuft_build(l
, 30, 0, (cab_UWORD
*) Zipcpdist
, (cab_UWORD
*) Zipcpdext
,
909 &fixed_td
, &fixed_bd
, decomp_state
)) > 1)
911 Ziphuft_free(fixed_tl
);
915 /* decompress until an end-of-block code */
916 i
= Zipinflate_codes(fixed_tl
, fixed_td
, fixed_bl
, fixed_bd
, decomp_state
);
918 Ziphuft_free(fixed_td
);
919 Ziphuft_free(fixed_tl
);
923 /**************************************************************
924 * Zipinflate_dynamic (internal)
926 static cab_LONG
Zipinflate_dynamic(cab_decomp_state
*decomp_state
)
927 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
929 cab_LONG i
; /* temporary variables */
932 cab_ULONG l
; /* last length */
933 cab_ULONG m
; /* mask for bit lengths table */
934 cab_ULONG n
; /* number of lengths to get */
935 struct Ziphuft
*tl
; /* literal/length code table */
936 struct Ziphuft
*td
; /* distance code table */
937 cab_LONG bl
; /* lookup bits for tl */
938 cab_LONG bd
; /* lookup bits for td */
939 cab_ULONG nb
; /* number of bit length codes */
940 cab_ULONG nl
; /* number of literal/length codes */
941 cab_ULONG nd
; /* number of distance codes */
942 register cab_ULONG b
; /* bit buffer */
943 register cab_ULONG k
; /* number of bits in bit buffer */
945 /* make local bit buffer */
950 /* read in table lengths */
952 nl
= 257 + ((cab_ULONG
)b
& 0x1f); /* number of literal/length codes */
955 nd
= 1 + ((cab_ULONG
)b
& 0x1f); /* number of distance codes */
958 nb
= 4 + ((cab_ULONG
)b
& 0xf); /* number of bit length codes */
960 if(nl
> 288 || nd
> 32)
961 return 1; /* bad lengths */
963 /* read in bit-length-code lengths */
964 for(j
= 0; j
< nb
; j
++)
967 ll
[Zipborder
[j
]] = (cab_ULONG
)b
& 7;
971 ll
[Zipborder
[j
]] = 0;
973 /* build decoding table for trees--single level, 7 bit lookup */
975 if((i
= Ziphuft_build(ll
, 19, 19, NULL
, NULL
, &tl
, &bl
, decomp_state
)) != 0)
979 return i
; /* incomplete code set */
982 /* read in literal and distance code lengths */
986 while((cab_ULONG
)i
< n
)
988 ZIPNEEDBITS((cab_ULONG
)bl
)
989 j
= (td
= tl
+ ((cab_ULONG
)b
& m
))->b
;
992 if (j
< 16) /* length of code in bits (0..15) */
993 ll
[i
++] = l
= j
; /* save last length in l */
994 else if (j
== 16) /* repeat last length 3 to 6 times */
997 j
= 3 + ((cab_ULONG
)b
& 3);
999 if((cab_ULONG
)i
+ j
> n
)
1004 else if (j
== 17) /* 3 to 10 zero length codes */
1007 j
= 3 + ((cab_ULONG
)b
& 7);
1009 if ((cab_ULONG
)i
+ j
> n
)
1015 else /* j == 18: 11 to 138 zero length codes */
1018 j
= 11 + ((cab_ULONG
)b
& 0x7f);
1020 if ((cab_ULONG
)i
+ j
> n
)
1028 /* free decoding table for trees */
1031 /* restore the global bit buffer */
1035 /* build the decoding tables for literal/length and distance codes */
1037 if((i
= Ziphuft_build(ll
, nl
, 257, (cab_UWORD
*) Zipcplens
, (cab_UWORD
*) Zipcplext
,
1038 &tl
, &bl
, decomp_state
)) != 0)
1042 return i
; /* incomplete code set */
1045 Ziphuft_build(ll
+ nl
, nd
, 0, (cab_UWORD
*) Zipcpdist
, (cab_UWORD
*) Zipcpdext
,
1046 &td
, &bd
, decomp_state
);
1048 /* decompress until an end-of-block code */
1049 if(Zipinflate_codes(tl
, td
, bl
, bd
, decomp_state
))
1052 /* free the decoding tables, return */
1058 /*****************************************************
1059 * Zipinflate_block (internal)
1061 static cab_LONG
Zipinflate_block(cab_LONG
*e
, cab_decomp_state
*decomp_state
) /* e == last block flag */
1062 { /* decompress an inflated block */
1063 cab_ULONG t
; /* block type */
1064 register cab_ULONG b
; /* bit buffer */
1065 register cab_ULONG k
; /* number of bits in bit buffer */
1067 /* make local bit buffer */
1071 /* read in last block bit */
1073 *e
= (cab_LONG
)b
& 1;
1076 /* read in block type */
1078 t
= (cab_ULONG
)b
& 3;
1081 /* restore the global bit buffer */
1085 /* inflate that block type */
1087 return Zipinflate_dynamic(decomp_state
);
1089 return Zipinflate_stored(decomp_state
);
1091 return Zipinflate_fixed(decomp_state
);
1092 /* bad block type */
1096 /****************************************************
1097 * ZIPdecompress (internal)
1099 static int ZIPdecompress(int inlen
, int outlen
, cab_decomp_state
*decomp_state
)
1101 cab_LONG e
; /* last block flag */
1103 TRACE("(inlen == %d, outlen == %d)\n", inlen
, outlen
);
1105 ZIP(inpos
) = CAB(inbuf
);
1106 ZIP(bb
) = ZIP(bk
) = ZIP(window_posn
) = 0;
1107 if(outlen
> ZIPWSIZE
)
1108 return DECR_DATAFORMAT
;
1110 /* CK = Chris Kirmse, official Microsoft purloiner */
1111 if(ZIP(inpos
)[0] != 0x43 || ZIP(inpos
)[1] != 0x4B)
1112 return DECR_ILLEGALDATA
;
1117 if(Zipinflate_block(&e
, decomp_state
))
1118 return DECR_ILLEGALDATA
;
1121 /* return success */
1125 /* Quantum decruncher */
1127 /* This decruncher was researched and implemented by Matthew Russoto. */
1128 /* It has since been tidied up by Stuart Caie */
1130 /******************************************************************
1131 * QTMinitmodel (internal)
1133 * Initialise a model which decodes symbols from [s] to [s]+[n]-1
1135 static void QTMinitmodel(struct QTMmodel
*m
, struct QTMmodelsym
*sym
, int n
, int s
) {
1140 memset(m
->tabloc
, 0xFF, sizeof(m
->tabloc
)); /* clear out look-up table */
1141 for (i
= 0; i
< n
; i
++) {
1142 m
->tabloc
[i
+s
] = i
; /* set up a look-up entry for symbol */
1143 m
->syms
[i
].sym
= i
+s
; /* actual symbol */
1144 m
->syms
[i
].cumfreq
= n
-i
; /* current frequency of that symbol */
1146 m
->syms
[n
].cumfreq
= 0;
1149 /******************************************************************
1150 * QTMinit (internal)
1152 static int QTMinit(int window
, int level
, cab_decomp_state
*decomp_state
) {
1153 unsigned int wndsize
= 1 << window
;
1154 int msz
= window
* 2, i
;
1157 /* QTM supports window sizes of 2^10 (1Kb) through 2^21 (2Mb) */
1158 /* if a previously allocated window is big enough, keep it */
1159 if (window
< 10 || window
> 21) return DECR_DATAFORMAT
;
1160 if (QTM(actual_size
) < wndsize
) {
1161 if (QTM(window
)) free(QTM(window
));
1165 if (!(QTM(window
) = malloc(wndsize
))) return DECR_NOMEMORY
;
1166 QTM(actual_size
) = wndsize
;
1168 QTM(window_size
) = wndsize
;
1169 QTM(window_posn
) = 0;
1171 /* initialise static slot/extrabits tables */
1172 for (i
= 0, j
= 0; i
< 27; i
++) {
1173 CAB(q_length_extra
)[i
] = (i
== 26) ? 0 : (i
< 2 ? 0 : i
- 2) >> 2;
1174 CAB(q_length_base
)[i
] = j
; j
+= 1 << ((i
== 26) ? 5 : CAB(q_length_extra
)[i
]);
1176 for (i
= 0, j
= 0; i
< 42; i
++) {
1177 CAB(q_extra_bits
)[i
] = (i
< 2 ? 0 : i
-2) >> 1;
1178 CAB(q_position_base
)[i
] = j
; j
+= 1 << CAB(q_extra_bits
)[i
];
1181 /* initialise arithmetic coding models */
1183 QTMinitmodel(&QTM(model7
), &QTM(m7sym
)[0], 7, 0);
1185 QTMinitmodel(&QTM(model00
), &QTM(m00sym
)[0], 0x40, 0x00);
1186 QTMinitmodel(&QTM(model40
), &QTM(m40sym
)[0], 0x40, 0x40);
1187 QTMinitmodel(&QTM(model80
), &QTM(m80sym
)[0], 0x40, 0x80);
1188 QTMinitmodel(&QTM(modelC0
), &QTM(mC0sym
)[0], 0x40, 0xC0);
1190 /* model 4 depends on table size, ranges from 20 to 24 */
1191 QTMinitmodel(&QTM(model4
), &QTM(m4sym
)[0], (msz
< 24) ? msz
: 24, 0);
1192 /* model 5 depends on table size, ranges from 20 to 36 */
1193 QTMinitmodel(&QTM(model5
), &QTM(m5sym
)[0], (msz
< 36) ? msz
: 36, 0);
1194 /* model 6pos depends on table size, ranges from 20 to 42 */
1195 QTMinitmodel(&QTM(model6pos
), &QTM(m6psym
)[0], msz
, 0);
1196 QTMinitmodel(&QTM(model6len
), &QTM(m6lsym
)[0], 27, 0);
1201 /****************************************************************
1202 * QTMupdatemodel (internal)
1204 void QTMupdatemodel(struct QTMmodel
*model
, int sym
) {
1205 struct QTMmodelsym temp
;
1208 for (i
= 0; i
< sym
; i
++) model
->syms
[i
].cumfreq
+= 8;
1210 if (model
->syms
[0].cumfreq
> 3800) {
1211 if (--model
->shiftsleft
) {
1212 for (i
= model
->entries
- 1; i
>= 0; i
--) {
1213 /* -1, not -2; the 0 entry saves this */
1214 model
->syms
[i
].cumfreq
>>= 1;
1215 if (model
->syms
[i
].cumfreq
<= model
->syms
[i
+1].cumfreq
) {
1216 model
->syms
[i
].cumfreq
= model
->syms
[i
+1].cumfreq
+ 1;
1221 model
->shiftsleft
= 50;
1222 for (i
= 0; i
< model
->entries
; i
++) {
1223 /* no -1, want to include the 0 entry */
1224 /* this converts cumfreqs into frequencies, then shifts right */
1225 model
->syms
[i
].cumfreq
-= model
->syms
[i
+1].cumfreq
;
1226 model
->syms
[i
].cumfreq
++; /* avoid losing things entirely */
1227 model
->syms
[i
].cumfreq
>>= 1;
1230 /* now sort by frequencies, decreasing order -- this must be an
1231 * inplace selection sort, or a sort with the same (in)stability
1234 for (i
= 0; i
< model
->entries
- 1; i
++) {
1235 for (j
= i
+ 1; j
< model
->entries
; j
++) {
1236 if (model
->syms
[i
].cumfreq
< model
->syms
[j
].cumfreq
) {
1237 temp
= model
->syms
[i
];
1238 model
->syms
[i
] = model
->syms
[j
];
1239 model
->syms
[j
] = temp
;
1244 /* then convert frequencies back to cumfreq */
1245 for (i
= model
->entries
- 1; i
>= 0; i
--) {
1246 model
->syms
[i
].cumfreq
+= model
->syms
[i
+1].cumfreq
;
1248 /* then update the other part of the table */
1249 for (i
= 0; i
< model
->entries
; i
++) {
1250 model
->tabloc
[model
->syms
[i
].sym
] = i
;
1256 /*******************************************************************
1257 * QTMdecompress (internal)
1259 static int QTMdecompress(int inlen
, int outlen
, cab_decomp_state
*decomp_state
)
1261 cab_UBYTE
*inpos
= CAB(inbuf
);
1262 cab_UBYTE
*window
= QTM(window
);
1263 cab_UBYTE
*runsrc
, *rundest
;
1265 cab_ULONG window_posn
= QTM(window_posn
);
1266 cab_ULONG window_size
= QTM(window_size
);
1268 /* used by bitstream macros */
1269 register int bitsleft
, bitrun
, bitsneed
;
1270 register cab_ULONG bitbuf
;
1272 /* used by GET_SYMBOL */
1277 int extra
, togo
= outlen
, match_length
= 0, copy_length
;
1278 cab_UBYTE selector
, sym
;
1279 cab_ULONG match_offset
= 0;
1281 cab_UWORD H
= 0xFFFF, L
= 0, C
;
1283 TRACE("(inlen == %d, outlen == %d)\n", inlen
, outlen
);
1285 /* read initial value of C */
1289 /* apply 2^x-1 mask */
1290 window_posn
&= window_size
- 1;
1291 /* runs can't straddle the window wraparound */
1292 if ((window_posn
+ togo
) > window_size
) {
1293 TRACE("straddled run\n");
1294 return DECR_DATAFORMAT
;
1298 GET_SYMBOL(model7
, selector
);
1301 GET_SYMBOL(model00
, sym
); window
[window_posn
++] = sym
; togo
--;
1304 GET_SYMBOL(model40
, sym
); window
[window_posn
++] = sym
; togo
--;
1307 GET_SYMBOL(model80
, sym
); window
[window_posn
++] = sym
; togo
--;
1310 GET_SYMBOL(modelC0
, sym
); window
[window_posn
++] = sym
; togo
--;
1314 /* selector 4 = fixed length of 3 */
1315 GET_SYMBOL(model4
, sym
);
1316 Q_READ_BITS(extra
, CAB(q_extra_bits
)[sym
]);
1317 match_offset
= CAB(q_position_base
)[sym
] + extra
+ 1;
1322 /* selector 5 = fixed length of 4 */
1323 GET_SYMBOL(model5
, sym
);
1324 Q_READ_BITS(extra
, CAB(q_extra_bits
)[sym
]);
1325 match_offset
= CAB(q_position_base
)[sym
] + extra
+ 1;
1330 /* selector 6 = variable length */
1331 GET_SYMBOL(model6len
, sym
);
1332 Q_READ_BITS(extra
, CAB(q_length_extra
)[sym
]);
1333 match_length
= CAB(q_length_base
)[sym
] + extra
+ 5;
1334 GET_SYMBOL(model6pos
, sym
);
1335 Q_READ_BITS(extra
, CAB(q_extra_bits
)[sym
]);
1336 match_offset
= CAB(q_position_base
)[sym
] + extra
+ 1;
1340 TRACE("Selector is bogus\n");
1341 return DECR_ILLEGALDATA
;
1344 /* if this is a match */
1345 if (selector
>= 4) {
1346 rundest
= window
+ window_posn
;
1347 togo
-= match_length
;
1349 /* copy any wrapped around source data */
1350 if (window_posn
>= match_offset
) {
1352 runsrc
= rundest
- match_offset
;
1354 runsrc
= rundest
+ (window_size
- match_offset
);
1355 copy_length
= match_offset
- window_posn
;
1356 if (copy_length
< match_length
) {
1357 match_length
-= copy_length
;
1358 window_posn
+= copy_length
;
1359 while (copy_length
-- > 0) *rundest
++ = *runsrc
++;
1363 window_posn
+= match_length
;
1365 /* copy match data - no worries about destination wraps */
1366 while (match_length
-- > 0) *rundest
++ = *runsrc
++;
1368 } /* while (togo > 0) */
1371 TRACE("Frame overflow, this_run = %d\n", togo
);
1372 return DECR_ILLEGALDATA
;
1375 memcpy(CAB(outbuf
), window
+ ((!window_posn
) ? window_size
: window_posn
) -
1378 QTM(window_posn
) = window_posn
;
1382 /* LZX decruncher */
1384 /* Microsoft's LZX document and their implementation of the
1385 * com.ms.util.cab Java package do not concur.
1387 * In the LZX document, there is a table showing the correlation between
1388 * window size and the number of position slots. It states that the 1MB
1389 * window = 40 slots and the 2MB window = 42 slots. In the implementation,
1390 * 1MB = 42 slots, 2MB = 50 slots. The actual calculation is 'find the
1391 * first slot whose position base is equal to or more than the required
1392 * window size'. This would explain why other tables in the document refer
1393 * to 50 slots rather than 42.
1395 * The constant NUM_PRIMARY_LENGTHS used in the decompression pseudocode
1396 * is not defined in the specification.
1398 * The LZX document does not state the uncompressed block has an
1399 * uncompressed length field. Where does this length field come from, so
1400 * we can know how large the block is? The implementation has it as the 24
1401 * bits following after the 3 blocktype bits, before the alignment
1404 * The LZX document states that aligned offset blocks have their aligned
1405 * offset huffman tree AFTER the main and length trees. The implementation
1406 * suggests that the aligned offset tree is BEFORE the main and length
1409 * The LZX document decoding algorithm states that, in an aligned offset
1410 * block, if an extra_bits value is 1, 2 or 3, then that number of bits
1411 * should be read and the result added to the match offset. This is
1412 * correct for 1 and 2, but not 3, where just a huffman symbol (using the
1413 * aligned tree) should be read.
1415 * Regarding the E8 preprocessing, the LZX document states 'No translation
1416 * may be performed on the last 6 bytes of the input block'. This is
1417 * correct. However, the pseudocode provided checks for the *E8 leader*
1418 * up to the last 6 bytes. If the leader appears between -10 and -7 bytes
1419 * from the end, this would cause the next four bytes to be modified, at
1420 * least one of which would be in the last 6 bytes, which is not allowed
1421 * according to the spec.
1423 * The specification states that the huffman trees must always contain at
1424 * least one element. However, many CAB files contain blocks where the
1425 * length tree is completely empty (because there are no matches), and
1426 * this is expected to succeed.
1430 /* LZX uses what it calls 'position slots' to represent match offsets.
1431 * What this means is that a small 'position slot' number and a small
1432 * offset from that slot are encoded instead of one large offset for
1434 * - lzx_position_base is an index to the position slot bases
1435 * - lzx_extra_bits states how many bits of offset-from-base data is needed.
1438 /************************************************************
1439 * LZXinit (internal)
1441 static int LZXinit(int window
, cab_decomp_state
*decomp_state
) {
1442 cab_ULONG wndsize
= 1 << window
;
1443 int i
, j
, posn_slots
;
1445 /* LZX supports window sizes of 2^15 (32Kb) through 2^21 (2Mb) */
1446 /* if a previously allocated window is big enough, keep it */
1447 if (window
< 15 || window
> 21) return DECR_DATAFORMAT
;
1448 if (LZX(actual_size
) < wndsize
) {
1449 if (LZX(window
)) free(LZX(window
));
1453 if (!(LZX(window
) = malloc(wndsize
))) return DECR_NOMEMORY
;
1454 LZX(actual_size
) = wndsize
;
1456 LZX(window_size
) = wndsize
;
1458 /* initialise static tables */
1459 for (i
=0, j
=0; i
<= 50; i
+= 2) {
1460 CAB(extra_bits
)[i
] = CAB(extra_bits
)[i
+1] = j
; /* 0,0,0,0,1,1,2,2,3,3... */
1461 if ((i
!= 0) && (j
< 17)) j
++; /* 0,0,1,2,3,4...15,16,17,17,17,17... */
1463 for (i
=0, j
=0; i
<= 50; i
++) {
1464 CAB(lzx_position_base
)[i
] = j
; /* 0,1,2,3,4,6,8,12,16,24,32,... */
1465 j
+= 1 << CAB(extra_bits
)[i
]; /* 1,1,1,1,2,2,4,4,8,8,16,16,32,32,... */
1468 /* calculate required position slots */
1469 if (window
== 20) posn_slots
= 42;
1470 else if (window
== 21) posn_slots
= 50;
1471 else posn_slots
= window
<< 1;
1473 /*posn_slots=i=0; while (i < wndsize) i += 1 << CAB(extra_bits)[posn_slots++]; */
1475 LZX(R0
) = LZX(R1
) = LZX(R2
) = 1;
1476 LZX(main_elements
) = LZX_NUM_CHARS
+ (posn_slots
<< 3);
1477 LZX(header_read
) = 0;
1478 LZX(frames_read
) = 0;
1479 LZX(block_remaining
) = 0;
1480 LZX(block_type
) = LZX_BLOCKTYPE_INVALID
;
1481 LZX(intel_curpos
) = 0;
1482 LZX(intel_started
) = 0;
1483 LZX(window_posn
) = 0;
1485 /* initialise tables to 0 (because deltas will be applied to them) */
1486 for (i
= 0; i
< LZX_MAINTREE_MAXSYMBOLS
; i
++) LZX(MAINTREE_len
)[i
] = 0;
1487 for (i
= 0; i
< LZX_LENGTH_MAXSYMBOLS
; i
++) LZX(LENGTH_len
)[i
] = 0;
1492 /*************************************************************************
1493 * make_decode_table (internal)
1495 * This function was coded by David Tritscher. It builds a fast huffman
1496 * decoding table out of just a canonical huffman code lengths table.
1499 * nsyms: total number of symbols in this huffman tree.
1500 * nbits: any symbols with a code length of nbits or less can be decoded
1501 * in one lookup of the table.
1502 * length: A table to get code lengths from [0 to syms-1]
1503 * table: The table to fill up with decoded symbols and pointers.
1509 int make_decode_table(cab_ULONG nsyms
, cab_ULONG nbits
, cab_UBYTE
*length
, cab_UWORD
*table
) {
1510 register cab_UWORD sym
;
1511 register cab_ULONG leaf
;
1512 register cab_UBYTE bit_num
= 1;
1514 cab_ULONG pos
= 0; /* the current position in the decode table */
1515 cab_ULONG table_mask
= 1 << nbits
;
1516 cab_ULONG bit_mask
= table_mask
>> 1; /* don't do 0 length codes */
1517 cab_ULONG next_symbol
= bit_mask
; /* base of allocation for long codes */
1519 /* fill entries for codes short enough for a direct mapping */
1520 while (bit_num
<= nbits
) {
1521 for (sym
= 0; sym
< nsyms
; sym
++) {
1522 if (length
[sym
] == bit_num
) {
1525 if((pos
+= bit_mask
) > table_mask
) return 1; /* table overrun */
1527 /* fill all possible lookups of this symbol with the symbol itself */
1529 while (fill
-- > 0) table
[leaf
++] = sym
;
1536 /* if there are any codes longer than nbits */
1537 if (pos
!= table_mask
) {
1538 /* clear the remainder of the table */
1539 for (sym
= pos
; sym
< table_mask
; sym
++) table
[sym
] = 0;
1541 /* give ourselves room for codes to grow by up to 16 more bits */
1546 while (bit_num
<= 16) {
1547 for (sym
= 0; sym
< nsyms
; sym
++) {
1548 if (length
[sym
] == bit_num
) {
1550 for (fill
= 0; fill
< bit_num
- nbits
; fill
++) {
1551 /* if this path hasn't been taken yet, 'allocate' two entries */
1552 if (table
[leaf
] == 0) {
1553 table
[(next_symbol
<< 1)] = 0;
1554 table
[(next_symbol
<< 1) + 1] = 0;
1555 table
[leaf
] = next_symbol
++;
1557 /* follow the path and select either left or right for next bit */
1558 leaf
= table
[leaf
] << 1;
1559 if ((pos
>> (15-fill
)) & 1) leaf
++;
1563 if ((pos
+= bit_mask
) > table_mask
) return 1; /* table overflow */
1572 if (pos
== table_mask
) return 0;
1574 /* either erroneous table, or all elements are 0 - let's find out. */
1575 for (sym
= 0; sym
< nsyms
; sym
++) if (length
[sym
]) return 1;
1579 /************************************************************
1580 * lzx_read_lens (internal)
1582 static int lzx_read_lens(cab_UBYTE
*lens
, cab_ULONG first
, cab_ULONG last
, struct lzx_bits
*lb
,
1583 cab_decomp_state
*decomp_state
) {
1587 register cab_ULONG bitbuf
= lb
->bb
;
1588 register int bitsleft
= lb
->bl
;
1589 cab_UBYTE
*inpos
= lb
->ip
;
1592 for (x
= 0; x
< 20; x
++) {
1594 LENTABLE(PRETREE
)[x
] = y
;
1596 BUILD_TABLE(PRETREE
);
1598 for (x
= first
; x
< last
; ) {
1599 READ_HUFFSYM(PRETREE
, z
);
1601 READ_BITS(y
, 4); y
+= 4;
1602 while (y
--) lens
[x
++] = 0;
1605 READ_BITS(y
, 5); y
+= 20;
1606 while (y
--) lens
[x
++] = 0;
1609 READ_BITS(y
, 1); y
+= 4;
1610 READ_HUFFSYM(PRETREE
, z
);
1611 z
= lens
[x
] - z
; if (z
< 0) z
+= 17;
1612 while (y
--) lens
[x
++] = z
;
1615 z
= lens
[x
] - z
; if (z
< 0) z
+= 17;
1626 /*******************************************************
1627 * LZXdecompress (internal)
1629 static int LZXdecompress(int inlen
, int outlen
, cab_decomp_state
*decomp_state
) {
1630 cab_UBYTE
*inpos
= CAB(inbuf
);
1631 cab_UBYTE
*endinp
= inpos
+ inlen
;
1632 cab_UBYTE
*window
= LZX(window
);
1633 cab_UBYTE
*runsrc
, *rundest
;
1634 cab_UWORD
*hufftbl
; /* used in READ_HUFFSYM macro as chosen decoding table */
1636 cab_ULONG window_posn
= LZX(window_posn
);
1637 cab_ULONG window_size
= LZX(window_size
);
1638 cab_ULONG R0
= LZX(R0
);
1639 cab_ULONG R1
= LZX(R1
);
1640 cab_ULONG R2
= LZX(R2
);
1642 register cab_ULONG bitbuf
;
1643 register int bitsleft
;
1644 cab_ULONG match_offset
, i
,j
,k
; /* ijk used in READ_HUFFSYM macro */
1645 struct lzx_bits lb
; /* used in READ_LENGTHS macro */
1647 int togo
= outlen
, this_run
, main_element
, aligned_bits
;
1648 int match_length
, copy_length
, length_footer
, extra
, verbatim_bits
;
1650 TRACE("(inlen == %d, outlen == %d)\n", inlen
, outlen
);
1654 /* read header if necessary */
1655 if (!LZX(header_read
)) {
1657 READ_BITS(k
, 1); if (k
) { READ_BITS(i
,16); READ_BITS(j
,16); }
1658 LZX(intel_filesize
) = (i
<< 16) | j
; /* or 0 if not encoded */
1659 LZX(header_read
) = 1;
1662 /* main decoding loop */
1664 /* last block finished, new block expected */
1665 if (LZX(block_remaining
) == 0) {
1666 if (LZX(block_type
) == LZX_BLOCKTYPE_UNCOMPRESSED
) {
1667 if (LZX(block_length
) & 1) inpos
++; /* realign bitstream to word */
1671 READ_BITS(LZX(block_type
), 3);
1674 LZX(block_remaining
) = LZX(block_length
) = (i
<< 8) | j
;
1676 switch (LZX(block_type
)) {
1677 case LZX_BLOCKTYPE_ALIGNED
:
1678 for (i
= 0; i
< 8; i
++) { READ_BITS(j
, 3); LENTABLE(ALIGNED
)[i
] = j
; }
1679 BUILD_TABLE(ALIGNED
);
1680 /* rest of aligned header is same as verbatim */
1682 case LZX_BLOCKTYPE_VERBATIM
:
1683 READ_LENGTHS(MAINTREE
, 0, 256, lzx_read_lens
);
1684 READ_LENGTHS(MAINTREE
, 256, LZX(main_elements
), lzx_read_lens
);
1685 BUILD_TABLE(MAINTREE
);
1686 if (LENTABLE(MAINTREE
)[0xE8] != 0) LZX(intel_started
) = 1;
1688 READ_LENGTHS(LENGTH
, 0, LZX_NUM_SECONDARY_LENGTHS
, lzx_read_lens
);
1689 BUILD_TABLE(LENGTH
);
1692 case LZX_BLOCKTYPE_UNCOMPRESSED
:
1693 LZX(intel_started
) = 1; /* because we can't assume otherwise */
1694 ENSURE_BITS(16); /* get up to 16 pad bits into the buffer */
1695 if (bitsleft
> 16) inpos
-= 2; /* and align the bitstream! */
1696 R0
= inpos
[0]|(inpos
[1]<<8)|(inpos
[2]<<16)|(inpos
[3]<<24);inpos
+=4;
1697 R1
= inpos
[0]|(inpos
[1]<<8)|(inpos
[2]<<16)|(inpos
[3]<<24);inpos
+=4;
1698 R2
= inpos
[0]|(inpos
[1]<<8)|(inpos
[2]<<16)|(inpos
[3]<<24);inpos
+=4;
1702 return DECR_ILLEGALDATA
;
1706 /* buffer exhaustion check */
1707 if (inpos
> endinp
) {
1708 /* it's possible to have a file where the next run is less than
1709 * 16 bits in size. In this case, the READ_HUFFSYM() macro used
1710 * in building the tables will exhaust the buffer, so we should
1711 * allow for this, but not allow those accidentally read bits to
1712 * be used (so we check that there are at least 16 bits
1713 * remaining - in this boundary case they aren't really part of
1714 * the compressed data)
1716 if (inpos
> (endinp
+2) || bitsleft
< 16) return DECR_ILLEGALDATA
;
1719 while ((this_run
= LZX(block_remaining
)) > 0 && togo
> 0) {
1720 if (this_run
> togo
) this_run
= togo
;
1722 LZX(block_remaining
) -= this_run
;
1724 /* apply 2^x-1 mask */
1725 window_posn
&= window_size
- 1;
1726 /* runs can't straddle the window wraparound */
1727 if ((window_posn
+ this_run
) > window_size
)
1728 return DECR_DATAFORMAT
;
1730 switch (LZX(block_type
)) {
1732 case LZX_BLOCKTYPE_VERBATIM
:
1733 while (this_run
> 0) {
1734 READ_HUFFSYM(MAINTREE
, main_element
);
1736 if (main_element
< LZX_NUM_CHARS
) {
1737 /* literal: 0 to LZX_NUM_CHARS-1 */
1738 window
[window_posn
++] = main_element
;
1742 /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
1743 main_element
-= LZX_NUM_CHARS
;
1745 match_length
= main_element
& LZX_NUM_PRIMARY_LENGTHS
;
1746 if (match_length
== LZX_NUM_PRIMARY_LENGTHS
) {
1747 READ_HUFFSYM(LENGTH
, length_footer
);
1748 match_length
+= length_footer
;
1750 match_length
+= LZX_MIN_MATCH
;
1752 match_offset
= main_element
>> 3;
1754 if (match_offset
> 2) {
1755 /* not repeated offset */
1756 if (match_offset
!= 3) {
1757 extra
= CAB(extra_bits
)[match_offset
];
1758 READ_BITS(verbatim_bits
, extra
);
1759 match_offset
= CAB(lzx_position_base
)[match_offset
]
1760 - 2 + verbatim_bits
;
1766 /* update repeated offset LRU queue */
1767 R2
= R1
; R1
= R0
; R0
= match_offset
;
1769 else if (match_offset
== 0) {
1772 else if (match_offset
== 1) {
1774 R1
= R0
; R0
= match_offset
;
1776 else /* match_offset == 2 */ {
1778 R2
= R0
; R0
= match_offset
;
1781 rundest
= window
+ window_posn
;
1782 this_run
-= match_length
;
1784 /* copy any wrapped around source data */
1785 if (window_posn
>= match_offset
) {
1787 runsrc
= rundest
- match_offset
;
1789 runsrc
= rundest
+ (window_size
- match_offset
);
1790 copy_length
= match_offset
- window_posn
;
1791 if (copy_length
< match_length
) {
1792 match_length
-= copy_length
;
1793 window_posn
+= copy_length
;
1794 while (copy_length
-- > 0) *rundest
++ = *runsrc
++;
1798 window_posn
+= match_length
;
1800 /* copy match data - no worries about destination wraps */
1801 while (match_length
-- > 0) *rundest
++ = *runsrc
++;
1806 case LZX_BLOCKTYPE_ALIGNED
:
1807 while (this_run
> 0) {
1808 READ_HUFFSYM(MAINTREE
, main_element
);
1810 if (main_element
< LZX_NUM_CHARS
) {
1811 /* literal: 0 to LZX_NUM_CHARS-1 */
1812 window
[window_posn
++] = main_element
;
1816 /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
1817 main_element
-= LZX_NUM_CHARS
;
1819 match_length
= main_element
& LZX_NUM_PRIMARY_LENGTHS
;
1820 if (match_length
== LZX_NUM_PRIMARY_LENGTHS
) {
1821 READ_HUFFSYM(LENGTH
, length_footer
);
1822 match_length
+= length_footer
;
1824 match_length
+= LZX_MIN_MATCH
;
1826 match_offset
= main_element
>> 3;
1828 if (match_offset
> 2) {
1829 /* not repeated offset */
1830 extra
= CAB(extra_bits
)[match_offset
];
1831 match_offset
= CAB(lzx_position_base
)[match_offset
] - 2;
1833 /* verbatim and aligned bits */
1835 READ_BITS(verbatim_bits
, extra
);
1836 match_offset
+= (verbatim_bits
<< 3);
1837 READ_HUFFSYM(ALIGNED
, aligned_bits
);
1838 match_offset
+= aligned_bits
;
1840 else if (extra
== 3) {
1841 /* aligned bits only */
1842 READ_HUFFSYM(ALIGNED
, aligned_bits
);
1843 match_offset
+= aligned_bits
;
1845 else if (extra
> 0) { /* extra==1, extra==2 */
1846 /* verbatim bits only */
1847 READ_BITS(verbatim_bits
, extra
);
1848 match_offset
+= verbatim_bits
;
1850 else /* extra == 0 */ {
1855 /* update repeated offset LRU queue */
1856 R2
= R1
; R1
= R0
; R0
= match_offset
;
1858 else if (match_offset
== 0) {
1861 else if (match_offset
== 1) {
1863 R1
= R0
; R0
= match_offset
;
1865 else /* match_offset == 2 */ {
1867 R2
= R0
; R0
= match_offset
;
1870 rundest
= window
+ window_posn
;
1871 this_run
-= match_length
;
1873 /* copy any wrapped around source data */
1874 if (window_posn
>= match_offset
) {
1876 runsrc
= rundest
- match_offset
;
1878 runsrc
= rundest
+ (window_size
- match_offset
);
1879 copy_length
= match_offset
- window_posn
;
1880 if (copy_length
< match_length
) {
1881 match_length
-= copy_length
;
1882 window_posn
+= copy_length
;
1883 while (copy_length
-- > 0) *rundest
++ = *runsrc
++;
1887 window_posn
+= match_length
;
1889 /* copy match data - no worries about destination wraps */
1890 while (match_length
-- > 0) *rundest
++ = *runsrc
++;
1895 case LZX_BLOCKTYPE_UNCOMPRESSED
:
1896 if ((inpos
+ this_run
) > endinp
) return DECR_ILLEGALDATA
;
1897 memcpy(window
+ window_posn
, inpos
, (size_t) this_run
);
1898 inpos
+= this_run
; window_posn
+= this_run
;
1902 return DECR_ILLEGALDATA
; /* might as well */
1908 if (togo
!= 0) return DECR_ILLEGALDATA
;
1909 memcpy(CAB(outbuf
), window
+ ((!window_posn
) ? window_size
: window_posn
) -
1910 outlen
, (size_t) outlen
);
1912 LZX(window_posn
) = window_posn
;
1917 /* intel E8 decoding */
1918 if ((LZX(frames_read
)++ < 32768) && LZX(intel_filesize
) != 0) {
1919 if (outlen
<= 6 || !LZX(intel_started
)) {
1920 LZX(intel_curpos
) += outlen
;
1923 cab_UBYTE
*data
= CAB(outbuf
);
1924 cab_UBYTE
*dataend
= data
+ outlen
- 10;
1925 cab_LONG curpos
= LZX(intel_curpos
);
1926 cab_LONG filesize
= LZX(intel_filesize
);
1927 cab_LONG abs_off
, rel_off
;
1929 LZX(intel_curpos
) = curpos
+ outlen
;
1931 while (data
< dataend
) {
1932 if (*data
++ != 0xE8) { curpos
++; continue; }
1933 abs_off
= data
[0] | (data
[1]<<8) | (data
[2]<<16) | (data
[3]<<24);
1934 if ((abs_off
>= -curpos
) && (abs_off
< filesize
)) {
1935 rel_off
= (abs_off
>= 0) ? abs_off
- curpos
: abs_off
+ filesize
;
1936 data
[0] = (cab_UBYTE
) rel_off
;
1937 data
[1] = (cab_UBYTE
) (rel_off
>> 8);
1938 data
[2] = (cab_UBYTE
) (rel_off
>> 16);
1939 data
[3] = (cab_UBYTE
) (rel_off
>> 24);
1949 /*********************************************************
1950 * find_cabs_in_file (internal)
1952 static struct cabinet
*find_cabs_in_file(LPCSTR name
, cab_UBYTE search_buf
[])
1954 struct cabinet
*cab
, *cab2
, *firstcab
= NULL
, *linkcab
= NULL
;
1955 cab_UBYTE
*pstart
= &search_buf
[0], *pend
, *p
;
1956 cab_off_t offset
, caboff
, cablen
= 0, foffset
= 0, filelen
, length
;
1957 int state
= 0, found
= 0, ok
= 0;
1959 TRACE("(name == %s)\n", debugstr_a(name
));
1961 /* open the file and search for cabinet headers */
1962 if ((cab
= (struct cabinet
*) calloc(1, sizeof(struct cabinet
)))) {
1963 cab
->filename
= name
;
1964 if (cabinet_open(cab
)) {
1965 filelen
= cab
->filelen
;
1966 for (offset
= 0; (offset
< filelen
); offset
+= length
) {
1967 /* search length is either the full length of the search buffer,
1968 * or the amount of data remaining to the end of the file,
1969 * whichever is less.
1971 length
= filelen
- offset
;
1972 if (length
> CAB_SEARCH_SIZE
) length
= CAB_SEARCH_SIZE
;
1974 /* fill the search buffer with data from disk */
1975 if (!cabinet_read(cab
, search_buf
, length
)) break;
1977 /* read through the entire buffer. */
1979 pend
= &search_buf
[length
];
1982 /* starting state */
1984 /* we spend most of our time in this while loop, looking for
1985 * a leading 'M' of the 'MSCF' signature
1987 while (*p
++ != 0x4D && p
< pend
);
1988 if (p
< pend
) state
= 1; /* if we found tht 'M', advance state */
1991 /* verify that the next 3 bytes are 'S', 'C' and 'F' */
1992 case 1: state
= (*p
++ == 0x53) ? 2 : 0; break;
1993 case 2: state
= (*p
++ == 0x43) ? 3 : 0; break;
1994 case 3: state
= (*p
++ == 0x46) ? 4 : 0; break;
1996 /* we don't care about bytes 4-7 */
1997 /* bytes 8-11 are the overall length of the cabinet */
1998 case 8: cablen
= *p
++; state
++; break;
1999 case 9: cablen
|= *p
++ << 8; state
++; break;
2000 case 10: cablen
|= *p
++ << 16; state
++; break;
2001 case 11: cablen
|= *p
++ << 24; state
++; break;
2003 /* we don't care about bytes 12-15 */
2004 /* bytes 16-19 are the offset within the cabinet of the filedata */
2005 case 16: foffset
= *p
++; state
++; break;
2006 case 17: foffset
|= *p
++ << 8; state
++; break;
2007 case 18: foffset
|= *p
++ << 16; state
++; break;
2008 case 19: foffset
|= *p
++ << 24;
2009 /* now we have received 20 bytes of potential cab header. */
2010 /* work out the offset in the file of this potential cabinet */
2011 caboff
= offset
+ (p
-pstart
) - 20;
2013 /* check that the files offset is less than the alleged length
2014 * of the cabinet, and that the offset + the alleged length are
2015 * 'roughly' within the end of overall file length
2017 if ((foffset
< cablen
) &&
2018 ((caboff
+ foffset
) < (filelen
+ 32)) &&
2019 ((caboff
+ cablen
) < (filelen
+ 32)) )
2021 /* found a potential result - try loading it */
2023 cab2
= load_cab_offset(name
, caboff
);
2028 /* cause the search to restart after this cab's data. */
2029 offset
= caboff
+ cablen
;
2030 if (offset
< cab
->filelen
) cabinet_seek(cab
, offset
);
2034 /* link the cab into the list */
2035 if (linkcab
== NULL
) firstcab
= cab2
;
2036 else linkcab
->next
= cab2
;
2043 p
++, state
++; break;
2052 /* if there were cabinets that were found but are not ok, point this out */
2054 WARN("%s: found %d bad cabinets\n", debugstr_a(name
), found
-ok
);
2057 /* if no cabinets were found, let the user know */
2059 WARN("%s: not a Microsoft cabinet file.\n", debugstr_a(name
));
2064 /***********************************************************************
2065 * find_cabinet_file (internal)
2067 * tries to find *cabname, from the directory path of origcab, correcting the
2068 * case of *cabname if necessary, If found, writes back to *cabname.
2070 static void find_cabinet_file(char **cabname
, LPCSTR origcab
) {
2072 char *tail
, *cab
, *name
, *nextpart
, nametmp
[MAX_PATH
];
2075 TRACE("(*cabname == ^%p, origcab == %s)\n", cabname
? *cabname
: NULL
, debugstr_a(origcab
));
2077 /* ensure we have a cabinet name at all */
2078 if (!(name
= *cabname
)) {
2079 WARN("no cabinet name at all\n");
2082 /* find if there's a directory path in the origcab */
2083 tail
= origcab
? max(strrchr(origcab
, '/'), strrchr(origcab
, '\\')) : NULL
;
2085 if ((cab
= (char *) malloc(MAX_PATH
))) {
2086 /* add the directory path from the original cabinet name */
2088 memcpy(cab
, origcab
, tail
- origcab
);
2089 cab
[tail
- origcab
] = '\0';
2091 /* default directory path of '.' */
2097 TRACE("trying cab == %s\n", debugstr_a(cab
));
2099 /* we don't want null cabinet filenames */
2100 if (name
[0] == '\0') {
2101 WARN("null cab name\n");
2105 /* if there is a directory component in the cabinet name,
2106 * look for that alone first
2108 nextpart
= strchr(name
, '\\');
2109 if (nextpart
) *nextpart
= '\0';
2111 found
= SearchPathA(cab
, name
, NULL
, MAX_PATH
, nametmp
, NULL
);
2113 /* if the component was not found, look for it in the current dir */
2115 found
= SearchPathA(".", name
, NULL
, MAX_PATH
, nametmp
, NULL
);
2119 TRACE("found: %s\n", debugstr_a(nametmp
));
2121 TRACE("not found.\n");
2123 /* restore the real name and skip to the next directory component
2124 * or actual cabinet name
2126 if (nextpart
) *nextpart
= '\\', name
= &nextpart
[1];
2128 /* while there is another directory component, and while we
2129 * successfully found the current component
2131 } while (nextpart
&& found
);
2133 /* if we found the cabinet, change the next cabinet's name.
2134 * otherwise, pretend nothing happened
2137 free((void *) *cabname
);
2139 memcpy(cab
, nametmp
, found
+1);
2140 TRACE("result: %s\n", debugstr_a(cab
));
2143 TRACE("result: nothing\n");
2148 /************************************************************************
2149 * process_files (internal)
2151 * this does the tricky job of running through every file in the cabinet,
2152 * including spanning cabinets, and working out which file is in which
2153 * folder in which cabinet. It also throws out the duplicate file entries
2154 * that appear in spanning cabinets. There is memory leakage here because
2155 * those entries are not freed. See the XAD CAB client (function CAB_GetInfo
2156 * in CAB.c) for an implementation of this that correctly frees the discarded
2159 static struct cab_file
*process_files(struct cabinet
*basecab
) {
2160 struct cabinet
*cab
;
2161 struct cab_file
*outfi
= NULL
, *linkfi
= NULL
, *nextfi
, *fi
, *cfi
;
2162 struct cab_folder
*fol
, *firstfol
, *lastfol
= NULL
, *predfol
;
2165 FIXME("(basecab == ^%p): Memory leak.\n", basecab
);
2167 for (cab
= basecab
; cab
; cab
= cab
->nextcab
) {
2168 /* firstfol = first folder in this cabinet */
2169 /* lastfol = last folder in this cabinet */
2170 /* predfol = last folder in previous cabinet (or NULL if first cabinet) */
2172 firstfol
= cab
->folders
;
2173 for (lastfol
= firstfol
; lastfol
->next
;) lastfol
= lastfol
->next
;
2176 for (fi
= cab
->files
; fi
; fi
= nextfi
) {
2180 if (i
< cffileCONTINUED_FROM_PREV
) {
2181 for (fol
= firstfol
; fol
&& i
--; ) fol
= fol
->next
;
2182 fi
->folder
= fol
; /* NULL if an invalid folder index */
2185 /* folder merging */
2186 if (i
== cffileCONTINUED_TO_NEXT
2187 || i
== cffileCONTINUED_PREV_AND_NEXT
) {
2188 if (cab
->nextcab
&& !lastfol
->contfile
) lastfol
->contfile
= fi
;
2191 if (i
== cffileCONTINUED_FROM_PREV
2192 || i
== cffileCONTINUED_PREV_AND_NEXT
) {
2193 /* these files are to be continued in yet another
2194 * cabinet, don't merge them in just yet */
2195 if (i
== cffileCONTINUED_PREV_AND_NEXT
) mergeok
= 0;
2197 /* only merge once per cabinet */
2199 if ((cfi
= predfol
->contfile
)
2200 && (cfi
->offset
== fi
->offset
)
2201 && (cfi
->length
== fi
->length
)
2202 && (strcmp(cfi
->filename
, fi
->filename
) == 0)
2203 && (predfol
->comp_type
== firstfol
->comp_type
)) {
2204 /* increase the number of splits */
2205 if ((i
= ++(predfol
->num_splits
)) > CAB_SPLITMAX
) {
2207 ERR("%s: internal error: CAB_SPLITMAX exceeded. please report this to wine-devel@winehq.org)\n",
2208 debugstr_a(basecab
->filename
));
2211 /* copy information across from the merged folder */
2212 predfol
->offset
[i
] = firstfol
->offset
[0];
2213 predfol
->cab
[i
] = firstfol
->cab
[0];
2214 predfol
->next
= firstfol
->next
;
2215 predfol
->contfile
= firstfol
->contfile
;
2217 if (firstfol
== lastfol
) lastfol
= predfol
;
2219 predfol
= NULL
; /* don't merge again within this cabinet */
2223 /* if the folders won't merge, don't add their files */
2228 if (mergeok
) fi
->folder
= firstfol
;
2233 if (linkfi
) linkfi
->next
= fi
; else outfi
= fi
;
2237 } /* for (cab= ...*/
2242 /****************************************************************
2243 * convertUTF (internal)
2245 * translate UTF -> ASCII
2247 * UTF translates two-byte unicode characters into 1, 2 or 3 bytes.
2248 * %000000000xxxxxxx -> %0xxxxxxx
2249 * %00000xxxxxyyyyyy -> %110xxxxx %10yyyyyy
2250 * %xxxxyyyyyyzzzzzz -> %1110xxxx %10yyyyyy %10zzzzzz
2252 * Therefore, the inverse is as follows:
2254 * 0x00 - 0x7F = one byte char
2255 * 0x80 - 0xBF = invalid
2256 * 0xC0 - 0xDF = 2 byte char (next char only 0x80-0xBF is valid)
2257 * 0xE0 - 0xEF = 3 byte char (next 2 chars only 0x80-0xBF is valid)
2258 * 0xF0 - 0xFF = invalid
2260 * FIXME: use a winapi to do this
2262 static int convertUTF(cab_UBYTE
*in
) {
2263 cab_UBYTE c
, *out
= in
, *end
= in
+ strlen((char *) in
) + 1;
2267 /* read unicode character */
2268 if ((c
= *in
++) < 0x80) x
= c
;
2270 if (c
< 0xC0) return 0;
2271 else if (c
< 0xE0) {
2272 x
= (c
& 0x1F) << 6;
2273 if ((c
= *in
++) < 0x80 || c
> 0xBF) return 0; else x
|= (c
& 0x3F);
2275 else if (c
< 0xF0) {
2276 x
= (c
& 0xF) << 12;
2277 if ((c
= *in
++) < 0x80 || c
> 0xBF) return 0; else x
|= (c
& 0x3F)<<6;
2278 if ((c
= *in
++) < 0x80 || c
> 0xBF) return 0; else x
|= (c
& 0x3F);
2283 /* terrible unicode -> ASCII conversion */
2284 if (x
> 127) x
= '_';
2286 if (in
> end
) return 0; /* just in case */
2287 } while ((*out
++ = (cab_UBYTE
) x
));
2291 /****************************************************
2292 * NONEdecompress (internal)
2294 static int NONEdecompress(int inlen
, int outlen
, cab_decomp_state
*decomp_state
)
2296 if (inlen
!= outlen
) return DECR_ILLEGALDATA
;
2297 memcpy(CAB(outbuf
), CAB(inbuf
), (size_t) inlen
);
2301 /**************************************************
2302 * checksum (internal)
2304 cab_ULONG
checksum(cab_UBYTE
*data
, cab_UWORD bytes
, cab_ULONG csum
) {
2308 for (len
= bytes
>> 2; len
--; data
+= 4) {
2309 csum
^= ((data
[0]) | (data
[1]<<8) | (data
[2]<<16) | (data
[3]<<24));
2312 switch (bytes
& 3) {
2313 case 3: ul
|= *data
++ << 16;
2314 case 2: ul
|= *data
++ << 8;
2315 case 1: ul
|= *data
;
2322 /**********************************************************
2323 * decompress (internal)
2325 static int decompress(struct cab_file
*fi
, int savemode
, int fix
, cab_decomp_state
*decomp_state
)
2327 cab_ULONG bytes
= savemode
? fi
->length
: fi
->offset
- CAB(offset
);
2328 struct cabinet
*cab
= CAB(current
)->cab
[CAB(split
)];
2329 cab_UBYTE buf
[cfdata_SIZEOF
], *data
;
2330 cab_UWORD inlen
, len
, outlen
, cando
;
2334 TRACE("(fi == ^%p, savemode == %d, fix == %d)\n", fi
, savemode
, fix
);
2337 /* cando = the max number of bytes we can do */
2338 cando
= CAB(outlen
);
2339 if (cando
> bytes
) cando
= bytes
;
2342 if (cando
&& savemode
)
2343 file_write(fi
, CAB(outpos
), cando
);
2345 CAB(outpos
) += cando
;
2346 CAB(outlen
) -= cando
;
2347 bytes
-= cando
; if (!bytes
) break;
2349 /* we only get here if we emptied the output buffer */
2351 /* read data header + data */
2353 while (outlen
== 0) {
2354 /* read the block header, skip the reserved part */
2355 if (!cabinet_read(cab
, buf
, cfdata_SIZEOF
)) return DECR_INPUT
;
2356 cabinet_skip(cab
, cab
->block_resv
);
2358 /* we shouldn't get blocks over CAB_INPUTMAX in size */
2359 data
= CAB(inbuf
) + inlen
;
2360 len
= EndGetI16(buf
+cfdata_CompressedSize
);
2362 if (inlen
> CAB_INPUTMAX
) return DECR_INPUT
;
2363 if (!cabinet_read(cab
, data
, len
)) return DECR_INPUT
;
2365 /* clear two bytes after read-in data */
2366 data
[len
+1] = data
[len
+2] = 0;
2368 /* perform checksum test on the block (if one is stored) */
2369 cksum
= EndGetI32(buf
+cfdata_CheckSum
);
2370 if (cksum
&& cksum
!= checksum(buf
+4, 4, checksum(data
, len
, 0))) {
2371 /* checksum is wrong */
2372 if (fix
&& ((fi
->folder
->comp_type
& cffoldCOMPTYPE_MASK
)
2373 == cffoldCOMPTYPE_MSZIP
))
2375 WARN("%s: checksum failed\n", debugstr_a(fi
->filename
));
2378 return DECR_CHECKSUM
;
2382 /* outlen=0 means this block was part of a split block */
2383 outlen
= EndGetI16(buf
+cfdata_UncompressedSize
);
2386 cab
= CAB(current
)->cab
[++CAB(split
)];
2387 if (!cabinet_open(cab
)) return DECR_INPUT
;
2388 cabinet_seek(cab
, CAB(current
)->offset
[CAB(split
)]);
2392 /* decompress block */
2393 if ((err
= CAB(decompress
)(inlen
, outlen
, decomp_state
))) {
2394 if (fix
&& ((fi
->folder
->comp_type
& cffoldCOMPTYPE_MASK
)
2395 == cffoldCOMPTYPE_MSZIP
))
2397 ERR("%s: failed decrunching block\n", debugstr_a(fi
->filename
));
2403 CAB(outlen
) = outlen
;
2404 CAB(outpos
) = CAB(outbuf
);
2410 /****************************************************************
2411 * extract_file (internal)
2413 * workhorse to extract a particular file from a cab
2415 static void extract_file(struct cab_file
*fi
, int lower
, int fix
, LPCSTR dir
, cab_decomp_state
*decomp_state
)
2417 struct cab_folder
*fol
= fi
->folder
, *oldfol
= CAB(current
);
2418 cab_LONG err
= DECR_OK
;
2420 TRACE("(fi == ^%p, lower == %d, fix == %d, dir == %s)\n", fi
, lower
, fix
, debugstr_a(dir
));
2422 /* is a change of folder needed? do we need to reset the current folder? */
2423 if (fol
!= oldfol
|| fi
->offset
< CAB(offset
)) {
2424 cab_UWORD comptype
= fol
->comp_type
;
2425 int ct1
= comptype
& cffoldCOMPTYPE_MASK
;
2426 int ct2
= oldfol
? (oldfol
->comp_type
& cffoldCOMPTYPE_MASK
) : 0;
2428 /* if the archiver has changed, call the old archiver's free() function */
2431 case cffoldCOMPTYPE_LZX
:
2437 case cffoldCOMPTYPE_QUANTUM
:
2447 case cffoldCOMPTYPE_NONE
:
2448 CAB(decompress
) = NONEdecompress
;
2451 case cffoldCOMPTYPE_MSZIP
:
2452 CAB(decompress
) = ZIPdecompress
;
2455 case cffoldCOMPTYPE_QUANTUM
:
2456 CAB(decompress
) = QTMdecompress
;
2457 err
= QTMinit((comptype
>> 8) & 0x1f, (comptype
>> 4) & 0xF, decomp_state
);
2460 case cffoldCOMPTYPE_LZX
:
2461 CAB(decompress
) = LZXdecompress
;
2462 err
= LZXinit((comptype
>> 8) & 0x1f, decomp_state
);
2466 err
= DECR_DATAFORMAT
;
2468 if (err
) goto exit_handler
;
2470 /* initialisation OK, set current folder and reset offset */
2471 if (oldfol
) cabinet_close(oldfol
->cab
[CAB(split
)]);
2472 if (!cabinet_open(fol
->cab
[0])) goto exit_handler
;
2473 cabinet_seek(fol
->cab
[0], fol
->offset
[0]);
2476 CAB(outlen
) = 0; /* discard existing block */
2480 if (fi
->offset
> CAB(offset
)) {
2481 /* decode bytes and send them to /dev/null */
2482 if ((err
= decompress(fi
, 0, fix
, decomp_state
))) goto exit_handler
;
2483 CAB(offset
) = fi
->offset
;
2486 if (!file_open(fi
, lower
, dir
)) return;
2487 err
= decompress(fi
, 1, fix
, decomp_state
);
2488 if (err
) CAB(current
) = NULL
; else CAB(offset
) += fi
->length
;
2494 const char *cabname
;
2497 errmsg
= "out of memory!\n"; break;
2498 case DECR_ILLEGALDATA
:
2499 errmsg
= "%s: illegal or corrupt data\n"; break;
2500 case DECR_DATAFORMAT
:
2501 errmsg
= "%s: unsupported data format\n"; break;
2503 errmsg
= "%s: checksum error\n"; break;
2505 errmsg
= "%s: input error\n"; break;
2507 errmsg
= "%s: output error\n"; break;
2509 errmsg
= "%s: unknown error (BUG)\n";
2513 cabname
= (CAB(current
)->cab
[CAB(split
)]->filename
);
2516 cabname
= (fi
->folder
->cab
[0]->filename
);
2519 ERR(errmsg
, cabname
);
2523 /*********************************************************
2524 * print_fileinfo (internal)
2526 static void print_fileinfo(struct cab_file
*fi
) {
2529 if (fi
->attribs
& cffile_A_NAME_IS_UTF
) {
2530 fname
= malloc(strlen(fi
->filename
) + 1);
2532 strcpy(fname
, fi
->filename
);
2533 convertUTF((cab_UBYTE
*) fname
);
2537 TRACE("%9u | %02d.%02d.%04d %02d:%02d:%02d | %s\n",
2539 fi
->date
& 0x1f, (fi
->date
>>5) & 0xf, (fi
->date
>>9) + 1980,
2540 fi
->time
>> 11, (fi
->time
>>5) & 0x3f, (fi
->time
<< 1) & 0x3e,
2541 fname
? fname
: fi
->filename
2544 if (fname
) free(fname
);
2547 /****************************************************************************
2548 * process_cabinet (internal)
2550 * called to simply "extract" a cabinet file. Will find every cabinet file
2551 * in that file, search for every chained cabinet attached to those cabinets,
2552 * and will either extract the cabinets, or ? (call a callback?)
2555 * cabname [I] name of the cabinet file to extract
2556 * dir [I] directory to extract to
2557 * fix [I] attempt to process broken cabinets
2558 * lower [I] ? (lower case something or other?)
2565 BOOL
process_cabinet(LPCSTR cabname
, LPCSTR dir
, BOOL fix
, BOOL lower
, EXTRACTdest
*dest
)
2567 struct cabinet
*basecab
, *cab
, *cab1
, *cab2
;
2568 struct cab_file
*filelist
, *fi
;
2569 struct ExtractFileList
**destlistptr
= &(dest
->filelist
);
2571 /* The first result of a search will be returned, and
2572 * the remaining results will be chained to it via the cab->next structure
2575 cab_UBYTE search_buf
[CAB_SEARCH_SIZE
];
2577 cab_decomp_state decomp_state_local
;
2578 cab_decomp_state
*decomp_state
= &decomp_state_local
;
2580 /* has the list-mode header been seen before? */
2583 ZeroMemory(decomp_state
, sizeof(cab_decomp_state
));
2585 TRACE("Extract %s\n", debugstr_a(cabname
));
2587 /* load the file requested */
2588 basecab
= find_cabs_in_file(cabname
, search_buf
);
2589 if (!basecab
) return FALSE
;
2591 /* iterate over all cabinets found in that file */
2592 for (cab
= basecab
; cab
; cab
=cab
->next
) {
2594 /* bi-directionally load any spanning cabinets -- backwards */
2595 for (cab1
= cab
; cab1
->flags
& cfheadPREV_CABINET
; cab1
= cab1
->prevcab
) {
2596 TRACE("%s: extends backwards to %s (%s)\n", debugstr_a(cabname
),
2597 debugstr_a(cab1
->prevname
), debugstr_a(cab1
->previnfo
));
2598 find_cabinet_file(&(cab1
->prevname
), cabname
);
2599 if (!(cab1
->prevcab
= load_cab_offset(cab1
->prevname
, 0))) {
2600 ERR("%s: can't read previous cabinet %s\n", debugstr_a(cabname
), debugstr_a(cab1
->prevname
));
2603 cab1
->prevcab
->nextcab
= cab1
;
2606 /* bi-directionally load any spanning cabinets -- forwards */
2607 for (cab2
= cab
; cab2
->flags
& cfheadNEXT_CABINET
; cab2
= cab2
->nextcab
) {
2608 TRACE("%s: extends to %s (%s)\n", debugstr_a(cabname
),
2609 debugstr_a(cab2
->nextname
), debugstr_a(cab2
->nextinfo
));
2610 find_cabinet_file(&(cab2
->nextname
), cabname
);
2611 if (!(cab2
->nextcab
= load_cab_offset(cab2
->nextname
, 0))) {
2612 ERR("%s: can't read next cabinet %s\n", debugstr_a(cabname
), debugstr_a(cab2
->nextname
));
2615 cab2
->nextcab
->prevcab
= cab2
;
2618 filelist
= process_files(cab1
);
2619 CAB(current
) = NULL
;
2622 TRACE("File size | Date Time | Name\n");
2623 TRACE("----------+---------------------+-------------\n");
2626 for (fi
= filelist
; fi
; fi
= fi
->next
) {
2630 TRACE("Beginning Extraction...\n");
2631 for (fi
= filelist
; fi
; fi
= fi
->next
) {
2632 TRACE(" extracting: %s\n", debugstr_a(fi
->filename
));
2633 extract_file(fi
, lower
, fix
, dir
, decomp_state
);
2634 sprintf(dest
->lastfile
, "%s%s%s",
2635 strlen(dest
->directory
) ? dest
->directory
: "",
2636 strlen(dest
->directory
) ? "\\": "",
2638 *destlistptr
= HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY
,
2639 sizeof(struct ExtractFileList
));
2641 (*destlistptr
)->unknown
= TRUE
; /* FIXME: were do we get the value? */
2642 (*destlistptr
)->filename
= HeapAlloc(GetProcessHeap(), 0, (
2643 strlen(fi
->filename
)+1));
2644 if((*destlistptr
)->filename
)
2645 lstrcpyA((*destlistptr
)->filename
, fi
->filename
);
2646 destlistptr
= &((*destlistptr
)->next
);
2651 TRACE("Finished processing cabinet.\n");