Release 20050930.
[wine/gsoc-2012-control.git] / dlls / rsaenh / tomcrypt.h
blob78cc22c93b55534ff46a93aa8f319a624624a93f
1 /*
2 * dlls/rsaenh/tomcrypt.h
3 * Function prototypes, type definitions and constant definitions
4 * for LibTomCrypt code.
6 * Copyright 2004 Michael Jung
7 * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca)
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 * This file contains code from the LibTomCrypt cryptographic
26 * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt
27 * is in the public domain. The code in this file is tailored to
28 * special requirements. Take a look at http://libtomcrypt.org for the
29 * original version.
32 #ifndef __WINE_TOMCRYPT_H_
33 #define __WINE_TOMCRYPT_H_
35 #include <stdio.h>
36 #include <string.h>
37 #include <stdlib.h>
38 #include <limits.h>
39 #include "basetsd.h"
41 /* error codes [will be expanded in future releases] */
42 enum {
43 CRYPT_OK=0, /* Result OK */
44 CRYPT_ERROR, /* Generic Error */
45 CRYPT_NOP, /* Not a failure but no operation was performed */
47 CRYPT_INVALID_KEYSIZE, /* Invalid key size given */
48 CRYPT_INVALID_ROUNDS, /* Invalid number of rounds */
49 CRYPT_FAIL_TESTVECTOR, /* Algorithm failed test vectors */
51 CRYPT_BUFFER_OVERFLOW, /* Not enough space for output */
52 CRYPT_INVALID_PACKET, /* Invalid input packet given */
54 CRYPT_INVALID_PRNGSIZE, /* Invalid number of bits for a PRNG */
55 CRYPT_ERROR_READPRNG, /* Could not read enough from PRNG */
57 CRYPT_INVALID_CIPHER, /* Invalid cipher specified */
58 CRYPT_INVALID_HASH, /* Invalid hash specified */
59 CRYPT_INVALID_PRNG, /* Invalid PRNG specified */
61 CRYPT_MEM, /* Out of memory */
63 CRYPT_PK_TYPE_MISMATCH, /* Not equivalent types of PK keys */
64 CRYPT_PK_NOT_PRIVATE, /* Requires a private PK key */
66 CRYPT_INVALID_ARG, /* Generic invalid argument */
67 CRYPT_FILE_NOTFOUND, /* File Not Found */
69 CRYPT_PK_INVALID_TYPE, /* Invalid type of PK key */
70 CRYPT_PK_INVALID_SYSTEM,/* Invalid PK system specified */
71 CRYPT_PK_DUP, /* Duplicate key already in key ring */
72 CRYPT_PK_NOT_FOUND, /* Key not found in keyring */
73 CRYPT_PK_INVALID_SIZE, /* Invalid size input for PK parameters */
75 CRYPT_INVALID_PRIME_SIZE/* Invalid size of prime requested */
78 #define CONST64(a,b) ((((ULONG64)(a)) << 32) | (b))
79 typedef ULONG64 ulong64;
81 /* this is the "32-bit at least" data type
82 * Re-define it to suit your platform but it must be at least 32-bits
84 typedef ULONG32 ulong32;
86 /* ---- HELPER MACROS ---- */
87 #define STORE32H(x, y) \
88 { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
89 (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
91 #define LOAD32H(x, y) \
92 { x = ((unsigned long)((y)[0] & 255)<<24) | \
93 ((unsigned long)((y)[1] & 255)<<16) | \
94 ((unsigned long)((y)[2] & 255)<<8) | \
95 ((unsigned long)((y)[3] & 255)); }
97 #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && !defined(INTEL_CC)
99 static inline unsigned ROR(unsigned word, int i)
101 __asm__("rorl %%cl,%0"
102 :"=r" (word)
103 :"0" (word),"c" (i));
104 return word;
107 #else
109 /* rotates the hard way */
110 #define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \
111 ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
113 #endif
115 #undef MIN
116 #define MIN(x, y) ( ((x)<(y))?(x):(y) )
118 #define byte(x, n) (((x) >> (8 * (n))) & 255)
120 typedef struct tag_rc2_key {
121 unsigned xkey[64];
122 } rc2_key;
124 typedef struct tag_des_key {
125 ulong32 ek[32], dk[32];
126 } des_key;
128 typedef struct tag_des3_key {
129 ulong32 ek[3][32], dk[3][32];
130 } des3_key;
132 int rc2_setup(const unsigned char *key, int keylen, int bits, int num_rounds, rc2_key *skey);
133 void rc2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, rc2_key *key);
134 void rc2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, rc2_key *key);
136 int des_setup(const unsigned char *key, int keylen, int num_rounds, des_key *skey);
137 void des_ecb_encrypt(const unsigned char *pt, unsigned char *ct, des_key *key);
138 void des_ecb_decrypt(const unsigned char *ct, unsigned char *pt, des_key *key);
140 int des3_setup(const unsigned char *key, int keylen, int num_rounds, des3_key *skey);
141 void des3_ecb_encrypt(const unsigned char *pt, unsigned char *ct, des3_key *key);
142 void des3_ecb_decrypt(const unsigned char *ct, unsigned char *pt, des3_key *key);
144 typedef struct tag_md2_state {
145 unsigned char chksum[16], X[48], buf[16];
146 unsigned long curlen;
147 } md2_state;
149 int md2_init(md2_state * md);
150 int md2_process(md2_state * md, const unsigned char *buf, unsigned long len);
151 int md2_done(md2_state * md, unsigned char *hash);
153 struct rc4_prng {
154 int x, y;
155 unsigned char buf[256];
158 typedef union Prng_state {
159 struct rc4_prng rc4;
160 } prng_state;
162 int rc4_start(prng_state *prng);
163 int rc4_add_entropy(const unsigned char *buf, unsigned long len, prng_state *prng);
164 int rc4_ready(prng_state *prng);
165 unsigned long rc4_read(unsigned char *buf, unsigned long len, prng_state *prng);
167 /* some default configurations.
169 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
170 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
172 * At the very least a mp_digit must be able to hold 7 bits
173 * [any size beyond that is ok provided it doesn't overflow the data type]
175 typedef unsigned long mp_digit;
176 typedef ulong64 mp_word;
177 #define DIGIT_BIT 28
179 #define MP_DIGIT_BIT DIGIT_BIT
180 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
181 #define MP_DIGIT_MAX MP_MASK
183 /* equalities */
184 #define MP_LT -1 /* less than */
185 #define MP_EQ 0 /* equal to */
186 #define MP_GT 1 /* greater than */
188 #define MP_ZPOS 0 /* positive integer */
189 #define MP_NEG 1 /* negative */
191 #define MP_OKAY 0 /* ok result */
192 #define MP_MEM -2 /* out of mem */
193 #define MP_VAL -3 /* invalid input */
194 #define MP_RANGE MP_VAL
196 #define MP_YES 1 /* yes response */
197 #define MP_NO 0 /* no response */
199 /* Primality generation flags */
200 #define LTM_PRIME_BBS 0x0001 /* BBS style prime */
201 #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
202 #define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */
203 #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
205 typedef int mp_err;
207 /* you'll have to tune these... */
208 extern int KARATSUBA_MUL_CUTOFF,
209 KARATSUBA_SQR_CUTOFF;
211 /* define this to use lower memory usage routines (exptmods mostly) */
212 /* #define MP_LOW_MEM */
214 #define MP_PREC 64 /* default digits of precision */
216 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
217 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
219 /* the infamous mp_int structure */
220 typedef struct {
221 int used, alloc, sign;
222 mp_digit *dp;
223 } mp_int;
225 /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
226 typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
228 #define DIGIT(m,k) ((m)->dp[(k)])
230 /* error code to char* string */
231 char *mp_error_to_string(int code);
233 /* ---> init and deinit bignum functions <--- */
234 /* init a bignum */
235 int mp_init(mp_int *a);
237 /* free a bignum */
238 void mp_clear(mp_int *a);
240 /* init a null terminated series of arguments */
241 int mp_init_multi(mp_int *mp, ...);
243 /* clear a null terminated series of arguments */
244 void mp_clear_multi(mp_int *mp, ...);
246 /* exchange two ints */
247 void mp_exch(mp_int *a, mp_int *b);
249 /* shrink ram required for a bignum */
250 int mp_shrink(mp_int *a);
252 /* grow an int to a given size */
253 int mp_grow(mp_int *a, int size);
255 /* init to a given number of digits */
256 int mp_init_size(mp_int *a, int size);
258 /* ---> Basic Manipulations <--- */
259 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
260 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
261 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
263 /* set to zero */
264 void mp_zero(mp_int *a);
266 /* set to a digit */
267 void mp_set(mp_int *a, mp_digit b);
269 /* set a 32-bit const */
270 int mp_set_int(mp_int *a, unsigned long b);
272 /* get a 32-bit value */
273 unsigned long mp_get_int(mp_int * a);
275 /* initialize and set a digit */
276 int mp_init_set (mp_int * a, mp_digit b);
278 /* initialize and set 32-bit value */
279 int mp_init_set_int (mp_int * a, unsigned long b);
281 /* copy, b = a */
282 int mp_copy(const mp_int *a, mp_int *b);
284 /* inits and copies, a = b */
285 int mp_init_copy(mp_int *a, const mp_int *b);
287 /* trim unused digits */
288 void mp_clamp(mp_int *a);
290 /* ---> digit manipulation <--- */
292 /* right shift by "b" digits */
293 void mp_rshd(mp_int *a, int b);
295 /* left shift by "b" digits */
296 int mp_lshd(mp_int *a, int b);
298 /* c = a / 2**b */
299 int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
301 /* b = a/2 */
302 int mp_div_2(mp_int *a, mp_int *b);
304 /* c = a * 2**b */
305 int mp_mul_2d(mp_int *a, int b, mp_int *c);
307 /* b = a*2 */
308 int mp_mul_2(mp_int *a, mp_int *b);
310 /* c = a mod 2**d */
311 int mp_mod_2d(mp_int *a, int b, mp_int *c);
313 /* computes a = 2**b */
314 int mp_2expt(mp_int *a, int b);
316 /* Counts the number of lsbs which are zero before the first zero bit */
317 int mp_cnt_lsb(mp_int *a);
319 /* I Love Earth! */
321 /* makes a pseudo-random int of a given size */
322 int mp_rand(mp_int *a, int digits);
324 /* ---> binary operations <--- */
325 /* c = a XOR b */
326 int mp_xor(mp_int *a, mp_int *b, mp_int *c);
328 /* c = a OR b */
329 int mp_or(mp_int *a, mp_int *b, mp_int *c);
331 /* c = a AND b */
332 int mp_and(mp_int *a, mp_int *b, mp_int *c);
334 /* ---> Basic arithmetic <--- */
336 /* b = -a */
337 int mp_neg(mp_int *a, mp_int *b);
339 /* b = |a| */
340 int mp_abs(mp_int *a, mp_int *b);
342 /* compare a to b */
343 int mp_cmp(mp_int *a, mp_int *b);
345 /* compare |a| to |b| */
346 int mp_cmp_mag(mp_int *a, mp_int *b);
348 /* c = a + b */
349 int mp_add(mp_int *a, mp_int *b, mp_int *c);
351 /* c = a - b */
352 int mp_sub(mp_int *a, mp_int *b, mp_int *c);
354 /* c = a * b */
355 int mp_mul(mp_int *a, mp_int *b, mp_int *c);
357 /* b = a*a */
358 int mp_sqr(mp_int *a, mp_int *b);
360 /* a/b => cb + d == a */
361 int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
363 /* c = a mod b, 0 <= c < b */
364 int mp_mod(mp_int *a, mp_int *b, mp_int *c);
366 /* ---> single digit functions <--- */
368 /* compare against a single digit */
369 int mp_cmp_d(mp_int *a, mp_digit b);
371 /* c = a + b */
372 int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
374 /* c = a - b */
375 int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
377 /* c = a * b */
378 int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
380 /* a/b => cb + d == a */
381 int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
383 /* a/3 => 3c + d == a */
384 int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
386 /* c = a**b */
387 int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
389 /* c = a mod b, 0 <= c < b */
390 int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
392 /* ---> number theory <--- */
394 /* d = a + b (mod c) */
395 int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
397 /* d = a - b (mod c) */
398 int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
400 /* d = a * b (mod c) */
401 int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
403 /* c = a * a (mod b) */
404 int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
406 /* c = 1/a (mod b) */
407 int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
409 /* c = (a, b) */
410 int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
412 /* produces value such that U1*a + U2*b = U3 */
413 int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
415 /* c = [a, b] or (a*b)/(a, b) */
416 int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
418 /* finds one of the b'th root of a, such that |c|**b <= |a|
420 * returns error if a < 0 and b is even
422 int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
424 /* special sqrt algo */
425 int mp_sqrt(mp_int *arg, mp_int *ret);
427 /* is number a square? */
428 int mp_is_square(mp_int *arg, int *ret);
430 /* computes the jacobi c = (a | n) (or Legendre if b is prime) */
431 int mp_jacobi(mp_int *a, mp_int *n, int *c);
433 /* used to setup the Barrett reduction for a given modulus b */
434 int mp_reduce_setup(mp_int *a, mp_int *b);
436 /* Barrett Reduction, computes a (mod b) with a precomputed value c
438 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
439 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
441 int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
443 /* setups the montgomery reduction */
444 int mp_montgomery_setup(mp_int *a, mp_digit *mp);
446 /* computes a = B**n mod b without division or multiplication useful for
447 * normalizing numbers in a Montgomery system.
449 int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
451 /* computes x/R == x (mod N) via Montgomery Reduction */
452 int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
454 /* returns 1 if a is a valid DR modulus */
455 int mp_dr_is_modulus(mp_int *a);
457 /* sets the value of "d" required for mp_dr_reduce */
458 void mp_dr_setup(mp_int *a, mp_digit *d);
460 /* reduces a modulo b using the Diminished Radix method */
461 int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
463 /* returns true if a can be reduced with mp_reduce_2k */
464 int mp_reduce_is_2k(mp_int *a);
466 /* determines k value for 2k reduction */
467 int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
469 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
470 int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
472 /* d = a**b (mod c) */
473 int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
475 /* ---> Primes <--- */
477 /* number of primes */
478 #define PRIME_SIZE 256
480 /* table of first PRIME_SIZE primes */
481 extern const mp_digit __prime_tab[];
483 /* result=1 if a is divisible by one of the first PRIME_SIZE primes */
484 int mp_prime_is_divisible(mp_int *a, int *result);
486 /* performs one Fermat test of "a" using base "b".
487 * Sets result to 0 if composite or 1 if probable prime
489 int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
491 /* performs one Miller-Rabin test of "a" using base "b".
492 * Sets result to 0 if composite or 1 if probable prime
494 int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
496 /* This gives [for a given bit size] the number of trials required
497 * such that Miller-Rabin gives a prob of failure lower than 2^-96
499 int mp_prime_rabin_miller_trials(int size);
501 /* performs t rounds of Miller-Rabin on "a" using the first
502 * t prime bases. Also performs an initial sieve of trial
503 * division. Determines if "a" is prime with probability
504 * of error no more than (1/4)**t.
506 * Sets result to 1 if probably prime, 0 otherwise
508 int mp_prime_is_prime(mp_int *a, int t, int *result);
510 /* finds the next prime after the number "a" using "t" trials
511 * of Miller-Rabin.
513 * bbs_style = 1 means the prime must be congruent to 3 mod 4
515 int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
517 /* makes a truly random prime of a given size (bytes),
518 * call with bbs = 1 if you want it to be congruent to 3 mod 4
520 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
521 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
522 * so it can be NULL
524 * The prime generated will be larger than 2^(8*size).
526 #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
528 /* makes a truly random prime of a given size (bits),
530 * Flags are as follows:
532 * LTM_PRIME_BBS - make prime congruent to 3 mod 4
533 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
534 * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
535 * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
537 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
538 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
539 * so it can be NULL
542 int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
544 /* ---> radix conversion <--- */
545 int mp_count_bits(mp_int *a);
547 int mp_unsigned_bin_size(mp_int *a);
548 int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
549 int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
551 int mp_signed_bin_size(mp_int *a);
552 int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
553 int mp_to_signed_bin(mp_int *a, unsigned char *b);
555 int mp_read_radix(mp_int *a, char *str, int radix);
556 int mp_toradix(mp_int *a, char *str, int radix);
557 int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
558 int mp_radix_size(mp_int *a, int radix, int *size);
560 int mp_fread(mp_int *a, int radix, FILE *stream);
561 int mp_fwrite(mp_int *a, int radix, FILE *stream);
563 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
564 #define mp_raw_size(mp) mp_signed_bin_size(mp)
565 #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
566 #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
567 #define mp_mag_size(mp) mp_unsigned_bin_size(mp)
568 #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
570 #define mp_tobinary(M, S) mp_toradix((M), (S), 2)
571 #define mp_tooctal(M, S) mp_toradix((M), (S), 8)
572 #define mp_todecimal(M, S) mp_toradix((M), (S), 10)
573 #define mp_tohex(M, S) mp_toradix((M), (S), 16)
575 /* lowlevel functions, do not call! */
576 int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
577 int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
578 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
579 int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
580 int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
581 int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
582 int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
583 int fast_s_mp_sqr(mp_int *a, mp_int *b);
584 int s_mp_sqr(mp_int *a, mp_int *b);
585 int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
586 int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
587 int mp_karatsuba_sqr(mp_int *a, mp_int *b);
588 int mp_toom_sqr(mp_int *a, mp_int *b);
589 int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
590 int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
591 int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
592 int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
593 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y);
594 void bn_reverse(unsigned char *s, int len);
596 extern const char *mp_s_rmap;
598 #define PK_PRIVATE 0 /* PK private keys */
599 #define PK_PUBLIC 1 /* PK public keys */
601 /* Min and Max RSA key sizes (in bits) */
602 #define MIN_RSA_SIZE 384
603 #define MAX_RSA_SIZE 16384
605 typedef struct Rsa_key {
606 int type;
607 mp_int e, d, N, p, q, qP, dP, dQ;
608 } rsa_key;
610 int rsa_make_key(int size, long e, rsa_key *key);
612 int rsa_exptmod(const unsigned char *in, unsigned long inlen,
613 unsigned char *out, unsigned long *outlen, int which,
614 rsa_key *key);
616 void rsa_free(rsa_key *key);
618 #endif /* __WINE_TOMCRYPT_H_ */