Release 1.1.37.
[wine/gsoc-2012-control.git] / dlls / d3drm / math.c
blobaed669083ad9988ac76fcece038ec500a131a6d4
1 /*
2 * Copyright 2007 David Adam
3 * Copyright 2007 Vijay Kiran Kamuju
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
20 #define NONAMELESSUNION
22 #include <math.h>
23 #include <stdarg.h>
24 #include "windef.h"
25 #include "winbase.h"
26 #include "wingdi.h"
27 #include "d3drmdef.h"
29 /* Create a RGB color from its components */
30 D3DCOLOR WINAPI D3DRMCreateColorRGB(D3DVALUE red, D3DVALUE green, D3DVALUE blue)
32 return (D3DRMCreateColorRGBA(red, green, blue, 255.0));
34 /* Create a RGBA color from its components */
35 D3DCOLOR WINAPI D3DRMCreateColorRGBA(D3DVALUE red, D3DVALUE green, D3DVALUE blue, D3DVALUE alpha)
37 int Red, Green, Blue, Alpha;
38 Red=floor(red*255);
39 Green=floor(green*255);
40 Blue=floor(blue*255);
41 Alpha=floor(alpha*255);
42 if (red < 0) Red=0;
43 if (red > 1) Red=255;
44 if (green < 0) Green=0;
45 if (green > 1) Green=255;
46 if (blue < 0) Blue=0;
47 if (blue > 1) Blue=255;
48 if (alpha < 0) Alpha=0;
49 if (alpha > 1) Alpha=255;
50 return (RGBA_MAKE(Red, Green, Blue, Alpha));
53 /* Determine the alpha part of a color */
54 D3DVALUE WINAPI D3DRMColorGetAlpha(D3DCOLOR color)
56 return (RGBA_GETALPHA(color)/255.0);
59 /* Determine the blue part of a color */
60 D3DVALUE WINAPI D3DRMColorGetBlue(D3DCOLOR color)
62 return (RGBA_GETBLUE(color)/255.0);
65 /* Determine the green part of a color */
66 D3DVALUE WINAPI D3DRMColorGetGreen(D3DCOLOR color)
68 return (RGBA_GETGREEN(color)/255.0);
71 /* Determine the red part of a color */
72 D3DVALUE WINAPI D3DRMColorGetRed(D3DCOLOR color)
74 return (RGBA_GETRED(color)/255.0);
77 /* Product of 2 quaternions */
78 LPD3DRMQUATERNION WINAPI D3DRMQuaternionMultiply(LPD3DRMQUATERNION q, LPD3DRMQUATERNION a, LPD3DRMQUATERNION b)
80 D3DRMQUATERNION temp;
81 D3DVECTOR cross_product;
83 D3DRMVectorCrossProduct(&cross_product, &a->v, &b->v);
84 temp.s = a->s * b->s - D3DRMVectorDotProduct(&a->v, &b->v);
85 temp.v.u1.x = a->s * b->v.u1.x + b->s * a->v.u1.x + cross_product.u1.x;
86 temp.v.u2.y = a->s * b->v.u2.y + b->s * a->v.u2.y + cross_product.u2.y;
87 temp.v.u3.z = a->s * b->v.u3.z + b->s * a->v.u3.z + cross_product.u3.z;
89 *q = temp;
90 return q;
93 /* Matrix for the Rotation that a unit quaternion represents */
94 void WINAPI D3DRMMatrixFromQuaternion(D3DRMMATRIX4D m, LPD3DRMQUATERNION q)
96 D3DVALUE w,x,y,z;
97 w = q->s;
98 x = q->v.u1.x;
99 y = q->v.u2.y;
100 z = q->v.u3.z;
101 m[0][0] = 1.0-2.0*(y*y+z*z);
102 m[1][1] = 1.0-2.0*(x*x+z*z);
103 m[2][2] = 1.0-2.0*(x*x+y*y);
104 m[1][0] = 2.0*(x*y+z*w);
105 m[0][1] = 2.0*(x*y-z*w);
106 m[2][0] = 2.0*(x*z-y*w);
107 m[0][2] = 2.0*(x*z+y*w);
108 m[2][1] = 2.0*(y*z+x*w);
109 m[1][2] = 2.0*(y*z-x*w);
110 m[3][0] = 0.0;
111 m[3][1] = 0.0;
112 m[3][2] = 0.0;
113 m[0][3] = 0.0;
114 m[1][3] = 0.0;
115 m[2][3] = 0.0;
116 m[3][3] = 1.0;
119 /* Return a unit quaternion that represents a rotation of an angle around an axis */
120 LPD3DRMQUATERNION WINAPI D3DRMQuaternionFromRotation(LPD3DRMQUATERNION q, LPD3DVECTOR v, D3DVALUE theta)
122 q->s = cos(theta/2.0);
123 D3DRMVectorScale(&q->v, D3DRMVectorNormalize(v), sin(theta/2.0));
124 return q;
127 /* Interpolation between two quaternions */
128 LPD3DRMQUATERNION WINAPI D3DRMQuaternionSlerp(LPD3DRMQUATERNION q, LPD3DRMQUATERNION a, LPD3DRMQUATERNION b, D3DVALUE alpha)
130 D3DVALUE dot, epsilon, temp, theta, u;
131 D3DVECTOR v1, v2;
133 dot = a->s * b->s + D3DRMVectorDotProduct(&a->v, &b->v);
134 epsilon = 1.0f;
135 temp = 1.0f - alpha;
136 u = alpha;
137 if (dot < 0.0)
139 epsilon = -1.0;
140 dot = -dot;
142 if( 1.0f - dot > 0.001f )
144 theta = acos(dot);
145 temp = sin(theta * temp) / sin(theta);
146 u = sin(theta * alpha) / sin(theta);
148 q->s = temp * a->s + epsilon * u * b->s;
149 D3DRMVectorScale(&v1, &a->v, temp);
150 D3DRMVectorScale(&v2, &b->v, epsilon * u);
151 D3DRMVectorAdd(&q->v, &v1, &v2);
152 return q;
155 /* Add Two Vectors */
156 LPD3DVECTOR WINAPI D3DRMVectorAdd(LPD3DVECTOR d, LPD3DVECTOR s1, LPD3DVECTOR s2)
158 D3DVECTOR temp;
160 temp.u1.x=s1->u1.x + s2->u1.x;
161 temp.u2.y=s1->u2.y + s2->u2.y;
162 temp.u3.z=s1->u3.z + s2->u3.z;
164 *d = temp;
165 return d;
168 /* Subtract Two Vectors */
169 LPD3DVECTOR WINAPI D3DRMVectorSubtract(LPD3DVECTOR d, LPD3DVECTOR s1, LPD3DVECTOR s2)
171 D3DVECTOR temp;
173 temp.u1.x=s1->u1.x - s2->u1.x;
174 temp.u2.y=s1->u2.y - s2->u2.y;
175 temp.u3.z=s1->u3.z - s2->u3.z;
177 *d = temp;
178 return d;
181 /* Cross Product of Two Vectors */
182 LPD3DVECTOR WINAPI D3DRMVectorCrossProduct(LPD3DVECTOR d, LPD3DVECTOR s1, LPD3DVECTOR s2)
184 D3DVECTOR temp;
186 temp.u1.x=s1->u2.y * s2->u3.z - s1->u3.z * s2->u2.y;
187 temp.u2.y=s1->u3.z * s2->u1.x - s1->u1.x * s2->u3.z;
188 temp.u3.z=s1->u1.x * s2->u2.y - s1->u2.y * s2->u1.x;
190 *d = temp;
191 return d;
194 /* Dot Product of Two vectors */
195 D3DVALUE WINAPI D3DRMVectorDotProduct(LPD3DVECTOR s1, LPD3DVECTOR s2)
197 D3DVALUE dot_product;
198 dot_product=s1->u1.x * s2->u1.x + s1->u2.y * s2->u2.y + s1->u3.z * s2->u3.z;
199 return dot_product;
202 /* Norm of a vector */
203 D3DVALUE WINAPI D3DRMVectorModulus(LPD3DVECTOR v)
205 D3DVALUE result;
206 result=sqrt(v->u1.x * v->u1.x + v->u2.y * v->u2.y + v->u3.z * v->u3.z);
207 return result;
210 /* Normalize a vector. Returns (1,0,0) if INPUT is the NULL vector. */
211 LPD3DVECTOR WINAPI D3DRMVectorNormalize(LPD3DVECTOR u)
213 D3DVALUE modulus = D3DRMVectorModulus(u);
214 if(modulus)
216 D3DRMVectorScale(u,u,1.0/modulus);
218 else
220 u->u1.x=1.0;
221 u->u2.y=0.0;
222 u->u3.z=0.0;
224 return u;
227 /* Returns a random unit vector */
228 LPD3DVECTOR WINAPI D3DRMVectorRandom(LPD3DVECTOR d)
230 d->u1.x = rand();
231 d->u2.y = rand();
232 d->u3.z = rand();
233 D3DRMVectorNormalize(d);
234 return d;
237 /* Reflection of a vector on a surface */
238 LPD3DVECTOR WINAPI D3DRMVectorReflect(LPD3DVECTOR r, LPD3DVECTOR ray, LPD3DVECTOR norm)
240 D3DVECTOR sca, temp;
241 D3DRMVectorSubtract(&temp, D3DRMVectorScale(&sca, norm, 2.0*D3DRMVectorDotProduct(ray,norm)), ray);
243 *r = temp;
244 return r;
247 /* Rotation of a vector */
248 LPD3DVECTOR WINAPI D3DRMVectorRotate(LPD3DVECTOR r, LPD3DVECTOR v, LPD3DVECTOR axis, D3DVALUE theta)
250 D3DRMQUATERNION quaternion1, quaternion2, quaternion3;
251 D3DVECTOR norm;
253 quaternion1.s = cos(theta * 0.5f);
254 quaternion2.s = cos(theta * 0.5f);
255 norm = *D3DRMVectorNormalize(axis);
256 D3DRMVectorScale(&quaternion1.v, &norm, sin(theta * 0.5f));
257 D3DRMVectorScale(&quaternion2.v, &norm, -sin(theta * 0.5f));
258 quaternion3.s = 0.0;
259 quaternion3.v = *v;
260 D3DRMQuaternionMultiply(&quaternion1, &quaternion1, &quaternion3);
261 D3DRMQuaternionMultiply(&quaternion1, &quaternion1, &quaternion2);
263 *r = *D3DRMVectorNormalize(&quaternion1.v);
264 return r;
267 /* Scale a vector */
268 LPD3DVECTOR WINAPI D3DRMVectorScale(LPD3DVECTOR d, LPD3DVECTOR s, D3DVALUE factor)
270 D3DVECTOR temp;
272 temp.u1.x=factor * s->u1.x;
273 temp.u2.y=factor * s->u2.y;
274 temp.u3.z=factor * s->u3.z;
276 *d = temp;
277 return d;