4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
40 #include "wine/unicode.h"
44 #include "wine/debug.h"
46 WINE_DEFAULT_DEBUG_CHANNEL(variant
);
48 const char * const wine_vtypes
[VT_CLSID
+1] =
50 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
51 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
52 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
53 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
54 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
55 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
56 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
57 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
58 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
61 const char * const wine_vflags
[16] =
66 "|VT_VECTOR|VT_ARRAY",
68 "|VT_VECTOR|VT_ARRAY",
70 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
72 "|VT_VECTOR|VT_HARDTYPE",
73 "|VT_ARRAY|VT_HARDTYPE",
74 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
75 "|VT_BYREF|VT_HARDTYPE",
76 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
77 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
78 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
81 /* Convert a variant from one type to another */
82 static inline HRESULT
VARIANT_Coerce(VARIANTARG
* pd
, LCID lcid
, USHORT wFlags
,
83 VARIANTARG
* ps
, VARTYPE vt
)
85 HRESULT res
= DISP_E_TYPEMISMATCH
;
86 VARTYPE vtFrom
= V_TYPE(ps
);
89 TRACE("(%p->(%s%s),0x%08x,0x%04x,%p->(%s%s),%s%s)\n", pd
, debugstr_VT(pd
),
90 debugstr_VF(pd
), lcid
, wFlags
, ps
, debugstr_VT(ps
), debugstr_VF(ps
),
91 debugstr_vt(vt
), debugstr_vf(vt
));
93 if (vt
== VT_BSTR
|| vtFrom
== VT_BSTR
)
95 /* All flags passed to low level function are only used for
96 * changing to or from strings. Map these here.
98 if (wFlags
& VARIANT_LOCALBOOL
)
99 dwFlags
|= VAR_LOCALBOOL
;
100 if (wFlags
& VARIANT_CALENDAR_HIJRI
)
101 dwFlags
|= VAR_CALENDAR_HIJRI
;
102 if (wFlags
& VARIANT_CALENDAR_THAI
)
103 dwFlags
|= VAR_CALENDAR_THAI
;
104 if (wFlags
& VARIANT_CALENDAR_GREGORIAN
)
105 dwFlags
|= VAR_CALENDAR_GREGORIAN
;
106 if (wFlags
& VARIANT_NOUSEROVERRIDE
)
107 dwFlags
|= LOCALE_NOUSEROVERRIDE
;
108 if (wFlags
& VARIANT_USE_NLS
)
109 dwFlags
|= LOCALE_USE_NLS
;
112 /* Map int/uint to i4/ui4 */
115 else if (vt
== VT_UINT
)
118 if (vtFrom
== VT_INT
)
120 else if (vtFrom
== VT_UINT
)
124 return VariantCopy(pd
, ps
);
126 if (wFlags
& VARIANT_NOVALUEPROP
&& vtFrom
== VT_DISPATCH
&& vt
!= VT_UNKNOWN
)
128 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
129 * accessing the default object property.
131 return DISP_E_TYPEMISMATCH
;
137 if (vtFrom
== VT_NULL
)
138 return DISP_E_TYPEMISMATCH
;
139 /* ... Fall through */
141 if (vtFrom
<= VT_UINT
&& vtFrom
!= (VARTYPE
)15 && vtFrom
!= VT_ERROR
)
143 res
= VariantClear( pd
);
144 if (vt
== VT_NULL
&& SUCCEEDED(res
))
152 case VT_EMPTY
: V_I1(pd
) = 0; return S_OK
;
153 case VT_I2
: return VarI1FromI2(V_I2(ps
), &V_I1(pd
));
154 case VT_I4
: return VarI1FromI4(V_I4(ps
), &V_I1(pd
));
155 case VT_UI1
: V_I1(pd
) = V_UI1(ps
); return S_OK
;
156 case VT_UI2
: return VarI1FromUI2(V_UI2(ps
), &V_I1(pd
));
157 case VT_UI4
: return VarI1FromUI4(V_UI4(ps
), &V_I1(pd
));
158 case VT_I8
: return VarI1FromI8(V_I8(ps
), &V_I1(pd
));
159 case VT_UI8
: return VarI1FromUI8(V_UI8(ps
), &V_I1(pd
));
160 case VT_R4
: return VarI1FromR4(V_R4(ps
), &V_I1(pd
));
161 case VT_R8
: return VarI1FromR8(V_R8(ps
), &V_I1(pd
));
162 case VT_DATE
: return VarI1FromDate(V_DATE(ps
), &V_I1(pd
));
163 case VT_BOOL
: return VarI1FromBool(V_BOOL(ps
), &V_I1(pd
));
164 case VT_CY
: return VarI1FromCy(V_CY(ps
), &V_I1(pd
));
165 case VT_DECIMAL
: return VarI1FromDec(&V_DECIMAL(ps
), &V_I1(pd
) );
166 case VT_DISPATCH
: return VarI1FromDisp(V_DISPATCH(ps
), lcid
, &V_I1(pd
) );
167 case VT_BSTR
: return VarI1FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I1(pd
) );
174 case VT_EMPTY
: V_I2(pd
) = 0; return S_OK
;
175 case VT_I1
: return VarI2FromI1(V_I1(ps
), &V_I2(pd
));
176 case VT_I4
: return VarI2FromI4(V_I4(ps
), &V_I2(pd
));
177 case VT_UI1
: return VarI2FromUI1(V_UI1(ps
), &V_I2(pd
));
178 case VT_UI2
: V_I2(pd
) = V_UI2(ps
); return S_OK
;
179 case VT_UI4
: return VarI2FromUI4(V_UI4(ps
), &V_I2(pd
));
180 case VT_I8
: return VarI2FromI8(V_I8(ps
), &V_I2(pd
));
181 case VT_UI8
: return VarI2FromUI8(V_UI8(ps
), &V_I2(pd
));
182 case VT_R4
: return VarI2FromR4(V_R4(ps
), &V_I2(pd
));
183 case VT_R8
: return VarI2FromR8(V_R8(ps
), &V_I2(pd
));
184 case VT_DATE
: return VarI2FromDate(V_DATE(ps
), &V_I2(pd
));
185 case VT_BOOL
: return VarI2FromBool(V_BOOL(ps
), &V_I2(pd
));
186 case VT_CY
: return VarI2FromCy(V_CY(ps
), &V_I2(pd
));
187 case VT_DECIMAL
: return VarI2FromDec(&V_DECIMAL(ps
), &V_I2(pd
));
188 case VT_DISPATCH
: return VarI2FromDisp(V_DISPATCH(ps
), lcid
, &V_I2(pd
));
189 case VT_BSTR
: return VarI2FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I2(pd
));
196 case VT_EMPTY
: V_I4(pd
) = 0; return S_OK
;
197 case VT_I1
: return VarI4FromI1(V_I1(ps
), &V_I4(pd
));
198 case VT_I2
: return VarI4FromI2(V_I2(ps
), &V_I4(pd
));
199 case VT_UI1
: return VarI4FromUI1(V_UI1(ps
), &V_I4(pd
));
200 case VT_UI2
: return VarI4FromUI2(V_UI2(ps
), &V_I4(pd
));
201 case VT_UI4
: V_I4(pd
) = V_UI4(ps
); return S_OK
;
202 case VT_I8
: return VarI4FromI8(V_I8(ps
), &V_I4(pd
));
203 case VT_UI8
: return VarI4FromUI8(V_UI8(ps
), &V_I4(pd
));
204 case VT_R4
: return VarI4FromR4(V_R4(ps
), &V_I4(pd
));
205 case VT_R8
: return VarI4FromR8(V_R8(ps
), &V_I4(pd
));
206 case VT_DATE
: return VarI4FromDate(V_DATE(ps
), &V_I4(pd
));
207 case VT_BOOL
: return VarI4FromBool(V_BOOL(ps
), &V_I4(pd
));
208 case VT_CY
: return VarI4FromCy(V_CY(ps
), &V_I4(pd
));
209 case VT_DECIMAL
: return VarI4FromDec(&V_DECIMAL(ps
), &V_I4(pd
));
210 case VT_DISPATCH
: return VarI4FromDisp(V_DISPATCH(ps
), lcid
, &V_I4(pd
));
211 case VT_BSTR
: return VarI4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I4(pd
));
218 case VT_EMPTY
: V_UI1(pd
) = 0; return S_OK
;
219 case VT_I1
: V_UI1(pd
) = V_I1(ps
); return S_OK
;
220 case VT_I2
: return VarUI1FromI2(V_I2(ps
), &V_UI1(pd
));
221 case VT_I4
: return VarUI1FromI4(V_I4(ps
), &V_UI1(pd
));
222 case VT_UI2
: return VarUI1FromUI2(V_UI2(ps
), &V_UI1(pd
));
223 case VT_UI4
: return VarUI1FromUI4(V_UI4(ps
), &V_UI1(pd
));
224 case VT_I8
: return VarUI1FromI8(V_I8(ps
), &V_UI1(pd
));
225 case VT_UI8
: return VarUI1FromUI8(V_UI8(ps
), &V_UI1(pd
));
226 case VT_R4
: return VarUI1FromR4(V_R4(ps
), &V_UI1(pd
));
227 case VT_R8
: return VarUI1FromR8(V_R8(ps
), &V_UI1(pd
));
228 case VT_DATE
: return VarUI1FromDate(V_DATE(ps
), &V_UI1(pd
));
229 case VT_BOOL
: return VarUI1FromBool(V_BOOL(ps
), &V_UI1(pd
));
230 case VT_CY
: return VarUI1FromCy(V_CY(ps
), &V_UI1(pd
));
231 case VT_DECIMAL
: return VarUI1FromDec(&V_DECIMAL(ps
), &V_UI1(pd
));
232 case VT_DISPATCH
: return VarUI1FromDisp(V_DISPATCH(ps
), lcid
, &V_UI1(pd
));
233 case VT_BSTR
: return VarUI1FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI1(pd
));
240 case VT_EMPTY
: V_UI2(pd
) = 0; return S_OK
;
241 case VT_I1
: return VarUI2FromI1(V_I1(ps
), &V_UI2(pd
));
242 case VT_I2
: V_UI2(pd
) = V_I2(ps
); return S_OK
;
243 case VT_I4
: return VarUI2FromI4(V_I4(ps
), &V_UI2(pd
));
244 case VT_UI1
: return VarUI2FromUI1(V_UI1(ps
), &V_UI2(pd
));
245 case VT_UI4
: return VarUI2FromUI4(V_UI4(ps
), &V_UI2(pd
));
246 case VT_I8
: return VarUI4FromI8(V_I8(ps
), &V_UI4(pd
));
247 case VT_UI8
: return VarUI4FromUI8(V_UI8(ps
), &V_UI4(pd
));
248 case VT_R4
: return VarUI2FromR4(V_R4(ps
), &V_UI2(pd
));
249 case VT_R8
: return VarUI2FromR8(V_R8(ps
), &V_UI2(pd
));
250 case VT_DATE
: return VarUI2FromDate(V_DATE(ps
), &V_UI2(pd
));
251 case VT_BOOL
: return VarUI2FromBool(V_BOOL(ps
), &V_UI2(pd
));
252 case VT_CY
: return VarUI2FromCy(V_CY(ps
), &V_UI2(pd
));
253 case VT_DECIMAL
: return VarUI2FromDec(&V_DECIMAL(ps
), &V_UI2(pd
));
254 case VT_DISPATCH
: return VarUI2FromDisp(V_DISPATCH(ps
), lcid
, &V_UI2(pd
));
255 case VT_BSTR
: return VarUI2FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI2(pd
));
262 case VT_EMPTY
: V_UI4(pd
) = 0; return S_OK
;
263 case VT_I1
: return VarUI4FromI1(V_I1(ps
), &V_UI4(pd
));
264 case VT_I2
: return VarUI4FromI2(V_I2(ps
), &V_UI4(pd
));
265 case VT_I4
: V_UI4(pd
) = V_I4(ps
); return S_OK
;
266 case VT_UI1
: return VarUI4FromUI1(V_UI1(ps
), &V_UI4(pd
));
267 case VT_UI2
: return VarUI4FromUI2(V_UI2(ps
), &V_UI4(pd
));
268 case VT_I8
: return VarUI4FromI8(V_I8(ps
), &V_UI4(pd
));
269 case VT_UI8
: return VarUI4FromUI8(V_UI8(ps
), &V_UI4(pd
));
270 case VT_R4
: return VarUI4FromR4(V_R4(ps
), &V_UI4(pd
));
271 case VT_R8
: return VarUI4FromR8(V_R8(ps
), &V_UI4(pd
));
272 case VT_DATE
: return VarUI4FromDate(V_DATE(ps
), &V_UI4(pd
));
273 case VT_BOOL
: return VarUI4FromBool(V_BOOL(ps
), &V_UI4(pd
));
274 case VT_CY
: return VarUI4FromCy(V_CY(ps
), &V_UI4(pd
));
275 case VT_DECIMAL
: return VarUI4FromDec(&V_DECIMAL(ps
), &V_UI4(pd
));
276 case VT_DISPATCH
: return VarUI4FromDisp(V_DISPATCH(ps
), lcid
, &V_UI4(pd
));
277 case VT_BSTR
: return VarUI4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI4(pd
));
284 case VT_EMPTY
: V_UI8(pd
) = 0; return S_OK
;
285 case VT_I4
: if (V_I4(ps
) < 0) return DISP_E_OVERFLOW
; V_UI8(pd
) = V_I4(ps
); return S_OK
;
286 case VT_I1
: return VarUI8FromI1(V_I1(ps
), &V_UI8(pd
));
287 case VT_I2
: return VarUI8FromI2(V_I2(ps
), &V_UI8(pd
));
288 case VT_UI1
: return VarUI8FromUI1(V_UI1(ps
), &V_UI8(pd
));
289 case VT_UI2
: return VarUI8FromUI2(V_UI2(ps
), &V_UI8(pd
));
290 case VT_UI4
: return VarUI8FromUI4(V_UI4(ps
), &V_UI8(pd
));
291 case VT_I8
: V_UI8(pd
) = V_I8(ps
); return S_OK
;
292 case VT_R4
: return VarUI8FromR4(V_R4(ps
), &V_UI8(pd
));
293 case VT_R8
: return VarUI8FromR8(V_R8(ps
), &V_UI8(pd
));
294 case VT_DATE
: return VarUI8FromDate(V_DATE(ps
), &V_UI8(pd
));
295 case VT_BOOL
: return VarUI8FromBool(V_BOOL(ps
), &V_UI8(pd
));
296 case VT_CY
: return VarUI8FromCy(V_CY(ps
), &V_UI8(pd
));
297 case VT_DECIMAL
: return VarUI8FromDec(&V_DECIMAL(ps
), &V_UI8(pd
));
298 case VT_DISPATCH
: return VarUI8FromDisp(V_DISPATCH(ps
), lcid
, &V_UI8(pd
));
299 case VT_BSTR
: return VarUI8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI8(pd
));
306 case VT_EMPTY
: V_I8(pd
) = 0; return S_OK
;
307 case VT_I4
: V_I8(pd
) = V_I4(ps
); return S_OK
;
308 case VT_I1
: return VarI8FromI1(V_I1(ps
), &V_I8(pd
));
309 case VT_I2
: return VarI8FromI2(V_I2(ps
), &V_I8(pd
));
310 case VT_UI1
: return VarI8FromUI1(V_UI1(ps
), &V_I8(pd
));
311 case VT_UI2
: return VarI8FromUI2(V_UI2(ps
), &V_I8(pd
));
312 case VT_UI4
: return VarI8FromUI4(V_UI4(ps
), &V_I8(pd
));
313 case VT_UI8
: V_I8(pd
) = V_UI8(ps
); return S_OK
;
314 case VT_R4
: return VarI8FromR4(V_R4(ps
), &V_I8(pd
));
315 case VT_R8
: return VarI8FromR8(V_R8(ps
), &V_I8(pd
));
316 case VT_DATE
: return VarI8FromDate(V_DATE(ps
), &V_I8(pd
));
317 case VT_BOOL
: return VarI8FromBool(V_BOOL(ps
), &V_I8(pd
));
318 case VT_CY
: return VarI8FromCy(V_CY(ps
), &V_I8(pd
));
319 case VT_DECIMAL
: return VarI8FromDec(&V_DECIMAL(ps
), &V_I8(pd
));
320 case VT_DISPATCH
: return VarI8FromDisp(V_DISPATCH(ps
), lcid
, &V_I8(pd
));
321 case VT_BSTR
: return VarI8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I8(pd
));
328 case VT_EMPTY
: V_R4(pd
) = 0.0f
; return S_OK
;
329 case VT_I1
: return VarR4FromI1(V_I1(ps
), &V_R4(pd
));
330 case VT_I2
: return VarR4FromI2(V_I2(ps
), &V_R4(pd
));
331 case VT_I4
: return VarR4FromI4(V_I4(ps
), &V_R4(pd
));
332 case VT_UI1
: return VarR4FromUI1(V_UI1(ps
), &V_R4(pd
));
333 case VT_UI2
: return VarR4FromUI2(V_UI2(ps
), &V_R4(pd
));
334 case VT_UI4
: return VarR4FromUI4(V_UI4(ps
), &V_R4(pd
));
335 case VT_I8
: return VarR4FromI8(V_I8(ps
), &V_R4(pd
));
336 case VT_UI8
: return VarR4FromUI8(V_UI8(ps
), &V_R4(pd
));
337 case VT_R8
: return VarR4FromR8(V_R8(ps
), &V_R4(pd
));
338 case VT_DATE
: return VarR4FromDate(V_DATE(ps
), &V_R4(pd
));
339 case VT_BOOL
: return VarR4FromBool(V_BOOL(ps
), &V_R4(pd
));
340 case VT_CY
: return VarR4FromCy(V_CY(ps
), &V_R4(pd
));
341 case VT_DECIMAL
: return VarR4FromDec(&V_DECIMAL(ps
), &V_R4(pd
));
342 case VT_DISPATCH
: return VarR4FromDisp(V_DISPATCH(ps
), lcid
, &V_R4(pd
));
343 case VT_BSTR
: return VarR4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_R4(pd
));
350 case VT_EMPTY
: V_R8(pd
) = 0.0; return S_OK
;
351 case VT_I1
: return VarR8FromI1(V_I1(ps
), &V_R8(pd
));
352 case VT_I2
: return VarR8FromI2(V_I2(ps
), &V_R8(pd
));
353 case VT_I4
: return VarR8FromI4(V_I4(ps
), &V_R8(pd
));
354 case VT_UI1
: return VarR8FromUI1(V_UI1(ps
), &V_R8(pd
));
355 case VT_UI2
: return VarR8FromUI2(V_UI2(ps
), &V_R8(pd
));
356 case VT_UI4
: return VarR8FromUI4(V_UI4(ps
), &V_R8(pd
));
357 case VT_I8
: return VarR8FromI8(V_I8(ps
), &V_R8(pd
));
358 case VT_UI8
: return VarR8FromUI8(V_UI8(ps
), &V_R8(pd
));
359 case VT_R4
: return VarR8FromR4(V_R4(ps
), &V_R8(pd
));
360 case VT_DATE
: return VarR8FromDate(V_DATE(ps
), &V_R8(pd
));
361 case VT_BOOL
: return VarR8FromBool(V_BOOL(ps
), &V_R8(pd
));
362 case VT_CY
: return VarR8FromCy(V_CY(ps
), &V_R8(pd
));
363 case VT_DECIMAL
: return VarR8FromDec(&V_DECIMAL(ps
), &V_R8(pd
));
364 case VT_DISPATCH
: return VarR8FromDisp(V_DISPATCH(ps
), lcid
, &V_R8(pd
));
365 case VT_BSTR
: return VarR8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_R8(pd
));
372 case VT_EMPTY
: V_DATE(pd
) = 0.0; return S_OK
;
373 case VT_I1
: return VarDateFromI1(V_I1(ps
), &V_DATE(pd
));
374 case VT_I2
: return VarDateFromI2(V_I2(ps
), &V_DATE(pd
));
375 case VT_I4
: return VarDateFromI4(V_I4(ps
), &V_DATE(pd
));
376 case VT_UI1
: return VarDateFromUI1(V_UI1(ps
), &V_DATE(pd
));
377 case VT_UI2
: return VarDateFromUI2(V_UI2(ps
), &V_DATE(pd
));
378 case VT_UI4
: return VarDateFromUI4(V_UI4(ps
), &V_DATE(pd
));
379 case VT_I8
: return VarDateFromI8(V_I8(ps
), &V_DATE(pd
));
380 case VT_UI8
: return VarDateFromUI8(V_UI8(ps
), &V_DATE(pd
));
381 case VT_R4
: return VarDateFromR4(V_R4(ps
), &V_DATE(pd
));
382 case VT_R8
: return VarDateFromR8(V_R8(ps
), &V_DATE(pd
));
383 case VT_BOOL
: return VarDateFromBool(V_BOOL(ps
), &V_DATE(pd
));
384 case VT_CY
: return VarDateFromCy(V_CY(ps
), &V_DATE(pd
));
385 case VT_DECIMAL
: return VarDateFromDec(&V_DECIMAL(ps
), &V_DATE(pd
));
386 case VT_DISPATCH
: return VarDateFromDisp(V_DISPATCH(ps
), lcid
, &V_DATE(pd
));
387 case VT_BSTR
: return VarDateFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_DATE(pd
));
394 case VT_EMPTY
: V_BOOL(pd
) = 0; return S_OK
;
395 case VT_I1
: return VarBoolFromI1(V_I1(ps
), &V_BOOL(pd
));
396 case VT_I2
: return VarBoolFromI2(V_I2(ps
), &V_BOOL(pd
));
397 case VT_I4
: return VarBoolFromI4(V_I4(ps
), &V_BOOL(pd
));
398 case VT_UI1
: return VarBoolFromUI1(V_UI1(ps
), &V_BOOL(pd
));
399 case VT_UI2
: return VarBoolFromUI2(V_UI2(ps
), &V_BOOL(pd
));
400 case VT_UI4
: return VarBoolFromUI4(V_UI4(ps
), &V_BOOL(pd
));
401 case VT_I8
: return VarBoolFromI8(V_I8(ps
), &V_BOOL(pd
));
402 case VT_UI8
: return VarBoolFromUI8(V_UI8(ps
), &V_BOOL(pd
));
403 case VT_R4
: return VarBoolFromR4(V_R4(ps
), &V_BOOL(pd
));
404 case VT_R8
: return VarBoolFromR8(V_R8(ps
), &V_BOOL(pd
));
405 case VT_DATE
: return VarBoolFromDate(V_DATE(ps
), &V_BOOL(pd
));
406 case VT_CY
: return VarBoolFromCy(V_CY(ps
), &V_BOOL(pd
));
407 case VT_DECIMAL
: return VarBoolFromDec(&V_DECIMAL(ps
), &V_BOOL(pd
));
408 case VT_DISPATCH
: return VarBoolFromDisp(V_DISPATCH(ps
), lcid
, &V_BOOL(pd
));
409 case VT_BSTR
: return VarBoolFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_BOOL(pd
));
417 V_BSTR(pd
) = SysAllocStringLen(NULL
, 0);
418 return V_BSTR(pd
) ? S_OK
: E_OUTOFMEMORY
;
420 if (wFlags
& (VARIANT_ALPHABOOL
|VARIANT_LOCALBOOL
))
421 return VarBstrFromBool(V_BOOL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
422 return VarBstrFromI2(V_BOOL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
423 case VT_I1
: return VarBstrFromI1(V_I1(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
424 case VT_I2
: return VarBstrFromI2(V_I2(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
425 case VT_I4
: return VarBstrFromI4(V_I4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
426 case VT_UI1
: return VarBstrFromUI1(V_UI1(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
427 case VT_UI2
: return VarBstrFromUI2(V_UI2(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
428 case VT_UI4
: return VarBstrFromUI4(V_UI4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
429 case VT_I8
: return VarBstrFromI8(V_I8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
430 case VT_UI8
: return VarBstrFromUI8(V_UI8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
431 case VT_R4
: return VarBstrFromR4(V_R4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
432 case VT_R8
: return VarBstrFromR8(V_R8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
433 case VT_DATE
: return VarBstrFromDate(V_DATE(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
434 case VT_CY
: return VarBstrFromCy(V_CY(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
435 case VT_DECIMAL
: return VarBstrFromDec(&V_DECIMAL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
436 case VT_DISPATCH
: return VarBstrFromDisp(V_DISPATCH(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
443 case VT_EMPTY
: V_CY(pd
).int64
= 0; return S_OK
;
444 case VT_I1
: return VarCyFromI1(V_I1(ps
), &V_CY(pd
));
445 case VT_I2
: return VarCyFromI2(V_I2(ps
), &V_CY(pd
));
446 case VT_I4
: return VarCyFromI4(V_I4(ps
), &V_CY(pd
));
447 case VT_UI1
: return VarCyFromUI1(V_UI1(ps
), &V_CY(pd
));
448 case VT_UI2
: return VarCyFromUI2(V_UI2(ps
), &V_CY(pd
));
449 case VT_UI4
: return VarCyFromUI4(V_UI4(ps
), &V_CY(pd
));
450 case VT_I8
: return VarCyFromI8(V_I8(ps
), &V_CY(pd
));
451 case VT_UI8
: return VarCyFromUI8(V_UI8(ps
), &V_CY(pd
));
452 case VT_R4
: return VarCyFromR4(V_R4(ps
), &V_CY(pd
));
453 case VT_R8
: return VarCyFromR8(V_R8(ps
), &V_CY(pd
));
454 case VT_DATE
: return VarCyFromDate(V_DATE(ps
), &V_CY(pd
));
455 case VT_BOOL
: return VarCyFromBool(V_BOOL(ps
), &V_CY(pd
));
456 case VT_DECIMAL
: return VarCyFromDec(&V_DECIMAL(ps
), &V_CY(pd
));
457 case VT_DISPATCH
: return VarCyFromDisp(V_DISPATCH(ps
), lcid
, &V_CY(pd
));
458 case VT_BSTR
: return VarCyFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_CY(pd
));
467 DEC_SIGNSCALE(&V_DECIMAL(pd
)) = SIGNSCALE(DECIMAL_POS
,0);
468 DEC_HI32(&V_DECIMAL(pd
)) = 0;
469 DEC_MID32(&V_DECIMAL(pd
)) = 0;
470 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
471 * VT_NULL and VT_EMPTY always give a 0 value.
473 DEC_LO32(&V_DECIMAL(pd
)) = vtFrom
== VT_BOOL
&& V_BOOL(ps
) ? 1 : 0;
475 case VT_I1
: return VarDecFromI1(V_I1(ps
), &V_DECIMAL(pd
));
476 case VT_I2
: return VarDecFromI2(V_I2(ps
), &V_DECIMAL(pd
));
477 case VT_I4
: return VarDecFromI4(V_I4(ps
), &V_DECIMAL(pd
));
478 case VT_UI1
: return VarDecFromUI1(V_UI1(ps
), &V_DECIMAL(pd
));
479 case VT_UI2
: return VarDecFromUI2(V_UI2(ps
), &V_DECIMAL(pd
));
480 case VT_UI4
: return VarDecFromUI4(V_UI4(ps
), &V_DECIMAL(pd
));
481 case VT_I8
: return VarDecFromI8(V_I8(ps
), &V_DECIMAL(pd
));
482 case VT_UI8
: return VarDecFromUI8(V_UI8(ps
), &V_DECIMAL(pd
));
483 case VT_R4
: return VarDecFromR4(V_R4(ps
), &V_DECIMAL(pd
));
484 case VT_R8
: return VarDecFromR8(V_R8(ps
), &V_DECIMAL(pd
));
485 case VT_DATE
: return VarDecFromDate(V_DATE(ps
), &V_DECIMAL(pd
));
486 case VT_CY
: return VarDecFromCy(V_CY(ps
), &V_DECIMAL(pd
));
487 case VT_DISPATCH
: return VarDecFromDisp(V_DISPATCH(ps
), lcid
, &V_DECIMAL(pd
));
488 case VT_BSTR
: return VarDecFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_DECIMAL(pd
));
496 if (V_DISPATCH(ps
) == NULL
)
497 V_UNKNOWN(pd
) = NULL
;
499 res
= IDispatch_QueryInterface(V_DISPATCH(ps
), &IID_IUnknown
, (LPVOID
*)&V_UNKNOWN(pd
));
508 if (V_UNKNOWN(ps
) == NULL
)
509 V_DISPATCH(pd
) = NULL
;
511 res
= IUnknown_QueryInterface(V_UNKNOWN(ps
), &IID_IDispatch
, (LPVOID
*)&V_DISPATCH(pd
));
522 /* Coerce to/from an array */
523 static inline HRESULT
VARIANT_CoerceArray(VARIANTARG
* pd
, VARIANTARG
* ps
, VARTYPE vt
)
525 if (vt
== VT_BSTR
&& V_VT(ps
) == (VT_ARRAY
|VT_UI1
))
526 return BstrFromVector(V_ARRAY(ps
), &V_BSTR(pd
));
528 if (V_VT(ps
) == VT_BSTR
&& vt
== (VT_ARRAY
|VT_UI1
))
529 return VectorFromBstr(V_BSTR(ps
), &V_ARRAY(ps
));
532 return SafeArrayCopy(V_ARRAY(ps
), &V_ARRAY(pd
));
534 return DISP_E_TYPEMISMATCH
;
537 /******************************************************************************
538 * Check if a variants type is valid.
540 static inline HRESULT
VARIANT_ValidateType(VARTYPE vt
)
542 VARTYPE vtExtra
= vt
& VT_EXTRA_TYPE
;
546 if (!(vtExtra
& (VT_VECTOR
|VT_RESERVED
)))
548 if (vt
< VT_VOID
|| vt
== VT_RECORD
|| vt
== VT_CLSID
)
550 if ((vtExtra
& (VT_BYREF
|VT_ARRAY
)) && vt
<= VT_NULL
)
551 return DISP_E_BADVARTYPE
;
552 if (vt
!= (VARTYPE
)15)
556 return DISP_E_BADVARTYPE
;
559 /******************************************************************************
560 * VariantInit [OLEAUT32.8]
562 * Initialise a variant.
565 * pVarg [O] Variant to initialise
571 * This function simply sets the type of the variant to VT_EMPTY. It does not
572 * free any existing value, use VariantClear() for that.
574 void WINAPI
VariantInit(VARIANTARG
* pVarg
)
576 TRACE("(%p)\n", pVarg
);
578 V_VT(pVarg
) = VT_EMPTY
; /* Native doesn't set any other fields */
581 HRESULT
VARIANT_ClearInd(VARIANTARG
*pVarg
)
585 TRACE("(%p->(%s%s))\n", pVarg
, debugstr_VT(pVarg
), debugstr_VF(pVarg
));
587 hres
= VARIANT_ValidateType(V_VT(pVarg
));
595 if (V_UNKNOWN(pVarg
))
596 IUnknown_Release(V_UNKNOWN(pVarg
));
598 case VT_UNKNOWN
| VT_BYREF
:
599 case VT_DISPATCH
| VT_BYREF
:
600 if(*V_UNKNOWNREF(pVarg
))
601 IUnknown_Release(*V_UNKNOWNREF(pVarg
));
604 SysFreeString(V_BSTR(pVarg
));
606 case VT_BSTR
| VT_BYREF
:
607 SysFreeString(*V_BSTRREF(pVarg
));
609 case VT_VARIANT
| VT_BYREF
:
610 VariantClear(V_VARIANTREF(pVarg
));
613 case VT_RECORD
| VT_BYREF
:
615 struct __tagBRECORD
* pBr
= &V_UNION(pVarg
,brecVal
);
618 IRecordInfo_RecordClear(pBr
->pRecInfo
, pBr
->pvRecord
);
619 IRecordInfo_Release(pBr
->pRecInfo
);
624 if (V_ISARRAY(pVarg
) || (V_VT(pVarg
) & ~VT_BYREF
) == VT_SAFEARRAY
)
626 if (V_ISBYREF(pVarg
))
628 if (*V_ARRAYREF(pVarg
))
629 hres
= SafeArrayDestroy(*V_ARRAYREF(pVarg
));
631 else if (V_ARRAY(pVarg
))
632 hres
= SafeArrayDestroy(V_ARRAY(pVarg
));
637 V_VT(pVarg
) = VT_EMPTY
;
641 /******************************************************************************
642 * VariantClear [OLEAUT32.9]
647 * pVarg [I/O] Variant to clear
650 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
651 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
653 HRESULT WINAPI
VariantClear(VARIANTARG
* pVarg
)
657 TRACE("(%p->(%s%s))\n", pVarg
, debugstr_VT(pVarg
), debugstr_VF(pVarg
));
659 hres
= VARIANT_ValidateType(V_VT(pVarg
));
663 if (!V_ISBYREF(pVarg
))
665 if (V_ISARRAY(pVarg
) || V_VT(pVarg
) == VT_SAFEARRAY
)
668 hres
= SafeArrayDestroy(V_ARRAY(pVarg
));
670 else if (V_VT(pVarg
) == VT_BSTR
)
672 SysFreeString(V_BSTR(pVarg
));
674 else if (V_VT(pVarg
) == VT_RECORD
)
676 struct __tagBRECORD
* pBr
= &V_UNION(pVarg
,brecVal
);
679 IRecordInfo_RecordClear(pBr
->pRecInfo
, pBr
->pvRecord
);
680 IRecordInfo_Release(pBr
->pRecInfo
);
683 else if (V_VT(pVarg
) == VT_DISPATCH
||
684 V_VT(pVarg
) == VT_UNKNOWN
)
686 if (V_UNKNOWN(pVarg
))
687 IUnknown_Release(V_UNKNOWN(pVarg
));
690 V_VT(pVarg
) = VT_EMPTY
;
695 /******************************************************************************
696 * Copy an IRecordInfo object contained in a variant.
698 static HRESULT
VARIANT_CopyIRecordInfo(struct __tagBRECORD
* pBr
)
706 hres
= IRecordInfo_GetSize(pBr
->pRecInfo
, &ulSize
);
709 PVOID pvRecord
= HeapAlloc(GetProcessHeap(), 0, ulSize
);
711 hres
= E_OUTOFMEMORY
;
714 memcpy(pvRecord
, pBr
->pvRecord
, ulSize
);
715 pBr
->pvRecord
= pvRecord
;
717 hres
= IRecordInfo_RecordCopy(pBr
->pRecInfo
, pvRecord
, pvRecord
);
719 IRecordInfo_AddRef(pBr
->pRecInfo
);
723 else if (pBr
->pvRecord
)
728 /******************************************************************************
729 * VariantCopy [OLEAUT32.10]
734 * pvargDest [O] Destination for copy
735 * pvargSrc [I] Source variant to copy
738 * Success: S_OK. pvargDest contains a copy of pvargSrc.
739 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
740 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
741 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
742 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
745 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
746 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
747 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
748 * fails, so does this function.
749 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
750 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
751 * is copied rather than just any pointers to it.
752 * - For by-value object types the object pointer is copied and the objects
753 * reference count increased using IUnknown_AddRef().
754 * - For all by-reference types, only the referencing pointer is copied.
756 HRESULT WINAPI
VariantCopy(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
)
760 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest
, debugstr_VT(pvargDest
),
761 debugstr_VF(pvargDest
), pvargSrc
, debugstr_VT(pvargSrc
),
762 debugstr_VF(pvargSrc
));
764 if (V_TYPE(pvargSrc
) == VT_CLSID
|| /* VT_CLSID is a special case */
765 FAILED(VARIANT_ValidateType(V_VT(pvargSrc
))))
766 return DISP_E_BADVARTYPE
;
768 if (pvargSrc
!= pvargDest
&&
769 SUCCEEDED(hres
= VariantClear(pvargDest
)))
771 *pvargDest
= *pvargSrc
; /* Shallow copy the value */
773 if (!V_ISBYREF(pvargSrc
))
775 if (V_ISARRAY(pvargSrc
))
777 if (V_ARRAY(pvargSrc
))
778 hres
= SafeArrayCopy(V_ARRAY(pvargSrc
), &V_ARRAY(pvargDest
));
780 else if (V_VT(pvargSrc
) == VT_BSTR
)
782 V_BSTR(pvargDest
) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc
), SysStringByteLen(V_BSTR(pvargSrc
)));
783 if (!V_BSTR(pvargDest
))
785 TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc
)));
786 hres
= E_OUTOFMEMORY
;
789 else if (V_VT(pvargSrc
) == VT_RECORD
)
791 hres
= VARIANT_CopyIRecordInfo(&V_UNION(pvargDest
,brecVal
));
793 else if (V_VT(pvargSrc
) == VT_DISPATCH
||
794 V_VT(pvargSrc
) == VT_UNKNOWN
)
796 if (V_UNKNOWN(pvargSrc
))
797 IUnknown_AddRef(V_UNKNOWN(pvargSrc
));
804 /* Return the byte size of a variants data */
805 static inline size_t VARIANT_DataSize(const VARIANT
* pv
)
810 case VT_UI1
: return sizeof(BYTE
);
812 case VT_UI2
: return sizeof(SHORT
);
816 case VT_UI4
: return sizeof(LONG
);
818 case VT_UI8
: return sizeof(LONGLONG
);
819 case VT_R4
: return sizeof(float);
820 case VT_R8
: return sizeof(double);
821 case VT_DATE
: return sizeof(DATE
);
822 case VT_BOOL
: return sizeof(VARIANT_BOOL
);
825 case VT_BSTR
: return sizeof(void*);
826 case VT_CY
: return sizeof(CY
);
827 case VT_ERROR
: return sizeof(SCODE
);
829 TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv
), debugstr_VF(pv
));
833 /******************************************************************************
834 * VariantCopyInd [OLEAUT32.11]
836 * Copy a variant, dereferencing it if it is by-reference.
839 * pvargDest [O] Destination for copy
840 * pvargSrc [I] Source variant to copy
843 * Success: S_OK. pvargDest contains a copy of pvargSrc.
844 * Failure: An HRESULT error code indicating the error.
847 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
848 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
849 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
850 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
851 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
854 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
855 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
857 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
858 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
859 * to it. If clearing pvargDest fails, so does this function.
861 HRESULT WINAPI
VariantCopyInd(VARIANT
* pvargDest
, VARIANTARG
* pvargSrc
)
863 VARIANTARG vTmp
, *pSrc
= pvargSrc
;
867 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest
, debugstr_VT(pvargDest
),
868 debugstr_VF(pvargDest
), pvargSrc
, debugstr_VT(pvargSrc
),
869 debugstr_VF(pvargSrc
));
871 if (!V_ISBYREF(pvargSrc
))
872 return VariantCopy(pvargDest
, pvargSrc
);
874 /* Argument checking is more lax than VariantCopy()... */
875 vt
= V_TYPE(pvargSrc
);
876 if (V_ISARRAY(pvargSrc
) ||
877 (vt
> VT_NULL
&& vt
!= (VARTYPE
)15 && vt
< VT_VOID
&&
878 !(V_VT(pvargSrc
) & (VT_VECTOR
|VT_RESERVED
))))
883 return E_INVALIDARG
; /* ...And the return value for invalid types differs too */
885 if (pvargSrc
== pvargDest
)
887 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
888 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
892 V_VT(pvargDest
) = VT_EMPTY
;
896 /* Copy into another variant. Free the variant in pvargDest */
897 if (FAILED(hres
= VariantClear(pvargDest
)))
899 TRACE("VariantClear() of destination failed\n");
906 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
907 hres
= SafeArrayCopy(*V_ARRAYREF(pSrc
), &V_ARRAY(pvargDest
));
909 else if (V_VT(pSrc
) == (VT_BSTR
|VT_BYREF
))
911 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
912 V_BSTR(pvargDest
) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc
), SysStringByteLen(*V_BSTRREF(pSrc
)));
914 else if (V_VT(pSrc
) == (VT_RECORD
|VT_BYREF
))
916 V_UNION(pvargDest
,brecVal
) = V_UNION(pvargSrc
,brecVal
);
917 hres
= VARIANT_CopyIRecordInfo(&V_UNION(pvargDest
,brecVal
));
919 else if (V_VT(pSrc
) == (VT_DISPATCH
|VT_BYREF
) ||
920 V_VT(pSrc
) == (VT_UNKNOWN
|VT_BYREF
))
922 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
923 V_UNKNOWN(pvargDest
) = *V_UNKNOWNREF(pSrc
);
924 if (*V_UNKNOWNREF(pSrc
))
925 IUnknown_AddRef(*V_UNKNOWNREF(pSrc
));
927 else if (V_VT(pSrc
) == (VT_VARIANT
|VT_BYREF
))
929 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
930 if (V_VT(V_VARIANTREF(pSrc
)) == (VT_VARIANT
|VT_BYREF
))
931 hres
= E_INVALIDARG
; /* Don't dereference more than one level */
933 hres
= VariantCopyInd(pvargDest
, V_VARIANTREF(pSrc
));
935 /* Use the dereferenced variants type value, not VT_VARIANT */
936 goto VariantCopyInd_Return
;
938 else if (V_VT(pSrc
) == (VT_DECIMAL
|VT_BYREF
))
940 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest
)), &DEC_SCALE(V_DECIMALREF(pSrc
)),
941 sizeof(DECIMAL
) - sizeof(USHORT
));
945 /* Copy the pointed to data into this variant */
946 memcpy(&V_BYREF(pvargDest
), V_BYREF(pSrc
), VARIANT_DataSize(pSrc
));
949 V_VT(pvargDest
) = V_VT(pSrc
) & ~VT_BYREF
;
951 VariantCopyInd_Return
:
953 if (pSrc
!= pvargSrc
)
956 TRACE("returning 0x%08x, %p->(%s%s)\n", hres
, pvargDest
,
957 debugstr_VT(pvargDest
), debugstr_VF(pvargDest
));
961 /******************************************************************************
962 * VariantChangeType [OLEAUT32.12]
964 * Change the type of a variant.
967 * pvargDest [O] Destination for the converted variant
968 * pvargSrc [O] Source variant to change the type of
969 * wFlags [I] VARIANT_ flags from "oleauto.h"
970 * vt [I] Variant type to change pvargSrc into
973 * Success: S_OK. pvargDest contains the converted value.
974 * Failure: An HRESULT error code describing the failure.
977 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
978 * See VariantChangeTypeEx.
980 HRESULT WINAPI
VariantChangeType(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
,
981 USHORT wFlags
, VARTYPE vt
)
983 return VariantChangeTypeEx( pvargDest
, pvargSrc
, LOCALE_USER_DEFAULT
, wFlags
, vt
);
986 /******************************************************************************
987 * VariantChangeTypeEx [OLEAUT32.147]
989 * Change the type of a variant.
992 * pvargDest [O] Destination for the converted variant
993 * pvargSrc [O] Source variant to change the type of
994 * lcid [I] LCID for the conversion
995 * wFlags [I] VARIANT_ flags from "oleauto.h"
996 * vt [I] Variant type to change pvargSrc into
999 * Success: S_OK. pvargDest contains the converted value.
1000 * Failure: An HRESULT error code describing the failure.
1003 * pvargDest and pvargSrc can point to the same variant to perform an in-place
1004 * conversion. If the conversion is successful, pvargSrc will be freed.
1006 HRESULT WINAPI
VariantChangeTypeEx(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
,
1007 LCID lcid
, USHORT wFlags
, VARTYPE vt
)
1011 TRACE("(%p->(%s%s),%p->(%s%s),0x%08x,0x%04x,%s%s)\n", pvargDest
,
1012 debugstr_VT(pvargDest
), debugstr_VF(pvargDest
), pvargSrc
,
1013 debugstr_VT(pvargSrc
), debugstr_VF(pvargSrc
), lcid
, wFlags
,
1014 debugstr_vt(vt
), debugstr_vf(vt
));
1017 res
= DISP_E_BADVARTYPE
;
1020 res
= VARIANT_ValidateType(V_VT(pvargSrc
));
1024 res
= VARIANT_ValidateType(vt
);
1028 VARIANTARG vTmp
, vSrcDeref
;
1030 if(V_ISBYREF(pvargSrc
) && !V_BYREF(pvargSrc
))
1031 res
= DISP_E_TYPEMISMATCH
;
1034 V_VT(&vTmp
) = VT_EMPTY
;
1035 V_VT(&vSrcDeref
) = VT_EMPTY
;
1036 VariantClear(&vTmp
);
1037 VariantClear(&vSrcDeref
);
1042 res
= VariantCopyInd(&vSrcDeref
, pvargSrc
);
1045 if (V_ISARRAY(&vSrcDeref
) || (vt
& VT_ARRAY
))
1046 res
= VARIANT_CoerceArray(&vTmp
, &vSrcDeref
, vt
);
1048 res
= VARIANT_Coerce(&vTmp
, lcid
, wFlags
, &vSrcDeref
, vt
);
1050 if (SUCCEEDED(res
)) {
1052 VariantCopy(pvargDest
, &vTmp
);
1054 VariantClear(&vTmp
);
1055 VariantClear(&vSrcDeref
);
1062 TRACE("returning 0x%08x, %p->(%s%s)\n", res
, pvargDest
,
1063 debugstr_VT(pvargDest
), debugstr_VF(pvargDest
));
1067 /* Date Conversions */
1069 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1071 /* Convert a VT_DATE value to a Julian Date */
1072 static inline int VARIANT_JulianFromDate(int dateIn
)
1074 int julianDays
= dateIn
;
1076 julianDays
-= DATE_MIN
; /* Convert to + days from 1 Jan 100 AD */
1077 julianDays
+= 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1081 /* Convert a Julian Date to a VT_DATE value */
1082 static inline int VARIANT_DateFromJulian(int dateIn
)
1084 int julianDays
= dateIn
;
1086 julianDays
-= 1757585; /* Convert to + days from 1 Jan 100 AD */
1087 julianDays
+= DATE_MIN
; /* Convert to +/- days from 1 Jan 1899 AD */
1091 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1092 static inline void VARIANT_DMYFromJulian(int jd
, USHORT
*year
, USHORT
*month
, USHORT
*day
)
1098 l
-= (n
* 146097 + 3) / 4;
1099 i
= (4000 * (l
+ 1)) / 1461001;
1100 l
+= 31 - (i
* 1461) / 4;
1101 j
= (l
* 80) / 2447;
1102 *day
= l
- (j
* 2447) / 80;
1104 *month
= (j
+ 2) - (12 * l
);
1105 *year
= 100 * (n
- 49) + i
+ l
;
1108 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1109 static inline double VARIANT_JulianFromDMY(USHORT year
, USHORT month
, USHORT day
)
1111 int m12
= (month
- 14) / 12;
1113 return ((1461 * (year
+ 4800 + m12
)) / 4 + (367 * (month
- 2 - 12 * m12
)) / 12 -
1114 (3 * ((year
+ 4900 + m12
) / 100)) / 4 + day
- 32075);
1117 /* Macros for accessing DOS format date/time fields */
1118 #define DOS_YEAR(x) (1980 + (x >> 9))
1119 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1120 #define DOS_DAY(x) (x & 0x1f)
1121 #define DOS_HOUR(x) (x >> 11)
1122 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1123 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1124 /* Create a DOS format date/time */
1125 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1126 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1128 /* Roll a date forwards or backwards to correct it */
1129 static HRESULT
VARIANT_RollUdate(UDATE
*lpUd
)
1131 static const BYTE days
[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1133 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", lpUd
->st
.wDay
, lpUd
->st
.wMonth
,
1134 lpUd
->st
.wYear
, lpUd
->st
.wHour
, lpUd
->st
.wMinute
, lpUd
->st
.wSecond
);
1136 /* Years < 100 are treated as 1900 + year */
1137 if (lpUd
->st
.wYear
< 100)
1138 lpUd
->st
.wYear
+= 1900;
1140 if (!lpUd
->st
.wMonth
)
1142 /* Roll back to December of the previous year */
1143 lpUd
->st
.wMonth
= 12;
1146 else while (lpUd
->st
.wMonth
> 12)
1148 /* Roll forward the correct number of months */
1150 lpUd
->st
.wMonth
-= 12;
1153 if (lpUd
->st
.wYear
> 9999 || lpUd
->st
.wHour
> 23 ||
1154 lpUd
->st
.wMinute
> 59 || lpUd
->st
.wSecond
> 59)
1155 return E_INVALIDARG
; /* Invalid values */
1159 /* Roll back the date one day */
1160 if (lpUd
->st
.wMonth
== 1)
1162 /* Roll back to December 31 of the previous year */
1164 lpUd
->st
.wMonth
= 12;
1169 lpUd
->st
.wMonth
--; /* Previous month */
1170 if (lpUd
->st
.wMonth
== 2 && IsLeapYear(lpUd
->st
.wYear
))
1171 lpUd
->st
.wDay
= 29; /* February has 29 days on leap years */
1173 lpUd
->st
.wDay
= days
[lpUd
->st
.wMonth
]; /* Last day of the month */
1176 else if (lpUd
->st
.wDay
> 28)
1178 int rollForward
= 0;
1180 /* Possibly need to roll the date forward */
1181 if (lpUd
->st
.wMonth
== 2 && IsLeapYear(lpUd
->st
.wYear
))
1182 rollForward
= lpUd
->st
.wDay
- 29; /* February has 29 days on leap years */
1184 rollForward
= lpUd
->st
.wDay
- days
[lpUd
->st
.wMonth
];
1186 if (rollForward
> 0)
1188 lpUd
->st
.wDay
= rollForward
;
1190 if (lpUd
->st
.wMonth
> 12)
1192 lpUd
->st
.wMonth
= 1; /* Roll forward into January of the next year */
1197 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd
->st
.wDay
, lpUd
->st
.wMonth
,
1198 lpUd
->st
.wYear
, lpUd
->st
.wHour
, lpUd
->st
.wMinute
, lpUd
->st
.wSecond
);
1202 /**********************************************************************
1203 * DosDateTimeToVariantTime [OLEAUT32.14]
1205 * Convert a Dos format date and time into variant VT_DATE format.
1208 * wDosDate [I] Dos format date
1209 * wDosTime [I] Dos format time
1210 * pDateOut [O] Destination for VT_DATE format
1213 * Success: TRUE. pDateOut contains the converted time.
1214 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1217 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1218 * - Dos format times are accurate to only 2 second precision.
1219 * - The format of a Dos Date is:
1220 *| Bits Values Meaning
1221 *| ---- ------ -------
1222 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1223 *| the days in the month rolls forward the extra days.
1224 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1225 *| year. 13-15 are invalid.
1226 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1227 * - The format of a Dos Time is:
1228 *| Bits Values Meaning
1229 *| ---- ------ -------
1230 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1231 *| 5-10 0-59 Minutes. 60-63 are invalid.
1232 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1234 INT WINAPI
DosDateTimeToVariantTime(USHORT wDosDate
, USHORT wDosTime
,
1239 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1240 wDosDate
, DOS_YEAR(wDosDate
), DOS_MONTH(wDosDate
), DOS_DAY(wDosDate
),
1241 wDosTime
, DOS_HOUR(wDosTime
), DOS_MINUTE(wDosTime
), DOS_SECOND(wDosTime
),
1244 ud
.st
.wYear
= DOS_YEAR(wDosDate
);
1245 ud
.st
.wMonth
= DOS_MONTH(wDosDate
);
1246 if (ud
.st
.wYear
> 2099 || ud
.st
.wMonth
> 12)
1248 ud
.st
.wDay
= DOS_DAY(wDosDate
);
1249 ud
.st
.wHour
= DOS_HOUR(wDosTime
);
1250 ud
.st
.wMinute
= DOS_MINUTE(wDosTime
);
1251 ud
.st
.wSecond
= DOS_SECOND(wDosTime
);
1252 ud
.st
.wDayOfWeek
= ud
.st
.wMilliseconds
= 0;
1254 return VarDateFromUdate(&ud
, 0, pDateOut
) == S_OK
;
1257 /**********************************************************************
1258 * VariantTimeToDosDateTime [OLEAUT32.13]
1260 * Convert a variant format date into a Dos format date and time.
1262 * dateIn [I] VT_DATE time format
1263 * pwDosDate [O] Destination for Dos format date
1264 * pwDosTime [O] Destination for Dos format time
1267 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1268 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1271 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1273 INT WINAPI
VariantTimeToDosDateTime(double dateIn
, USHORT
*pwDosDate
, USHORT
*pwDosTime
)
1277 TRACE("(%g,%p,%p)\n", dateIn
, pwDosDate
, pwDosTime
);
1279 if (FAILED(VarUdateFromDate(dateIn
, 0, &ud
)))
1282 if (ud
.st
.wYear
< 1980 || ud
.st
.wYear
> 2099)
1285 *pwDosDate
= DOS_DATE(ud
.st
.wDay
, ud
.st
.wMonth
, ud
.st
.wYear
);
1286 *pwDosTime
= DOS_TIME(ud
.st
.wHour
, ud
.st
.wMinute
, ud
.st
.wSecond
);
1288 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1289 *pwDosDate
, DOS_YEAR(*pwDosDate
), DOS_MONTH(*pwDosDate
), DOS_DAY(*pwDosDate
),
1290 *pwDosTime
, DOS_HOUR(*pwDosTime
), DOS_MINUTE(*pwDosTime
), DOS_SECOND(*pwDosTime
));
1294 /***********************************************************************
1295 * SystemTimeToVariantTime [OLEAUT32.184]
1297 * Convert a System format date and time into variant VT_DATE format.
1300 * lpSt [I] System format date and time
1301 * pDateOut [O] Destination for VT_DATE format date
1304 * Success: TRUE. *pDateOut contains the converted value.
1305 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1307 INT WINAPI
SystemTimeToVariantTime(LPSYSTEMTIME lpSt
, double *pDateOut
)
1311 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt
, lpSt
->wDay
, lpSt
->wMonth
,
1312 lpSt
->wYear
, lpSt
->wHour
, lpSt
->wMinute
, lpSt
->wSecond
, pDateOut
);
1314 if (lpSt
->wMonth
> 12)
1318 return VarDateFromUdate(&ud
, 0, pDateOut
) == S_OK
;
1321 /***********************************************************************
1322 * VariantTimeToSystemTime [OLEAUT32.185]
1324 * Convert a variant VT_DATE into a System format date and time.
1327 * datein [I] Variant VT_DATE format date
1328 * lpSt [O] Destination for System format date and time
1331 * Success: TRUE. *lpSt contains the converted value.
1332 * Failure: FALSE, if dateIn is too large or small.
1334 INT WINAPI
VariantTimeToSystemTime(double dateIn
, LPSYSTEMTIME lpSt
)
1338 TRACE("(%g,%p)\n", dateIn
, lpSt
);
1340 if (FAILED(VarUdateFromDate(dateIn
, 0, &ud
)))
1347 /***********************************************************************
1348 * VarDateFromUdateEx [OLEAUT32.319]
1350 * Convert an unpacked format date and time to a variant VT_DATE.
1353 * pUdateIn [I] Unpacked format date and time to convert
1354 * lcid [I] Locale identifier for the conversion
1355 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1356 * pDateOut [O] Destination for variant VT_DATE.
1359 * Success: S_OK. *pDateOut contains the converted value.
1360 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1362 HRESULT WINAPI
VarDateFromUdateEx(UDATE
*pUdateIn
, LCID lcid
, ULONG dwFlags
, DATE
*pDateOut
)
1367 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn
,
1368 pUdateIn
->st
.wMonth
, pUdateIn
->st
.wDay
, pUdateIn
->st
.wYear
,
1369 pUdateIn
->st
.wHour
, pUdateIn
->st
.wMinute
, pUdateIn
->st
.wSecond
,
1370 pUdateIn
->st
.wMilliseconds
, pUdateIn
->st
.wDayOfWeek
,
1371 pUdateIn
->wDayOfYear
, lcid
, dwFlags
, pDateOut
);
1373 if (lcid
!= MAKELCID(MAKELANGID(LANG_ENGLISH
, SUBLANG_ENGLISH_US
), SORT_DEFAULT
))
1374 FIXME("lcid possibly not handled, treating as en-us\n");
1378 if (dwFlags
& VAR_VALIDDATE
)
1379 WARN("Ignoring VAR_VALIDDATE\n");
1381 if (FAILED(VARIANT_RollUdate(&ud
)))
1382 return E_INVALIDARG
;
1385 dateVal
= VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud
.st
.wYear
, ud
.st
.wMonth
, ud
.st
.wDay
));
1388 dateVal
+= ud
.st
.wHour
/ 24.0;
1389 dateVal
+= ud
.st
.wMinute
/ 1440.0;
1390 dateVal
+= ud
.st
.wSecond
/ 86400.0;
1392 TRACE("Returning %g\n", dateVal
);
1393 *pDateOut
= dateVal
;
1397 /***********************************************************************
1398 * VarDateFromUdate [OLEAUT32.330]
1400 * Convert an unpacked format date and time to a variant VT_DATE.
1403 * pUdateIn [I] Unpacked format date and time to convert
1404 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1405 * pDateOut [O] Destination for variant VT_DATE.
1408 * Success: S_OK. *pDateOut contains the converted value.
1409 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1412 * This function uses the United States English locale for the conversion. Use
1413 * VarDateFromUdateEx() for alternate locales.
1415 HRESULT WINAPI
VarDateFromUdate(UDATE
*pUdateIn
, ULONG dwFlags
, DATE
*pDateOut
)
1417 LCID lcid
= MAKELCID(MAKELANGID(LANG_ENGLISH
, SUBLANG_ENGLISH_US
), SORT_DEFAULT
);
1419 return VarDateFromUdateEx(pUdateIn
, lcid
, dwFlags
, pDateOut
);
1422 /***********************************************************************
1423 * VarUdateFromDate [OLEAUT32.331]
1425 * Convert a variant VT_DATE into an unpacked format date and time.
1428 * datein [I] Variant VT_DATE format date
1429 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1430 * lpUdate [O] Destination for unpacked format date and time
1433 * Success: S_OK. *lpUdate contains the converted value.
1434 * Failure: E_INVALIDARG, if dateIn is too large or small.
1436 HRESULT WINAPI
VarUdateFromDate(DATE dateIn
, ULONG dwFlags
, UDATE
*lpUdate
)
1438 /* Cumulative totals of days per month */
1439 static const USHORT cumulativeDays
[] =
1441 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1443 double datePart
, timePart
;
1446 TRACE("(%g,0x%08x,%p)\n", dateIn
, dwFlags
, lpUdate
);
1448 if (dateIn
<= (DATE_MIN
- 1.0) || dateIn
>= (DATE_MAX
+ 1.0))
1449 return E_INVALIDARG
;
1451 datePart
= dateIn
< 0.0 ? ceil(dateIn
) : floor(dateIn
);
1452 /* Compensate for int truncation (always downwards) */
1453 timePart
= dateIn
- datePart
+ 0.00000000001;
1454 if (timePart
>= 1.0)
1455 timePart
-= 0.00000000001;
1458 julianDays
= VARIANT_JulianFromDate(dateIn
);
1459 VARIANT_DMYFromJulian(julianDays
, &lpUdate
->st
.wYear
, &lpUdate
->st
.wMonth
,
1462 datePart
= (datePart
+ 1.5) / 7.0;
1463 lpUdate
->st
.wDayOfWeek
= (datePart
- floor(datePart
)) * 7;
1464 if (lpUdate
->st
.wDayOfWeek
== 0)
1465 lpUdate
->st
.wDayOfWeek
= 5;
1466 else if (lpUdate
->st
.wDayOfWeek
== 1)
1467 lpUdate
->st
.wDayOfWeek
= 6;
1469 lpUdate
->st
.wDayOfWeek
-= 2;
1471 if (lpUdate
->st
.wMonth
> 2 && IsLeapYear(lpUdate
->st
.wYear
))
1472 lpUdate
->wDayOfYear
= 1; /* After February, in a leap year */
1474 lpUdate
->wDayOfYear
= 0;
1476 lpUdate
->wDayOfYear
+= cumulativeDays
[lpUdate
->st
.wMonth
];
1477 lpUdate
->wDayOfYear
+= lpUdate
->st
.wDay
;
1481 lpUdate
->st
.wHour
= timePart
;
1482 timePart
-= lpUdate
->st
.wHour
;
1484 lpUdate
->st
.wMinute
= timePart
;
1485 timePart
-= lpUdate
->st
.wMinute
;
1487 lpUdate
->st
.wSecond
= timePart
;
1488 timePart
-= lpUdate
->st
.wSecond
;
1489 lpUdate
->st
.wMilliseconds
= 0;
1492 /* Round the milliseconds, adjusting the time/date forward if needed */
1493 if (lpUdate
->st
.wSecond
< 59)
1494 lpUdate
->st
.wSecond
++;
1497 lpUdate
->st
.wSecond
= 0;
1498 if (lpUdate
->st
.wMinute
< 59)
1499 lpUdate
->st
.wMinute
++;
1502 lpUdate
->st
.wMinute
= 0;
1503 if (lpUdate
->st
.wHour
< 23)
1504 lpUdate
->st
.wHour
++;
1507 lpUdate
->st
.wHour
= 0;
1508 /* Roll over a whole day */
1509 if (++lpUdate
->st
.wDay
> 28)
1510 VARIANT_RollUdate(lpUdate
);
1518 #define GET_NUMBER_TEXT(fld,name) \
1520 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1521 WARN("buffer too small for " #fld "\n"); \
1523 if (buff[0]) lpChars->name = buff[0]; \
1524 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1526 /* Get the valid number characters for an lcid */
1527 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS
*lpChars
, LCID lcid
, DWORD dwFlags
)
1529 static const VARIANT_NUMBER_CHARS defaultChars
= { '-','+','.',',','$',0,'.',',' };
1530 static CRITICAL_SECTION csLastChars
= { NULL
, -1, 0, 0, 0, 0 };
1531 static VARIANT_NUMBER_CHARS lastChars
;
1532 static LCID lastLcid
= -1;
1533 static DWORD lastFlags
= 0;
1534 LCTYPE lctype
= dwFlags
& LOCALE_NOUSEROVERRIDE
;
1537 /* To make caching thread-safe, a critical section is needed */
1538 EnterCriticalSection(&csLastChars
);
1540 /* Asking for default locale entries is very expensive: It is a registry
1541 server call. So cache one locally, as Microsoft does it too */
1542 if(lcid
== lastLcid
&& dwFlags
== lastFlags
)
1544 memcpy(lpChars
, &lastChars
, sizeof(defaultChars
));
1545 LeaveCriticalSection(&csLastChars
);
1549 memcpy(lpChars
, &defaultChars
, sizeof(defaultChars
));
1550 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN
, cNegativeSymbol
);
1551 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN
, cPositiveSymbol
);
1552 GET_NUMBER_TEXT(LOCALE_SDECIMAL
, cDecimalPoint
);
1553 GET_NUMBER_TEXT(LOCALE_STHOUSAND
, cDigitSeparator
);
1554 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP
, cCurrencyDecimalPoint
);
1555 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP
, cCurrencyDigitSeparator
);
1557 /* Local currency symbols are often 2 characters */
1558 lpChars
->cCurrencyLocal2
= '\0';
1559 switch(GetLocaleInfoW(lcid
, lctype
|LOCALE_SCURRENCY
, buff
, sizeof(buff
)/sizeof(WCHAR
)))
1561 case 3: lpChars
->cCurrencyLocal2
= buff
[1]; /* Fall through */
1562 case 2: lpChars
->cCurrencyLocal
= buff
[0];
1564 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1566 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid
, lpChars
->cCurrencyLocal
,
1567 lpChars
->cCurrencyLocal2
, lpChars
->cCurrencyLocal
, lpChars
->cCurrencyLocal2
);
1569 memcpy(&lastChars
, lpChars
, sizeof(defaultChars
));
1571 lastFlags
= dwFlags
;
1572 LeaveCriticalSection(&csLastChars
);
1575 /* Number Parsing States */
1576 #define B_PROCESSING_EXPONENT 0x1
1577 #define B_NEGATIVE_EXPONENT 0x2
1578 #define B_EXPONENT_START 0x4
1579 #define B_INEXACT_ZEROS 0x8
1580 #define B_LEADING_ZERO 0x10
1581 #define B_PROCESSING_HEX 0x20
1582 #define B_PROCESSING_OCT 0x40
1584 /**********************************************************************
1585 * VarParseNumFromStr [OLEAUT32.46]
1587 * Parse a string containing a number into a NUMPARSE structure.
1590 * lpszStr [I] String to parse number from
1591 * lcid [I] Locale Id for the conversion
1592 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1593 * pNumprs [I/O] Destination for parsed number
1594 * rgbDig [O] Destination for digits read in
1597 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1599 * Failure: E_INVALIDARG, if any parameter is invalid.
1600 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1602 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1605 * pNumprs must have the following fields set:
1606 * cDig: Set to the size of rgbDig.
1607 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1611 * - I am unsure if this function should parse non-arabic (e.g. Thai)
1612 * numerals, so this has not been implemented.
1614 HRESULT WINAPI
VarParseNumFromStr(OLECHAR
*lpszStr
, LCID lcid
, ULONG dwFlags
,
1615 NUMPARSE
*pNumprs
, BYTE
*rgbDig
)
1617 VARIANT_NUMBER_CHARS chars
;
1619 DWORD dwState
= B_EXPONENT_START
|B_INEXACT_ZEROS
;
1620 int iMaxDigits
= sizeof(rgbTmp
) / sizeof(BYTE
);
1623 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr
), lcid
, dwFlags
, pNumprs
, rgbDig
);
1625 if (!pNumprs
|| !rgbDig
)
1626 return E_INVALIDARG
;
1628 if (pNumprs
->cDig
< iMaxDigits
)
1629 iMaxDigits
= pNumprs
->cDig
;
1632 pNumprs
->dwOutFlags
= 0;
1633 pNumprs
->cchUsed
= 0;
1634 pNumprs
->nBaseShift
= 0;
1635 pNumprs
->nPwr10
= 0;
1638 return DISP_E_TYPEMISMATCH
;
1640 VARIANT_GetLocalisedNumberChars(&chars
, lcid
, dwFlags
);
1642 /* First consume all the leading symbols and space from the string */
1645 if (pNumprs
->dwInFlags
& NUMPRS_LEADING_WHITE
&& isspaceW(*lpszStr
))
1647 pNumprs
->dwOutFlags
|= NUMPRS_LEADING_WHITE
;
1652 } while (isspaceW(*lpszStr
));
1654 else if (pNumprs
->dwInFlags
& NUMPRS_LEADING_PLUS
&&
1655 *lpszStr
== chars
.cPositiveSymbol
&&
1656 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_PLUS
))
1658 pNumprs
->dwOutFlags
|= NUMPRS_LEADING_PLUS
;
1662 else if (pNumprs
->dwInFlags
& NUMPRS_LEADING_MINUS
&&
1663 *lpszStr
== chars
.cNegativeSymbol
&&
1664 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_MINUS
))
1666 pNumprs
->dwOutFlags
|= (NUMPRS_LEADING_MINUS
|NUMPRS_NEG
);
1670 else if (pNumprs
->dwInFlags
& NUMPRS_CURRENCY
&&
1671 !(pNumprs
->dwOutFlags
& NUMPRS_CURRENCY
) &&
1672 *lpszStr
== chars
.cCurrencyLocal
&&
1673 (!chars
.cCurrencyLocal2
|| lpszStr
[1] == chars
.cCurrencyLocal2
))
1675 pNumprs
->dwOutFlags
|= NUMPRS_CURRENCY
;
1678 /* Only accept currency characters */
1679 chars
.cDecimalPoint
= chars
.cCurrencyDecimalPoint
;
1680 chars
.cDigitSeparator
= chars
.cCurrencyDigitSeparator
;
1682 else if (pNumprs
->dwInFlags
& NUMPRS_PARENS
&& *lpszStr
== '(' &&
1683 !(pNumprs
->dwOutFlags
& NUMPRS_PARENS
))
1685 pNumprs
->dwOutFlags
|= NUMPRS_PARENS
;
1693 if (!(pNumprs
->dwOutFlags
& NUMPRS_CURRENCY
))
1695 /* Only accept non-currency characters */
1696 chars
.cCurrencyDecimalPoint
= chars
.cDecimalPoint
;
1697 chars
.cCurrencyDigitSeparator
= chars
.cDigitSeparator
;
1700 if ((*lpszStr
== '&' && (*(lpszStr
+1) == 'H' || *(lpszStr
+1) == 'h')) &&
1701 pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1703 dwState
|= B_PROCESSING_HEX
;
1704 pNumprs
->dwOutFlags
|= NUMPRS_HEX_OCT
;
1708 else if ((*lpszStr
== '&' && (*(lpszStr
+1) == 'O' || *(lpszStr
+1) == 'o')) &&
1709 pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1711 dwState
|= B_PROCESSING_OCT
;
1712 pNumprs
->dwOutFlags
|= NUMPRS_HEX_OCT
;
1717 /* Strip Leading zeros */
1718 while (*lpszStr
== '0')
1720 dwState
|= B_LEADING_ZERO
;
1727 if (isdigitW(*lpszStr
))
1729 if (dwState
& B_PROCESSING_EXPONENT
)
1731 int exponentSize
= 0;
1732 if (dwState
& B_EXPONENT_START
)
1734 if (!isdigitW(*lpszStr
))
1735 break; /* No exponent digits - invalid */
1736 while (*lpszStr
== '0')
1738 /* Skip leading zero's in the exponent */
1744 while (isdigitW(*lpszStr
))
1747 exponentSize
+= *lpszStr
- '0';
1751 if (dwState
& B_NEGATIVE_EXPONENT
)
1752 exponentSize
= -exponentSize
;
1753 /* Add the exponent into the powers of 10 */
1754 pNumprs
->nPwr10
+= exponentSize
;
1755 dwState
&= ~(B_PROCESSING_EXPONENT
|B_EXPONENT_START
);
1756 lpszStr
--; /* back up to allow processing of next char */
1760 if ((pNumprs
->cDig
>= iMaxDigits
) && !(dwState
& B_PROCESSING_HEX
)
1761 && !(dwState
& B_PROCESSING_OCT
))
1763 pNumprs
->dwOutFlags
|= NUMPRS_INEXACT
;
1765 if (*lpszStr
!= '0')
1766 dwState
&= ~B_INEXACT_ZEROS
; /* Inexact number with non-trailing zeros */
1768 /* This digit can't be represented, but count it in nPwr10 */
1769 if (pNumprs
->dwOutFlags
& NUMPRS_DECIMAL
)
1776 if ((dwState
& B_PROCESSING_OCT
) && ((*lpszStr
== '8') || (*lpszStr
== '9'))) {
1777 return DISP_E_TYPEMISMATCH
;
1780 if (pNumprs
->dwOutFlags
& NUMPRS_DECIMAL
)
1781 pNumprs
->nPwr10
--; /* Count decimal points in nPwr10 */
1783 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- '0';
1789 else if (*lpszStr
== chars
.cDigitSeparator
&& pNumprs
->dwInFlags
& NUMPRS_THOUSANDS
)
1791 pNumprs
->dwOutFlags
|= NUMPRS_THOUSANDS
;
1794 else if (*lpszStr
== chars
.cDecimalPoint
&&
1795 pNumprs
->dwInFlags
& NUMPRS_DECIMAL
&&
1796 !(pNumprs
->dwOutFlags
& (NUMPRS_DECIMAL
|NUMPRS_EXPONENT
)))
1798 pNumprs
->dwOutFlags
|= NUMPRS_DECIMAL
;
1801 /* If we have no digits so far, skip leading zeros */
1804 while (lpszStr
[1] == '0')
1806 dwState
|= B_LEADING_ZERO
;
1813 else if (((*lpszStr
>= 'a' && *lpszStr
<= 'f') ||
1814 (*lpszStr
>= 'A' && *lpszStr
<= 'F')) &&
1815 dwState
& B_PROCESSING_HEX
)
1817 if (pNumprs
->cDig
>= iMaxDigits
)
1819 return DISP_E_OVERFLOW
;
1823 if (*lpszStr
>= 'a')
1824 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- 'a' + 10;
1826 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- 'A' + 10;
1831 else if ((*lpszStr
== 'e' || *lpszStr
== 'E') &&
1832 pNumprs
->dwInFlags
& NUMPRS_EXPONENT
&&
1833 !(pNumprs
->dwOutFlags
& NUMPRS_EXPONENT
))
1835 dwState
|= B_PROCESSING_EXPONENT
;
1836 pNumprs
->dwOutFlags
|= NUMPRS_EXPONENT
;
1839 else if (dwState
& B_PROCESSING_EXPONENT
&& *lpszStr
== chars
.cPositiveSymbol
)
1841 cchUsed
++; /* Ignore positive exponent */
1843 else if (dwState
& B_PROCESSING_EXPONENT
&& *lpszStr
== chars
.cNegativeSymbol
)
1845 dwState
|= B_NEGATIVE_EXPONENT
;
1849 break; /* Stop at an unrecognised character */
1854 if (!pNumprs
->cDig
&& dwState
& B_LEADING_ZERO
)
1856 /* Ensure a 0 on its own gets stored */
1861 if (pNumprs
->dwOutFlags
& NUMPRS_EXPONENT
&& dwState
& B_PROCESSING_EXPONENT
)
1863 pNumprs
->cchUsed
= cchUsed
;
1864 WARN("didn't completely parse exponent\n");
1865 return DISP_E_TYPEMISMATCH
; /* Failed to completely parse the exponent */
1868 if (pNumprs
->dwOutFlags
& NUMPRS_INEXACT
)
1870 if (dwState
& B_INEXACT_ZEROS
)
1871 pNumprs
->dwOutFlags
&= ~NUMPRS_INEXACT
; /* All zeros doesn't set NUMPRS_INEXACT */
1872 } else if(pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1874 /* copy all of the digits into the output digit buffer */
1875 /* this is exactly what windows does although it also returns */
1876 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1877 memcpy(rgbDig
, rgbTmp
, pNumprs
->cDig
* sizeof(BYTE
));
1879 if (dwState
& B_PROCESSING_HEX
) {
1880 /* hex numbers have always the same format */
1882 pNumprs
->nBaseShift
=4;
1884 if (dwState
& B_PROCESSING_OCT
) {
1885 /* oct numbers have always the same format */
1887 pNumprs
->nBaseShift
=3;
1889 while (pNumprs
->cDig
> 1 && !rgbTmp
[pNumprs
->cDig
- 1])
1898 /* Remove trailing zeros from the last (whole number or decimal) part */
1899 while (pNumprs
->cDig
> 1 && !rgbTmp
[pNumprs
->cDig
- 1])
1906 if (pNumprs
->cDig
<= iMaxDigits
)
1907 pNumprs
->dwOutFlags
&= ~NUMPRS_INEXACT
; /* Ignore stripped zeros for NUMPRS_INEXACT */
1909 pNumprs
->cDig
= iMaxDigits
; /* Only return iMaxDigits worth of digits */
1911 /* Copy the digits we processed into rgbDig */
1912 memcpy(rgbDig
, rgbTmp
, pNumprs
->cDig
* sizeof(BYTE
));
1914 /* Consume any trailing symbols and space */
1917 if ((pNumprs
->dwInFlags
& NUMPRS_TRAILING_WHITE
) && isspaceW(*lpszStr
))
1919 pNumprs
->dwOutFlags
|= NUMPRS_TRAILING_WHITE
;
1924 } while (isspaceW(*lpszStr
));
1926 else if (pNumprs
->dwInFlags
& NUMPRS_TRAILING_PLUS
&&
1927 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_PLUS
) &&
1928 *lpszStr
== chars
.cPositiveSymbol
)
1930 pNumprs
->dwOutFlags
|= NUMPRS_TRAILING_PLUS
;
1934 else if (pNumprs
->dwInFlags
& NUMPRS_TRAILING_MINUS
&&
1935 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_MINUS
) &&
1936 *lpszStr
== chars
.cNegativeSymbol
)
1938 pNumprs
->dwOutFlags
|= (NUMPRS_TRAILING_MINUS
|NUMPRS_NEG
);
1942 else if (pNumprs
->dwInFlags
& NUMPRS_PARENS
&& *lpszStr
== ')' &&
1943 pNumprs
->dwOutFlags
& NUMPRS_PARENS
)
1947 pNumprs
->dwOutFlags
|= NUMPRS_NEG
;
1953 if (pNumprs
->dwOutFlags
& NUMPRS_PARENS
&& !(pNumprs
->dwOutFlags
& NUMPRS_NEG
))
1955 pNumprs
->cchUsed
= cchUsed
;
1956 return DISP_E_TYPEMISMATCH
; /* Opening parenthesis not matched */
1959 if (pNumprs
->dwInFlags
& NUMPRS_USE_ALL
&& *lpszStr
!= '\0')
1960 return DISP_E_TYPEMISMATCH
; /* Not all chars were consumed */
1963 return DISP_E_TYPEMISMATCH
; /* No Number found */
1965 pNumprs
->cchUsed
= cchUsed
;
1969 /* VTBIT flags indicating an integer value */
1970 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1971 /* VTBIT flags indicating a real number value */
1972 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1974 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1975 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1976 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1977 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1979 /**********************************************************************
1980 * VarNumFromParseNum [OLEAUT32.47]
1982 * Convert a NUMPARSE structure into a numeric Variant type.
1985 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1986 * rgbDig [I] Source for the numbers digits
1987 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1988 * pVarDst [O] Destination for the converted Variant value.
1991 * Success: S_OK. pVarDst contains the converted value.
1992 * Failure: E_INVALIDARG, if any parameter is invalid.
1993 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1996 * - The smallest favoured type present in dwVtBits that can represent the
1997 * number in pNumprs without losing precision is used.
1998 * - Signed types are preferred over unsigned types of the same size.
1999 * - Preferred types in order are: integer, float, double, currency then decimal.
2000 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
2001 * for details of the rounding method.
2002 * - pVarDst is not cleared before the result is stored in it.
2003 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
2004 * design?): If some other VTBIT's for integers are specified together
2005 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
2006 * the number to the smallest requested integer truncating this way the
2007 * number. Wine doesn't implement this "feature" (yet?).
2009 HRESULT WINAPI
VarNumFromParseNum(NUMPARSE
*pNumprs
, BYTE
*rgbDig
,
2010 ULONG dwVtBits
, VARIANT
*pVarDst
)
2012 /* Scale factors and limits for double arithmetic */
2013 static const double dblMultipliers
[11] = {
2014 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2015 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2017 static const double dblMinimums
[11] = {
2018 R8_MIN
, R8_MIN
*10.0, R8_MIN
*100.0, R8_MIN
*1000.0, R8_MIN
*10000.0,
2019 R8_MIN
*100000.0, R8_MIN
*1000000.0, R8_MIN
*10000000.0,
2020 R8_MIN
*100000000.0, R8_MIN
*1000000000.0, R8_MIN
*10000000000.0
2022 static const double dblMaximums
[11] = {
2023 R8_MAX
, R8_MAX
/10.0, R8_MAX
/100.0, R8_MAX
/1000.0, R8_MAX
/10000.0,
2024 R8_MAX
/100000.0, R8_MAX
/1000000.0, R8_MAX
/10000000.0,
2025 R8_MAX
/100000000.0, R8_MAX
/1000000000.0, R8_MAX
/10000000000.0
2028 int wholeNumberDigits
, fractionalDigits
, divisor10
= 0, multiplier10
= 0;
2030 TRACE("(%p,%p,0x%x,%p)\n", pNumprs
, rgbDig
, dwVtBits
, pVarDst
);
2032 if (pNumprs
->nBaseShift
)
2034 /* nBaseShift indicates a hex or octal number */
2039 /* Convert the hex or octal number string into a UI64 */
2040 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2042 if (ul64
> ((UI8_MAX
>>pNumprs
->nBaseShift
) - rgbDig
[i
]))
2044 TRACE("Overflow multiplying digits\n");
2045 return DISP_E_OVERFLOW
;
2047 ul64
= (ul64
<<pNumprs
->nBaseShift
) + rgbDig
[i
];
2050 /* also make a negative representation */
2053 /* Try signed and unsigned types in size order */
2054 if (dwVtBits
& VTBIT_I1
&& FITS_AS_I1(ul64
))
2056 V_VT(pVarDst
) = VT_I1
;
2057 V_I1(pVarDst
) = ul64
;
2060 else if (dwVtBits
& VTBIT_UI1
&& FITS_AS_I1(ul64
))
2062 V_VT(pVarDst
) = VT_UI1
;
2063 V_UI1(pVarDst
) = ul64
;
2066 else if (dwVtBits
& VTBIT_I2
&& FITS_AS_I2(ul64
))
2068 V_VT(pVarDst
) = VT_I2
;
2069 V_I2(pVarDst
) = ul64
;
2072 else if (dwVtBits
& VTBIT_UI2
&& FITS_AS_I2(ul64
))
2074 V_VT(pVarDst
) = VT_UI2
;
2075 V_UI2(pVarDst
) = ul64
;
2078 else if (dwVtBits
& VTBIT_I4
&& FITS_AS_I4(ul64
))
2080 V_VT(pVarDst
) = VT_I4
;
2081 V_I4(pVarDst
) = ul64
;
2084 else if (dwVtBits
& VTBIT_UI4
&& FITS_AS_I4(ul64
))
2086 V_VT(pVarDst
) = VT_UI4
;
2087 V_UI4(pVarDst
) = ul64
;
2090 else if (dwVtBits
& VTBIT_I8
&& ((ul64
<= I8_MAX
)||(l64
>=I8_MIN
)))
2092 V_VT(pVarDst
) = VT_I8
;
2093 V_I8(pVarDst
) = ul64
;
2096 else if (dwVtBits
& VTBIT_UI8
)
2098 V_VT(pVarDst
) = VT_UI8
;
2099 V_UI8(pVarDst
) = ul64
;
2102 else if ((dwVtBits
& VTBIT_DECIMAL
) == VTBIT_DECIMAL
)
2104 V_VT(pVarDst
) = VT_DECIMAL
;
2105 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_POS
,0);
2106 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2107 DEC_LO64(&V_DECIMAL(pVarDst
)) = ul64
;
2110 else if (dwVtBits
& VTBIT_R4
&& ((ul64
<= I4_MAX
)||(l64
>= I4_MIN
)))
2112 V_VT(pVarDst
) = VT_R4
;
2114 V_R4(pVarDst
) = ul64
;
2116 V_R4(pVarDst
) = l64
;
2119 else if (dwVtBits
& VTBIT_R8
&& ((ul64
<= I4_MAX
)||(l64
>= I4_MIN
)))
2121 V_VT(pVarDst
) = VT_R8
;
2123 V_R8(pVarDst
) = ul64
;
2125 V_R8(pVarDst
) = l64
;
2129 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits
, wine_dbgstr_longlong(ul64
));
2130 return DISP_E_OVERFLOW
;
2133 /* Count the number of relevant fractional and whole digits stored,
2134 * And compute the divisor/multiplier to scale the number by.
2136 if (pNumprs
->nPwr10
< 0)
2138 if (-pNumprs
->nPwr10
>= pNumprs
->cDig
)
2140 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2141 wholeNumberDigits
= 0;
2142 fractionalDigits
= pNumprs
->cDig
;
2143 divisor10
= -pNumprs
->nPwr10
;
2147 /* An exactly represented real number e.g. 1.024 */
2148 wholeNumberDigits
= pNumprs
->cDig
+ pNumprs
->nPwr10
;
2149 fractionalDigits
= pNumprs
->cDig
- wholeNumberDigits
;
2150 divisor10
= pNumprs
->cDig
- wholeNumberDigits
;
2153 else if (pNumprs
->nPwr10
== 0)
2155 /* An exactly represented whole number e.g. 1024 */
2156 wholeNumberDigits
= pNumprs
->cDig
;
2157 fractionalDigits
= 0;
2159 else /* pNumprs->nPwr10 > 0 */
2161 /* A whole number followed by nPwr10 0's e.g. 102400 */
2162 wholeNumberDigits
= pNumprs
->cDig
;
2163 fractionalDigits
= 0;
2164 multiplier10
= pNumprs
->nPwr10
;
2167 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2168 pNumprs
->cDig
, pNumprs
->nPwr10
, wholeNumberDigits
, fractionalDigits
,
2169 multiplier10
, divisor10
);
2171 if (dwVtBits
& (INTEGER_VTBITS
|VTBIT_DECIMAL
) &&
2172 (!fractionalDigits
|| !(dwVtBits
& (REAL_VTBITS
|VTBIT_CY
|VTBIT_DECIMAL
))))
2174 /* We have one or more integer output choices, and either:
2175 * 1) An integer input value, or
2176 * 2) A real number input value but no floating output choices.
2177 * Alternately, we have a DECIMAL output available and an integer input.
2179 * So, place the integer value into pVarDst, using the smallest type
2180 * possible and preferring signed over unsigned types.
2182 BOOL bOverflow
= FALSE
, bNegative
;
2186 /* Convert the integer part of the number into a UI8 */
2187 for (i
= 0; i
< wholeNumberDigits
; i
++)
2189 if (ul64
> (UI8_MAX
/ 10 - rgbDig
[i
]))
2191 TRACE("Overflow multiplying digits\n");
2195 ul64
= ul64
* 10 + rgbDig
[i
];
2198 /* Account for the scale of the number */
2199 if (!bOverflow
&& multiplier10
)
2201 for (i
= 0; i
< multiplier10
; i
++)
2203 if (ul64
> (UI8_MAX
/ 10))
2205 TRACE("Overflow scaling number\n");
2213 /* If we have any fractional digits, round the value.
2214 * Note we don't have to do this if divisor10 is < 1,
2215 * because this means the fractional part must be < 0.5
2217 if (!bOverflow
&& fractionalDigits
&& divisor10
> 0)
2219 const BYTE
* fracDig
= rgbDig
+ wholeNumberDigits
;
2220 BOOL bAdjust
= FALSE
;
2222 TRACE("first decimal value is %d\n", *fracDig
);
2225 bAdjust
= TRUE
; /* > 0.5 */
2226 else if (*fracDig
== 5)
2228 for (i
= 1; i
< fractionalDigits
; i
++)
2232 bAdjust
= TRUE
; /* > 0.5 */
2236 /* If exactly 0.5, round only odd values */
2237 if (i
== fractionalDigits
&& (ul64
& 1))
2243 if (ul64
== UI8_MAX
)
2245 TRACE("Overflow after rounding\n");
2252 /* Zero is not a negative number */
2253 bNegative
= pNumprs
->dwOutFlags
& NUMPRS_NEG
&& ul64
? TRUE
: FALSE
;
2255 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64
), bNegative
);
2257 /* For negative integers, try the signed types in size order */
2258 if (!bOverflow
&& bNegative
)
2260 if (dwVtBits
& (VTBIT_I1
|VTBIT_I2
|VTBIT_I4
|VTBIT_I8
))
2262 if (dwVtBits
& VTBIT_I1
&& ul64
<= -I1_MIN
)
2264 V_VT(pVarDst
) = VT_I1
;
2265 V_I1(pVarDst
) = -ul64
;
2268 else if (dwVtBits
& VTBIT_I2
&& ul64
<= -I2_MIN
)
2270 V_VT(pVarDst
) = VT_I2
;
2271 V_I2(pVarDst
) = -ul64
;
2274 else if (dwVtBits
& VTBIT_I4
&& ul64
<= -((LONGLONG
)I4_MIN
))
2276 V_VT(pVarDst
) = VT_I4
;
2277 V_I4(pVarDst
) = -ul64
;
2280 else if (dwVtBits
& VTBIT_I8
&& ul64
<= (ULONGLONG
)I8_MAX
+ 1)
2282 V_VT(pVarDst
) = VT_I8
;
2283 V_I8(pVarDst
) = -ul64
;
2286 else if ((dwVtBits
& REAL_VTBITS
) == VTBIT_DECIMAL
)
2288 /* Decimal is only output choice left - fast path */
2289 V_VT(pVarDst
) = VT_DECIMAL
;
2290 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_NEG
,0);
2291 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2292 DEC_LO64(&V_DECIMAL(pVarDst
)) = -ul64
;
2297 else if (!bOverflow
)
2299 /* For positive integers, try signed then unsigned types in size order */
2300 if (dwVtBits
& VTBIT_I1
&& ul64
<= I1_MAX
)
2302 V_VT(pVarDst
) = VT_I1
;
2303 V_I1(pVarDst
) = ul64
;
2306 else if (dwVtBits
& VTBIT_UI1
&& ul64
<= UI1_MAX
)
2308 V_VT(pVarDst
) = VT_UI1
;
2309 V_UI1(pVarDst
) = ul64
;
2312 else if (dwVtBits
& VTBIT_I2
&& ul64
<= I2_MAX
)
2314 V_VT(pVarDst
) = VT_I2
;
2315 V_I2(pVarDst
) = ul64
;
2318 else if (dwVtBits
& VTBIT_UI2
&& ul64
<= UI2_MAX
)
2320 V_VT(pVarDst
) = VT_UI2
;
2321 V_UI2(pVarDst
) = ul64
;
2324 else if (dwVtBits
& VTBIT_I4
&& ul64
<= I4_MAX
)
2326 V_VT(pVarDst
) = VT_I4
;
2327 V_I4(pVarDst
) = ul64
;
2330 else if (dwVtBits
& VTBIT_UI4
&& ul64
<= UI4_MAX
)
2332 V_VT(pVarDst
) = VT_UI4
;
2333 V_UI4(pVarDst
) = ul64
;
2336 else if (dwVtBits
& VTBIT_I8
&& ul64
<= I8_MAX
)
2338 V_VT(pVarDst
) = VT_I8
;
2339 V_I8(pVarDst
) = ul64
;
2342 else if (dwVtBits
& VTBIT_UI8
)
2344 V_VT(pVarDst
) = VT_UI8
;
2345 V_UI8(pVarDst
) = ul64
;
2348 else if ((dwVtBits
& REAL_VTBITS
) == VTBIT_DECIMAL
)
2350 /* Decimal is only output choice left - fast path */
2351 V_VT(pVarDst
) = VT_DECIMAL
;
2352 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_POS
,0);
2353 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2354 DEC_LO64(&V_DECIMAL(pVarDst
)) = ul64
;
2360 if (dwVtBits
& REAL_VTBITS
)
2362 /* Try to put the number into a float or real */
2363 BOOL bOverflow
= FALSE
, bNegative
= pNumprs
->dwOutFlags
& NUMPRS_NEG
;
2367 /* Convert the number into a double */
2368 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2369 whole
= whole
* 10.0 + rgbDig
[i
];
2371 TRACE("Whole double value is %16.16g\n", whole
);
2373 /* Account for the scale */
2374 while (multiplier10
> 10)
2376 if (whole
> dblMaximums
[10])
2378 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
);
2382 whole
= whole
* dblMultipliers
[10];
2385 if (multiplier10
&& !bOverflow
)
2387 if (whole
> dblMaximums
[multiplier10
])
2389 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
);
2393 whole
= whole
* dblMultipliers
[multiplier10
];
2397 TRACE("Scaled double value is %16.16g\n", whole
);
2399 while (divisor10
> 10 && !bOverflow
)
2401 if (whole
< dblMinimums
[10] && whole
!= 0)
2403 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
); /* Underflow */
2407 whole
= whole
/ dblMultipliers
[10];
2410 if (divisor10
&& !bOverflow
)
2412 if (whole
< dblMinimums
[divisor10
] && whole
!= 0)
2414 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
); /* Underflow */
2418 whole
= whole
/ dblMultipliers
[divisor10
];
2421 TRACE("Final double value is %16.16g\n", whole
);
2423 if (dwVtBits
& VTBIT_R4
&&
2424 ((whole
<= R4_MAX
&& whole
>= R4_MIN
) || whole
== 0.0))
2426 TRACE("Set R4 to final value\n");
2427 V_VT(pVarDst
) = VT_R4
; /* Fits into a float */
2428 V_R4(pVarDst
) = pNumprs
->dwOutFlags
& NUMPRS_NEG
? -whole
: whole
;
2432 if (dwVtBits
& VTBIT_R8
)
2434 TRACE("Set R8 to final value\n");
2435 V_VT(pVarDst
) = VT_R8
; /* Fits into a double */
2436 V_R8(pVarDst
) = pNumprs
->dwOutFlags
& NUMPRS_NEG
? -whole
: whole
;
2440 if (dwVtBits
& VTBIT_CY
)
2442 if (SUCCEEDED(VarCyFromR8(bNegative
? -whole
: whole
, &V_CY(pVarDst
))))
2444 V_VT(pVarDst
) = VT_CY
; /* Fits into a currency */
2445 TRACE("Set CY to final value\n");
2448 TRACE("Value Overflows CY\n");
2452 if (dwVtBits
& VTBIT_DECIMAL
)
2457 DECIMAL
* pDec
= &V_DECIMAL(pVarDst
);
2459 DECIMAL_SETZERO(*pDec
);
2462 if (pNumprs
->dwOutFlags
& NUMPRS_NEG
)
2463 DEC_SIGN(pDec
) = DECIMAL_NEG
;
2465 DEC_SIGN(pDec
) = DECIMAL_POS
;
2467 /* Factor the significant digits */
2468 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2470 tmp
= (ULONG64
)DEC_LO32(pDec
) * 10 + rgbDig
[i
];
2471 carry
= (ULONG
)(tmp
>> 32);
2472 DEC_LO32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2473 tmp
= (ULONG64
)DEC_MID32(pDec
) * 10 + carry
;
2474 carry
= (ULONG
)(tmp
>> 32);
2475 DEC_MID32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2476 tmp
= (ULONG64
)DEC_HI32(pDec
) * 10 + carry
;
2477 DEC_HI32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2479 if (tmp
>> 32 & UI4_MAX
)
2481 VarNumFromParseNum_DecOverflow
:
2482 TRACE("Overflow\n");
2483 DEC_LO32(pDec
) = DEC_MID32(pDec
) = DEC_HI32(pDec
) = UI4_MAX
;
2484 return DISP_E_OVERFLOW
;
2488 /* Account for the scale of the number */
2489 while (multiplier10
> 0)
2491 tmp
= (ULONG64
)DEC_LO32(pDec
) * 10;
2492 carry
= (ULONG
)(tmp
>> 32);
2493 DEC_LO32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2494 tmp
= (ULONG64
)DEC_MID32(pDec
) * 10 + carry
;
2495 carry
= (ULONG
)(tmp
>> 32);
2496 DEC_MID32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2497 tmp
= (ULONG64
)DEC_HI32(pDec
) * 10 + carry
;
2498 DEC_HI32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2500 if (tmp
>> 32 & UI4_MAX
)
2501 goto VarNumFromParseNum_DecOverflow
;
2504 DEC_SCALE(pDec
) = divisor10
;
2506 V_VT(pVarDst
) = VT_DECIMAL
;
2509 return DISP_E_OVERFLOW
; /* No more output choices */
2512 /**********************************************************************
2513 * VarCat [OLEAUT32.318]
2515 * Concatenates one variant onto another.
2518 * left [I] First variant
2519 * right [I] Second variant
2520 * result [O] Result variant
2524 * Failure: An HRESULT error code indicating the error.
2526 HRESULT WINAPI
VarCat(LPVARIANT left
, LPVARIANT right
, LPVARIANT out
)
2528 VARTYPE leftvt
,rightvt
,resultvt
;
2530 static WCHAR str_true
[32];
2531 static WCHAR str_false
[32];
2532 static const WCHAR sz_empty
[] = {'\0'};
2533 leftvt
= V_VT(left
);
2534 rightvt
= V_VT(right
);
2536 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
2537 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), out
);
2540 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT
, IDS_FALSE
, str_false
);
2541 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT
, IDS_TRUE
, str_true
);
2544 /* when both left and right are NULL the result is NULL */
2545 if (leftvt
== VT_NULL
&& rightvt
== VT_NULL
)
2547 V_VT(out
) = VT_NULL
;
2552 resultvt
= VT_EMPTY
;
2554 /* There are many special case for errors and return types */
2555 if (leftvt
== VT_VARIANT
&& (rightvt
== VT_ERROR
||
2556 rightvt
== VT_DATE
|| rightvt
== VT_DECIMAL
))
2557 hres
= DISP_E_TYPEMISMATCH
;
2558 else if ((leftvt
== VT_I2
|| leftvt
== VT_I4
||
2559 leftvt
== VT_R4
|| leftvt
== VT_R8
||
2560 leftvt
== VT_CY
|| leftvt
== VT_BOOL
||
2561 leftvt
== VT_BSTR
|| leftvt
== VT_I1
||
2562 leftvt
== VT_UI1
|| leftvt
== VT_UI2
||
2563 leftvt
== VT_UI4
|| leftvt
== VT_I8
||
2564 leftvt
== VT_UI8
|| leftvt
== VT_INT
||
2565 leftvt
== VT_UINT
|| leftvt
== VT_EMPTY
||
2566 leftvt
== VT_NULL
|| leftvt
== VT_DATE
||
2567 leftvt
== VT_DECIMAL
|| leftvt
== VT_DISPATCH
)
2569 (rightvt
== VT_I2
|| rightvt
== VT_I4
||
2570 rightvt
== VT_R4
|| rightvt
== VT_R8
||
2571 rightvt
== VT_CY
|| rightvt
== VT_BOOL
||
2572 rightvt
== VT_BSTR
|| rightvt
== VT_I1
||
2573 rightvt
== VT_UI1
|| rightvt
== VT_UI2
||
2574 rightvt
== VT_UI4
|| rightvt
== VT_I8
||
2575 rightvt
== VT_UI8
|| rightvt
== VT_INT
||
2576 rightvt
== VT_UINT
|| rightvt
== VT_EMPTY
||
2577 rightvt
== VT_NULL
|| rightvt
== VT_DATE
||
2578 rightvt
== VT_DECIMAL
|| rightvt
== VT_DISPATCH
))
2580 else if (rightvt
== VT_ERROR
&& leftvt
< VT_VOID
)
2581 hres
= DISP_E_TYPEMISMATCH
;
2582 else if (leftvt
== VT_ERROR
&& (rightvt
== VT_DATE
||
2583 rightvt
== VT_ERROR
|| rightvt
== VT_DECIMAL
))
2584 hres
= DISP_E_TYPEMISMATCH
;
2585 else if (rightvt
== VT_DATE
|| rightvt
== VT_ERROR
||
2586 rightvt
== VT_DECIMAL
)
2587 hres
= DISP_E_BADVARTYPE
;
2588 else if (leftvt
== VT_ERROR
|| rightvt
== VT_ERROR
)
2589 hres
= DISP_E_TYPEMISMATCH
;
2590 else if (leftvt
== VT_VARIANT
)
2591 hres
= DISP_E_TYPEMISMATCH
;
2592 else if (rightvt
== VT_VARIANT
&& (leftvt
== VT_EMPTY
||
2593 leftvt
== VT_NULL
|| leftvt
== VT_I2
||
2594 leftvt
== VT_I4
|| leftvt
== VT_R4
||
2595 leftvt
== VT_R8
|| leftvt
== VT_CY
||
2596 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
2597 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
2598 leftvt
== VT_I1
|| leftvt
== VT_UI1
||
2599 leftvt
== VT_UI2
|| leftvt
== VT_UI4
||
2600 leftvt
== VT_I8
|| leftvt
== VT_UI8
||
2601 leftvt
== VT_INT
|| leftvt
== VT_UINT
))
2602 hres
= DISP_E_TYPEMISMATCH
;
2604 hres
= DISP_E_BADVARTYPE
;
2606 /* if result type is not S_OK, then no need to go further */
2609 V_VT(out
) = resultvt
;
2612 /* Else proceed with formatting inputs to strings */
2615 VARIANT bstrvar_left
, bstrvar_right
;
2616 V_VT(out
) = VT_BSTR
;
2618 VariantInit(&bstrvar_left
);
2619 VariantInit(&bstrvar_right
);
2621 /* Convert left side variant to string */
2622 if (leftvt
!= VT_BSTR
)
2624 if (leftvt
== VT_BOOL
)
2626 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2627 V_VT(&bstrvar_left
) = VT_BSTR
;
2628 if (V_BOOL(left
) == TRUE
)
2629 V_BSTR(&bstrvar_left
) = SysAllocString(str_true
);
2631 V_BSTR(&bstrvar_left
) = SysAllocString(str_false
);
2633 /* Fill with empty string for later concat with right side */
2634 else if (leftvt
== VT_NULL
)
2636 V_VT(&bstrvar_left
) = VT_BSTR
;
2637 V_BSTR(&bstrvar_left
) = SysAllocString(sz_empty
);
2641 hres
= VariantChangeTypeEx(&bstrvar_left
,left
,0,0,VT_BSTR
);
2643 VariantClear(&bstrvar_left
);
2644 VariantClear(&bstrvar_right
);
2645 if (leftvt
== VT_NULL
&& (rightvt
== VT_EMPTY
||
2646 rightvt
== VT_NULL
|| rightvt
== VT_I2
||
2647 rightvt
== VT_I4
|| rightvt
== VT_R4
||
2648 rightvt
== VT_R8
|| rightvt
== VT_CY
||
2649 rightvt
== VT_DATE
|| rightvt
== VT_BSTR
||
2650 rightvt
== VT_BOOL
|| rightvt
== VT_DECIMAL
||
2651 rightvt
== VT_I1
|| rightvt
== VT_UI1
||
2652 rightvt
== VT_UI2
|| rightvt
== VT_UI4
||
2653 rightvt
== VT_I8
|| rightvt
== VT_UI8
||
2654 rightvt
== VT_INT
|| rightvt
== VT_UINT
))
2655 return DISP_E_BADVARTYPE
;
2661 /* convert right side variant to string */
2662 if (rightvt
!= VT_BSTR
)
2664 if (rightvt
== VT_BOOL
)
2666 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2667 V_VT(&bstrvar_right
) = VT_BSTR
;
2668 if (V_BOOL(right
) == TRUE
)
2669 V_BSTR(&bstrvar_right
) = SysAllocString(str_true
);
2671 V_BSTR(&bstrvar_right
) = SysAllocString(str_false
);
2673 /* Fill with empty string for later concat with right side */
2674 else if (rightvt
== VT_NULL
)
2676 V_VT(&bstrvar_right
) = VT_BSTR
;
2677 V_BSTR(&bstrvar_right
) = SysAllocString(sz_empty
);
2681 hres
= VariantChangeTypeEx(&bstrvar_right
,right
,0,0,VT_BSTR
);
2683 VariantClear(&bstrvar_left
);
2684 VariantClear(&bstrvar_right
);
2685 if (rightvt
== VT_NULL
&& (leftvt
== VT_EMPTY
||
2686 leftvt
== VT_NULL
|| leftvt
== VT_I2
||
2687 leftvt
== VT_I4
|| leftvt
== VT_R4
||
2688 leftvt
== VT_R8
|| leftvt
== VT_CY
||
2689 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
2690 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
2691 leftvt
== VT_I1
|| leftvt
== VT_UI1
||
2692 leftvt
== VT_UI2
|| leftvt
== VT_UI4
||
2693 leftvt
== VT_I8
|| leftvt
== VT_UI8
||
2694 leftvt
== VT_INT
|| leftvt
== VT_UINT
))
2695 return DISP_E_BADVARTYPE
;
2701 /* Concat the resulting strings together */
2702 if (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
)
2703 VarBstrCat (V_BSTR(left
), V_BSTR(right
), &V_BSTR(out
));
2704 else if (leftvt
!= VT_BSTR
&& rightvt
!= VT_BSTR
)
2705 VarBstrCat (V_BSTR(&bstrvar_left
), V_BSTR(&bstrvar_right
), &V_BSTR(out
));
2706 else if (leftvt
!= VT_BSTR
&& rightvt
== VT_BSTR
)
2707 VarBstrCat (V_BSTR(&bstrvar_left
), V_BSTR(right
), &V_BSTR(out
));
2708 else if (leftvt
== VT_BSTR
&& rightvt
!= VT_BSTR
)
2709 VarBstrCat (V_BSTR(left
), V_BSTR(&bstrvar_right
), &V_BSTR(out
));
2711 VariantClear(&bstrvar_left
);
2712 VariantClear(&bstrvar_right
);
2718 /* Wrapper around VariantChangeTypeEx() which permits changing a
2719 variant with VT_RESERVED flag set. Needed by VarCmp. */
2720 static HRESULT
_VarChangeTypeExWrap (VARIANTARG
* pvargDest
,
2721 VARIANTARG
* pvargSrc
, LCID lcid
, USHORT wFlags
, VARTYPE vt
)
2726 flags
= V_VT(pvargSrc
) & ~VT_TYPEMASK
;
2727 V_VT(pvargSrc
) &= ~VT_RESERVED
;
2728 res
= VariantChangeTypeEx(pvargDest
,pvargSrc
,lcid
,wFlags
,vt
);
2729 V_VT(pvargSrc
) |= flags
;
2734 /**********************************************************************
2735 * VarCmp [OLEAUT32.176]
2737 * Compare two variants.
2740 * left [I] First variant
2741 * right [I] Second variant
2742 * lcid [I] LCID (locale identifier) for the comparison
2743 * flags [I] Flags to be used in the comparison:
2744 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2745 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2748 * VARCMP_LT: left variant is less than right variant.
2749 * VARCMP_EQ: input variants are equal.
2750 * VARCMP_GT: left variant is greater than right variant.
2751 * VARCMP_NULL: either one of the input variants is NULL.
2752 * Failure: An HRESULT error code indicating the error.
2755 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2756 * UI8 and UINT as input variants. INT is accepted only as left variant.
2758 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2759 * an ERROR variant will trigger an error.
2761 * Both input variants can have VT_RESERVED flag set which is ignored
2762 * unless one and only one of the variants is a BSTR and the other one
2763 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2764 * different meaning:
2765 * - BSTR and other: BSTR is always greater than the other variant.
2766 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2767 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2768 * comparison will take place else the BSTR is always greater.
2769 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2770 * variant is ignored and the return value depends only on the sign
2771 * of the BSTR if it is a number else the BSTR is always greater. A
2772 * positive BSTR is greater, a negative one is smaller than the other
2776 * VarBstrCmp for the lcid and flags usage.
2778 HRESULT WINAPI
VarCmp(LPVARIANT left
, LPVARIANT right
, LCID lcid
, DWORD flags
)
2780 VARTYPE lvt
, rvt
, vt
;
2785 TRACE("(%p->(%s%s),%p->(%s%s),0x%08x,0x%08x)\n", left
, debugstr_VT(left
),
2786 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), lcid
, flags
);
2788 lvt
= V_VT(left
) & VT_TYPEMASK
;
2789 rvt
= V_VT(right
) & VT_TYPEMASK
;
2790 xmask
= (1 << lvt
) | (1 << rvt
);
2792 /* If we have any flag set except VT_RESERVED bail out.
2793 Same for the left input variant type > VT_INT and for the
2794 right input variant type > VT_I8. Yes, VT_INT is only supported
2795 as left variant. Go figure */
2796 if (((V_VT(left
) | V_VT(right
)) & ~VT_TYPEMASK
& ~VT_RESERVED
) ||
2797 lvt
> VT_INT
|| rvt
> VT_I8
) {
2798 return DISP_E_BADVARTYPE
;
2801 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2802 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2803 if (rvt
== VT_INT
|| xmask
& (VTBIT_I1
| VTBIT_UI2
| VTBIT_UI4
| VTBIT_UI8
|
2804 VTBIT_DISPATCH
| VTBIT_VARIANT
| VTBIT_UNKNOWN
| VTBIT_15
))
2805 return DISP_E_TYPEMISMATCH
;
2807 /* If both variants are VT_ERROR return VARCMP_EQ */
2808 if (xmask
== VTBIT_ERROR
)
2810 else if (xmask
& VTBIT_ERROR
)
2811 return DISP_E_TYPEMISMATCH
;
2813 if (xmask
& VTBIT_NULL
)
2819 /* Two BSTRs, ignore VT_RESERVED */
2820 if (xmask
== VTBIT_BSTR
)
2821 return VarBstrCmp(V_BSTR(left
), V_BSTR(right
), lcid
, flags
);
2823 /* A BSTR and an other variant; we have to take care of VT_RESERVED */
2824 if (xmask
& VTBIT_BSTR
) {
2825 VARIANT
*bstrv
, *nonbv
;
2829 /* Swap the variants so the BSTR is always on the left */
2830 if (lvt
== VT_BSTR
) {
2841 /* BSTR and EMPTY: ignore VT_RESERVED */
2842 if (nonbvt
== VT_EMPTY
)
2843 rc
= (!V_BSTR(bstrv
) || !*V_BSTR(bstrv
)) ? VARCMP_EQ
: VARCMP_GT
;
2845 VARTYPE breserv
= V_VT(bstrv
) & ~VT_TYPEMASK
;
2846 VARTYPE nreserv
= V_VT(nonbv
) & ~VT_TYPEMASK
;
2848 if (!breserv
&& !nreserv
)
2849 /* No VT_RESERVED set ==> BSTR always greater */
2851 else if (breserv
&& !nreserv
) {
2852 /* BSTR has VT_RESERVED set. Do a string comparison */
2853 rc
= VariantChangeTypeEx(&rv
,nonbv
,lcid
,0,VT_BSTR
);
2856 rc
= VarBstrCmp(V_BSTR(bstrv
), V_BSTR(&rv
), lcid
, flags
);
2858 } else if (V_BSTR(bstrv
) && *V_BSTR(bstrv
)) {
2859 /* Non NULL nor empty BSTR */
2860 /* If the BSTR is not a number the BSTR is greater */
2861 rc
= _VarChangeTypeExWrap(&lv
,bstrv
,lcid
,0,VT_R8
);
2864 else if (breserv
&& nreserv
)
2865 /* FIXME: This is strange: with both VT_RESERVED set it
2866 looks like the result depends only on the sign of
2868 rc
= (V_R8(&lv
) >= 0) ? VARCMP_GT
: VARCMP_LT
;
2870 /* Numeric comparison, will be handled below.
2871 VARCMP_NULL used only to break out. */
2876 /* Empty or NULL BSTR */
2879 /* Fixup the return code if we swapped left and right */
2881 if (rc
== VARCMP_GT
)
2883 else if (rc
== VARCMP_LT
)
2886 if (rc
!= VARCMP_NULL
)
2890 if (xmask
& VTBIT_DECIMAL
)
2892 else if (xmask
& VTBIT_BSTR
)
2894 else if (xmask
& VTBIT_R4
)
2896 else if (xmask
& (VTBIT_R8
| VTBIT_DATE
))
2898 else if (xmask
& VTBIT_CY
)
2904 /* Coerce the variants */
2905 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2906 if (rc
== DISP_E_OVERFLOW
&& vt
!= VT_R8
) {
2907 /* Overflow, change to R8 */
2909 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2913 rc
= _VarChangeTypeExWrap(&rv
,right
,lcid
,0,vt
);
2914 if (rc
== DISP_E_OVERFLOW
&& vt
!= VT_R8
) {
2915 /* Overflow, change to R8 */
2917 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2920 rc
= _VarChangeTypeExWrap(&rv
,right
,lcid
,0,vt
);
2925 #define _VARCMP(a,b) \
2926 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2930 return VarCyCmp(V_CY(&lv
), V_CY(&rv
));
2932 return VarDecCmp(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
));
2934 return _VARCMP(V_I8(&lv
), V_I8(&rv
));
2936 return _VARCMP(V_R4(&lv
), V_R4(&rv
));
2938 return _VARCMP(V_R8(&lv
), V_R8(&rv
));
2940 /* We should never get here */
2946 static HRESULT
VARIANT_FetchDispatchValue(LPVARIANT pvDispatch
, LPVARIANT pValue
)
2949 static DISPPARAMS emptyParams
= { NULL
, NULL
, 0, 0 };
2951 if ((V_VT(pvDispatch
) & VT_TYPEMASK
) == VT_DISPATCH
) {
2952 if (NULL
== V_DISPATCH(pvDispatch
)) return DISP_E_TYPEMISMATCH
;
2953 hres
= IDispatch_Invoke(V_DISPATCH(pvDispatch
), DISPID_VALUE
, &IID_NULL
,
2954 LOCALE_USER_DEFAULT
, DISPATCH_PROPERTYGET
, &emptyParams
, pValue
,
2957 hres
= DISP_E_TYPEMISMATCH
;
2962 /**********************************************************************
2963 * VarAnd [OLEAUT32.142]
2965 * Computes the logical AND of two variants.
2968 * left [I] First variant
2969 * right [I] Second variant
2970 * result [O] Result variant
2974 * Failure: An HRESULT error code indicating the error.
2976 HRESULT WINAPI
VarAnd(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
2978 HRESULT hres
= S_OK
;
2979 VARTYPE resvt
= VT_EMPTY
;
2980 VARTYPE leftvt
,rightvt
;
2981 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
2982 VARIANT varLeft
, varRight
;
2983 VARIANT tempLeft
, tempRight
;
2985 VariantInit(&varLeft
);
2986 VariantInit(&varRight
);
2987 VariantInit(&tempLeft
);
2988 VariantInit(&tempRight
);
2990 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
2991 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
2993 /* Handle VT_DISPATCH by storing and taking address of returned value */
2994 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
2996 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
2997 if (FAILED(hres
)) goto VarAnd_Exit
;
3000 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3002 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3003 if (FAILED(hres
)) goto VarAnd_Exit
;
3007 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3008 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3009 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3010 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3012 if (leftExtraFlags
!= rightExtraFlags
)
3014 hres
= DISP_E_BADVARTYPE
;
3017 ExtraFlags
= leftExtraFlags
;
3019 /* Native VarAnd always returns an error when using extra
3020 * flags or if the variant combination is I8 and INT.
3022 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
3023 (leftvt
== VT_INT
&& rightvt
== VT_I8
) ||
3026 hres
= DISP_E_BADVARTYPE
;
3030 /* Determine return type */
3031 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
3033 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
3034 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
3035 leftvt
== VT_INT
|| rightvt
== VT_INT
||
3036 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
3037 leftvt
== VT_R4
|| rightvt
== VT_R4
||
3038 leftvt
== VT_R8
|| rightvt
== VT_R8
||
3039 leftvt
== VT_CY
|| rightvt
== VT_CY
||
3040 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
3041 leftvt
== VT_I1
|| rightvt
== VT_I1
||
3042 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
3043 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
3044 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
3045 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3047 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
||
3048 leftvt
== VT_I2
|| rightvt
== VT_I2
||
3049 leftvt
== VT_EMPTY
|| rightvt
== VT_EMPTY
)
3050 if ((leftvt
== VT_NULL
&& rightvt
== VT_UI1
) ||
3051 (leftvt
== VT_UI1
&& rightvt
== VT_NULL
) ||
3052 (leftvt
== VT_UI1
&& rightvt
== VT_UI1
))
3056 else if (leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3057 (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
))
3059 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
||
3060 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
3064 hres
= DISP_E_BADVARTYPE
;
3068 if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3071 * Special cases for when left variant is VT_NULL
3072 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3074 if (leftvt
== VT_NULL
)
3079 case VT_I1
: if (V_I1(right
)) resvt
= VT_NULL
; break;
3080 case VT_UI1
: if (V_UI1(right
)) resvt
= VT_NULL
; break;
3081 case VT_I2
: if (V_I2(right
)) resvt
= VT_NULL
; break;
3082 case VT_UI2
: if (V_UI2(right
)) resvt
= VT_NULL
; break;
3083 case VT_I4
: if (V_I4(right
)) resvt
= VT_NULL
; break;
3084 case VT_UI4
: if (V_UI4(right
)) resvt
= VT_NULL
; break;
3085 case VT_I8
: if (V_I8(right
)) resvt
= VT_NULL
; break;
3086 case VT_UI8
: if (V_UI8(right
)) resvt
= VT_NULL
; break;
3087 case VT_INT
: if (V_INT(right
)) resvt
= VT_NULL
; break;
3088 case VT_UINT
: if (V_UINT(right
)) resvt
= VT_NULL
; break;
3089 case VT_BOOL
: if (V_BOOL(right
)) resvt
= VT_NULL
; break;
3090 case VT_R4
: if (V_R4(right
)) resvt
= VT_NULL
; break;
3091 case VT_R8
: if (V_R8(right
)) resvt
= VT_NULL
; break;
3093 if(V_CY(right
).int64
)
3097 if (DEC_HI32(&V_DECIMAL(right
)) ||
3098 DEC_LO64(&V_DECIMAL(right
)))
3102 hres
= VarBoolFromStr(V_BSTR(right
),
3103 LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
3107 V_VT(result
) = VT_NULL
;
3110 V_VT(result
) = VT_BOOL
;
3116 V_VT(result
) = resvt
;
3120 hres
= VariantCopy(&varLeft
, left
);
3121 if (FAILED(hres
)) goto VarAnd_Exit
;
3123 hres
= VariantCopy(&varRight
, right
);
3124 if (FAILED(hres
)) goto VarAnd_Exit
;
3126 if (resvt
== VT_I4
&& V_VT(&varLeft
) == VT_UI4
)
3127 V_VT(&varLeft
) = VT_I4
; /* Don't overflow */
3132 if (V_VT(&varLeft
) == VT_BSTR
&&
3133 FAILED(VarR8FromStr(V_BSTR(&varLeft
),
3134 LOCALE_USER_DEFAULT
, 0, &d
)))
3135 hres
= VariantChangeType(&varLeft
,&varLeft
,
3136 VARIANT_LOCALBOOL
, VT_BOOL
);
3137 if (SUCCEEDED(hres
) && V_VT(&varLeft
) != resvt
)
3138 hres
= VariantChangeType(&varLeft
,&varLeft
,0,resvt
);
3139 if (FAILED(hres
)) goto VarAnd_Exit
;
3142 if (resvt
== VT_I4
&& V_VT(&varRight
) == VT_UI4
)
3143 V_VT(&varRight
) = VT_I4
; /* Don't overflow */
3148 if (V_VT(&varRight
) == VT_BSTR
&&
3149 FAILED(VarR8FromStr(V_BSTR(&varRight
),
3150 LOCALE_USER_DEFAULT
, 0, &d
)))
3151 hres
= VariantChangeType(&varRight
, &varRight
,
3152 VARIANT_LOCALBOOL
, VT_BOOL
);
3153 if (SUCCEEDED(hres
) && V_VT(&varRight
) != resvt
)
3154 hres
= VariantChangeType(&varRight
, &varRight
, 0, resvt
);
3155 if (FAILED(hres
)) goto VarAnd_Exit
;
3158 V_VT(result
) = resvt
;
3162 V_I8(result
) = V_I8(&varLeft
) & V_I8(&varRight
);
3165 V_I4(result
) = V_I4(&varLeft
) & V_I4(&varRight
);
3168 V_I2(result
) = V_I2(&varLeft
) & V_I2(&varRight
);
3171 V_UI1(result
) = V_UI1(&varLeft
) & V_UI1(&varRight
);
3174 V_BOOL(result
) = V_BOOL(&varLeft
) & V_BOOL(&varRight
);
3177 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3182 VariantClear(&varLeft
);
3183 VariantClear(&varRight
);
3184 VariantClear(&tempLeft
);
3185 VariantClear(&tempRight
);
3190 /**********************************************************************
3191 * VarAdd [OLEAUT32.141]
3196 * left [I] First variant
3197 * right [I] Second variant
3198 * result [O] Result variant
3202 * Failure: An HRESULT error code indicating the error.
3205 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3206 * UI8, INT and UINT as input variants.
3208 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3212 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3215 HRESULT WINAPI
VarAdd(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3218 VARTYPE lvt
, rvt
, resvt
, tvt
;
3220 VARIANT tempLeft
, tempRight
;
3223 /* Variant priority for coercion. Sorted from lowest to highest.
3224 VT_ERROR shows an invalid input variant type. */
3225 enum coerceprio
{ vt_EMPTY
, vt_UI1
, vt_I2
, vt_I4
, vt_I8
, vt_BSTR
,vt_R4
,
3226 vt_R8
, vt_CY
, vt_DATE
, vt_DECIMAL
, vt_DISPATCH
, vt_NULL
,
3228 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3229 static const VARTYPE prio2vt
[] = { VT_EMPTY
, VT_UI1
, VT_I2
, VT_I4
, VT_I8
, VT_BSTR
, VT_R4
,
3230 VT_R8
, VT_CY
, VT_DATE
, VT_DECIMAL
, VT_DISPATCH
,
3231 VT_NULL
, VT_ERROR
};
3233 /* Mapping for coercion from input variant to priority of result variant. */
3234 static const VARTYPE coerce
[] = {
3235 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3236 vt_EMPTY
, vt_NULL
, vt_I2
, vt_I4
, vt_R4
,
3237 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3238 vt_R8
, vt_CY
, vt_DATE
, vt_BSTR
, vt_DISPATCH
,
3239 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3240 vt_ERROR
, vt_I2
, vt_ERROR
, vt_ERROR
, vt_DECIMAL
,
3241 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3242 vt_ERROR
, vt_ERROR
, vt_UI1
, vt_ERROR
, vt_ERROR
, vt_I8
3245 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3246 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
),
3252 VariantInit(&tempLeft
);
3253 VariantInit(&tempRight
);
3255 /* Handle VT_DISPATCH by storing and taking address of returned value */
3256 if ((V_VT(left
) & VT_TYPEMASK
) != VT_NULL
&& (V_VT(right
) & VT_TYPEMASK
) != VT_NULL
)
3258 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3260 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3261 if (FAILED(hres
)) goto end
;
3264 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3266 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3267 if (FAILED(hres
)) goto end
;
3272 lvt
= V_VT(left
)&VT_TYPEMASK
;
3273 rvt
= V_VT(right
)&VT_TYPEMASK
;
3275 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3276 Same for any input variant type > VT_I8 */
3277 if (V_VT(left
) & ~VT_TYPEMASK
|| V_VT(right
) & ~VT_TYPEMASK
||
3278 lvt
> VT_I8
|| rvt
> VT_I8
) {
3279 hres
= DISP_E_BADVARTYPE
;
3283 /* Determine the variant type to coerce to. */
3284 if (coerce
[lvt
] > coerce
[rvt
]) {
3285 resvt
= prio2vt
[coerce
[lvt
]];
3286 tvt
= prio2vt
[coerce
[rvt
]];
3288 resvt
= prio2vt
[coerce
[rvt
]];
3289 tvt
= prio2vt
[coerce
[lvt
]];
3292 /* Special cases where the result variant type is defined by both
3293 input variants and not only that with the highest priority */
3294 if (resvt
== VT_BSTR
) {
3295 if (tvt
== VT_EMPTY
|| tvt
== VT_BSTR
)
3300 if (resvt
== VT_R4
&& (tvt
== VT_BSTR
|| tvt
== VT_I8
|| tvt
== VT_I4
))
3303 /* For overflow detection use the biggest compatible type for the
3307 hres
= DISP_E_BADVARTYPE
;
3311 V_VT(result
) = VT_NULL
;
3314 FIXME("cannot handle variant type VT_DISPATCH\n");
3315 hres
= DISP_E_TYPEMISMATCH
;
3334 /* Now coerce the variants */
3335 hres
= VariantChangeType(&lv
, left
, 0, tvt
);
3338 hres
= VariantChangeType(&rv
, right
, 0, tvt
);
3344 V_VT(result
) = resvt
;
3347 hres
= VarDecAdd(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
),
3348 &V_DECIMAL(result
));
3351 hres
= VarCyAdd(V_CY(&lv
), V_CY(&rv
), &V_CY(result
));
3354 /* We do not add those, we concatenate them. */
3355 hres
= VarBstrCat(V_BSTR(&lv
), V_BSTR(&rv
), &V_BSTR(result
));
3358 /* Overflow detection */
3359 r8res
= (double)V_I8(&lv
) + (double)V_I8(&rv
);
3360 if (r8res
> (double)I8_MAX
|| r8res
< (double)I8_MIN
) {
3361 V_VT(result
) = VT_R8
;
3362 V_R8(result
) = r8res
;
3366 V_I8(&tv
) = V_I8(&lv
) + V_I8(&rv
);
3371 /* FIXME: overflow detection */
3372 V_R8(&tv
) = V_R8(&lv
) + V_R8(&rv
);
3375 ERR("We shouldn't get here! tvt = %d!\n", tvt
);
3379 if ((hres
= VariantChangeType(result
, &tv
, 0, resvt
)) != S_OK
) {
3380 /* Overflow! Change to the vartype with the next higher priority.
3381 With one exception: I4 ==> R8 even if it would fit in I8 */
3385 resvt
= prio2vt
[coerce
[resvt
] + 1];
3386 hres
= VariantChangeType(result
, &tv
, 0, resvt
);
3389 hres
= VariantCopy(result
, &tv
);
3393 V_VT(result
) = VT_EMPTY
;
3394 V_I4(result
) = 0; /* No V_EMPTY */
3399 VariantClear(&tempLeft
);
3400 VariantClear(&tempRight
);
3401 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
3405 /**********************************************************************
3406 * VarMul [OLEAUT32.156]
3408 * Multiply two variants.
3411 * left [I] First variant
3412 * right [I] Second variant
3413 * result [O] Result variant
3417 * Failure: An HRESULT error code indicating the error.
3420 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3421 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3423 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3427 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3430 HRESULT WINAPI
VarMul(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3433 VARTYPE lvt
, rvt
, resvt
, tvt
;
3435 VARIANT tempLeft
, tempRight
;
3438 /* Variant priority for coercion. Sorted from lowest to highest.
3439 VT_ERROR shows an invalid input variant type. */
3440 enum coerceprio
{ vt_UI1
= 0, vt_I2
, vt_I4
, vt_I8
, vt_CY
, vt_R4
, vt_R8
,
3441 vt_DECIMAL
, vt_NULL
, vt_ERROR
};
3442 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3443 static const VARTYPE prio2vt
[] = { VT_UI1
, VT_I2
, VT_I4
, VT_I8
, VT_CY
, VT_R4
, VT_R8
,
3444 VT_DECIMAL
, VT_NULL
, VT_ERROR
};
3446 /* Mapping for coercion from input variant to priority of result variant. */
3447 static const VARTYPE coerce
[] = {
3448 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3449 vt_UI1
, vt_NULL
, vt_I2
, vt_I4
, vt_R4
,
3450 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3451 vt_R8
, vt_CY
, vt_R8
, vt_R8
, vt_ERROR
,
3452 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3453 vt_ERROR
, vt_I2
, vt_ERROR
, vt_ERROR
, vt_DECIMAL
,
3454 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3455 vt_ERROR
, vt_ERROR
, vt_UI1
, vt_ERROR
, vt_ERROR
, vt_I8
3458 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3459 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
),
3465 VariantInit(&tempLeft
);
3466 VariantInit(&tempRight
);
3468 /* Handle VT_DISPATCH by storing and taking address of returned value */
3469 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3471 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3472 if (FAILED(hres
)) goto end
;
3475 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3477 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3478 if (FAILED(hres
)) goto end
;
3482 lvt
= V_VT(left
)&VT_TYPEMASK
;
3483 rvt
= V_VT(right
)&VT_TYPEMASK
;
3485 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3486 Same for any input variant type > VT_I8 */
3487 if (V_VT(left
) & ~VT_TYPEMASK
|| V_VT(right
) & ~VT_TYPEMASK
||
3488 lvt
> VT_I8
|| rvt
> VT_I8
) {
3489 hres
= DISP_E_BADVARTYPE
;
3493 /* Determine the variant type to coerce to. */
3494 if (coerce
[lvt
] > coerce
[rvt
]) {
3495 resvt
= prio2vt
[coerce
[lvt
]];
3496 tvt
= prio2vt
[coerce
[rvt
]];
3498 resvt
= prio2vt
[coerce
[rvt
]];
3499 tvt
= prio2vt
[coerce
[lvt
]];
3502 /* Special cases where the result variant type is defined by both
3503 input variants and not only that with the highest priority */
3504 if (resvt
== VT_R4
&& (tvt
== VT_CY
|| tvt
== VT_I8
|| tvt
== VT_I4
))
3506 if (lvt
== VT_EMPTY
&& rvt
== VT_EMPTY
)
3509 /* For overflow detection use the biggest compatible type for the
3513 hres
= DISP_E_BADVARTYPE
;
3517 V_VT(result
) = VT_NULL
;
3532 /* Now coerce the variants */
3533 hres
= VariantChangeType(&lv
, left
, 0, tvt
);
3536 hres
= VariantChangeType(&rv
, right
, 0, tvt
);
3543 V_VT(result
) = resvt
;
3546 hres
= VarDecMul(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
),
3547 &V_DECIMAL(result
));
3550 hres
= VarCyMul(V_CY(&lv
), V_CY(&rv
), &V_CY(result
));
3553 /* Overflow detection */
3554 r8res
= (double)V_I8(&lv
) * (double)V_I8(&rv
);
3555 if (r8res
> (double)I8_MAX
|| r8res
< (double)I8_MIN
) {
3556 V_VT(result
) = VT_R8
;
3557 V_R8(result
) = r8res
;
3560 V_I8(&tv
) = V_I8(&lv
) * V_I8(&rv
);
3563 /* FIXME: overflow detection */
3564 V_R8(&tv
) = V_R8(&lv
) * V_R8(&rv
);
3567 ERR("We shouldn't get here! tvt = %d!\n", tvt
);
3571 while ((hres
= VariantChangeType(result
, &tv
, 0, resvt
)) != S_OK
) {
3572 /* Overflow! Change to the vartype with the next higher priority.
3573 With one exception: I4 ==> R8 even if it would fit in I8 */
3577 resvt
= prio2vt
[coerce
[resvt
] + 1];
3580 hres
= VariantCopy(result
, &tv
);
3584 V_VT(result
) = VT_EMPTY
;
3585 V_I4(result
) = 0; /* No V_EMPTY */
3590 VariantClear(&tempLeft
);
3591 VariantClear(&tempRight
);
3592 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
3596 /**********************************************************************
3597 * VarDiv [OLEAUT32.143]
3599 * Divides one variant with another.
3602 * left [I] First variant
3603 * right [I] Second variant
3604 * result [O] Result variant
3608 * Failure: An HRESULT error code indicating the error.
3610 HRESULT WINAPI
VarDiv(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3612 HRESULT hres
= S_OK
;
3613 VARTYPE resvt
= VT_EMPTY
;
3614 VARTYPE leftvt
,rightvt
;
3615 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
3617 VARIANT tempLeft
, tempRight
;
3619 VariantInit(&tempLeft
);
3620 VariantInit(&tempRight
);
3624 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3625 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
3627 /* Handle VT_DISPATCH by storing and taking address of returned value */
3628 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3630 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3631 if (FAILED(hres
)) goto end
;
3634 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3636 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3637 if (FAILED(hres
)) goto end
;
3641 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3642 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3643 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3644 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3646 if (leftExtraFlags
!= rightExtraFlags
)
3648 hres
= DISP_E_BADVARTYPE
;
3651 ExtraFlags
= leftExtraFlags
;
3653 /* Native VarDiv always returns an error when using extra flags */
3654 if (ExtraFlags
!= 0)
3656 hres
= DISP_E_BADVARTYPE
;
3660 /* Determine return type */
3661 if (!(rightvt
== VT_EMPTY
))
3663 if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3665 V_VT(result
) = VT_NULL
;
3669 else if (leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3671 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
||
3672 leftvt
== VT_CY
|| rightvt
== VT_CY
||
3673 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
3674 leftvt
== VT_I4
|| rightvt
== VT_I4
||
3675 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
||
3676 leftvt
== VT_I2
|| rightvt
== VT_I2
||
3677 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3678 leftvt
== VT_R8
|| rightvt
== VT_R8
||
3679 leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
3681 if ((leftvt
== VT_UI1
&& rightvt
== VT_R4
) ||
3682 (leftvt
== VT_R4
&& rightvt
== VT_UI1
))
3684 else if ((leftvt
== VT_R4
&& (rightvt
== VT_BOOL
||
3685 rightvt
== VT_I2
)) || (rightvt
== VT_R4
&&
3686 (leftvt
== VT_BOOL
|| leftvt
== VT_I2
)))
3691 else if (leftvt
== VT_R4
|| rightvt
== VT_R4
)
3694 else if (leftvt
== VT_NULL
&& rightvt
== VT_EMPTY
)
3696 V_VT(result
) = VT_NULL
;
3702 hres
= DISP_E_BADVARTYPE
;
3706 /* coerce to the result type */
3707 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
3708 if (hres
!= S_OK
) goto end
;
3710 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
3711 if (hres
!= S_OK
) goto end
;
3714 V_VT(result
) = resvt
;
3718 if (V_R4(&lv
) == 0.0 && V_R4(&rv
) == 0.0)
3720 hres
= DISP_E_OVERFLOW
;
3721 V_VT(result
) = VT_EMPTY
;
3723 else if (V_R4(&rv
) == 0.0)
3725 hres
= DISP_E_DIVBYZERO
;
3726 V_VT(result
) = VT_EMPTY
;
3729 V_R4(result
) = V_R4(&lv
) / V_R4(&rv
);
3732 if (V_R8(&lv
) == 0.0 && V_R8(&rv
) == 0.0)
3734 hres
= DISP_E_OVERFLOW
;
3735 V_VT(result
) = VT_EMPTY
;
3737 else if (V_R8(&rv
) == 0.0)
3739 hres
= DISP_E_DIVBYZERO
;
3740 V_VT(result
) = VT_EMPTY
;
3743 V_R8(result
) = V_R8(&lv
) / V_R8(&rv
);
3746 hres
= VarDecDiv(&(V_DECIMAL(&lv
)), &(V_DECIMAL(&rv
)), &(V_DECIMAL(result
)));
3753 VariantClear(&tempLeft
);
3754 VariantClear(&tempRight
);
3755 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
3759 /**********************************************************************
3760 * VarSub [OLEAUT32.159]
3762 * Subtract two variants.
3765 * left [I] First variant
3766 * right [I] Second variant
3767 * result [O] Result variant
3771 * Failure: An HRESULT error code indicating the error.
3773 HRESULT WINAPI
VarSub(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3775 HRESULT hres
= S_OK
;
3776 VARTYPE resvt
= VT_EMPTY
;
3777 VARTYPE leftvt
,rightvt
;
3778 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
3780 VARIANT tempLeft
, tempRight
;
3784 VariantInit(&tempLeft
);
3785 VariantInit(&tempRight
);
3787 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3788 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
3790 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
&&
3791 (V_VT(left
)&(~VT_TYPEMASK
)) == 0 &&
3792 (V_VT(right
) & VT_TYPEMASK
) != VT_NULL
)
3794 if (NULL
== V_DISPATCH(left
)) {
3795 if ((V_VT(right
) & VT_TYPEMASK
) >= VT_INT_PTR
)
3796 hres
= DISP_E_BADVARTYPE
;
3797 else if ((V_VT(right
) & VT_TYPEMASK
) >= VT_UI8
&&
3798 (V_VT(right
) & VT_TYPEMASK
) < VT_RECORD
)
3799 hres
= DISP_E_BADVARTYPE
;
3800 else switch (V_VT(right
) & VT_TYPEMASK
)
3808 hres
= DISP_E_BADVARTYPE
;
3810 if (FAILED(hres
)) goto end
;
3812 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3813 if (FAILED(hres
)) goto end
;
3816 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
&&
3817 (V_VT(right
)&(~VT_TYPEMASK
)) == 0 &&
3818 (V_VT(left
) & VT_TYPEMASK
) != VT_NULL
)
3820 if (NULL
== V_DISPATCH(right
))
3822 if ((V_VT(left
) & VT_TYPEMASK
) >= VT_INT_PTR
)
3823 hres
= DISP_E_BADVARTYPE
;
3824 else if ((V_VT(left
) & VT_TYPEMASK
) >= VT_UI8
&&
3825 (V_VT(left
) & VT_TYPEMASK
) < VT_RECORD
)
3826 hres
= DISP_E_BADVARTYPE
;
3827 else switch (V_VT(left
) & VT_TYPEMASK
)
3835 hres
= DISP_E_BADVARTYPE
;
3837 if (FAILED(hres
)) goto end
;
3839 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3840 if (FAILED(hres
)) goto end
;
3844 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3845 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3846 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3847 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3849 if (leftExtraFlags
!= rightExtraFlags
)
3851 hres
= DISP_E_BADVARTYPE
;
3854 ExtraFlags
= leftExtraFlags
;
3856 /* determine return type and return code */
3857 /* All extra flags produce errors */
3858 if (ExtraFlags
== (VT_VECTOR
|VT_BYREF
|VT_RESERVED
) ||
3859 ExtraFlags
== (VT_VECTOR
|VT_RESERVED
) ||
3860 ExtraFlags
== (VT_VECTOR
|VT_BYREF
) ||
3861 ExtraFlags
== (VT_BYREF
|VT_RESERVED
) ||
3862 ExtraFlags
== VT_VECTOR
||
3863 ExtraFlags
== VT_BYREF
||
3864 ExtraFlags
== VT_RESERVED
)
3866 hres
= DISP_E_BADVARTYPE
;
3869 else if (ExtraFlags
>= VT_ARRAY
)
3871 hres
= DISP_E_TYPEMISMATCH
;
3874 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3875 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3876 else if (leftvt
== VT_CLSID
|| rightvt
== VT_CLSID
||
3877 leftvt
== VT_VARIANT
|| rightvt
== VT_VARIANT
||
3878 leftvt
== VT_I1
|| rightvt
== VT_I1
||
3879 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
3880 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
3881 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
3882 leftvt
== VT_INT
|| rightvt
== VT_INT
||
3883 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
3884 leftvt
== VT_UNKNOWN
|| rightvt
== VT_UNKNOWN
||
3885 leftvt
== VT_RECORD
|| rightvt
== VT_RECORD
)
3887 if (leftvt
== VT_RECORD
&& rightvt
== VT_I8
)
3888 hres
= DISP_E_TYPEMISMATCH
;
3889 else if (leftvt
< VT_UI1
&& rightvt
== VT_RECORD
)
3890 hres
= DISP_E_TYPEMISMATCH
;
3891 else if (leftvt
>= VT_UI1
&& rightvt
== VT_RECORD
)
3892 hres
= DISP_E_TYPEMISMATCH
;
3893 else if (leftvt
== VT_RECORD
&& rightvt
<= VT_UI1
)
3894 hres
= DISP_E_TYPEMISMATCH
;
3895 else if (leftvt
== VT_RECORD
&& rightvt
> VT_UI1
)
3896 hres
= DISP_E_BADVARTYPE
;
3898 hres
= DISP_E_BADVARTYPE
;
3901 /* The following flags/types are invalid for left variant */
3902 else if (!((leftvt
<= VT_LPWSTR
|| leftvt
== VT_RECORD
||
3903 leftvt
== VT_CLSID
) && leftvt
!= (VARTYPE
)15 /* undefined vt */ &&
3904 (leftvt
< VT_VOID
|| leftvt
> VT_LPWSTR
)))
3906 hres
= DISP_E_BADVARTYPE
;
3909 /* The following flags/types are invalid for right variant */
3910 else if (!((rightvt
<= VT_LPWSTR
|| rightvt
== VT_RECORD
||
3911 rightvt
== VT_CLSID
) && rightvt
!= (VARTYPE
)15 /* undefined vt */ &&
3912 (rightvt
< VT_VOID
|| rightvt
> VT_LPWSTR
)))
3914 hres
= DISP_E_BADVARTYPE
;
3917 else if ((leftvt
== VT_NULL
&& rightvt
== VT_DISPATCH
) ||
3918 (leftvt
== VT_DISPATCH
&& rightvt
== VT_NULL
))
3920 else if (leftvt
== VT_DISPATCH
|| rightvt
== VT_DISPATCH
||
3921 leftvt
== VT_ERROR
|| rightvt
== VT_ERROR
)
3923 hres
= DISP_E_TYPEMISMATCH
;
3926 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3928 else if ((leftvt
== VT_EMPTY
&& rightvt
== VT_BSTR
) ||
3929 (leftvt
== VT_DATE
&& rightvt
== VT_DATE
) ||
3930 (leftvt
== VT_BSTR
&& rightvt
== VT_EMPTY
) ||
3931 (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
))
3933 else if (leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3935 else if (leftvt
== VT_DATE
|| rightvt
== VT_DATE
)
3937 else if (leftvt
== VT_CY
|| rightvt
== VT_CY
)
3939 else if (leftvt
== VT_R8
|| rightvt
== VT_R8
)
3941 else if (leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
3943 else if (leftvt
== VT_R4
|| rightvt
== VT_R4
)
3945 if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
3946 leftvt
== VT_I8
|| rightvt
== VT_I8
)
3951 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
3953 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
)
3955 else if (leftvt
== VT_I2
|| rightvt
== VT_I2
||
3956 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3957 (leftvt
== VT_EMPTY
&& rightvt
== VT_EMPTY
))
3959 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
3963 hres
= DISP_E_TYPEMISMATCH
;
3967 /* coerce to the result type */
3968 if (leftvt
== VT_BSTR
&& rightvt
== VT_DATE
)
3969 hres
= VariantChangeType(&lv
, left
, 0, VT_R8
);
3971 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
3972 if (hres
!= S_OK
) goto end
;
3973 if (leftvt
== VT_DATE
&& rightvt
== VT_BSTR
)
3974 hres
= VariantChangeType(&rv
, right
, 0, VT_R8
);
3976 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
3977 if (hres
!= S_OK
) goto end
;
3980 V_VT(result
) = resvt
;
3986 V_DATE(result
) = V_DATE(&lv
) - V_DATE(&rv
);
3989 hres
= VarCySub(V_CY(&lv
), V_CY(&rv
), &(V_CY(result
)));
3992 V_R4(result
) = V_R4(&lv
) - V_R4(&rv
);
3995 V_I8(result
) = V_I8(&lv
) - V_I8(&rv
);
3998 V_I4(result
) = V_I4(&lv
) - V_I4(&rv
);
4001 V_I2(result
) = V_I2(&lv
) - V_I2(&rv
);
4004 V_I1(result
) = V_I1(&lv
) - V_I1(&rv
);
4007 V_UI1(result
) = V_UI2(&lv
) - V_UI1(&rv
);
4010 V_R8(result
) = V_R8(&lv
) - V_R8(&rv
);
4013 hres
= VarDecSub(&(V_DECIMAL(&lv
)), &(V_DECIMAL(&rv
)), &(V_DECIMAL(result
)));
4020 VariantClear(&tempLeft
);
4021 VariantClear(&tempRight
);
4022 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
4027 /**********************************************************************
4028 * VarOr [OLEAUT32.157]
4030 * Perform a logical or (OR) operation on two variants.
4033 * pVarLeft [I] First variant
4034 * pVarRight [I] Variant to OR with pVarLeft
4035 * pVarOut [O] Destination for OR result
4038 * Success: S_OK. pVarOut contains the result of the operation with its type
4039 * taken from the table listed under VarXor().
4040 * Failure: An HRESULT error code indicating the error.
4043 * See the Notes section of VarXor() for further information.
4045 HRESULT WINAPI
VarOr(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4048 VARIANT varLeft
, varRight
, varStr
;
4050 VARIANT tempLeft
, tempRight
;
4052 VariantInit(&tempLeft
);
4053 VariantInit(&tempRight
);
4054 VariantInit(&varLeft
);
4055 VariantInit(&varRight
);
4056 VariantInit(&varStr
);
4058 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft
, debugstr_VT(pVarLeft
),
4059 debugstr_VF(pVarLeft
), pVarRight
, debugstr_VT(pVarRight
),
4060 debugstr_VF(pVarRight
), pVarOut
);
4062 /* Handle VT_DISPATCH by storing and taking address of returned value */
4063 if ((V_VT(pVarLeft
) & VT_TYPEMASK
) == VT_DISPATCH
)
4065 hRet
= VARIANT_FetchDispatchValue(pVarLeft
, &tempLeft
);
4066 if (FAILED(hRet
)) goto VarOr_Exit
;
4067 pVarLeft
= &tempLeft
;
4069 if ((V_VT(pVarRight
) & VT_TYPEMASK
) == VT_DISPATCH
)
4071 hRet
= VARIANT_FetchDispatchValue(pVarRight
, &tempRight
);
4072 if (FAILED(hRet
)) goto VarOr_Exit
;
4073 pVarRight
= &tempRight
;
4076 if (V_EXTRA_TYPE(pVarLeft
) || V_EXTRA_TYPE(pVarRight
) ||
4077 V_VT(pVarLeft
) == VT_UNKNOWN
|| V_VT(pVarRight
) == VT_UNKNOWN
||
4078 V_VT(pVarLeft
) == VT_DISPATCH
|| V_VT(pVarRight
) == VT_DISPATCH
||
4079 V_VT(pVarLeft
) == VT_RECORD
|| V_VT(pVarRight
) == VT_RECORD
)
4081 hRet
= DISP_E_BADVARTYPE
;
4085 V_VT(&varLeft
) = V_VT(&varRight
) = V_VT(&varStr
) = VT_EMPTY
;
4087 if (V_VT(pVarLeft
) == VT_NULL
|| V_VT(pVarRight
) == VT_NULL
)
4089 /* NULL OR Zero is NULL, NULL OR value is value */
4090 if (V_VT(pVarLeft
) == VT_NULL
)
4091 pVarLeft
= pVarRight
; /* point to the non-NULL var */
4093 V_VT(pVarOut
) = VT_NULL
;
4096 switch (V_VT(pVarLeft
))
4098 case VT_DATE
: case VT_R8
:
4104 if (V_BOOL(pVarLeft
))
4105 *pVarOut
= *pVarLeft
;
4108 case VT_I2
: case VT_UI2
:
4119 if (V_UI1(pVarLeft
))
4120 *pVarOut
= *pVarLeft
;
4128 case VT_I4
: case VT_UI4
: case VT_INT
: case VT_UINT
:
4134 if (V_CY(pVarLeft
).int64
)
4138 case VT_I8
: case VT_UI8
:
4144 if (DEC_HI32(&V_DECIMAL(pVarLeft
)) || DEC_LO64(&V_DECIMAL(pVarLeft
)))
4152 if (!V_BSTR(pVarLeft
))
4154 hRet
= DISP_E_BADVARTYPE
;
4158 hRet
= VarBoolFromStr(V_BSTR(pVarLeft
), LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
4159 if (SUCCEEDED(hRet
) && b
)
4161 V_VT(pVarOut
) = VT_BOOL
;
4162 V_BOOL(pVarOut
) = b
;
4166 case VT_NULL
: case VT_EMPTY
:
4167 V_VT(pVarOut
) = VT_NULL
;
4171 hRet
= DISP_E_BADVARTYPE
;
4176 if (V_VT(pVarLeft
) == VT_EMPTY
|| V_VT(pVarRight
) == VT_EMPTY
)
4178 if (V_VT(pVarLeft
) == VT_EMPTY
)
4179 pVarLeft
= pVarRight
; /* point to the non-EMPTY var */
4182 /* Since one argument is empty (0), OR'ing it with the other simply
4183 * gives the others value (as 0|x => x). So just convert the other
4184 * argument to the required result type.
4186 switch (V_VT(pVarLeft
))
4189 if (!V_BSTR(pVarLeft
))
4191 hRet
= DISP_E_BADVARTYPE
;
4195 hRet
= VariantCopy(&varStr
, pVarLeft
);
4199 hRet
= VariantChangeType(pVarLeft
, pVarLeft
, 0, VT_BOOL
);
4202 /* Fall Through ... */
4203 case VT_EMPTY
: case VT_UI1
: case VT_BOOL
: case VT_I2
:
4204 V_VT(pVarOut
) = VT_I2
;
4206 case VT_DATE
: case VT_CY
: case VT_DECIMAL
: case VT_R4
: case VT_R8
:
4207 case VT_I1
: case VT_UI2
: case VT_I4
: case VT_UI4
:
4208 case VT_INT
: case VT_UINT
: case VT_UI8
:
4209 V_VT(pVarOut
) = VT_I4
;
4212 V_VT(pVarOut
) = VT_I8
;
4215 hRet
= DISP_E_BADVARTYPE
;
4218 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4221 pVarLeft
= &varLeft
;
4222 hRet
= VariantChangeType(pVarOut
, pVarLeft
, 0, V_VT(pVarOut
));
4226 if (V_VT(pVarLeft
) == VT_BOOL
&& V_VT(pVarRight
) == VT_BOOL
)
4228 V_VT(pVarOut
) = VT_BOOL
;
4229 V_BOOL(pVarOut
) = V_BOOL(pVarLeft
) | V_BOOL(pVarRight
);
4234 if (V_VT(pVarLeft
) == VT_UI1
&& V_VT(pVarRight
) == VT_UI1
)
4236 V_VT(pVarOut
) = VT_UI1
;
4237 V_UI1(pVarOut
) = V_UI1(pVarLeft
) | V_UI1(pVarRight
);
4242 if (V_VT(pVarLeft
) == VT_BSTR
)
4244 hRet
= VariantCopy(&varStr
, pVarLeft
);
4248 hRet
= VariantChangeType(pVarLeft
, pVarLeft
, 0, VT_BOOL
);
4253 if (V_VT(pVarLeft
) == VT_BOOL
&&
4254 (V_VT(pVarRight
) == VT_BOOL
|| V_VT(pVarRight
) == VT_BSTR
))
4258 else if ((V_VT(pVarLeft
) == VT_BOOL
|| V_VT(pVarLeft
) == VT_UI1
||
4259 V_VT(pVarLeft
) == VT_I2
|| V_VT(pVarLeft
) == VT_BSTR
) &&
4260 (V_VT(pVarRight
) == VT_BOOL
|| V_VT(pVarRight
) == VT_UI1
||
4261 V_VT(pVarRight
) == VT_I2
|| V_VT(pVarRight
) == VT_BSTR
))
4265 else if (V_VT(pVarLeft
) == VT_I8
|| V_VT(pVarRight
) == VT_I8
)
4267 if (V_VT(pVarLeft
) == VT_INT
|| V_VT(pVarRight
) == VT_INT
)
4269 hRet
= DISP_E_TYPEMISMATCH
;
4275 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4279 hRet
= VariantCopy(&varRight
, pVarRight
);
4283 if (vt
== VT_I4
&& V_VT(&varLeft
) == VT_UI4
)
4284 V_VT(&varLeft
) = VT_I4
; /* Don't overflow */
4289 if (V_VT(&varLeft
) == VT_BSTR
&&
4290 FAILED(VarR8FromStr(V_BSTR(&varLeft
), LOCALE_USER_DEFAULT
, 0, &d
)))
4291 hRet
= VariantChangeType(&varLeft
, &varLeft
, VARIANT_LOCALBOOL
, VT_BOOL
);
4292 if (SUCCEEDED(hRet
) && V_VT(&varLeft
) != vt
)
4293 hRet
= VariantChangeType(&varLeft
, &varLeft
, 0, vt
);
4298 if (vt
== VT_I4
&& V_VT(&varRight
) == VT_UI4
)
4299 V_VT(&varRight
) = VT_I4
; /* Don't overflow */
4304 if (V_VT(&varRight
) == VT_BSTR
&&
4305 FAILED(VarR8FromStr(V_BSTR(&varRight
), LOCALE_USER_DEFAULT
, 0, &d
)))
4306 hRet
= VariantChangeType(&varRight
, &varRight
, VARIANT_LOCALBOOL
, VT_BOOL
);
4307 if (SUCCEEDED(hRet
) && V_VT(&varRight
) != vt
)
4308 hRet
= VariantChangeType(&varRight
, &varRight
, 0, vt
);
4316 V_I8(pVarOut
) = V_I8(&varLeft
) | V_I8(&varRight
);
4318 else if (vt
== VT_I4
)
4320 V_I4(pVarOut
) = V_I4(&varLeft
) | V_I4(&varRight
);
4324 V_I2(pVarOut
) = V_I2(&varLeft
) | V_I2(&varRight
);
4328 VariantClear(&varStr
);
4329 VariantClear(&varLeft
);
4330 VariantClear(&varRight
);
4331 VariantClear(&tempLeft
);
4332 VariantClear(&tempRight
);
4336 /**********************************************************************
4337 * VarAbs [OLEAUT32.168]
4339 * Convert a variant to its absolute value.
4342 * pVarIn [I] Source variant
4343 * pVarOut [O] Destination for converted value
4346 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4347 * Failure: An HRESULT error code indicating the error.
4350 * - This function does not process by-reference variants.
4351 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4352 * according to the following table:
4353 *| Input Type Output Type
4354 *| ---------- -----------
4357 *| (All others) Unchanged
4359 HRESULT WINAPI
VarAbs(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4362 HRESULT hRet
= S_OK
;
4367 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4368 debugstr_VF(pVarIn
), pVarOut
);
4370 /* Handle VT_DISPATCH by storing and taking address of returned value */
4371 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4373 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4374 if (FAILED(hRet
)) goto VarAbs_Exit
;
4378 if (V_ISARRAY(pVarIn
) || V_VT(pVarIn
) == VT_UNKNOWN
||
4379 V_VT(pVarIn
) == VT_DISPATCH
|| V_VT(pVarIn
) == VT_RECORD
||
4380 V_VT(pVarIn
) == VT_ERROR
)
4382 hRet
= DISP_E_TYPEMISMATCH
;
4385 *pVarOut
= *pVarIn
; /* Shallow copy the value, and invert it if needed */
4387 #define ABS_CASE(typ,min) \
4388 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4389 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4392 switch (V_VT(pVarIn
))
4394 ABS_CASE(I1
,I1_MIN
);
4396 V_VT(pVarOut
) = VT_I2
;
4397 /* BOOL->I2, Fall through ... */
4398 ABS_CASE(I2
,I2_MIN
);
4400 ABS_CASE(I4
,I4_MIN
);
4401 ABS_CASE(I8
,I8_MIN
);
4402 ABS_CASE(R4
,R4_MIN
);
4404 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
4407 V_VT(pVarOut
) = VT_R8
;
4409 /* Fall through ... */
4411 ABS_CASE(R8
,R8_MIN
);
4413 hRet
= VarCyAbs(V_CY(pVarIn
), & V_CY(pVarOut
));
4416 DEC_SIGN(&V_DECIMAL(pVarOut
)) &= ~DECIMAL_NEG
;
4426 V_VT(pVarOut
) = VT_I2
;
4431 hRet
= DISP_E_BADVARTYPE
;
4435 VariantClear(&temp
);
4439 /**********************************************************************
4440 * VarFix [OLEAUT32.169]
4442 * Truncate a variants value to a whole number.
4445 * pVarIn [I] Source variant
4446 * pVarOut [O] Destination for converted value
4449 * Success: S_OK. pVarOut contains the converted value.
4450 * Failure: An HRESULT error code indicating the error.
4453 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4454 * according to the following table:
4455 *| Input Type Output Type
4456 *| ---------- -----------
4460 *| All Others Unchanged
4461 * - The difference between this function and VarInt() is that VarInt() rounds
4462 * negative numbers away from 0, while this function rounds them towards zero.
4464 HRESULT WINAPI
VarFix(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4466 HRESULT hRet
= S_OK
;
4471 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4472 debugstr_VF(pVarIn
), pVarOut
);
4474 /* Handle VT_DISPATCH by storing and taking address of returned value */
4475 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4477 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4478 if (FAILED(hRet
)) goto VarFix_Exit
;
4481 V_VT(pVarOut
) = V_VT(pVarIn
);
4483 switch (V_VT(pVarIn
))
4486 V_UI1(pVarOut
) = V_UI1(pVarIn
);
4489 V_VT(pVarOut
) = VT_I2
;
4492 V_I2(pVarOut
) = V_I2(pVarIn
);
4495 V_I4(pVarOut
) = V_I4(pVarIn
);
4498 V_I8(pVarOut
) = V_I8(pVarIn
);
4501 if (V_R4(pVarIn
) < 0.0f
)
4502 V_R4(pVarOut
) = (float)ceil(V_R4(pVarIn
));
4504 V_R4(pVarOut
) = (float)floor(V_R4(pVarIn
));
4507 V_VT(pVarOut
) = VT_R8
;
4508 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4513 if (V_R8(pVarIn
) < 0.0)
4514 V_R8(pVarOut
) = ceil(V_R8(pVarIn
));
4516 V_R8(pVarOut
) = floor(V_R8(pVarIn
));
4519 hRet
= VarCyFix(V_CY(pVarIn
), &V_CY(pVarOut
));
4522 hRet
= VarDecFix(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4525 V_VT(pVarOut
) = VT_I2
;
4532 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
4533 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
4534 hRet
= DISP_E_BADVARTYPE
;
4536 hRet
= DISP_E_TYPEMISMATCH
;
4540 V_VT(pVarOut
) = VT_EMPTY
;
4541 VariantClear(&temp
);
4546 /**********************************************************************
4547 * VarInt [OLEAUT32.172]
4549 * Truncate a variants value to a whole number.
4552 * pVarIn [I] Source variant
4553 * pVarOut [O] Destination for converted value
4556 * Success: S_OK. pVarOut contains the converted value.
4557 * Failure: An HRESULT error code indicating the error.
4560 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4561 * according to the following table:
4562 *| Input Type Output Type
4563 *| ---------- -----------
4567 *| All Others Unchanged
4568 * - The difference between this function and VarFix() is that VarFix() rounds
4569 * negative numbers towards 0, while this function rounds them away from zero.
4571 HRESULT WINAPI
VarInt(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4573 HRESULT hRet
= S_OK
;
4578 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4579 debugstr_VF(pVarIn
), pVarOut
);
4581 /* Handle VT_DISPATCH by storing and taking address of returned value */
4582 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4584 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4585 if (FAILED(hRet
)) goto VarInt_Exit
;
4588 V_VT(pVarOut
) = V_VT(pVarIn
);
4590 switch (V_VT(pVarIn
))
4593 V_R4(pVarOut
) = (float)floor(V_R4(pVarIn
));
4596 V_VT(pVarOut
) = VT_R8
;
4597 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4602 V_R8(pVarOut
) = floor(V_R8(pVarIn
));
4605 hRet
= VarCyInt(V_CY(pVarIn
), &V_CY(pVarOut
));
4608 hRet
= VarDecInt(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4611 hRet
= VarFix(pVarIn
, pVarOut
);
4614 VariantClear(&temp
);
4619 /**********************************************************************
4620 * VarXor [OLEAUT32.167]
4622 * Perform a logical exclusive-or (XOR) operation on two variants.
4625 * pVarLeft [I] First variant
4626 * pVarRight [I] Variant to XOR with pVarLeft
4627 * pVarOut [O] Destination for XOR result
4630 * Success: S_OK. pVarOut contains the result of the operation with its type
4631 * taken from the table below).
4632 * Failure: An HRESULT error code indicating the error.
4635 * - Neither pVarLeft or pVarRight are modified by this function.
4636 * - This function does not process by-reference variants.
4637 * - Input types of VT_BSTR may be numeric strings or boolean text.
4638 * - The type of result stored in pVarOut depends on the types of pVarLeft
4639 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4640 * or VT_NULL if the function succeeds.
4641 * - Type promotion is inconsistent and as a result certain combinations of
4642 * values will return DISP_E_OVERFLOW even when they could be represented.
4643 * This matches the behaviour of native oleaut32.
4645 HRESULT WINAPI
VarXor(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4648 VARIANT varLeft
, varRight
;
4649 VARIANT tempLeft
, tempRight
;
4653 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft
, debugstr_VT(pVarLeft
),
4654 debugstr_VF(pVarLeft
), pVarRight
, debugstr_VT(pVarRight
),
4655 debugstr_VF(pVarRight
), pVarOut
);
4657 if (V_EXTRA_TYPE(pVarLeft
) || V_EXTRA_TYPE(pVarRight
) ||
4658 V_VT(pVarLeft
) > VT_UINT
|| V_VT(pVarRight
) > VT_UINT
||
4659 V_VT(pVarLeft
) == VT_VARIANT
|| V_VT(pVarRight
) == VT_VARIANT
||
4660 V_VT(pVarLeft
) == VT_UNKNOWN
|| V_VT(pVarRight
) == VT_UNKNOWN
||
4661 V_VT(pVarLeft
) == (VARTYPE
)15 || V_VT(pVarRight
) == (VARTYPE
)15 ||
4662 V_VT(pVarLeft
) == VT_ERROR
|| V_VT(pVarRight
) == VT_ERROR
)
4663 return DISP_E_BADVARTYPE
;
4665 if (V_VT(pVarLeft
) == VT_NULL
|| V_VT(pVarRight
) == VT_NULL
)
4667 /* NULL XOR anything valid is NULL */
4668 V_VT(pVarOut
) = VT_NULL
;
4672 VariantInit(&tempLeft
);
4673 VariantInit(&tempRight
);
4675 /* Handle VT_DISPATCH by storing and taking address of returned value */
4676 if ((V_VT(pVarLeft
) & VT_TYPEMASK
) == VT_DISPATCH
)
4678 hRet
= VARIANT_FetchDispatchValue(pVarLeft
, &tempLeft
);
4679 if (FAILED(hRet
)) goto VarXor_Exit
;
4680 pVarLeft
= &tempLeft
;
4682 if ((V_VT(pVarRight
) & VT_TYPEMASK
) == VT_DISPATCH
)
4684 hRet
= VARIANT_FetchDispatchValue(pVarRight
, &tempRight
);
4685 if (FAILED(hRet
)) goto VarXor_Exit
;
4686 pVarRight
= &tempRight
;
4689 /* Copy our inputs so we don't disturb anything */
4690 V_VT(&varLeft
) = V_VT(&varRight
) = VT_EMPTY
;
4692 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4696 hRet
= VariantCopy(&varRight
, pVarRight
);
4700 /* Try any strings first as numbers, then as VT_BOOL */
4701 if (V_VT(&varLeft
) == VT_BSTR
)
4703 hRet
= VarR8FromStr(V_BSTR(&varLeft
), LOCALE_USER_DEFAULT
, 0, &d
);
4704 hRet
= VariantChangeType(&varLeft
, &varLeft
, VARIANT_LOCALBOOL
,
4705 FAILED(hRet
) ? VT_BOOL
: VT_I4
);
4710 if (V_VT(&varRight
) == VT_BSTR
)
4712 hRet
= VarR8FromStr(V_BSTR(&varRight
), LOCALE_USER_DEFAULT
, 0, &d
);
4713 hRet
= VariantChangeType(&varRight
, &varRight
, VARIANT_LOCALBOOL
,
4714 FAILED(hRet
) ? VT_BOOL
: VT_I4
);
4719 /* Determine the result type */
4720 if (V_VT(&varLeft
) == VT_I8
|| V_VT(&varRight
) == VT_I8
)
4722 if (V_VT(pVarLeft
) == VT_INT
|| V_VT(pVarRight
) == VT_INT
)
4724 hRet
= DISP_E_TYPEMISMATCH
;
4731 switch ((V_VT(&varLeft
) << 16) | V_VT(&varRight
))
4733 case (VT_BOOL
<< 16) | VT_BOOL
:
4736 case (VT_UI1
<< 16) | VT_UI1
:
4739 case (VT_EMPTY
<< 16) | VT_EMPTY
:
4740 case (VT_EMPTY
<< 16) | VT_UI1
:
4741 case (VT_EMPTY
<< 16) | VT_I2
:
4742 case (VT_EMPTY
<< 16) | VT_BOOL
:
4743 case (VT_UI1
<< 16) | VT_EMPTY
:
4744 case (VT_UI1
<< 16) | VT_I2
:
4745 case (VT_UI1
<< 16) | VT_BOOL
:
4746 case (VT_I2
<< 16) | VT_EMPTY
:
4747 case (VT_I2
<< 16) | VT_UI1
:
4748 case (VT_I2
<< 16) | VT_I2
:
4749 case (VT_I2
<< 16) | VT_BOOL
:
4750 case (VT_BOOL
<< 16) | VT_EMPTY
:
4751 case (VT_BOOL
<< 16) | VT_UI1
:
4752 case (VT_BOOL
<< 16) | VT_I2
:
4761 /* VT_UI4 does not overflow */
4764 if (V_VT(&varLeft
) == VT_UI4
)
4765 V_VT(&varLeft
) = VT_I4
;
4766 if (V_VT(&varRight
) == VT_UI4
)
4767 V_VT(&varRight
) = VT_I4
;
4770 /* Convert our input copies to the result type */
4771 if (V_VT(&varLeft
) != vt
)
4772 hRet
= VariantChangeType(&varLeft
, &varLeft
, 0, vt
);
4776 if (V_VT(&varRight
) != vt
)
4777 hRet
= VariantChangeType(&varRight
, &varRight
, 0, vt
);
4783 /* Calculate the result */
4787 V_I8(pVarOut
) = V_I8(&varLeft
) ^ V_I8(&varRight
);
4790 V_I4(pVarOut
) = V_I4(&varLeft
) ^ V_I4(&varRight
);
4794 V_I2(pVarOut
) = V_I2(&varLeft
) ^ V_I2(&varRight
);
4797 V_UI1(pVarOut
) = V_UI1(&varLeft
) ^ V_UI1(&varRight
);
4802 VariantClear(&varLeft
);
4803 VariantClear(&varRight
);
4804 VariantClear(&tempLeft
);
4805 VariantClear(&tempRight
);
4809 /**********************************************************************
4810 * VarEqv [OLEAUT32.172]
4812 * Determine if two variants contain the same value.
4815 * pVarLeft [I] First variant to compare
4816 * pVarRight [I] Variant to compare to pVarLeft
4817 * pVarOut [O] Destination for comparison result
4820 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4821 * if equivalent or non-zero otherwise.
4822 * Failure: An HRESULT error code indicating the error.
4825 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4828 HRESULT WINAPI
VarEqv(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4832 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft
, debugstr_VT(pVarLeft
),
4833 debugstr_VF(pVarLeft
), pVarRight
, debugstr_VT(pVarRight
),
4834 debugstr_VF(pVarRight
), pVarOut
);
4836 hRet
= VarXor(pVarLeft
, pVarRight
, pVarOut
);
4837 if (SUCCEEDED(hRet
))
4839 if (V_VT(pVarOut
) == VT_I8
)
4840 V_I8(pVarOut
) = ~V_I8(pVarOut
);
4842 V_UI4(pVarOut
) = ~V_UI4(pVarOut
);
4847 /**********************************************************************
4848 * VarNeg [OLEAUT32.173]
4850 * Negate the value of a variant.
4853 * pVarIn [I] Source variant
4854 * pVarOut [O] Destination for converted value
4857 * Success: S_OK. pVarOut contains the converted value.
4858 * Failure: An HRESULT error code indicating the error.
4861 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4862 * according to the following table:
4863 *| Input Type Output Type
4864 *| ---------- -----------
4869 *| All Others Unchanged (unless promoted)
4870 * - Where the negated value of a variant does not fit in its base type, the type
4871 * is promoted according to the following table:
4872 *| Input Type Promoted To
4873 *| ---------- -----------
4877 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4878 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4879 * for types which are not valid. Since this is in contravention of the
4880 * meaning of those error codes and unlikely to be relied on by applications,
4881 * this implementation returns errors consistent with the other high level
4882 * variant math functions.
4884 HRESULT WINAPI
VarNeg(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4886 HRESULT hRet
= S_OK
;
4891 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4892 debugstr_VF(pVarIn
), pVarOut
);
4894 /* Handle VT_DISPATCH by storing and taking address of returned value */
4895 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4897 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4898 if (FAILED(hRet
)) goto VarNeg_Exit
;
4901 V_VT(pVarOut
) = V_VT(pVarIn
);
4903 switch (V_VT(pVarIn
))
4906 V_VT(pVarOut
) = VT_I2
;
4907 V_I2(pVarOut
) = -V_UI1(pVarIn
);
4910 V_VT(pVarOut
) = VT_I2
;
4913 if (V_I2(pVarIn
) == I2_MIN
)
4915 V_VT(pVarOut
) = VT_I4
;
4916 V_I4(pVarOut
) = -(int)V_I2(pVarIn
);
4919 V_I2(pVarOut
) = -V_I2(pVarIn
);
4922 if (V_I4(pVarIn
) == I4_MIN
)
4924 V_VT(pVarOut
) = VT_R8
;
4925 V_R8(pVarOut
) = -(double)V_I4(pVarIn
);
4928 V_I4(pVarOut
) = -V_I4(pVarIn
);
4931 if (V_I8(pVarIn
) == I8_MIN
)
4933 V_VT(pVarOut
) = VT_R8
;
4934 hRet
= VarR8FromI8(V_I8(pVarIn
), &V_R8(pVarOut
));
4935 V_R8(pVarOut
) *= -1.0;
4938 V_I8(pVarOut
) = -V_I8(pVarIn
);
4941 V_R4(pVarOut
) = -V_R4(pVarIn
);
4945 V_R8(pVarOut
) = -V_R8(pVarIn
);
4948 hRet
= VarCyNeg(V_CY(pVarIn
), &V_CY(pVarOut
));
4951 hRet
= VarDecNeg(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4954 V_VT(pVarOut
) = VT_R8
;
4955 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4956 V_R8(pVarOut
) = -V_R8(pVarOut
);
4959 V_VT(pVarOut
) = VT_I2
;
4966 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
4967 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
4968 hRet
= DISP_E_BADVARTYPE
;
4970 hRet
= DISP_E_TYPEMISMATCH
;
4974 V_VT(pVarOut
) = VT_EMPTY
;
4975 VariantClear(&temp
);
4980 /**********************************************************************
4981 * VarNot [OLEAUT32.174]
4983 * Perform a not operation on a variant.
4986 * pVarIn [I] Source variant
4987 * pVarOut [O] Destination for converted value
4990 * Success: S_OK. pVarOut contains the converted value.
4991 * Failure: An HRESULT error code indicating the error.
4994 * - Strictly speaking, this function performs a bitwise ones complement
4995 * on the variants value (after possibly converting to VT_I4, see below).
4996 * This only behaves like a boolean not operation if the value in
4997 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4998 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4999 * before calling this function.
5000 * - This function does not process by-reference variants.
5001 * - The type of the value stored in pVarOut depends on the type of pVarIn,
5002 * according to the following table:
5003 *| Input Type Output Type
5004 *| ---------- -----------
5011 *| (All others) Unchanged
5013 HRESULT WINAPI
VarNot(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
5016 HRESULT hRet
= S_OK
;
5021 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
5022 debugstr_VF(pVarIn
), pVarOut
);
5024 /* Handle VT_DISPATCH by storing and taking address of returned value */
5025 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
5027 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
5028 if (FAILED(hRet
)) goto VarNot_Exit
;
5032 V_VT(pVarOut
) = V_VT(pVarIn
);
5034 switch (V_VT(pVarIn
))
5037 V_I4(pVarOut
) = ~V_I1(pVarIn
);
5038 V_VT(pVarOut
) = VT_I4
;
5040 case VT_UI1
: V_UI1(pVarOut
) = ~V_UI1(pVarIn
); break;
5042 case VT_I2
: V_I2(pVarOut
) = ~V_I2(pVarIn
); break;
5044 V_I4(pVarOut
) = ~V_UI2(pVarIn
);
5045 V_VT(pVarOut
) = VT_I4
;
5048 hRet
= VarI4FromDec(&V_DECIMAL(pVarIn
), &V_I4(&varIn
));
5052 /* Fall through ... */
5054 V_VT(pVarOut
) = VT_I4
;
5055 /* Fall through ... */
5056 case VT_I4
: V_I4(pVarOut
) = ~V_I4(pVarIn
); break;
5059 V_I4(pVarOut
) = ~V_UI4(pVarIn
);
5060 V_VT(pVarOut
) = VT_I4
;
5062 case VT_I8
: V_I8(pVarOut
) = ~V_I8(pVarIn
); break;
5064 V_I4(pVarOut
) = ~V_UI8(pVarIn
);
5065 V_VT(pVarOut
) = VT_I4
;
5068 hRet
= VarI4FromR4(V_R4(pVarIn
), &V_I4(pVarOut
));
5069 V_I4(pVarOut
) = ~V_I4(pVarOut
);
5070 V_VT(pVarOut
) = VT_I4
;
5073 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
5077 /* Fall through ... */
5080 hRet
= VarI4FromR8(V_R8(pVarIn
), &V_I4(pVarOut
));
5081 V_I4(pVarOut
) = ~V_I4(pVarOut
);
5082 V_VT(pVarOut
) = VT_I4
;
5085 hRet
= VarI4FromCy(V_CY(pVarIn
), &V_I4(pVarOut
));
5086 V_I4(pVarOut
) = ~V_I4(pVarOut
);
5087 V_VT(pVarOut
) = VT_I4
;
5091 V_VT(pVarOut
) = VT_I2
;
5097 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
5098 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
5099 hRet
= DISP_E_BADVARTYPE
;
5101 hRet
= DISP_E_TYPEMISMATCH
;
5105 V_VT(pVarOut
) = VT_EMPTY
;
5106 VariantClear(&temp
);
5111 /**********************************************************************
5112 * VarRound [OLEAUT32.175]
5114 * Perform a round operation on a variant.
5117 * pVarIn [I] Source variant
5118 * deci [I] Number of decimals to round to
5119 * pVarOut [O] Destination for converted value
5122 * Success: S_OK. pVarOut contains the converted value.
5123 * Failure: An HRESULT error code indicating the error.
5126 * - Floating point values are rounded to the desired number of decimals.
5127 * - Some integer types are just copied to the return variable.
5128 * - Some other integer types are not handled and fail.
5130 HRESULT WINAPI
VarRound(LPVARIANT pVarIn
, int deci
, LPVARIANT pVarOut
)
5133 HRESULT hRet
= S_OK
;
5139 TRACE("(%p->(%s%s),%d)\n", pVarIn
, debugstr_VT(pVarIn
), debugstr_VF(pVarIn
), deci
);
5141 /* Handle VT_DISPATCH by storing and taking address of returned value */
5142 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
5144 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
5145 if (FAILED(hRet
)) goto VarRound_Exit
;
5149 switch (V_VT(pVarIn
))
5151 /* cases that fail on windows */
5156 hRet
= DISP_E_BADVARTYPE
;
5159 /* cases just copying in to out */
5161 V_VT(pVarOut
) = V_VT(pVarIn
);
5162 V_UI1(pVarOut
) = V_UI1(pVarIn
);
5165 V_VT(pVarOut
) = V_VT(pVarIn
);
5166 V_I2(pVarOut
) = V_I2(pVarIn
);
5169 V_VT(pVarOut
) = V_VT(pVarIn
);
5170 V_I4(pVarOut
) = V_I4(pVarIn
);
5173 V_VT(pVarOut
) = V_VT(pVarIn
);
5174 /* value unchanged */
5177 /* cases that change type */
5179 V_VT(pVarOut
) = VT_I2
;
5183 V_VT(pVarOut
) = VT_I2
;
5184 V_I2(pVarOut
) = V_BOOL(pVarIn
);
5187 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
5192 /* Fall through ... */
5194 /* cases we need to do math */
5196 if (V_R8(pVarIn
)>0) {
5197 V_R8(pVarOut
)=floor(V_R8(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5199 V_R8(pVarOut
)=ceil(V_R8(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5201 V_VT(pVarOut
) = V_VT(pVarIn
);
5204 if (V_R4(pVarIn
)>0) {
5205 V_R4(pVarOut
)=floor(V_R4(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5207 V_R4(pVarOut
)=ceil(V_R4(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5209 V_VT(pVarOut
) = V_VT(pVarIn
);
5212 if (V_DATE(pVarIn
)>0) {
5213 V_DATE(pVarOut
)=floor(V_DATE(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5215 V_DATE(pVarOut
)=ceil(V_DATE(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5217 V_VT(pVarOut
) = V_VT(pVarIn
);
5223 factor
=pow(10, 4-deci
);
5225 if (V_CY(pVarIn
).int64
>0) {
5226 V_CY(pVarOut
).int64
=floor(V_CY(pVarIn
).int64
/factor
)*factor
;
5228 V_CY(pVarOut
).int64
=ceil(V_CY(pVarIn
).int64
/factor
)*factor
;
5230 V_VT(pVarOut
) = V_VT(pVarIn
);
5233 /* cases we don't know yet */
5235 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5236 V_VT(pVarIn
) & VT_TYPEMASK
, deci
);
5237 hRet
= DISP_E_BADVARTYPE
;
5241 V_VT(pVarOut
) = VT_EMPTY
;
5242 VariantClear(&temp
);
5244 TRACE("returning 0x%08x (%s%s),%f\n", hRet
, debugstr_VT(pVarOut
),
5245 debugstr_VF(pVarOut
), (V_VT(pVarOut
) == VT_R4
) ? V_R4(pVarOut
) :
5246 (V_VT(pVarOut
) == VT_R8
) ? V_R8(pVarOut
) : 0);
5251 /**********************************************************************
5252 * VarIdiv [OLEAUT32.153]
5254 * Converts input variants to integers and divides them.
5257 * left [I] Left hand variant
5258 * right [I] Right hand variant
5259 * result [O] Destination for quotient
5262 * Success: S_OK. result contains the quotient.
5263 * Failure: An HRESULT error code indicating the error.
5266 * If either expression is null, null is returned, as per MSDN
5268 HRESULT WINAPI
VarIdiv(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5270 HRESULT hres
= S_OK
;
5271 VARTYPE resvt
= VT_EMPTY
;
5272 VARTYPE leftvt
,rightvt
;
5273 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5275 VARIANT tempLeft
, tempRight
;
5277 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
5278 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5282 VariantInit(&tempLeft
);
5283 VariantInit(&tempRight
);
5285 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5286 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5287 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5288 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5290 if (leftExtraFlags
!= rightExtraFlags
)
5292 hres
= DISP_E_BADVARTYPE
;
5295 ExtraFlags
= leftExtraFlags
;
5297 /* Native VarIdiv always returns an error when using extra
5298 * flags or if the variant combination is I8 and INT.
5300 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
5301 (leftvt
== VT_INT
&& rightvt
== VT_I8
) ||
5302 (rightvt
== VT_EMPTY
&& leftvt
!= VT_NULL
) ||
5305 hres
= DISP_E_BADVARTYPE
;
5309 /* Determine variant type */
5310 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
5312 V_VT(result
) = VT_NULL
;
5316 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
5318 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
5319 leftvt
== VT_INT
|| rightvt
== VT_INT
||
5320 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
5321 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
5322 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
5323 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
5324 leftvt
== VT_I1
|| rightvt
== VT_I1
||
5325 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
||
5326 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
5327 leftvt
== VT_CY
|| rightvt
== VT_CY
||
5328 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
||
5329 leftvt
== VT_R8
|| rightvt
== VT_R8
||
5330 leftvt
== VT_R4
|| rightvt
== VT_R4
)
5332 else if (leftvt
== VT_I2
|| rightvt
== VT_I2
||
5333 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
5336 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
5340 hres
= DISP_E_BADVARTYPE
;
5344 /* coerce to the result type */
5345 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
5346 if (hres
!= S_OK
) goto end
;
5347 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
5348 if (hres
!= S_OK
) goto end
;
5351 V_VT(result
) = resvt
;
5355 if (V_UI1(&rv
) == 0)
5357 hres
= DISP_E_DIVBYZERO
;
5358 V_VT(result
) = VT_EMPTY
;
5361 V_UI1(result
) = V_UI1(&lv
) / V_UI1(&rv
);
5366 hres
= DISP_E_DIVBYZERO
;
5367 V_VT(result
) = VT_EMPTY
;
5370 V_I2(result
) = V_I2(&lv
) / V_I2(&rv
);
5375 hres
= DISP_E_DIVBYZERO
;
5376 V_VT(result
) = VT_EMPTY
;
5379 V_I4(result
) = V_I4(&lv
) / V_I4(&rv
);
5384 hres
= DISP_E_DIVBYZERO
;
5385 V_VT(result
) = VT_EMPTY
;
5388 V_I8(result
) = V_I8(&lv
) / V_I8(&rv
);
5391 FIXME("Couldn't integer divide variant types %d,%d\n",
5398 VariantClear(&tempLeft
);
5399 VariantClear(&tempRight
);
5405 /**********************************************************************
5406 * VarMod [OLEAUT32.155]
5408 * Perform the modulus operation of the right hand variant on the left
5411 * left [I] Left hand variant
5412 * right [I] Right hand variant
5413 * result [O] Destination for converted value
5416 * Success: S_OK. result contains the remainder.
5417 * Failure: An HRESULT error code indicating the error.
5420 * If an error occurs the type of result will be modified but the value will not be.
5421 * Doesn't support arrays or any special flags yet.
5423 HRESULT WINAPI
VarMod(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5427 HRESULT rc
= E_FAIL
;
5430 VARIANT tempLeft
, tempRight
;
5432 VariantInit(&tempLeft
);
5433 VariantInit(&tempRight
);
5437 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
5438 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5440 /* Handle VT_DISPATCH by storing and taking address of returned value */
5441 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5443 rc
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5444 if (FAILED(rc
)) goto end
;
5447 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5449 rc
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5450 if (FAILED(rc
)) goto end
;
5454 /* check for invalid inputs */
5456 switch (V_VT(left
) & VT_TYPEMASK
) {
5478 V_VT(result
) = VT_EMPTY
;
5479 rc
= DISP_E_TYPEMISMATCH
;
5482 rc
= DISP_E_TYPEMISMATCH
;
5485 V_VT(result
) = VT_EMPTY
;
5486 rc
= DISP_E_TYPEMISMATCH
;
5491 V_VT(result
) = VT_EMPTY
;
5492 rc
= DISP_E_BADVARTYPE
;
5498 switch (V_VT(right
) & VT_TYPEMASK
) {
5504 if((V_VT(left
) == VT_INT
) && (V_VT(right
) == VT_I8
))
5506 V_VT(result
) = VT_EMPTY
;
5507 rc
= DISP_E_TYPEMISMATCH
;
5511 if((V_VT(right
) == VT_INT
) && (V_VT(left
) == VT_I8
))
5513 V_VT(result
) = VT_EMPTY
;
5514 rc
= DISP_E_TYPEMISMATCH
;
5525 if(V_VT(left
) == VT_EMPTY
)
5527 V_VT(result
) = VT_I4
;
5534 if(V_VT(left
) == VT_ERROR
)
5536 V_VT(result
) = VT_EMPTY
;
5537 rc
= DISP_E_TYPEMISMATCH
;
5541 if(V_VT(left
) == VT_NULL
)
5543 V_VT(result
) = VT_NULL
;
5550 V_VT(result
) = VT_EMPTY
;
5551 rc
= DISP_E_BADVARTYPE
;
5554 if(V_VT(left
) == VT_VOID
)
5556 V_VT(result
) = VT_EMPTY
;
5557 rc
= DISP_E_BADVARTYPE
;
5558 } else if((V_VT(left
) == VT_NULL
) || (V_VT(left
) == VT_EMPTY
) || (V_VT(left
) == VT_ERROR
) ||
5561 V_VT(result
) = VT_NULL
;
5565 V_VT(result
) = VT_NULL
;
5566 rc
= DISP_E_BADVARTYPE
;
5571 V_VT(result
) = VT_EMPTY
;
5572 rc
= DISP_E_TYPEMISMATCH
;
5575 rc
= DISP_E_TYPEMISMATCH
;
5578 if((V_VT(left
) == 15) || ((V_VT(left
) >= 24) && (V_VT(left
) <= 35)) || !lOk
)
5580 V_VT(result
) = VT_EMPTY
;
5581 rc
= DISP_E_BADVARTYPE
;
5584 V_VT(result
) = VT_EMPTY
;
5585 rc
= DISP_E_TYPEMISMATCH
;
5589 V_VT(result
) = VT_EMPTY
;
5590 rc
= DISP_E_BADVARTYPE
;
5594 /* determine the result type */
5595 if((V_VT(left
) == VT_I8
) || (V_VT(right
) == VT_I8
)) resT
= VT_I8
;
5596 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5597 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_UI1
)) resT
= VT_UI1
;
5598 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5599 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5600 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_UI1
)) resT
= VT_I2
;
5601 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5602 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5603 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_UI1
)) resT
= VT_I2
;
5604 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5605 else resT
= VT_I4
; /* most outputs are I4 */
5607 /* convert to I8 for the modulo */
5608 rc
= VariantChangeType(&lv
, left
, 0, VT_I8
);
5611 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left
), VT_I8
, rc
);
5615 rc
= VariantChangeType(&rv
, right
, 0, VT_I8
);
5618 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right
), VT_I8
, rc
);
5622 /* if right is zero set VT_EMPTY and return divide by zero */
5625 V_VT(result
) = VT_EMPTY
;
5626 rc
= DISP_E_DIVBYZERO
;
5630 /* perform the modulo operation */
5631 V_VT(result
) = VT_I8
;
5632 V_I8(result
) = V_I8(&lv
) % V_I8(&rv
);
5634 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5635 wine_dbgstr_longlong(V_I8(&lv
)), wine_dbgstr_longlong(V_I8(&rv
)),
5636 wine_dbgstr_longlong(V_I8(result
)));
5638 /* convert left and right to the destination type */
5639 rc
= VariantChangeType(result
, result
, 0, resT
);
5642 FIXME("Could not convert 0x%x to %d?\n", V_VT(result
), resT
);
5643 /* fall to end of function */
5649 VariantClear(&tempLeft
);
5650 VariantClear(&tempRight
);
5654 /**********************************************************************
5655 * VarPow [OLEAUT32.158]
5657 * Computes the power of one variant to another variant.
5660 * left [I] First variant
5661 * right [I] Second variant
5662 * result [O] Result variant
5666 * Failure: An HRESULT error code indicating the error.
5668 HRESULT WINAPI
VarPow(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5672 VARTYPE resvt
= VT_EMPTY
;
5673 VARTYPE leftvt
,rightvt
;
5674 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5675 VARIANT tempLeft
, tempRight
;
5677 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
), debugstr_VF(left
),
5678 right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5682 VariantInit(&tempLeft
);
5683 VariantInit(&tempRight
);
5685 /* Handle VT_DISPATCH by storing and taking address of returned value */
5686 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5688 hr
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5689 if (FAILED(hr
)) goto end
;
5692 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5694 hr
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5695 if (FAILED(hr
)) goto end
;
5699 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5700 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5701 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5702 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5704 if (leftExtraFlags
!= rightExtraFlags
)
5706 hr
= DISP_E_BADVARTYPE
;
5709 ExtraFlags
= leftExtraFlags
;
5711 /* Native VarPow always returns an error when using extra flags */
5712 if (ExtraFlags
!= 0)
5714 hr
= DISP_E_BADVARTYPE
;
5718 /* Determine return type */
5719 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
) {
5720 V_VT(result
) = VT_NULL
;
5724 else if ((leftvt
== VT_EMPTY
|| leftvt
== VT_I2
||
5725 leftvt
== VT_I4
|| leftvt
== VT_R4
||
5726 leftvt
== VT_R8
|| leftvt
== VT_CY
||
5727 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
5728 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
5729 (leftvt
>= VT_I1
&& leftvt
<= VT_UINT
)) &&
5730 (rightvt
== VT_EMPTY
|| rightvt
== VT_I2
||
5731 rightvt
== VT_I4
|| rightvt
== VT_R4
||
5732 rightvt
== VT_R8
|| rightvt
== VT_CY
||
5733 rightvt
== VT_DATE
|| rightvt
== VT_BSTR
||
5734 rightvt
== VT_BOOL
|| rightvt
== VT_DECIMAL
||
5735 (rightvt
>= VT_I1
&& rightvt
<= VT_UINT
)))
5739 hr
= DISP_E_BADVARTYPE
;
5743 hr
= VariantChangeType(&dl
,left
,0,resvt
);
5745 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5750 hr
= VariantChangeType(&dr
,right
,0,resvt
);
5752 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5757 V_VT(result
) = VT_R8
;
5758 V_R8(result
) = pow(V_R8(&dl
),V_R8(&dr
));
5763 VariantClear(&tempLeft
);
5764 VariantClear(&tempRight
);
5769 /**********************************************************************
5770 * VarImp [OLEAUT32.154]
5772 * Bitwise implication of two variants.
5775 * left [I] First variant
5776 * right [I] Second variant
5777 * result [O] Result variant
5781 * Failure: An HRESULT error code indicating the error.
5783 HRESULT WINAPI
VarImp(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5785 HRESULT hres
= S_OK
;
5786 VARTYPE resvt
= VT_EMPTY
;
5787 VARTYPE leftvt
,rightvt
;
5788 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5791 VARIANT tempLeft
, tempRight
;
5795 VariantInit(&tempLeft
);
5796 VariantInit(&tempRight
);
5798 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
5799 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5801 /* Handle VT_DISPATCH by storing and taking address of returned value */
5802 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5804 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5805 if (FAILED(hres
)) goto VarImp_Exit
;
5808 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5810 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5811 if (FAILED(hres
)) goto VarImp_Exit
;
5815 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5816 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5817 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5818 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5820 if (leftExtraFlags
!= rightExtraFlags
)
5822 hres
= DISP_E_BADVARTYPE
;
5825 ExtraFlags
= leftExtraFlags
;
5827 /* Native VarImp always returns an error when using extra
5828 * flags or if the variants are I8 and INT.
5830 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
5833 hres
= DISP_E_BADVARTYPE
;
5837 /* Determine result type */
5838 else if ((leftvt
== VT_NULL
&& rightvt
== VT_NULL
) ||
5839 (leftvt
== VT_NULL
&& rightvt
== VT_EMPTY
))
5841 V_VT(result
) = VT_NULL
;
5845 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
5847 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
5848 leftvt
== VT_INT
|| rightvt
== VT_INT
||
5849 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
5850 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
5851 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
5852 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
5853 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
||
5854 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
5855 leftvt
== VT_CY
|| rightvt
== VT_CY
||
5856 leftvt
== VT_R8
|| rightvt
== VT_R8
||
5857 leftvt
== VT_R4
|| rightvt
== VT_R4
||
5858 leftvt
== VT_I1
|| rightvt
== VT_I1
)
5860 else if ((leftvt
== VT_UI1
&& rightvt
== VT_UI1
) ||
5861 (leftvt
== VT_UI1
&& rightvt
== VT_NULL
) ||
5862 (leftvt
== VT_NULL
&& rightvt
== VT_UI1
))
5864 else if (leftvt
== VT_EMPTY
|| rightvt
== VT_EMPTY
||
5865 leftvt
== VT_I2
|| rightvt
== VT_I2
||
5866 leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
5868 else if (leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
5869 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
5872 /* VT_NULL requires special handling for when the opposite
5873 * variant is equal to something other than -1.
5874 * (NULL Imp 0 = NULL, NULL Imp n = n)
5876 if (leftvt
== VT_NULL
)
5881 case VT_I1
: if (!V_I1(right
)) resvt
= VT_NULL
; break;
5882 case VT_UI1
: if (!V_UI1(right
)) resvt
= VT_NULL
; break;
5883 case VT_I2
: if (!V_I2(right
)) resvt
= VT_NULL
; break;
5884 case VT_UI2
: if (!V_UI2(right
)) resvt
= VT_NULL
; break;
5885 case VT_I4
: if (!V_I4(right
)) resvt
= VT_NULL
; break;
5886 case VT_UI4
: if (!V_UI4(right
)) resvt
= VT_NULL
; break;
5887 case VT_I8
: if (!V_I8(right
)) resvt
= VT_NULL
; break;
5888 case VT_UI8
: if (!V_UI8(right
)) resvt
= VT_NULL
; break;
5889 case VT_INT
: if (!V_INT(right
)) resvt
= VT_NULL
; break;
5890 case VT_UINT
: if (!V_UINT(right
)) resvt
= VT_NULL
; break;
5891 case VT_BOOL
: if (!V_BOOL(right
)) resvt
= VT_NULL
; break;
5892 case VT_R4
: if (!V_R4(right
)) resvt
= VT_NULL
; break;
5893 case VT_R8
: if (!V_R8(right
)) resvt
= VT_NULL
; break;
5894 case VT_DATE
: if (!V_DATE(right
)) resvt
= VT_NULL
; break;
5895 case VT_CY
: if (!V_CY(right
).int64
) resvt
= VT_NULL
; break;
5897 if (!(DEC_HI32(&V_DECIMAL(right
)) || DEC_LO64(&V_DECIMAL(right
))))
5901 hres
= VarBoolFromStr(V_BSTR(right
),LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
5902 if (FAILED(hres
)) goto VarImp_Exit
;
5904 V_VT(result
) = VT_NULL
;
5907 V_VT(result
) = VT_BOOL
;
5912 if (resvt
== VT_NULL
)
5914 V_VT(result
) = resvt
;
5919 hres
= VariantChangeType(result
,right
,0,resvt
);
5924 /* Special handling is required when NULL is the right variant.
5925 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5927 else if (rightvt
== VT_NULL
)
5932 case VT_I1
: if (V_I1(left
) == -1) resvt
= VT_NULL
; break;
5933 case VT_UI1
: if (V_UI1(left
) == 0xff) resvt
= VT_NULL
; break;
5934 case VT_I2
: if (V_I2(left
) == -1) resvt
= VT_NULL
; break;
5935 case VT_UI2
: if (V_UI2(left
) == 0xffff) resvt
= VT_NULL
; break;
5936 case VT_INT
: if (V_INT(left
) == -1) resvt
= VT_NULL
; break;
5937 case VT_UINT
: if (V_UINT(left
) == ~0u) resvt
= VT_NULL
; break;
5938 case VT_I4
: if (V_I4(left
) == -1) resvt
= VT_NULL
; break;
5939 case VT_UI4
: if (V_UI4(left
) == ~0u) resvt
= VT_NULL
; break;
5940 case VT_I8
: if (V_I8(left
) == -1) resvt
= VT_NULL
; break;
5941 case VT_UI8
: if (V_UI8(left
) == ~(ULONGLONG
)0) resvt
= VT_NULL
; break;
5942 case VT_BOOL
: if (V_BOOL(left
) == VARIANT_TRUE
) resvt
= VT_NULL
; break;
5943 case VT_R4
: if (V_R4(left
) == -1.0) resvt
= VT_NULL
; break;
5944 case VT_R8
: if (V_R8(left
) == -1.0) resvt
= VT_NULL
; break;
5945 case VT_CY
: if (V_CY(left
).int64
== -1) resvt
= VT_NULL
; break;
5947 if (DEC_HI32(&V_DECIMAL(left
)) == 0xffffffff)
5951 hres
= VarBoolFromStr(V_BSTR(left
),LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
5952 if (FAILED(hres
)) goto VarImp_Exit
;
5953 else if (b
== VARIANT_TRUE
)
5956 if (resvt
== VT_NULL
)
5958 V_VT(result
) = resvt
;
5963 hres
= VariantCopy(&lv
, left
);
5964 if (FAILED(hres
)) goto VarImp_Exit
;
5966 if (rightvt
== VT_NULL
)
5968 memset( &rv
, 0, sizeof(rv
) );
5973 hres
= VariantCopy(&rv
, right
);
5974 if (FAILED(hres
)) goto VarImp_Exit
;
5977 if (V_VT(&lv
) == VT_BSTR
&&
5978 FAILED(VarR8FromStr(V_BSTR(&lv
),LOCALE_USER_DEFAULT
, 0, &d
)))
5979 hres
= VariantChangeType(&lv
,&lv
,VARIANT_LOCALBOOL
, VT_BOOL
);
5980 if (SUCCEEDED(hres
) && V_VT(&lv
) != resvt
)
5981 hres
= VariantChangeType(&lv
,&lv
,0,resvt
);
5982 if (FAILED(hres
)) goto VarImp_Exit
;
5984 if (V_VT(&rv
) == VT_BSTR
&&
5985 FAILED(VarR8FromStr(V_BSTR(&rv
),LOCALE_USER_DEFAULT
, 0, &d
)))
5986 hres
= VariantChangeType(&rv
, &rv
,VARIANT_LOCALBOOL
, VT_BOOL
);
5987 if (SUCCEEDED(hres
) && V_VT(&rv
) != resvt
)
5988 hres
= VariantChangeType(&rv
, &rv
, 0, resvt
);
5989 if (FAILED(hres
)) goto VarImp_Exit
;
5992 V_VT(result
) = resvt
;
5996 V_I8(result
) = (~V_I8(&lv
)) | V_I8(&rv
);
5999 V_I4(result
) = (~V_I4(&lv
)) | V_I4(&rv
);
6002 V_I2(result
) = (~V_I2(&lv
)) | V_I2(&rv
);
6005 V_UI1(result
) = (~V_UI1(&lv
)) | V_UI1(&rv
);
6008 V_BOOL(result
) = (~V_BOOL(&lv
)) | V_BOOL(&rv
);
6011 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
6019 VariantClear(&tempLeft
);
6020 VariantClear(&tempRight
);