2 * Copyright 2008 Jacek Caban for CodeWeavers
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
20 * Code in this file is based on files:
23 * from Mozilla project, released under LGPL 2.1 or later.
25 * The Original Code is Mozilla Communicator client code, released
28 * The Initial Developer of the Original Code is
29 * Netscape Communications Corporation.
30 * Portions created by the Initial Developer are Copyright (C) 1998
31 * the Initial Developer. All Rights Reserved.
39 #include "wine/debug.h"
41 WINE_DEFAULT_DEBUG_CHANNEL(jscript
);
43 #define JSREG_FOLD 0x01 /* fold uppercase to lowercase */
44 #define JSREG_GLOB 0x02 /* global exec, creates array of matches */
45 #define JSREG_MULTILINE 0x04 /* treat ^ and $ as begin and end of line */
46 #define JSREG_STICKY 0x08 /* only match starting at lastIndex */
48 typedef BYTE JSPackedBool
;
49 typedef BYTE jsbytecode
;
52 * This struct holds a bitmap representation of a class from a regexp.
53 * There's a list of these referenced by the classList field in the JSRegExp
54 * struct below. The initial state has startIndex set to the offset in the
55 * original regexp source of the beginning of the class contents. The first
56 * use of the class converts the source representation into a bitmap.
59 typedef struct RECharSet
{
60 JSPackedBool converted
;
73 WORD flags
; /* flags, see jsapi.h's JSREG_* defines */
74 size_t parenCount
; /* number of parenthesized submatches */
75 size_t classCount
; /* count [...] bitmaps */
76 RECharSet
*classList
; /* list of [...] bitmaps */
77 BSTR source
; /* locked source string, sans // */
78 jsbytecode program
[1]; /* regular expression bytecode */
87 VARIANT last_index_var
;
90 static const WCHAR sourceW
[] = {'s','o','u','r','c','e',0};
91 static const WCHAR globalW
[] = {'g','l','o','b','a','l',0};
92 static const WCHAR ignoreCaseW
[] = {'i','g','n','o','r','e','C','a','s','e',0};
93 static const WCHAR multilineW
[] = {'m','u','l','t','i','l','i','n','e',0};
94 static const WCHAR lastIndexW
[] = {'l','a','s','t','I','n','d','e','x',0};
95 static const WCHAR toStringW
[] = {'t','o','S','t','r','i','n','g',0};
96 static const WCHAR execW
[] = {'e','x','e','c',0};
97 static const WCHAR testW
[] = {'t','e','s','t',0};
99 static const WCHAR emptyW
[] = {0};
101 /* FIXME: Better error handling */
102 #define ReportRegExpError(a,b,c)
103 #define ReportRegExpErrorHelper(a,b,c,d)
104 #define JS_ReportErrorNumber(a,b,c,d)
105 #define JS_ReportErrorFlagsAndNumber(a,b,c,d,e,f)
106 #define js_ReportOutOfScriptQuota(a)
107 #define JS_ReportOutOfMemory(a)
108 #define JS_COUNT_OPERATION(a,b)
110 #define JSMSG_MIN_TOO_BIG 47
111 #define JSMSG_MAX_TOO_BIG 48
112 #define JSMSG_OUT_OF_ORDER 49
113 #define JSMSG_OUT_OF_MEMORY 137
115 #define LINE_SEPARATOR 0x2028
116 #define PARA_SEPARATOR 0x2029
118 #define RE_IS_LETTER(c) (((c >= 'A') && (c <= 'Z')) || \
119 ((c >= 'a') && (c <= 'z')) )
120 #define RE_IS_LINE_TERM(c) ((c == '\n') || (c == '\r') || \
121 (c == LINE_SEPARATOR) || (c == PARA_SEPARATOR))
123 #define JS_ISWORD(c) ((c) < 128 && (isalnum(c) || (c) == '_'))
125 #define JS7_ISDEC(c) ((((unsigned)(c)) - '0') <= 9)
126 #define JS7_UNDEC(c) ((c) - '0')
178 REOP_LIMIT
/* META: no operator >= to this */
181 #define REOP_IS_SIMPLE(op) ((op) <= REOP_NCLASS)
183 static const char *reop_names
[] = {
236 typedef struct RECapture
{
237 ptrdiff_t index
; /* start of contents, -1 for empty */
238 size_t length
; /* length of capture */
241 typedef struct REMatchState
{
243 RECapture parens
[1]; /* first of 're->parenCount' captures,
244 allocated at end of this struct */
247 typedef struct REProgState
{
248 jsbytecode
*continue_pc
; /* current continuation data */
249 jsbytecode continue_op
;
250 ptrdiff_t index
; /* progress in text */
251 size_t parenSoFar
; /* highest indexed paren started */
254 UINT min
; /* current quantifier limits */
258 size_t top
; /* backtrack stack state */
264 typedef struct REBackTrackData
{
265 size_t sz
; /* size of previous stack entry */
266 jsbytecode
*backtrack_pc
; /* where to backtrack to */
267 jsbytecode backtrack_op
;
268 const WCHAR
*cp
; /* index in text of match at backtrack */
269 size_t parenIndex
; /* start index of saved paren contents */
270 size_t parenCount
; /* # of saved paren contents */
271 size_t saveStateStackTop
; /* number of parent states */
272 /* saved parent states follow */
273 /* saved paren contents follow */
276 #define INITIAL_STATESTACK 100
277 #define INITIAL_BACKTRACK 8000
279 typedef struct REGlobalData
{
281 JSRegExp
*regexp
; /* the RE in execution */
282 BOOL ok
; /* runtime error (out_of_memory only?) */
283 size_t start
; /* offset to start at */
284 ptrdiff_t skipped
; /* chars skipped anchoring this r.e. */
285 const WCHAR
*cpbegin
; /* text base address */
286 const WCHAR
*cpend
; /* text limit address */
288 REProgState
*stateStack
; /* stack of state of current parents */
289 size_t stateStackTop
;
290 size_t stateStackLimit
;
292 REBackTrackData
*backTrackStack
;/* stack of matched-so-far positions */
293 REBackTrackData
*backTrackSP
;
294 size_t backTrackStackSize
;
295 size_t cursz
; /* size of current stack entry */
296 size_t backTrackCount
; /* how many times we've backtracked */
297 size_t backTrackLimit
; /* upper limit on backtrack states */
299 jsheap_t
*pool
; /* It's faster to use one malloc'd pool
300 than to malloc/free the three items
301 that are allocated from this pool */
304 typedef struct RENode RENode
;
306 REOp op
; /* r.e. op bytecode */
307 RENode
*next
; /* next in concatenation order */
308 void *kid
; /* first operand */
310 void *kid2
; /* second operand */
311 INT num
; /* could be a number */
312 size_t parenIndex
; /* or a parenthesis index */
313 struct { /* or a quantifier range */
318 struct { /* or a character class */
320 size_t kidlen
; /* length of string at kid, in jschars */
321 size_t index
; /* index into class list */
322 WORD bmsize
; /* bitmap size, based on max char code */
325 struct { /* or a literal sequence */
326 WCHAR chr
; /* of one character */
327 size_t length
; /* or many (via the kid) */
330 RENode
*kid2
; /* second operand from ALT */
331 WCHAR ch1
; /* match char for ALTPREREQ */
332 WCHAR ch2
; /* ditto, or class index for ALTPREREQ2 */
337 #define CLASS_CACHE_SIZE 4
339 typedef struct CompilerState
{
340 script_ctx_t
*context
;
341 const WCHAR
*cpbegin
;
345 size_t classCount
; /* number of [] encountered */
346 size_t treeDepth
; /* maximum depth of parse tree */
347 size_t progLength
; /* estimated bytecode length */
349 size_t classBitmapsMem
; /* memory to hold all class bitmaps */
351 const WCHAR
*start
; /* small cache of class strings */
352 size_t length
; /* since they're often the same */
354 } classCache
[CLASS_CACHE_SIZE
];
358 typedef struct EmitStateStackEntry
{
359 jsbytecode
*altHead
; /* start of REOP_ALT* opcode */
360 jsbytecode
*nextAltFixup
; /* fixup pointer to next-alt offset */
361 jsbytecode
*nextTermFixup
; /* fixup ptr. to REOP_JUMP offset */
362 jsbytecode
*endTermFixup
; /* fixup ptr. to REOPT_ALTPREREQ* offset */
363 RENode
*continueNode
; /* original REOP_ALT* node being stacked */
364 jsbytecode continueOp
; /* REOP_JUMP or REOP_ENDALT continuation */
365 JSPackedBool jumpToJumpFlag
; /* true if we've patched jump-to-jump to
366 avoid 16-bit unsigned offset overflow */
367 } EmitStateStackEntry
;
370 * Immediate operand sizes and getter/setters. Unlike the ones in jsopcode.h,
371 * the getters and setters take the pc of the offset, not of the opcode before
375 #define GET_ARG(pc) ((WORD)(((pc)[0] << 8) | (pc)[1]))
376 #define SET_ARG(pc, arg) ((pc)[0] = (jsbytecode) ((arg) >> 8), \
377 (pc)[1] = (jsbytecode) (arg))
379 #define OFFSET_LEN ARG_LEN
380 #define OFFSET_MAX ((1 << (ARG_LEN * 8)) - 1)
381 #define GET_OFFSET(pc) GET_ARG(pc)
383 static BOOL
ParseRegExp(CompilerState
*);
386 * Maximum supported tree depth is maximum size of EmitStateStackEntry stack.
387 * For sanity, we limit it to 2^24 bytes.
389 #define TREE_DEPTH_MAX ((1 << 24) / sizeof(EmitStateStackEntry))
392 * The maximum memory that can be allocated for class bitmaps.
393 * For sanity, we limit it to 2^24 bytes.
395 #define CLASS_BITMAPS_MEM_LIMIT (1 << 24)
398 * Functions to get size and write/read bytecode that represent small indexes
400 * Each byte in the code represent 7-bit chunk of the index. 8th bit when set
401 * indicates that the following byte brings more bits to the index. Otherwise
402 * this is the last byte in the index bytecode representing highest index bits.
405 GetCompactIndexWidth(size_t index
)
409 for (width
= 1; (index
>>= 7) != 0; ++width
) { }
413 static inline jsbytecode
*
414 WriteCompactIndex(jsbytecode
*pc
, size_t index
)
418 while ((next
= index
>> 7) != 0) {
419 *pc
++ = (jsbytecode
)(index
| 0x80);
422 *pc
++ = (jsbytecode
)index
;
426 static inline jsbytecode
*
427 ReadCompactIndex(jsbytecode
*pc
, size_t *result
)
432 if ((nextByte
& 0x80) == 0) {
434 * Short-circuit the most common case when compact index <= 127.
439 *result
= 0x7F & nextByte
;
442 *result
|= (nextByte
& 0x7F) << shift
;
444 } while ((nextByte
& 0x80) != 0);
449 /* Construct and initialize an RENode, returning NULL for out-of-memory */
451 NewRENode(CompilerState
*state
, REOp op
)
455 ren
= jsheap_alloc(&state
->context
->tmp_heap
, sizeof(*ren
));
457 /* js_ReportOutOfScriptQuota(cx); */
467 * Validates and converts hex ascii value.
470 isASCIIHexDigit(WCHAR c
, UINT
*digit
)
481 if (cv
>= 'a' && cv
<= 'f') {
482 *digit
= cv
- 'a' + 10;
494 #define JUMP_OFFSET_HI(off) ((jsbytecode)((off) >> 8))
495 #define JUMP_OFFSET_LO(off) ((jsbytecode)(off))
498 SetForwardJumpOffset(jsbytecode
*jump
, jsbytecode
*target
)
500 ptrdiff_t offset
= target
- jump
;
502 /* Check that target really points forward. */
504 if ((size_t)offset
> OFFSET_MAX
)
507 jump
[0] = JUMP_OFFSET_HI(offset
);
508 jump
[1] = JUMP_OFFSET_LO(offset
);
513 * Generate bytecode for the tree rooted at t using an explicit stack instead
517 EmitREBytecode(CompilerState
*state
, JSRegExp
*re
, size_t treeDepth
,
518 jsbytecode
*pc
, RENode
*t
)
520 EmitStateStackEntry
*emitStateSP
, *emitStateStack
;
524 if (treeDepth
== 0) {
525 emitStateStack
= NULL
;
527 emitStateStack
= heap_alloc(sizeof(EmitStateStackEntry
) * treeDepth
);
531 emitStateSP
= emitStateStack
;
533 assert(op
< REOP_LIMIT
);
542 case REOP_ALTPREREQ2
:
545 emitStateSP
->altHead
= pc
- 1;
546 emitStateSP
->endTermFixup
= pc
;
548 SET_ARG(pc
, t
->u
.altprereq
.ch1
);
550 SET_ARG(pc
, t
->u
.altprereq
.ch2
);
553 emitStateSP
->nextAltFixup
= pc
; /* offset to next alternate */
556 emitStateSP
->continueNode
= t
;
557 emitStateSP
->continueOp
= REOP_JUMP
;
558 emitStateSP
->jumpToJumpFlag
= FALSE
;
560 assert((size_t)(emitStateSP
- emitStateStack
) <= treeDepth
);
563 assert(op
< REOP_LIMIT
);
567 emitStateSP
->nextTermFixup
= pc
; /* offset to following term */
569 if (!SetForwardJumpOffset(emitStateSP
->nextAltFixup
, pc
))
571 emitStateSP
->continueOp
= REOP_ENDALT
;
573 assert((size_t)(emitStateSP
- emitStateStack
) <= treeDepth
);
576 assert(op
< REOP_LIMIT
);
581 * If we already patched emitStateSP->nextTermFixup to jump to
582 * a nearer jump, to avoid 16-bit immediate offset overflow, we
585 if (emitStateSP
->jumpToJumpFlag
)
589 * Fix up the REOP_JUMP offset to go to the op after REOP_ENDALT.
590 * REOP_ENDALT is executed only on successful match of the last
591 * alternate in a group.
593 if (!SetForwardJumpOffset(emitStateSP
->nextTermFixup
, pc
))
595 if (t
->op
!= REOP_ALT
) {
596 if (!SetForwardJumpOffset(emitStateSP
->endTermFixup
, pc
))
601 * If the program is bigger than the REOP_JUMP offset range, then
602 * we must check for alternates before this one that are part of
603 * the same group, and fix up their jump offsets to target jumps
604 * close enough to fit in a 16-bit unsigned offset immediate.
606 if ((size_t)(pc
- re
->program
) > OFFSET_MAX
&&
607 emitStateSP
> emitStateStack
) {
608 EmitStateStackEntry
*esp
, *esp2
;
609 jsbytecode
*alt
, *jump
;
610 ptrdiff_t span
, header
;
614 for (esp
= esp2
- 1; esp
>= emitStateStack
; --esp
) {
615 if (esp
->continueOp
== REOP_ENDALT
&&
616 !esp
->jumpToJumpFlag
&&
617 esp
->nextTermFixup
+ OFFSET_LEN
== alt
&&
618 (size_t)(pc
- ((esp
->continueNode
->op
!= REOP_ALT
)
620 : esp
->nextTermFixup
)) > OFFSET_MAX
) {
622 jump
= esp
->nextTermFixup
;
625 * The span must be 1 less than the distance from
626 * jump offset to jump offset, so we actually jump
627 * to a REOP_JUMP bytecode, not to its offset!
630 assert(jump
< esp2
->nextTermFixup
);
631 span
= esp2
->nextTermFixup
- jump
- 1;
632 if ((size_t)span
<= OFFSET_MAX
)
637 } while (esp2
->continueOp
!= REOP_ENDALT
);
640 jump
[0] = JUMP_OFFSET_HI(span
);
641 jump
[1] = JUMP_OFFSET_LO(span
);
643 if (esp
->continueNode
->op
!= REOP_ALT
) {
645 * We must patch the offset at esp->endTermFixup
646 * as well, for the REOP_ALTPREREQ{,2} opcodes.
647 * If we're unlucky and endTermFixup is more than
648 * OFFSET_MAX bytes from its target, we cheat by
649 * jumping 6 bytes to the jump whose offset is at
650 * esp->nextTermFixup, which has the same target.
652 jump
= esp
->endTermFixup
;
653 header
= esp
->nextTermFixup
- jump
;
655 if ((size_t)span
> OFFSET_MAX
)
658 jump
[0] = JUMP_OFFSET_HI(span
);
659 jump
[1] = JUMP_OFFSET_LO(span
);
662 esp
->jumpToJumpFlag
= TRUE
;
670 emitStateSP
->altHead
= pc
- 1;
671 emitStateSP
->nextAltFixup
= pc
; /* offset to next alternate */
673 emitStateSP
->continueNode
= t
;
674 emitStateSP
->continueOp
= REOP_JUMP
;
675 emitStateSP
->jumpToJumpFlag
= FALSE
;
677 assert((size_t)(emitStateSP
- emitStateStack
) <= treeDepth
);
680 assert(op
< REOP_LIMIT
);
685 * Coalesce FLATs if possible and if it would not increase bytecode
686 * beyond preallocated limit. The latter happens only when bytecode
687 * size for coalesced string with offset p and length 2 exceeds 6
688 * bytes preallocated for 2 single char nodes, i.e. when
689 * 1 + GetCompactIndexWidth(p) + GetCompactIndexWidth(2) > 6 or
690 * GetCompactIndexWidth(p) > 4.
691 * Since when GetCompactIndexWidth(p) <= 4 coalescing of 3 or more
692 * nodes strictly decreases bytecode size, the check has to be
693 * done only for the first coalescing.
696 GetCompactIndexWidth((WCHAR
*)t
->kid
- state
->cpbegin
) <= 4)
699 t
->next
->op
== REOP_FLAT
&&
700 (WCHAR
*)t
->kid
+ t
->u
.flat
.length
==
702 t
->u
.flat
.length
+= t
->next
->u
.flat
.length
;
703 t
->next
= t
->next
->next
;
706 if (t
->kid
&& t
->u
.flat
.length
> 1) {
707 pc
[-1] = (state
->flags
& JSREG_FOLD
) ? REOP_FLATi
: REOP_FLAT
;
708 pc
= WriteCompactIndex(pc
, (WCHAR
*)t
->kid
- state
->cpbegin
);
709 pc
= WriteCompactIndex(pc
, t
->u
.flat
.length
);
710 } else if (t
->u
.flat
.chr
< 256) {
711 pc
[-1] = (state
->flags
& JSREG_FOLD
) ? REOP_FLAT1i
: REOP_FLAT1
;
712 *pc
++ = (jsbytecode
) t
->u
.flat
.chr
;
714 pc
[-1] = (state
->flags
& JSREG_FOLD
)
717 SET_ARG(pc
, t
->u
.flat
.chr
);
724 pc
= WriteCompactIndex(pc
, t
->u
.parenIndex
);
725 emitStateSP
->continueNode
= t
;
726 emitStateSP
->continueOp
= REOP_RPAREN
;
728 assert((size_t)(emitStateSP
- emitStateStack
) <= treeDepth
);
734 pc
= WriteCompactIndex(pc
, t
->u
.parenIndex
);
738 pc
= WriteCompactIndex(pc
, t
->u
.parenIndex
);
743 emitStateSP
->nextTermFixup
= pc
;
745 emitStateSP
->continueNode
= t
;
746 emitStateSP
->continueOp
= REOP_ASSERTTEST
;
748 assert((size_t)(emitStateSP
- emitStateStack
) <= treeDepth
);
753 case REOP_ASSERTTEST
:
754 case REOP_ASSERTNOTTEST
:
755 if (!SetForwardJumpOffset(emitStateSP
->nextTermFixup
, pc
))
759 case REOP_ASSERT_NOT
:
761 emitStateSP
->nextTermFixup
= pc
;
763 emitStateSP
->continueNode
= t
;
764 emitStateSP
->continueOp
= REOP_ASSERTNOTTEST
;
766 assert((size_t)(emitStateSP
- emitStateStack
) <= treeDepth
);
773 if (t
->u
.range
.min
== 0 && t
->u
.range
.max
== (UINT
)-1) {
774 pc
[-1] = (t
->u
.range
.greedy
) ? REOP_STAR
: REOP_MINIMALSTAR
;
775 } else if (t
->u
.range
.min
== 0 && t
->u
.range
.max
== 1) {
776 pc
[-1] = (t
->u
.range
.greedy
) ? REOP_OPT
: REOP_MINIMALOPT
;
777 } else if (t
->u
.range
.min
== 1 && t
->u
.range
.max
== (UINT
) -1) {
778 pc
[-1] = (t
->u
.range
.greedy
) ? REOP_PLUS
: REOP_MINIMALPLUS
;
780 if (!t
->u
.range
.greedy
)
781 pc
[-1] = REOP_MINIMALQUANT
;
782 pc
= WriteCompactIndex(pc
, t
->u
.range
.min
);
784 * Write max + 1 to avoid using size_t(max) + 1 bytes
785 * for (UINT)-1 sentinel.
787 pc
= WriteCompactIndex(pc
, t
->u
.range
.max
+ 1);
789 emitStateSP
->nextTermFixup
= pc
;
791 emitStateSP
->continueNode
= t
;
792 emitStateSP
->continueOp
= REOP_ENDCHILD
;
794 assert((size_t)(emitStateSP
- emitStateStack
) <= treeDepth
);
800 if (!SetForwardJumpOffset(emitStateSP
->nextTermFixup
, pc
))
805 if (!t
->u
.ucclass
.sense
)
806 pc
[-1] = REOP_NCLASS
;
807 pc
= WriteCompactIndex(pc
, t
->u
.ucclass
.index
);
808 charSet
= &re
->classList
[t
->u
.ucclass
.index
];
809 charSet
->converted
= FALSE
;
810 charSet
->length
= t
->u
.ucclass
.bmsize
;
811 charSet
->u
.src
.startIndex
= t
->u
.ucclass
.startIndex
;
812 charSet
->u
.src
.length
= t
->u
.ucclass
.kidlen
;
813 charSet
->sense
= t
->u
.ucclass
.sense
;
824 if (emitStateSP
== emitStateStack
)
827 t
= emitStateSP
->continueNode
;
828 op
= (REOp
) emitStateSP
->continueOp
;
833 heap_free(emitStateStack
);
837 ReportRegExpError(state
, JSREPORT_ERROR
, JSMSG_REGEXP_TOO_COMPLEX
);
843 * Process the op against the two top operands, reducing them to a single
844 * operand in the penultimate slot. Update progLength and treeDepth.
847 ProcessOp(CompilerState
*state
, REOpData
*opData
, RENode
**operandStack
,
852 switch (opData
->op
) {
854 result
= NewRENode(state
, REOP_ALT
);
857 result
->kid
= operandStack
[operandSP
- 2];
858 result
->u
.kid2
= operandStack
[operandSP
- 1];
859 operandStack
[operandSP
- 2] = result
;
861 if (state
->treeDepth
== TREE_DEPTH_MAX
) {
862 ReportRegExpError(state
, JSREPORT_ERROR
, JSMSG_REGEXP_TOO_COMPLEX
);
868 * Look at both alternates to see if there's a FLAT or a CLASS at
869 * the start of each. If so, use a prerequisite match.
871 if (((RENode
*) result
->kid
)->op
== REOP_FLAT
&&
872 ((RENode
*) result
->u
.kid2
)->op
== REOP_FLAT
&&
873 (state
->flags
& JSREG_FOLD
) == 0) {
874 result
->op
= REOP_ALTPREREQ
;
875 result
->u
.altprereq
.ch1
= ((RENode
*) result
->kid
)->u
.flat
.chr
;
876 result
->u
.altprereq
.ch2
= ((RENode
*) result
->u
.kid2
)->u
.flat
.chr
;
877 /* ALTPREREQ, <end>, uch1, uch2, <next>, ...,
878 JUMP, <end> ... ENDALT */
879 state
->progLength
+= 13;
882 if (((RENode
*) result
->kid
)->op
== REOP_CLASS
&&
883 ((RENode
*) result
->kid
)->u
.ucclass
.index
< 256 &&
884 ((RENode
*) result
->u
.kid2
)->op
== REOP_FLAT
&&
885 (state
->flags
& JSREG_FOLD
) == 0) {
886 result
->op
= REOP_ALTPREREQ2
;
887 result
->u
.altprereq
.ch1
= ((RENode
*) result
->u
.kid2
)->u
.flat
.chr
;
888 result
->u
.altprereq
.ch2
= ((RENode
*) result
->kid
)->u
.ucclass
.index
;
889 /* ALTPREREQ2, <end>, uch1, uch2, <next>, ...,
890 JUMP, <end> ... ENDALT */
891 state
->progLength
+= 13;
894 if (((RENode
*) result
->kid
)->op
== REOP_FLAT
&&
895 ((RENode
*) result
->u
.kid2
)->op
== REOP_CLASS
&&
896 ((RENode
*) result
->u
.kid2
)->u
.ucclass
.index
< 256 &&
897 (state
->flags
& JSREG_FOLD
) == 0) {
898 result
->op
= REOP_ALTPREREQ2
;
899 result
->u
.altprereq
.ch1
= ((RENode
*) result
->kid
)->u
.flat
.chr
;
900 result
->u
.altprereq
.ch2
=
901 ((RENode
*) result
->u
.kid2
)->u
.ucclass
.index
;
902 /* ALTPREREQ2, <end>, uch1, uch2, <next>, ...,
903 JUMP, <end> ... ENDALT */
904 state
->progLength
+= 13;
907 /* ALT, <next>, ..., JUMP, <end> ... ENDALT */
908 state
->progLength
+= 7;
913 result
= operandStack
[operandSP
- 2];
915 result
= result
->next
;
916 result
->next
= operandStack
[operandSP
- 1];
920 case REOP_ASSERT_NOT
:
923 /* These should have been processed by a close paren. */
924 ReportRegExpErrorHelper(state
, JSREPORT_ERROR
, JSMSG_MISSING_PAREN
,
934 * Hack two bits in CompilerState.flags, for use within FindParenCount to flag
935 * its being on the stack, and to propagate errors to its callers.
937 #define JSREG_FIND_PAREN_COUNT 0x8000
938 #define JSREG_FIND_PAREN_ERROR 0x4000
941 * Magic return value from FindParenCount and GetDecimalValue, to indicate
942 * overflow beyond GetDecimalValue's max parameter, or a computed maximum if
943 * its findMax parameter is non-null.
945 #define OVERFLOW_VALUE ((UINT)-1)
948 FindParenCount(CompilerState
*state
)
953 if (state
->flags
& JSREG_FIND_PAREN_COUNT
)
954 return OVERFLOW_VALUE
;
957 * Copy state into temp, flag it so we never report an invalid backref,
958 * and reset its members to parse the entire regexp. This is obviously
959 * suboptimal, but GetDecimalValue calls us only if a backref appears to
960 * refer to a forward parenthetical, which is rare.
963 temp
.flags
|= JSREG_FIND_PAREN_COUNT
;
964 temp
.cp
= temp
.cpbegin
;
969 temp
.classBitmapsMem
= 0;
970 for (i
= 0; i
< CLASS_CACHE_SIZE
; i
++)
971 temp
.classCache
[i
].start
= NULL
;
973 if (!ParseRegExp(&temp
)) {
974 state
->flags
|= JSREG_FIND_PAREN_ERROR
;
975 return OVERFLOW_VALUE
;
977 return temp
.parenCount
;
981 * Extract and return a decimal value at state->cp. The initial character c
982 * has already been read. Return OVERFLOW_VALUE if the result exceeds max.
983 * Callers who pass a non-null findMax should test JSREG_FIND_PAREN_ERROR in
984 * state->flags to discover whether an error occurred under findMax.
987 GetDecimalValue(WCHAR c
, UINT max
, UINT (*findMax
)(CompilerState
*state
),
988 CompilerState
*state
)
990 UINT value
= JS7_UNDEC(c
);
991 BOOL overflow
= (value
> max
&& (!findMax
|| value
> findMax(state
)));
993 /* The following restriction allows simpler overflow checks. */
994 assert(max
<= ((UINT
)-1 - 9) / 10);
995 while (state
->cp
< state
->cpend
) {
999 value
= 10 * value
+ JS7_UNDEC(c
);
1000 if (!overflow
&& value
> max
&& (!findMax
|| value
> findMax(state
)))
1004 return overflow
? OVERFLOW_VALUE
: value
;
1008 * Calculate the total size of the bitmap required for a class expression.
1011 CalculateBitmapSize(CompilerState
*state
, RENode
*target
, const WCHAR
*src
,
1015 BOOL inRange
= FALSE
;
1016 WCHAR c
, rangeStart
= 0;
1017 UINT n
, digit
, nDigits
, i
;
1019 target
->u
.ucclass
.bmsize
= 0;
1020 target
->u
.ucclass
.sense
= TRUE
;
1027 target
->u
.ucclass
.sense
= FALSE
;
1030 while (src
!= end
) {
1031 BOOL canStartRange
= TRUE
;
1058 if (src
< end
&& RE_IS_LETTER(*src
)) {
1059 localMax
= (UINT
) (*src
++) & 0x1F;
1072 for (i
= 0; (i
< nDigits
) && (src
< end
); i
++) {
1074 if (!isASCIIHexDigit(c
, &digit
)) {
1076 * Back off to accepting the original
1083 n
= (n
<< 4) | digit
;
1088 canStartRange
= FALSE
;
1090 JS_ReportErrorNumber(state
->context
,
1091 js_GetErrorMessage
, NULL
,
1092 JSMSG_BAD_CLASS_RANGE
);
1102 canStartRange
= FALSE
;
1104 JS_ReportErrorNumber(state
->context
,
1105 js_GetErrorMessage
, NULL
,
1106 JSMSG_BAD_CLASS_RANGE
);
1112 * If this is the start of a range, ensure that it's less than
1126 * This is a non-ECMA extension - decimal escapes (in this
1127 * case, octal!) are supposed to be an error inside class
1128 * ranges, but supported here for backwards compatibility.
1133 if ('0' <= c
&& c
<= '7') {
1135 n
= 8 * n
+ JS7_UNDEC(c
);
1137 if ('0' <= c
&& c
<= '7') {
1139 i
= 8 * n
+ JS7_UNDEC(c
);
1160 /* Throw a SyntaxError here, per ECMA-262, 15.10.2.15. */
1161 if (rangeStart
> localMax
) {
1162 JS_ReportErrorNumber(state
->context
,
1163 js_GetErrorMessage
, NULL
,
1164 JSMSG_BAD_CLASS_RANGE
);
1169 if (canStartRange
&& src
< end
- 1) {
1173 rangeStart
= (WCHAR
)localMax
;
1177 if (state
->flags
& JSREG_FOLD
)
1178 rangeStart
= localMax
; /* one run of the uc/dc loop below */
1181 if (state
->flags
& JSREG_FOLD
) {
1182 WCHAR maxch
= localMax
;
1184 for (i
= rangeStart
; i
<= localMax
; i
++) {
1200 target
->u
.ucclass
.bmsize
= max
;
1205 ParseMinMaxQuantifier(CompilerState
*state
, BOOL ignoreValues
)
1209 const WCHAR
*errp
= state
->cp
++;
1214 min
= GetDecimalValue(c
, 0xFFFF, NULL
, state
);
1217 if (!ignoreValues
&& min
== OVERFLOW_VALUE
)
1218 return JSMSG_MIN_TOO_BIG
;
1224 max
= GetDecimalValue(c
, 0xFFFF, NULL
, state
);
1226 if (!ignoreValues
&& max
== OVERFLOW_VALUE
)
1227 return JSMSG_MAX_TOO_BIG
;
1228 if (!ignoreValues
&& min
> max
)
1229 return JSMSG_OUT_OF_ORDER
;
1237 state
->result
= NewRENode(state
, REOP_QUANT
);
1239 return JSMSG_OUT_OF_MEMORY
;
1240 state
->result
->u
.range
.min
= min
;
1241 state
->result
->u
.range
.max
= max
;
1243 * QUANT, <min>, <max>, <next> ... <ENDCHILD>
1244 * where <max> is written as compact(max+1) to make
1245 * (UINT)-1 sentinel to occupy 1 byte, not width_of(max)+1.
1247 state
->progLength
+= (1 + GetCompactIndexWidth(min
)
1248 + GetCompactIndexWidth(max
+ 1)
1259 ParseQuantifier(CompilerState
*state
)
1262 term
= state
->result
;
1263 if (state
->cp
< state
->cpend
) {
1264 switch (*state
->cp
) {
1266 state
->result
= NewRENode(state
, REOP_QUANT
);
1269 state
->result
->u
.range
.min
= 1;
1270 state
->result
->u
.range
.max
= (UINT
)-1;
1271 /* <PLUS>, <next> ... <ENDCHILD> */
1272 state
->progLength
+= 4;
1275 state
->result
= NewRENode(state
, REOP_QUANT
);
1278 state
->result
->u
.range
.min
= 0;
1279 state
->result
->u
.range
.max
= (UINT
)-1;
1280 /* <STAR>, <next> ... <ENDCHILD> */
1281 state
->progLength
+= 4;
1284 state
->result
= NewRENode(state
, REOP_QUANT
);
1287 state
->result
->u
.range
.min
= 0;
1288 state
->result
->u
.range
.max
= 1;
1289 /* <OPT>, <next> ... <ENDCHILD> */
1290 state
->progLength
+= 4;
1292 case '{': /* balance '}' */
1296 err
= ParseMinMaxQuantifier(state
, FALSE
);
1302 ReportRegExpErrorHelper(state
, JSREPORT_ERROR
, err
, errp
);
1311 if (state
->treeDepth
== TREE_DEPTH_MAX
) {
1312 ReportRegExpError(state
, JSREPORT_ERROR
, JSMSG_REGEXP_TOO_COMPLEX
);
1318 state
->result
->kid
= term
;
1319 if (state
->cp
< state
->cpend
&& *state
->cp
== '?') {
1321 state
->result
->u
.range
.greedy
= FALSE
;
1323 state
->result
->u
.range
.greedy
= TRUE
;
1329 * item: assertion An item is either an assertion or
1330 * quantatom a quantified atom.
1332 * assertion: '^' Assertions match beginning of string
1333 * (or line if the class static property
1334 * RegExp.multiline is true).
1335 * '$' End of string (or line if the class
1336 * static property RegExp.multiline is
1338 * '\b' Word boundary (between \w and \W).
1339 * '\B' Word non-boundary.
1341 * quantatom: atom An unquantified atom.
1342 * quantatom '{' n ',' m '}'
1343 * Atom must occur between n and m times.
1344 * quantatom '{' n ',' '}' Atom must occur at least n times.
1345 * quantatom '{' n '}' Atom must occur exactly n times.
1346 * quantatom '*' Zero or more times (same as {0,}).
1347 * quantatom '+' One or more times (same as {1,}).
1348 * quantatom '?' Zero or one time (same as {0,1}).
1350 * any of which can be optionally followed by '?' for ungreedy
1352 * atom: '(' regexp ')' A parenthesized regexp (what matched
1353 * can be addressed using a backreference,
1355 * '.' Matches any char except '\n'.
1356 * '[' classlist ']' A character class.
1357 * '[' '^' classlist ']' A negated character class.
1359 * '\n' Newline (Line Feed).
1360 * '\r' Carriage Return.
1361 * '\t' Horizontal Tab.
1362 * '\v' Vertical Tab.
1363 * '\d' A digit (same as [0-9]).
1365 * '\w' A word character, [0-9a-z_A-Z].
1366 * '\W' A non-word character.
1367 * '\s' A whitespace character, [ \b\f\n\r\t\v].
1368 * '\S' A non-whitespace character.
1369 * '\' n A backreference to the nth (n decimal
1370 * and positive) parenthesized expression.
1371 * '\' octal An octal escape sequence (octal must be
1372 * two or three digits long, unless it is
1373 * 0 for the null character).
1374 * '\x' hex A hex escape (hex must be two digits).
1375 * '\u' unicode A unicode escape (must be four digits).
1376 * '\c' ctrl A control character, ctrl is a letter.
1377 * '\' literalatomchar Any character except one of the above
1378 * that follow '\' in an atom.
1379 * otheratomchar Any character not first among the other
1380 * atom right-hand sides.
1383 ParseTerm(CompilerState
*state
)
1385 WCHAR c
= *state
->cp
++;
1387 UINT num
, tmp
, n
, i
;
1388 const WCHAR
*termStart
;
1391 /* assertions and atoms */
1393 state
->result
= NewRENode(state
, REOP_BOL
);
1396 state
->progLength
++;
1399 state
->result
= NewRENode(state
, REOP_EOL
);
1402 state
->progLength
++;
1405 if (state
->cp
>= state
->cpend
) {
1406 /* a trailing '\' is an error */
1407 ReportRegExpError(state
, JSREPORT_ERROR
, JSMSG_TRAILING_SLASH
);
1412 /* assertion escapes */
1414 state
->result
= NewRENode(state
, REOP_WBDRY
);
1417 state
->progLength
++;
1420 state
->result
= NewRENode(state
, REOP_WNONBDRY
);
1423 state
->progLength
++;
1425 /* Decimal escape */
1427 /* Give a strict warning. See also the note below. */
1428 WARN("non-octal digit in an escape sequence that doesn't match a back-reference\n");
1431 while (state
->cp
< state
->cpend
) {
1433 if (c
< '0' || '7' < c
)
1436 tmp
= 8 * num
+ (UINT
)JS7_UNDEC(c
);
1443 state
->result
= NewRENode(state
, REOP_FLAT
);
1446 state
->result
->u
.flat
.chr
= c
;
1447 state
->result
->u
.flat
.length
= 1;
1448 state
->progLength
+= 3;
1459 termStart
= state
->cp
- 1;
1460 num
= GetDecimalValue(c
, state
->parenCount
, FindParenCount
, state
);
1461 if (state
->flags
& JSREG_FIND_PAREN_ERROR
)
1463 if (num
== OVERFLOW_VALUE
) {
1464 /* Give a strict mode warning. */
1465 WARN("back-reference exceeds number of capturing parentheses\n");
1468 * Note: ECMA 262, 15.10.2.9 says that we should throw a syntax
1469 * error here. However, for compatibility with IE, we treat the
1470 * whole backref as flat if the first character in it is not a
1471 * valid octal character, and as an octal escape otherwise.
1473 state
->cp
= termStart
;
1475 /* Treat this as flat. termStart - 1 is the \. */
1480 /* Treat this as an octal escape. */
1483 assert(1 <= num
&& num
<= 0x10000);
1484 state
->result
= NewRENode(state
, REOP_BACKREF
);
1487 state
->result
->u
.parenIndex
= num
- 1;
1489 += 1 + GetCompactIndexWidth(state
->result
->u
.parenIndex
);
1491 /* Control escape */
1507 /* Control letter */
1509 if (state
->cp
< state
->cpend
&& RE_IS_LETTER(*state
->cp
)) {
1510 c
= (WCHAR
) (*state
->cp
++ & 0x1F);
1512 /* back off to accepting the original '\' as a literal */
1517 /* HexEscapeSequence */
1521 /* UnicodeEscapeSequence */
1526 for (i
= 0; i
< nDigits
&& state
->cp
< state
->cpend
; i
++) {
1529 if (!isASCIIHexDigit(c
, &digit
)) {
1531 * Back off to accepting the original 'u' or 'x' as a
1538 n
= (n
<< 4) | digit
;
1542 /* Character class escapes */
1544 state
->result
= NewRENode(state
, REOP_DIGIT
);
1548 state
->progLength
++;
1551 state
->result
= NewRENode(state
, REOP_NONDIGIT
);
1554 state
->result
= NewRENode(state
, REOP_SPACE
);
1557 state
->result
= NewRENode(state
, REOP_NONSPACE
);
1560 state
->result
= NewRENode(state
, REOP_ALNUM
);
1563 state
->result
= NewRENode(state
, REOP_NONALNUM
);
1565 /* IdentityEscape */
1567 state
->result
= NewRENode(state
, REOP_FLAT
);
1570 state
->result
->u
.flat
.chr
= c
;
1571 state
->result
->u
.flat
.length
= 1;
1572 state
->result
->kid
= (void *) (state
->cp
- 1);
1573 state
->progLength
+= 3;
1578 state
->result
= NewRENode(state
, REOP_CLASS
);
1581 termStart
= state
->cp
;
1582 state
->result
->u
.ucclass
.startIndex
= termStart
- state
->cpbegin
;
1584 if (state
->cp
== state
->cpend
) {
1585 ReportRegExpErrorHelper(state
, JSREPORT_ERROR
,
1586 JSMSG_UNTERM_CLASS
, termStart
);
1590 if (*state
->cp
== '\\') {
1592 if (state
->cp
!= state
->cpend
)
1596 if (*state
->cp
== ']') {
1597 state
->result
->u
.ucclass
.kidlen
= state
->cp
- termStart
;
1602 for (i
= 0; i
< CLASS_CACHE_SIZE
; i
++) {
1603 if (!state
->classCache
[i
].start
) {
1604 state
->classCache
[i
].start
= termStart
;
1605 state
->classCache
[i
].length
= state
->result
->u
.ucclass
.kidlen
;
1606 state
->classCache
[i
].index
= state
->classCount
;
1609 if (state
->classCache
[i
].length
==
1610 state
->result
->u
.ucclass
.kidlen
) {
1611 for (n
= 0; ; n
++) {
1612 if (n
== state
->classCache
[i
].length
) {
1613 state
->result
->u
.ucclass
.index
1614 = state
->classCache
[i
].index
;
1617 if (state
->classCache
[i
].start
[n
] != termStart
[n
])
1622 state
->result
->u
.ucclass
.index
= state
->classCount
++;
1626 * Call CalculateBitmapSize now as we want any errors it finds
1627 * to be reported during the parse phase, not at execution.
1629 if (!CalculateBitmapSize(state
, state
->result
, termStart
, state
->cp
++))
1632 * Update classBitmapsMem with number of bytes to hold bmsize bits,
1633 * which is (bitsCount + 7) / 8 or (highest_bit + 1 + 7) / 8
1634 * or highest_bit / 8 + 1 where highest_bit is u.ucclass.bmsize.
1636 n
= (state
->result
->u
.ucclass
.bmsize
>> 3) + 1;
1637 if (n
> CLASS_BITMAPS_MEM_LIMIT
- state
->classBitmapsMem
) {
1638 ReportRegExpError(state
, JSREPORT_ERROR
, JSMSG_REGEXP_TOO_COMPLEX
);
1641 state
->classBitmapsMem
+= n
;
1642 /* CLASS, <index> */
1644 += 1 + GetCompactIndexWidth(state
->result
->u
.ucclass
.index
);
1648 state
->result
= NewRENode(state
, REOP_DOT
);
1653 const WCHAR
*errp
= state
->cp
--;
1656 err
= ParseMinMaxQuantifier(state
, TRUE
);
1667 ReportRegExpErrorHelper(state
, JSREPORT_ERROR
,
1668 JSMSG_BAD_QUANTIFIER
, state
->cp
- 1);
1672 state
->result
= NewRENode(state
, REOP_FLAT
);
1675 state
->result
->u
.flat
.chr
= c
;
1676 state
->result
->u
.flat
.length
= 1;
1677 state
->result
->kid
= (void *) (state
->cp
- 1);
1678 state
->progLength
+= 3;
1681 return ParseQuantifier(state
);
1685 * Top-down regular expression grammar, based closely on Perl4.
1687 * regexp: altern A regular expression is one or more
1688 * altern '|' regexp alternatives separated by vertical bar.
1690 #define INITIAL_STACK_SIZE 128
1693 ParseRegExp(CompilerState
*state
)
1697 REOpData
*operatorStack
;
1698 RENode
**operandStack
;
1701 BOOL result
= FALSE
;
1703 INT operatorSP
= 0, operatorStackSize
= INITIAL_STACK_SIZE
;
1704 INT operandSP
= 0, operandStackSize
= INITIAL_STACK_SIZE
;
1706 /* Watch out for empty regexp */
1707 if (state
->cp
== state
->cpend
) {
1708 state
->result
= NewRENode(state
, REOP_EMPTY
);
1709 return (state
->result
!= NULL
);
1712 operatorStack
= heap_alloc(sizeof(REOpData
) * operatorStackSize
);
1716 operandStack
= heap_alloc(sizeof(RENode
*) * operandStackSize
);
1721 parenIndex
= state
->parenCount
;
1722 if (state
->cp
== state
->cpend
) {
1724 * If we are at the end of the regexp and we're short one or more
1725 * operands, the regexp must have the form /x|/ or some such, with
1726 * left parentheses making us short more than one operand.
1728 if (operatorSP
>= operandSP
) {
1729 operand
= NewRENode(state
, REOP_EMPTY
);
1735 switch (*state
->cp
) {
1738 if (state
->cp
+ 1 < state
->cpend
&&
1739 *state
->cp
== '?' &&
1740 (state
->cp
[1] == '=' ||
1741 state
->cp
[1] == '!' ||
1742 state
->cp
[1] == ':')) {
1743 switch (state
->cp
[1]) {
1746 /* ASSERT, <next>, ... ASSERTTEST */
1747 state
->progLength
+= 4;
1750 op
= REOP_ASSERT_NOT
;
1751 /* ASSERTNOT, <next>, ... ASSERTNOTTEST */
1752 state
->progLength
+= 4;
1755 op
= REOP_LPARENNON
;
1761 /* LPAREN, <index>, ... RPAREN, <index> */
1763 += 2 * (1 + GetCompactIndexWidth(parenIndex
));
1764 state
->parenCount
++;
1765 if (state
->parenCount
== 65535) {
1766 ReportRegExpError(state
, JSREPORT_ERROR
,
1767 JSMSG_TOO_MANY_PARENS
);
1775 * If there's no stacked open parenthesis, throw syntax error.
1777 for (i
= operatorSP
- 1; ; i
--) {
1779 ReportRegExpError(state
, JSREPORT_ERROR
,
1780 JSMSG_UNMATCHED_RIGHT_PAREN
);
1783 if (operatorStack
[i
].op
== REOP_ASSERT
||
1784 operatorStack
[i
].op
== REOP_ASSERT_NOT
||
1785 operatorStack
[i
].op
== REOP_LPARENNON
||
1786 operatorStack
[i
].op
== REOP_LPAREN
) {
1793 /* Expected an operand before these, so make an empty one */
1794 operand
= NewRENode(state
, REOP_EMPTY
);
1800 if (!ParseTerm(state
))
1802 operand
= state
->result
;
1804 if (operandSP
== operandStackSize
) {
1806 operandStackSize
+= operandStackSize
;
1807 tmp
= heap_realloc(operandStack
, sizeof(RENode
*) * operandStackSize
);
1812 operandStack
[operandSP
++] = operand
;
1817 /* At the end; process remaining operators. */
1819 if (state
->cp
== state
->cpend
) {
1820 while (operatorSP
) {
1822 if (!ProcessOp(state
, &operatorStack
[operatorSP
],
1823 operandStack
, operandSP
))
1827 assert(operandSP
== 1);
1828 state
->result
= operandStack
[0];
1833 switch (*state
->cp
) {
1835 /* Process any stacked 'concat' operators */
1837 while (operatorSP
&&
1838 operatorStack
[operatorSP
- 1].op
== REOP_CONCAT
) {
1840 if (!ProcessOp(state
, &operatorStack
[operatorSP
],
1841 operandStack
, operandSP
)) {
1851 * If there's no stacked open parenthesis, throw syntax error.
1853 for (i
= operatorSP
- 1; ; i
--) {
1855 ReportRegExpError(state
, JSREPORT_ERROR
,
1856 JSMSG_UNMATCHED_RIGHT_PAREN
);
1859 if (operatorStack
[i
].op
== REOP_ASSERT
||
1860 operatorStack
[i
].op
== REOP_ASSERT_NOT
||
1861 operatorStack
[i
].op
== REOP_LPARENNON
||
1862 operatorStack
[i
].op
== REOP_LPAREN
) {
1868 /* Process everything on the stack until the open parenthesis. */
1872 switch (operatorStack
[operatorSP
].op
) {
1874 case REOP_ASSERT_NOT
:
1876 operand
= NewRENode(state
, operatorStack
[operatorSP
].op
);
1879 operand
->u
.parenIndex
=
1880 operatorStack
[operatorSP
].parenIndex
;
1882 operand
->kid
= operandStack
[operandSP
- 1];
1883 operandStack
[operandSP
- 1] = operand
;
1884 if (state
->treeDepth
== TREE_DEPTH_MAX
) {
1885 ReportRegExpError(state
, JSREPORT_ERROR
,
1886 JSMSG_REGEXP_TOO_COMPLEX
);
1892 case REOP_LPARENNON
:
1893 state
->result
= operandStack
[operandSP
- 1];
1894 if (!ParseQuantifier(state
))
1896 operandStack
[operandSP
- 1] = state
->result
;
1897 goto restartOperator
;
1899 if (!ProcessOp(state
, &operatorStack
[operatorSP
],
1900 operandStack
, operandSP
))
1910 const WCHAR
*errp
= state
->cp
;
1912 if (ParseMinMaxQuantifier(state
, TRUE
) < 0) {
1914 * This didn't even scan correctly as a quantifier, so we should
1928 ReportRegExpErrorHelper(state
, JSREPORT_ERROR
, JSMSG_BAD_QUANTIFIER
,
1934 /* Anything else is the start of the next term. */
1937 if (operatorSP
== operatorStackSize
) {
1939 operatorStackSize
+= operatorStackSize
;
1940 tmp
= heap_realloc(operatorStack
, sizeof(REOpData
) * operatorStackSize
);
1943 operatorStack
= tmp
;
1945 operatorStack
[operatorSP
].op
= op
;
1946 operatorStack
[operatorSP
].errPos
= state
->cp
;
1947 operatorStack
[operatorSP
++].parenIndex
= parenIndex
;
1952 heap_free(operatorStack
);
1953 heap_free(operandStack
);
1958 * Save the current state of the match - the position in the input
1959 * text as well as the position in the bytecode. The state of any
1960 * parent expressions is also saved (preceding state).
1961 * Contents of parenCount parentheses from parenIndex are also saved.
1963 static REBackTrackData
*
1964 PushBackTrackState(REGlobalData
*gData
, REOp op
,
1965 jsbytecode
*target
, REMatchState
*x
, const WCHAR
*cp
,
1966 size_t parenIndex
, size_t parenCount
)
1969 REBackTrackData
*result
=
1970 (REBackTrackData
*) ((char *)gData
->backTrackSP
+ gData
->cursz
);
1972 size_t sz
= sizeof(REBackTrackData
) +
1973 gData
->stateStackTop
* sizeof(REProgState
) +
1974 parenCount
* sizeof(RECapture
);
1976 ptrdiff_t btsize
= gData
->backTrackStackSize
;
1977 ptrdiff_t btincr
= ((char *)result
+ sz
) -
1978 ((char *)gData
->backTrackStack
+ btsize
);
1980 TRACE("\tBT_Push: %lu,%lu\n", (unsigned long) parenIndex
, (unsigned long) parenCount
);
1982 JS_COUNT_OPERATION(gData
->cx
, JSOW_JUMP
* (1 + parenCount
));
1984 ptrdiff_t offset
= (char *)result
- (char *)gData
->backTrackStack
;
1986 JS_COUNT_OPERATION(gData
->cx
, JSOW_ALLOCATION
);
1987 btincr
= ((btincr
+btsize
-1)/btsize
)*btsize
;
1988 gData
->backTrackStack
= jsheap_grow(gData
->pool
, gData
->backTrackStack
, btsize
, btincr
);
1989 if (!gData
->backTrackStack
) {
1990 js_ReportOutOfScriptQuota(gData
->cx
);
1994 gData
->backTrackStackSize
= btsize
+ btincr
;
1995 result
= (REBackTrackData
*) ((char *)gData
->backTrackStack
+ offset
);
1997 gData
->backTrackSP
= result
;
1998 result
->sz
= gData
->cursz
;
2001 result
->backtrack_op
= op
;
2002 result
->backtrack_pc
= target
;
2004 result
->parenCount
= parenCount
;
2005 result
->parenIndex
= parenIndex
;
2007 result
->saveStateStackTop
= gData
->stateStackTop
;
2008 assert(gData
->stateStackTop
);
2009 memcpy(result
+ 1, gData
->stateStack
,
2010 sizeof(REProgState
) * result
->saveStateStackTop
);
2012 if (parenCount
!= 0) {
2013 memcpy((char *)(result
+ 1) +
2014 sizeof(REProgState
) * result
->saveStateStackTop
,
2015 &x
->parens
[parenIndex
],
2016 sizeof(RECapture
) * parenCount
);
2017 for (i
= 0; i
!= parenCount
; i
++)
2018 x
->parens
[parenIndex
+ i
].index
= -1;
2024 static inline REMatchState
*
2025 FlatNIMatcher(REGlobalData
*gData
, REMatchState
*x
, WCHAR
*matchChars
,
2029 assert(gData
->cpend
>= x
->cp
);
2030 if (length
> (size_t)(gData
->cpend
- x
->cp
))
2032 for (i
= 0; i
!= length
; i
++) {
2033 if (toupperW(matchChars
[i
]) != toupperW(x
->cp
[i
]))
2041 * 1. Evaluate DecimalEscape to obtain an EscapeValue E.
2042 * 2. If E is not a character then go to step 6.
2043 * 3. Let ch be E's character.
2044 * 4. Let A be a one-element RECharSet containing the character ch.
2045 * 5. Call CharacterSetMatcher(A, false) and return its Matcher result.
2046 * 6. E must be an integer. Let n be that integer.
2047 * 7. If n=0 or n>NCapturingParens then throw a SyntaxError exception.
2048 * 8. Return an internal Matcher closure that takes two arguments, a State x
2049 * and a Continuation c, and performs the following:
2050 * 1. Let cap be x's captures internal array.
2051 * 2. Let s be cap[n].
2052 * 3. If s is undefined, then call c(x) and return its result.
2053 * 4. Let e be x's endIndex.
2054 * 5. Let len be s's length.
2055 * 6. Let f be e+len.
2056 * 7. If f>InputLength, return failure.
2057 * 8. If there exists an integer i between 0 (inclusive) and len (exclusive)
2058 * such that Canonicalize(s[i]) is not the same character as
2059 * Canonicalize(Input [e+i]), then return failure.
2060 * 9. Let y be the State (f, cap).
2061 * 10. Call c(y) and return its result.
2063 static REMatchState
*
2064 BackrefMatcher(REGlobalData
*gData
, REMatchState
*x
, size_t parenIndex
)
2067 const WCHAR
*parenContent
;
2068 RECapture
*cap
= &x
->parens
[parenIndex
];
2070 if (cap
->index
== -1)
2074 if (x
->cp
+ len
> gData
->cpend
)
2077 parenContent
= &gData
->cpbegin
[cap
->index
];
2078 if (gData
->regexp
->flags
& JSREG_FOLD
) {
2079 for (i
= 0; i
< len
; i
++) {
2080 if (toupperW(parenContent
[i
]) != toupperW(x
->cp
[i
]))
2084 for (i
= 0; i
< len
; i
++) {
2085 if (parenContent
[i
] != x
->cp
[i
])
2093 /* Add a single character to the RECharSet */
2095 AddCharacterToCharSet(RECharSet
*cs
, WCHAR c
)
2097 UINT byteIndex
= (UINT
)(c
>> 3);
2098 assert(c
<= cs
->length
);
2099 cs
->u
.bits
[byteIndex
] |= 1 << (c
& 0x7);
2103 /* Add a character range, c1 to c2 (inclusive) to the RECharSet */
2105 AddCharacterRangeToCharSet(RECharSet
*cs
, UINT c1
, UINT c2
)
2109 UINT byteIndex1
= c1
>> 3;
2110 UINT byteIndex2
= c2
>> 3;
2112 assert(c2
<= cs
->length
&& c1
<= c2
);
2117 if (byteIndex1
== byteIndex2
) {
2118 cs
->u
.bits
[byteIndex1
] |= ((BYTE
)0xFF >> (7 - (c2
- c1
))) << c1
;
2120 cs
->u
.bits
[byteIndex1
] |= 0xFF << c1
;
2121 for (i
= byteIndex1
+ 1; i
< byteIndex2
; i
++)
2122 cs
->u
.bits
[i
] = 0xFF;
2123 cs
->u
.bits
[byteIndex2
] |= (BYTE
)0xFF >> (7 - c2
);
2127 /* Compile the source of the class into a RECharSet */
2129 ProcessCharSet(REGlobalData
*gData
, RECharSet
*charSet
)
2131 const WCHAR
*src
, *end
;
2132 BOOL inRange
= FALSE
;
2133 WCHAR rangeStart
= 0;
2138 assert(!charSet
->converted
);
2140 * Assert that startIndex and length points to chars inside [] inside
2143 assert(1 <= charSet
->u
.src
.startIndex
);
2144 assert(charSet
->u
.src
.startIndex
2145 < SysStringLen(gData
->regexp
->source
));
2146 assert(charSet
->u
.src
.length
<= SysStringLen(gData
->regexp
->source
)
2147 - 1 - charSet
->u
.src
.startIndex
);
2149 charSet
->converted
= TRUE
;
2150 src
= gData
->regexp
->source
+ charSet
->u
.src
.startIndex
;
2152 end
= src
+ charSet
->u
.src
.length
;
2154 assert(src
[-1] == '[' && end
[0] == ']');
2156 byteLength
= (charSet
->length
>> 3) + 1;
2157 charSet
->u
.bits
= heap_alloc(byteLength
);
2158 if (!charSet
->u
.bits
) {
2159 JS_ReportOutOfMemory(gData
->cx
);
2163 memset(charSet
->u
.bits
, 0, byteLength
);
2169 assert(charSet
->sense
== FALSE
);
2172 assert(charSet
->sense
== TRUE
);
2175 while (src
!= end
) {
2200 if (src
< end
&& JS_ISWORD(*src
)) {
2201 thisCh
= (WCHAR
)(*src
++ & 0x1F);
2214 for (i
= 0; (i
< nDigits
) && (src
< end
); i
++) {
2217 if (!isASCIIHexDigit(c
, &digit
)) {
2219 * Back off to accepting the original '\'
2226 n
= (n
<< 4) | digit
;
2239 * This is a non-ECMA extension - decimal escapes (in this
2240 * case, octal!) are supposed to be an error inside class
2241 * ranges, but supported here for backwards compatibility.
2245 if ('0' <= c
&& c
<= '7') {
2247 n
= 8 * n
+ JS7_UNDEC(c
);
2249 if ('0' <= c
&& c
<= '7') {
2251 i
= 8 * n
+ JS7_UNDEC(c
);
2262 AddCharacterRangeToCharSet(charSet
, '0', '9');
2263 continue; /* don't need range processing */
2265 AddCharacterRangeToCharSet(charSet
, 0, '0' - 1);
2266 AddCharacterRangeToCharSet(charSet
,
2268 (WCHAR
)charSet
->length
);
2271 for (i
= (INT
)charSet
->length
; i
>= 0; i
--)
2273 AddCharacterToCharSet(charSet
, (WCHAR
)i
);
2276 for (i
= (INT
)charSet
->length
; i
>= 0; i
--)
2278 AddCharacterToCharSet(charSet
, (WCHAR
)i
);
2281 for (i
= (INT
)charSet
->length
; i
>= 0; i
--)
2283 AddCharacterToCharSet(charSet
, (WCHAR
)i
);
2286 for (i
= (INT
)charSet
->length
; i
>= 0; i
--)
2288 AddCharacterToCharSet(charSet
, (WCHAR
)i
);
2303 if (gData
->regexp
->flags
& JSREG_FOLD
) {
2306 assert(rangeStart
<= thisCh
);
2307 for (i
= rangeStart
; i
<= thisCh
; i
++) {
2310 AddCharacterToCharSet(charSet
, i
);
2314 AddCharacterToCharSet(charSet
, uch
);
2316 AddCharacterToCharSet(charSet
, dch
);
2319 AddCharacterRangeToCharSet(charSet
, rangeStart
, thisCh
);
2323 if (gData
->regexp
->flags
& JSREG_FOLD
) {
2324 AddCharacterToCharSet(charSet
, toupperW(thisCh
));
2325 AddCharacterToCharSet(charSet
, tolowerW(thisCh
));
2327 AddCharacterToCharSet(charSet
, thisCh
);
2329 if (src
< end
- 1) {
2333 rangeStart
= thisCh
;
2342 ReallocStateStack(REGlobalData
*gData
)
2344 size_t limit
= gData
->stateStackLimit
;
2345 size_t sz
= sizeof(REProgState
) * limit
;
2347 gData
->stateStack
= jsheap_grow(gData
->pool
, gData
->stateStack
, sz
, sz
);
2348 if (!gData
->stateStack
) {
2349 js_ReportOutOfScriptQuota(gData
->cx
);
2353 gData
->stateStackLimit
= limit
+ limit
;
2357 #define PUSH_STATE_STACK(data) \
2359 ++(data)->stateStackTop; \
2360 if ((data)->stateStackTop == (data)->stateStackLimit && \
2361 !ReallocStateStack((data))) { \
2367 * Apply the current op against the given input to see if it's going to match
2368 * or fail. Return false if we don't get a match, true if we do. If updatecp is
2369 * true, then update the current state's cp. Always update startpc to the next
2372 static inline REMatchState
*
2373 SimpleMatch(REGlobalData
*gData
, REMatchState
*x
, REOp op
,
2374 jsbytecode
**startpc
, BOOL updatecp
)
2376 REMatchState
*result
= NULL
;
2379 size_t offset
, length
, index
;
2380 jsbytecode
*pc
= *startpc
; /* pc has already been incremented past op */
2382 const WCHAR
*startcp
= x
->cp
;
2386 const char *opname
= reop_names
[op
];
2387 TRACE("\n%06d: %*s%s\n", pc
- gData
->regexp
->program
,
2388 (int)gData
->stateStackTop
* 2, "", opname
);
2395 if (x
->cp
!= gData
->cpbegin
) {
2396 if (/*!gData->cx->regExpStatics.multiline && FIXME !!! */
2397 !(gData
->regexp
->flags
& JSREG_MULTILINE
)) {
2400 if (!RE_IS_LINE_TERM(x
->cp
[-1]))
2406 if (x
->cp
!= gData
->cpend
) {
2407 if (/*!gData->cx->regExpStatics.multiline &&*/
2408 !(gData
->regexp
->flags
& JSREG_MULTILINE
)) {
2411 if (!RE_IS_LINE_TERM(*x
->cp
))
2417 if ((x
->cp
== gData
->cpbegin
|| !JS_ISWORD(x
->cp
[-1])) ^
2418 !(x
->cp
!= gData
->cpend
&& JS_ISWORD(*x
->cp
))) {
2423 if ((x
->cp
== gData
->cpbegin
|| !JS_ISWORD(x
->cp
[-1])) ^
2424 (x
->cp
!= gData
->cpend
&& JS_ISWORD(*x
->cp
))) {
2429 if (x
->cp
!= gData
->cpend
&& !RE_IS_LINE_TERM(*x
->cp
)) {
2435 if (x
->cp
!= gData
->cpend
&& JS7_ISDEC(*x
->cp
)) {
2441 if (x
->cp
!= gData
->cpend
&& !JS7_ISDEC(*x
->cp
)) {
2447 if (x
->cp
!= gData
->cpend
&& JS_ISWORD(*x
->cp
)) {
2453 if (x
->cp
!= gData
->cpend
&& !JS_ISWORD(*x
->cp
)) {
2459 if (x
->cp
!= gData
->cpend
&& isspaceW(*x
->cp
)) {
2465 if (x
->cp
!= gData
->cpend
&& !isspaceW(*x
->cp
)) {
2471 pc
= ReadCompactIndex(pc
, &parenIndex
);
2472 assert(parenIndex
< gData
->regexp
->parenCount
);
2473 result
= BackrefMatcher(gData
, x
, parenIndex
);
2476 pc
= ReadCompactIndex(pc
, &offset
);
2477 assert(offset
< SysStringLen(gData
->regexp
->source
));
2478 pc
= ReadCompactIndex(pc
, &length
);
2479 assert(1 <= length
);
2480 assert(length
<= SysStringLen(gData
->regexp
->source
) - offset
);
2481 if (length
<= (size_t)(gData
->cpend
- x
->cp
)) {
2482 source
= gData
->regexp
->source
+ offset
;
2483 TRACE("%s\n", debugstr_wn(source
, length
));
2484 for (index
= 0; index
!= length
; index
++) {
2485 if (source
[index
] != x
->cp
[index
])
2494 TRACE(" '%c' == '%c'\n", (char)matchCh
, (char)*x
->cp
);
2495 if (x
->cp
!= gData
->cpend
&& *x
->cp
== matchCh
) {
2501 pc
= ReadCompactIndex(pc
, &offset
);
2502 assert(offset
< SysStringLen(gData
->regexp
->source
));
2503 pc
= ReadCompactIndex(pc
, &length
);
2504 assert(1 <= length
);
2505 assert(length
<= SysStringLen(gData
->regexp
->source
) - offset
);
2506 source
= gData
->regexp
->source
;
2507 result
= FlatNIMatcher(gData
, x
, source
+ offset
, length
);
2511 if (x
->cp
!= gData
->cpend
&& toupperW(*x
->cp
) == toupperW(matchCh
)) {
2517 matchCh
= GET_ARG(pc
);
2518 TRACE(" '%c' == '%c'\n", (char)matchCh
, (char)*x
->cp
);
2520 if (x
->cp
!= gData
->cpend
&& *x
->cp
== matchCh
) {
2526 matchCh
= GET_ARG(pc
);
2528 if (x
->cp
!= gData
->cpend
&& toupperW(*x
->cp
) == toupperW(matchCh
)) {
2534 pc
= ReadCompactIndex(pc
, &index
);
2535 assert(index
< gData
->regexp
->classCount
);
2536 if (x
->cp
!= gData
->cpend
) {
2537 charSet
= &gData
->regexp
->classList
[index
];
2538 assert(charSet
->converted
);
2541 if (charSet
->length
!= 0 &&
2542 ch
<= charSet
->length
&&
2543 (charSet
->u
.bits
[index
] & (1 << (ch
& 0x7)))) {
2550 pc
= ReadCompactIndex(pc
, &index
);
2551 assert(index
< gData
->regexp
->classCount
);
2552 if (x
->cp
!= gData
->cpend
) {
2553 charSet
= &gData
->regexp
->classList
[index
];
2554 assert(charSet
->converted
);
2557 if (charSet
->length
== 0 ||
2558 ch
> charSet
->length
||
2559 !(charSet
->u
.bits
[index
] & (1 << (ch
& 0x7)))) {
2580 static inline REMatchState
*
2581 ExecuteREBytecode(REGlobalData
*gData
, REMatchState
*x
)
2583 REMatchState
*result
= NULL
;
2584 REBackTrackData
*backTrackData
;
2585 jsbytecode
*nextpc
, *testpc
;
2588 REProgState
*curState
;
2589 const WCHAR
*startcp
;
2590 size_t parenIndex
, k
;
2591 size_t parenSoFar
= 0;
2593 WCHAR matchCh1
, matchCh2
;
2597 jsbytecode
*pc
= gData
->regexp
->program
;
2598 REOp op
= (REOp
) *pc
++;
2601 * If the first node is a simple match, step the index into the string
2602 * until that match is made, or fail if it can't be found at all.
2604 if (REOP_IS_SIMPLE(op
) && !(gData
->regexp
->flags
& JSREG_STICKY
)) {
2606 while (x
->cp
<= gData
->cpend
) {
2607 nextpc
= pc
; /* reset back to start each time */
2608 result
= SimpleMatch(gData
, x
, op
, &nextpc
, TRUE
);
2612 pc
= nextpc
; /* accept skip to next opcode */
2614 assert(op
< REOP_LIMIT
);
2625 const char *opname
= reop_names
[op
];
2626 TRACE("\n%06d: %*s%s\n", pc
- gData
->regexp
->program
,
2627 (int)gData
->stateStackTop
* 2, "", opname
);
2629 if (REOP_IS_SIMPLE(op
)) {
2630 result
= SimpleMatch(gData
, x
, op
, &pc
, TRUE
);
2632 curState
= &gData
->stateStack
[gData
->stateStackTop
];
2636 case REOP_ALTPREREQ2
:
2637 nextpc
= pc
+ GET_OFFSET(pc
); /* start of next op */
2639 matchCh2
= GET_ARG(pc
);
2644 if (x
->cp
!= gData
->cpend
) {
2645 if (*x
->cp
== matchCh2
)
2648 charSet
= &gData
->regexp
->classList
[k
];
2649 if (!charSet
->converted
&& !ProcessCharSet(gData
, charSet
))
2653 if ((charSet
->length
== 0 ||
2654 matchCh1
> charSet
->length
||
2655 !(charSet
->u
.bits
[k
] & (1 << (matchCh1
& 0x7)))) ^
2663 case REOP_ALTPREREQ
:
2664 nextpc
= pc
+ GET_OFFSET(pc
); /* start of next op */
2666 matchCh1
= GET_ARG(pc
);
2668 matchCh2
= GET_ARG(pc
);
2670 if (x
->cp
== gData
->cpend
||
2671 (*x
->cp
!= matchCh1
&& *x
->cp
!= matchCh2
)) {
2675 /* else false thru... */
2679 nextpc
= pc
+ GET_OFFSET(pc
); /* start of next alternate */
2680 pc
+= ARG_LEN
; /* start of this alternate */
2681 curState
->parenSoFar
= parenSoFar
;
2682 PUSH_STATE_STACK(gData
);
2685 if (REOP_IS_SIMPLE(op
)) {
2686 if (!SimpleMatch(gData
, x
, op
, &pc
, TRUE
)) {
2687 op
= (REOp
) *nextpc
++;
2694 nextop
= (REOp
) *nextpc
++;
2695 if (!PushBackTrackState(gData
, nextop
, nextpc
, x
, startcp
, 0, 0))
2700 * Occurs at (successful) end of REOP_ALT,
2704 * If we have not gotten a result here, it is because of an
2705 * empty match. Do the same thing REOP_EMPTY would do.
2710 --gData
->stateStackTop
;
2711 pc
+= GET_OFFSET(pc
);
2716 * Occurs at last (successful) end of REOP_ALT,
2720 * If we have not gotten a result here, it is because of an
2721 * empty match. Do the same thing REOP_EMPTY would do.
2726 --gData
->stateStackTop
;
2731 pc
= ReadCompactIndex(pc
, &parenIndex
);
2732 TRACE("[ %lu ]\n", (unsigned long) parenIndex
);
2733 assert(parenIndex
< gData
->regexp
->parenCount
);
2734 if (parenIndex
+ 1 > parenSoFar
)
2735 parenSoFar
= parenIndex
+ 1;
2736 x
->parens
[parenIndex
].index
= x
->cp
- gData
->cpbegin
;
2737 x
->parens
[parenIndex
].length
= 0;
2745 pc
= ReadCompactIndex(pc
, &parenIndex
);
2746 assert(parenIndex
< gData
->regexp
->parenCount
);
2747 cap
= &x
->parens
[parenIndex
];
2748 delta
= x
->cp
- (gData
->cpbegin
+ cap
->index
);
2749 cap
->length
= (delta
< 0) ? 0 : (size_t) delta
;
2757 nextpc
= pc
+ GET_OFFSET(pc
); /* start of term after ASSERT */
2758 pc
+= ARG_LEN
; /* start of ASSERT child */
2761 if (REOP_IS_SIMPLE(op
) &&
2762 !SimpleMatch(gData
, x
, op
, &testpc
, FALSE
)) {
2766 curState
->u
.assertion
.top
=
2767 (char *)gData
->backTrackSP
- (char *)gData
->backTrackStack
;
2768 curState
->u
.assertion
.sz
= gData
->cursz
;
2769 curState
->index
= x
->cp
- gData
->cpbegin
;
2770 curState
->parenSoFar
= parenSoFar
;
2771 PUSH_STATE_STACK(gData
);
2772 if (!PushBackTrackState(gData
, REOP_ASSERTTEST
,
2773 nextpc
, x
, x
->cp
, 0, 0)) {
2778 case REOP_ASSERT_NOT
:
2779 nextpc
= pc
+ GET_OFFSET(pc
);
2783 if (REOP_IS_SIMPLE(op
) /* Note - fail to fail! */ &&
2784 SimpleMatch(gData
, x
, op
, &testpc
, FALSE
) &&
2785 *testpc
== REOP_ASSERTNOTTEST
) {
2789 curState
->u
.assertion
.top
2790 = (char *)gData
->backTrackSP
-
2791 (char *)gData
->backTrackStack
;
2792 curState
->u
.assertion
.sz
= gData
->cursz
;
2793 curState
->index
= x
->cp
- gData
->cpbegin
;
2794 curState
->parenSoFar
= parenSoFar
;
2795 PUSH_STATE_STACK(gData
);
2796 if (!PushBackTrackState(gData
, REOP_ASSERTNOTTEST
,
2797 nextpc
, x
, x
->cp
, 0, 0)) {
2802 case REOP_ASSERTTEST
:
2803 --gData
->stateStackTop
;
2805 x
->cp
= gData
->cpbegin
+ curState
->index
;
2806 gData
->backTrackSP
=
2807 (REBackTrackData
*) ((char *)gData
->backTrackStack
+
2808 curState
->u
.assertion
.top
);
2809 gData
->cursz
= curState
->u
.assertion
.sz
;
2814 case REOP_ASSERTNOTTEST
:
2815 --gData
->stateStackTop
;
2817 x
->cp
= gData
->cpbegin
+ curState
->index
;
2818 gData
->backTrackSP
=
2819 (REBackTrackData
*) ((char *)gData
->backTrackStack
+
2820 curState
->u
.assertion
.top
);
2821 gData
->cursz
= curState
->u
.assertion
.sz
;
2822 result
= (!result
) ? x
: NULL
;
2825 curState
->u
.quantifier
.min
= 0;
2826 curState
->u
.quantifier
.max
= (UINT
)-1;
2829 curState
->u
.quantifier
.min
= 1;
2830 curState
->u
.quantifier
.max
= (UINT
)-1;
2833 curState
->u
.quantifier
.min
= 0;
2834 curState
->u
.quantifier
.max
= 1;
2837 pc
= ReadCompactIndex(pc
, &k
);
2838 curState
->u
.quantifier
.min
= k
;
2839 pc
= ReadCompactIndex(pc
, &k
);
2840 /* max is k - 1 to use one byte for (UINT)-1 sentinel. */
2841 curState
->u
.quantifier
.max
= k
- 1;
2842 assert(curState
->u
.quantifier
.min
<= curState
->u
.quantifier
.max
);
2844 if (curState
->u
.quantifier
.max
== 0) {
2845 pc
= pc
+ GET_OFFSET(pc
);
2850 /* Step over <next> */
2851 nextpc
= pc
+ ARG_LEN
;
2852 op
= (REOp
) *nextpc
++;
2854 if (REOP_IS_SIMPLE(op
)) {
2855 if (!SimpleMatch(gData
, x
, op
, &nextpc
, TRUE
)) {
2856 if (curState
->u
.quantifier
.min
== 0)
2860 pc
= pc
+ GET_OFFSET(pc
);
2863 op
= (REOp
) *nextpc
++;
2866 curState
->index
= startcp
- gData
->cpbegin
;
2867 curState
->continue_op
= REOP_REPEAT
;
2868 curState
->continue_pc
= pc
;
2869 curState
->parenSoFar
= parenSoFar
;
2870 PUSH_STATE_STACK(gData
);
2871 if (curState
->u
.quantifier
.min
== 0 &&
2872 !PushBackTrackState(gData
, REOP_REPEAT
, pc
, x
, startcp
,
2879 case REOP_ENDCHILD
: /* marks the end of a quantifier child */
2880 pc
= curState
[-1].continue_pc
;
2881 op
= (REOp
) curState
[-1].continue_op
;
2890 --gData
->stateStackTop
;
2892 /* Failed, see if we have enough children. */
2893 if (curState
->u
.quantifier
.min
== 0)
2897 if (curState
->u
.quantifier
.min
== 0 &&
2898 x
->cp
== gData
->cpbegin
+ curState
->index
) {
2899 /* matched an empty string, that'll get us nowhere */
2903 if (curState
->u
.quantifier
.min
!= 0)
2904 curState
->u
.quantifier
.min
--;
2905 if (curState
->u
.quantifier
.max
!= (UINT
) -1)
2906 curState
->u
.quantifier
.max
--;
2907 if (curState
->u
.quantifier
.max
== 0)
2909 nextpc
= pc
+ ARG_LEN
;
2910 nextop
= (REOp
) *nextpc
;
2912 if (REOP_IS_SIMPLE(nextop
)) {
2914 if (!SimpleMatch(gData
, x
, nextop
, &nextpc
, TRUE
)) {
2915 if (curState
->u
.quantifier
.min
== 0)
2922 curState
->index
= startcp
- gData
->cpbegin
;
2923 PUSH_STATE_STACK(gData
);
2924 if (curState
->u
.quantifier
.min
== 0 &&
2925 !PushBackTrackState(gData
, REOP_REPEAT
,
2927 curState
->parenSoFar
,
2929 curState
->parenSoFar
)) {
2932 } while (*nextpc
== REOP_ENDCHILD
);
2935 parenSoFar
= curState
->parenSoFar
;
2940 pc
+= GET_OFFSET(pc
);
2943 case REOP_MINIMALSTAR
:
2944 curState
->u
.quantifier
.min
= 0;
2945 curState
->u
.quantifier
.max
= (UINT
)-1;
2946 goto minimalquantcommon
;
2947 case REOP_MINIMALPLUS
:
2948 curState
->u
.quantifier
.min
= 1;
2949 curState
->u
.quantifier
.max
= (UINT
)-1;
2950 goto minimalquantcommon
;
2951 case REOP_MINIMALOPT
:
2952 curState
->u
.quantifier
.min
= 0;
2953 curState
->u
.quantifier
.max
= 1;
2954 goto minimalquantcommon
;
2955 case REOP_MINIMALQUANT
:
2956 pc
= ReadCompactIndex(pc
, &k
);
2957 curState
->u
.quantifier
.min
= k
;
2958 pc
= ReadCompactIndex(pc
, &k
);
2959 /* See REOP_QUANT comments about k - 1. */
2960 curState
->u
.quantifier
.max
= k
- 1;
2961 assert(curState
->u
.quantifier
.min
2962 <= curState
->u
.quantifier
.max
);
2964 curState
->index
= x
->cp
- gData
->cpbegin
;
2965 curState
->parenSoFar
= parenSoFar
;
2966 PUSH_STATE_STACK(gData
);
2967 if (curState
->u
.quantifier
.min
!= 0) {
2968 curState
->continue_op
= REOP_MINIMALREPEAT
;
2969 curState
->continue_pc
= pc
;
2970 /* step over <next> */
2974 if (!PushBackTrackState(gData
, REOP_MINIMALREPEAT
,
2975 pc
, x
, x
->cp
, 0, 0)) {
2978 --gData
->stateStackTop
;
2979 pc
= pc
+ GET_OFFSET(pc
);
2984 case REOP_MINIMALREPEAT
:
2985 --gData
->stateStackTop
;
2988 TRACE("{%d,%d}\n", curState
->u
.quantifier
.min
, curState
->u
.quantifier
.max
);
2989 #define PREPARE_REPEAT() \
2991 curState->index = x->cp - gData->cpbegin; \
2992 curState->continue_op = REOP_MINIMALREPEAT; \
2993 curState->continue_pc = pc; \
2995 for (k = curState->parenSoFar; k < parenSoFar; k++) \
2996 x->parens[k].index = -1; \
2997 PUSH_STATE_STACK(gData); \
2998 op = (REOp) *pc++; \
2999 assert(op < REOP_LIMIT); \
3005 * Non-greedy failure - try to consume another child.
3007 if (curState
->u
.quantifier
.max
== (UINT
) -1 ||
3008 curState
->u
.quantifier
.max
> 0) {
3012 /* Don't need to adjust pc since we're going to pop. */
3015 if (curState
->u
.quantifier
.min
== 0 &&
3016 x
->cp
== gData
->cpbegin
+ curState
->index
) {
3017 /* Matched an empty string, that'll get us nowhere. */
3021 if (curState
->u
.quantifier
.min
!= 0)
3022 curState
->u
.quantifier
.min
--;
3023 if (curState
->u
.quantifier
.max
!= (UINT
) -1)
3024 curState
->u
.quantifier
.max
--;
3025 if (curState
->u
.quantifier
.min
!= 0) {
3029 curState
->index
= x
->cp
- gData
->cpbegin
;
3030 curState
->parenSoFar
= parenSoFar
;
3031 PUSH_STATE_STACK(gData
);
3032 if (!PushBackTrackState(gData
, REOP_MINIMALREPEAT
,
3034 curState
->parenSoFar
,
3035 parenSoFar
- curState
->parenSoFar
)) {
3038 --gData
->stateStackTop
;
3039 pc
= pc
+ GET_OFFSET(pc
);
3041 assert(op
< REOP_LIMIT
);
3051 * If the match failed and there's a backtrack option, take it.
3052 * Otherwise this is a complete and utter failure.
3055 if (gData
->cursz
== 0)
3058 /* Potentially detect explosive regex here. */
3059 gData
->backTrackCount
++;
3060 if (gData
->backTrackLimit
&&
3061 gData
->backTrackCount
>= gData
->backTrackLimit
) {
3062 JS_ReportErrorNumber(gData
->cx
, js_GetErrorMessage
, NULL
,
3063 JSMSG_REGEXP_TOO_COMPLEX
);
3068 backTrackData
= gData
->backTrackSP
;
3069 gData
->cursz
= backTrackData
->sz
;
3070 gData
->backTrackSP
=
3071 (REBackTrackData
*) ((char *)backTrackData
- backTrackData
->sz
);
3072 x
->cp
= backTrackData
->cp
;
3073 pc
= backTrackData
->backtrack_pc
;
3074 op
= (REOp
) backTrackData
->backtrack_op
;
3075 assert(op
< REOP_LIMIT
);
3076 gData
->stateStackTop
= backTrackData
->saveStateStackTop
;
3077 assert(gData
->stateStackTop
);
3079 memcpy(gData
->stateStack
, backTrackData
+ 1,
3080 sizeof(REProgState
) * backTrackData
->saveStateStackTop
);
3081 curState
= &gData
->stateStack
[gData
->stateStackTop
- 1];
3083 if (backTrackData
->parenCount
) {
3084 memcpy(&x
->parens
[backTrackData
->parenIndex
],
3085 (char *)(backTrackData
+ 1) +
3086 sizeof(REProgState
) * backTrackData
->saveStateStackTop
,
3087 sizeof(RECapture
) * backTrackData
->parenCount
);
3088 parenSoFar
= backTrackData
->parenIndex
+ backTrackData
->parenCount
;
3090 for (k
= curState
->parenSoFar
; k
< parenSoFar
; k
++)
3091 x
->parens
[k
].index
= -1;
3092 parenSoFar
= curState
->parenSoFar
;
3095 TRACE("\tBT_Pop: %ld,%ld\n",
3096 (unsigned long) backTrackData
->parenIndex
,
3097 (unsigned long) backTrackData
->parenCount
);
3103 * Continue with the expression.
3106 assert(op
< REOP_LIMIT
);
3118 static REMatchState
*MatchRegExp(REGlobalData
*gData
, REMatchState
*x
)
3120 REMatchState
*result
;
3121 const WCHAR
*cp
= x
->cp
;
3126 * Have to include the position beyond the last character
3127 * in order to detect end-of-input/line condition.
3129 for (cp2
= cp
; cp2
<= gData
->cpend
; cp2
++) {
3130 gData
->skipped
= cp2
- cp
;
3132 for (j
= 0; j
< gData
->regexp
->parenCount
; j
++)
3133 x
->parens
[j
].index
= -1;
3134 result
= ExecuteREBytecode(gData
, x
);
3135 if (!gData
->ok
|| result
|| (gData
->regexp
->flags
& JSREG_STICKY
))
3137 gData
->backTrackSP
= gData
->backTrackStack
;
3139 gData
->stateStackTop
= 0;
3140 cp2
= cp
+ gData
->skipped
;
3145 #define MIN_BACKTRACK_LIMIT 400000
3147 static REMatchState
*InitMatch(script_ctx_t
*cx
, REGlobalData
*gData
, JSRegExp
*re
, size_t length
)
3149 REMatchState
*result
;
3152 gData
->backTrackStackSize
= INITIAL_BACKTRACK
;
3153 gData
->backTrackStack
= jsheap_alloc(gData
->pool
, INITIAL_BACKTRACK
);
3154 if (!gData
->backTrackStack
)
3157 gData
->backTrackSP
= gData
->backTrackStack
;
3159 gData
->backTrackCount
= 0;
3160 gData
->backTrackLimit
= 0;
3162 gData
->stateStackLimit
= INITIAL_STATESTACK
;
3163 gData
->stateStack
= jsheap_alloc(gData
->pool
, sizeof(REProgState
) * INITIAL_STATESTACK
);
3164 if (!gData
->stateStack
)
3167 gData
->stateStackTop
= 0;
3172 result
= jsheap_alloc(gData
->pool
, offsetof(REMatchState
, parens
) + re
->parenCount
* sizeof(RECapture
));
3176 for (i
= 0; i
< re
->classCount
; i
++) {
3177 if (!re
->classList
[i
].converted
&&
3178 !ProcessCharSet(gData
, &re
->classList
[i
])) {
3186 js_ReportOutOfScriptQuota(cx
);
3192 js_DestroyRegExp(JSRegExp
*re
)
3194 if (re
->classList
) {
3196 for (i
= 0; i
< re
->classCount
; i
++) {
3197 if (re
->classList
[i
].converted
)
3198 heap_free(re
->classList
[i
].u
.bits
);
3199 re
->classList
[i
].u
.bits
= NULL
;
3201 heap_free(re
->classList
);
3207 js_NewRegExp(script_ctx_t
*cx
, BSTR str
, UINT flags
, BOOL flat
)
3211 CompilerState state
;
3218 mark
= jsheap_mark(&cx
->tmp_heap
);
3219 len
= SysStringLen(str
);
3225 state
.cpbegin
= state
.cp
;
3226 state
.cpend
= state
.cp
+ len
;
3227 state
.flags
= flags
;
3228 state
.parenCount
= 0;
3229 state
.classCount
= 0;
3230 state
.progLength
= 0;
3231 state
.treeDepth
= 0;
3232 state
.classBitmapsMem
= 0;
3233 for (i
= 0; i
< CLASS_CACHE_SIZE
; i
++)
3234 state
.classCache
[i
].start
= NULL
;
3236 if (len
!= 0 && flat
) {
3237 state
.result
= NewRENode(&state
, REOP_FLAT
);
3240 state
.result
->u
.flat
.chr
= *state
.cpbegin
;
3241 state
.result
->u
.flat
.length
= len
;
3242 state
.result
->kid
= (void *) state
.cpbegin
;
3243 /* Flat bytecode: REOP_FLAT compact(string_offset) compact(len). */
3244 state
.progLength
+= 1 + GetCompactIndexWidth(0)
3245 + GetCompactIndexWidth(len
);
3247 if (!ParseRegExp(&state
))
3250 resize
= offsetof(JSRegExp
, program
) + state
.progLength
+ 1;
3251 re
= heap_alloc(resize
);
3255 assert(state
.classBitmapsMem
<= CLASS_BITMAPS_MEM_LIMIT
);
3256 re
->classCount
= state
.classCount
;
3257 if (re
->classCount
) {
3258 re
->classList
= heap_alloc(re
->classCount
* sizeof(RECharSet
));
3259 if (!re
->classList
) {
3260 js_DestroyRegExp(re
);
3264 for (i
= 0; i
< re
->classCount
; i
++)
3265 re
->classList
[i
].converted
= FALSE
;
3267 re
->classList
= NULL
;
3269 endPC
= EmitREBytecode(&state
, re
, state
.treeDepth
, re
->program
, state
.result
);
3271 js_DestroyRegExp(re
);
3275 *endPC
++ = REOP_END
;
3277 * Check whether size was overestimated and shrink using realloc.
3278 * This is safe since no pointers to newly parsed regexp or its parts
3279 * besides re exist here.
3281 if ((size_t)(endPC
- re
->program
) != state
.progLength
+ 1) {
3283 assert((size_t)(endPC
- re
->program
) < state
.progLength
+ 1);
3284 resize
= offsetof(JSRegExp
, program
) + (endPC
- re
->program
);
3285 tmp
= heap_realloc(re
, resize
);
3291 re
->parenCount
= state
.parenCount
;
3299 static inline RegExpInstance
*regexp_from_vdisp(vdisp_t
*vdisp
)
3301 return (RegExpInstance
*)vdisp
->u
.jsdisp
;
3304 static void set_last_index(RegExpInstance
*This
, DWORD last_index
)
3306 This
->last_index
= last_index
;
3307 VariantClear(&This
->last_index_var
);
3308 num_set_val(&This
->last_index_var
, last_index
);
3311 static HRESULT
do_regexp_match_next(script_ctx_t
*ctx
, RegExpInstance
*regexp
, DWORD rem_flags
,
3312 const WCHAR
*str
, DWORD len
, const WCHAR
**cp
, match_result_t
**parens
, DWORD
*parens_size
,
3313 DWORD
*parens_cnt
, match_result_t
*ret
)
3315 REMatchState
*x
, *result
;
3319 gData
.cpbegin
= *cp
;
3320 gData
.cpend
= str
+ len
;
3321 gData
.start
= *cp
-str
;
3323 gData
.pool
= &ctx
->tmp_heap
;
3325 x
= InitMatch(NULL
, &gData
, regexp
->jsregexp
, gData
.cpend
- gData
.cpbegin
);
3327 WARN("InitMatch failed\n");
3332 result
= MatchRegExp(&gData
, x
);
3334 WARN("MatchRegExp failed\n");
3339 if(rem_flags
& REM_RESET_INDEX
)
3340 set_last_index(regexp
, 0);
3347 if(regexp
->jsregexp
->parenCount
> *parens_size
) {
3348 match_result_t
*new_parens
;
3351 new_parens
= heap_realloc(*parens
, sizeof(match_result_t
)*regexp
->jsregexp
->parenCount
);
3353 new_parens
= heap_alloc(sizeof(match_result_t
)*regexp
->jsregexp
->parenCount
);
3355 return E_OUTOFMEMORY
;
3357 *parens
= new_parens
;
3360 *parens_cnt
= regexp
->jsregexp
->parenCount
;
3362 for(i
=0; i
< regexp
->jsregexp
->parenCount
; i
++) {
3363 if(result
->parens
[i
].index
== -1) {
3364 (*parens
)[i
].str
= NULL
;
3365 (*parens
)[i
].len
= 0;
3367 (*parens
)[i
].str
= *cp
+ result
->parens
[i
].index
;
3368 (*parens
)[i
].len
= result
->parens
[i
].length
;
3373 matchlen
= (result
->cp
-*cp
) - gData
.skipped
;
3375 ret
->str
= result
->cp
-matchlen
;
3376 ret
->len
= matchlen
;
3377 set_last_index(regexp
, result
->cp
-str
);
3382 HRESULT
regexp_match_next(script_ctx_t
*ctx
, DispatchEx
*dispex
, DWORD rem_flags
, const WCHAR
*str
,
3383 DWORD len
, const WCHAR
**cp
, match_result_t
**parens
, DWORD
*parens_size
, DWORD
*parens_cnt
,
3384 match_result_t
*ret
)
3386 RegExpInstance
*regexp
= (RegExpInstance
*)dispex
;
3390 if((rem_flags
& REM_CHECK_GLOBAL
) && !(regexp
->jsregexp
->flags
& JSREG_GLOB
))
3393 mark
= jsheap_mark(&ctx
->tmp_heap
);
3395 hres
= do_regexp_match_next(ctx
, regexp
, rem_flags
, str
, len
, cp
, parens
, parens_size
, parens_cnt
, ret
);
3401 HRESULT
regexp_match(script_ctx_t
*ctx
, DispatchEx
*dispex
, const WCHAR
*str
, DWORD len
, BOOL gflag
,
3402 match_result_t
**match_result
, DWORD
*result_cnt
)
3404 RegExpInstance
*This
= (RegExpInstance
*)dispex
;
3405 match_result_t
*ret
= NULL
, cres
;
3406 const WCHAR
*cp
= str
;
3407 DWORD i
=0, ret_size
= 0;
3411 mark
= jsheap_mark(&ctx
->tmp_heap
);
3414 hres
= do_regexp_match_next(ctx
, This
, 0, str
, len
, &cp
, NULL
, NULL
, NULL
, &cres
);
3415 if(hres
== S_FALSE
) {
3425 ret
= heap_realloc(ret
, (ret_size
<<= 1) * sizeof(match_result_t
));
3427 ret
= heap_alloc((ret_size
=4) * sizeof(match_result_t
));
3429 hres
= E_OUTOFMEMORY
;
3436 if(!gflag
&& !(This
->jsregexp
->flags
& JSREG_GLOB
)) {
3448 *match_result
= ret
;
3453 static HRESULT
RegExp_source(script_ctx_t
*ctx
, vdisp_t
*jsthis
, WORD flags
, DISPPARAMS
*dp
,
3454 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3459 case DISPATCH_PROPERTYGET
: {
3460 RegExpInstance
*This
= regexp_from_vdisp(jsthis
);
3462 V_VT(retv
) = VT_BSTR
;
3463 V_BSTR(retv
) = SysAllocString(This
->str
);
3465 return E_OUTOFMEMORY
;
3469 FIXME("Unimplemnted flags %x\n", flags
);
3476 static HRESULT
RegExp_global(script_ctx_t
*ctx
, vdisp_t
*jsthis
, WORD flags
, DISPPARAMS
*dp
,
3477 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3483 static HRESULT
RegExp_ignoreCase(script_ctx_t
*ctx
, vdisp_t
*jsthis
, WORD flags
, DISPPARAMS
*dp
,
3484 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3490 static HRESULT
RegExp_multiline(script_ctx_t
*ctx
, vdisp_t
*jsthis
, WORD flags
, DISPPARAMS
*dp
,
3491 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3497 static INT
index_from_var(script_ctx_t
*ctx
, VARIANT
*v
)
3503 memset(&ei
, 0, sizeof(ei
));
3504 hres
= to_number(ctx
, v
, &ei
, &num
);
3505 if(FAILED(hres
)) { /* FIXME: Move ignoring exceptions to to_promitive */
3506 VariantClear(&ei
.var
);
3510 if(V_VT(&num
) == VT_R8
) {
3511 DOUBLE d
= floor(V_R8(&num
));
3512 return (DOUBLE
)(INT
)d
== d
? d
: 0;
3518 static HRESULT
RegExp_lastIndex(script_ctx_t
*ctx
, vdisp_t
*jsthis
, WORD flags
, DISPPARAMS
*dp
,
3519 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3524 case DISPATCH_PROPERTYGET
: {
3525 RegExpInstance
*regexp
= regexp_from_vdisp(jsthis
);
3527 V_VT(retv
) = VT_EMPTY
;
3528 return VariantCopy(retv
, ®exp
->last_index_var
);
3530 case DISPATCH_PROPERTYPUT
: {
3531 RegExpInstance
*regexp
= regexp_from_vdisp(jsthis
);
3535 arg
= get_arg(dp
,0);
3536 hres
= VariantCopy(®exp
->last_index_var
, arg
);
3540 regexp
->last_index
= index_from_var(ctx
, arg
);
3544 FIXME("unimplemented flags: %x\n", flags
);
3551 static HRESULT
RegExp_toString(script_ctx_t
*ctx
, vdisp_t
*jsthis
, WORD flags
, DISPPARAMS
*dp
,
3552 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3558 static HRESULT
create_match_array(script_ctx_t
*ctx
, BSTR input
, const match_result_t
*result
,
3559 const match_result_t
*parens
, DWORD parens_cnt
, jsexcept_t
*ei
, IDispatch
**ret
)
3564 HRESULT hres
= S_OK
;
3566 static const WCHAR indexW
[] = {'i','n','d','e','x',0};
3567 static const WCHAR inputW
[] = {'i','n','p','u','t',0};
3568 static const WCHAR zeroW
[] = {'0',0};
3570 hres
= create_array(ctx
, parens_cnt
+1, &array
);
3574 for(i
=0; i
< parens_cnt
; i
++) {
3575 V_VT(&var
) = VT_BSTR
;
3576 V_BSTR(&var
) = SysAllocStringLen(parens
[i
].str
, parens
[i
].len
);
3578 hres
= E_OUTOFMEMORY
;
3582 hres
= jsdisp_propput_idx(array
, i
+1, &var
, ei
, NULL
/*FIXME*/);
3583 SysFreeString(V_BSTR(&var
));
3588 while(SUCCEEDED(hres
)) {
3590 V_I4(&var
) = result
->str
-input
;
3591 hres
= jsdisp_propput_name(array
, indexW
, &var
, ei
, NULL
/*FIXME*/);
3595 V_VT(&var
) = VT_BSTR
;
3596 V_BSTR(&var
) = input
;
3597 hres
= jsdisp_propput_name(array
, inputW
, &var
, ei
, NULL
/*FIXME*/);
3601 V_BSTR(&var
) = SysAllocStringLen(result
->str
, result
->len
);
3603 hres
= E_OUTOFMEMORY
;
3606 hres
= jsdisp_propput_name(array
, zeroW
, &var
, ei
, NULL
/*FIXME*/);
3607 SysFreeString(V_BSTR(&var
));
3612 jsdisp_release(array
);
3616 *ret
= (IDispatch
*)_IDispatchEx_(array
);
3620 static HRESULT
run_exec(script_ctx_t
*ctx
, vdisp_t
*jsthis
, VARIANT
*arg
, jsexcept_t
*ei
, BSTR
*input
,
3621 match_result_t
*match
, match_result_t
**parens
, DWORD
*parens_cnt
, VARIANT_BOOL
*ret
)
3623 RegExpInstance
*regexp
;
3624 DWORD parens_size
= 0, last_index
= 0, length
;
3629 if(!is_vclass(jsthis
, JSCLASS_REGEXP
)) {
3630 FIXME("Not a RegExp\n");
3634 regexp
= regexp_from_vdisp(jsthis
);
3637 hres
= to_string(ctx
, arg
, ei
, &string
);
3641 string
= SysAllocStringLen(NULL
, 0);
3643 return E_OUTOFMEMORY
;
3646 if(regexp
->last_index
< 0) {
3647 SysFreeString(string
);
3648 set_last_index(regexp
, 0);
3649 *ret
= VARIANT_FALSE
;
3656 length
= SysStringLen(string
);
3657 if(regexp
->jsregexp
->flags
& JSREG_GLOB
)
3658 last_index
= regexp
->last_index
;
3660 cp
= string
+ last_index
;
3661 hres
= regexp_match_next(ctx
, ®exp
->dispex
, REM_RESET_INDEX
, string
, length
, &cp
, parens
,
3662 parens
? &parens_size
: NULL
, parens_cnt
, match
);
3664 SysFreeString(string
);
3668 *ret
= hres
== S_OK
? VARIANT_TRUE
: VARIANT_FALSE
;
3672 SysFreeString(string
);
3677 static HRESULT
RegExp_exec(script_ctx_t
*ctx
, vdisp_t
*jsthis
, WORD flags
, DISPPARAMS
*dp
,
3678 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3680 match_result_t
*parens
= NULL
, match
;
3681 DWORD parens_cnt
= 0;
3688 hres
= run_exec(ctx
, jsthis
, arg_cnt(dp
) ? get_arg(dp
,0) : NULL
, ei
, &string
, &match
, &parens
, &parens_cnt
, &b
);
3696 hres
= create_match_array(ctx
, string
, &match
, parens
, parens_cnt
, ei
, &ret
);
3697 if(SUCCEEDED(hres
)) {
3698 V_VT(retv
) = VT_DISPATCH
;
3699 V_DISPATCH(retv
) = ret
;
3702 V_VT(retv
) = VT_NULL
;
3707 SysFreeString(string
);
3711 static HRESULT
RegExp_test(script_ctx_t
*ctx
, vdisp_t
*jsthis
, WORD flags
, DISPPARAMS
*dp
,
3712 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3714 match_result_t match
;
3720 hres
= run_exec(ctx
, jsthis
, arg_cnt(dp
) ? get_arg(dp
,0) : NULL
, ei
, NULL
, &match
, NULL
, NULL
, &b
);
3725 V_VT(retv
) = VT_BOOL
;
3731 static HRESULT
RegExp_value(script_ctx_t
*ctx
, vdisp_t
*jsthis
, WORD flags
, DISPPARAMS
*dp
,
3732 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3738 return throw_type_error(ctx
, ei
, IDS_NOT_FUNC
, NULL
);
3740 FIXME("unimplemented flags %x\n", flags
);
3747 static void RegExp_destructor(DispatchEx
*dispex
)
3749 RegExpInstance
*This
= (RegExpInstance
*)dispex
;
3752 js_DestroyRegExp(This
->jsregexp
);
3753 VariantClear(&This
->last_index_var
);
3754 SysFreeString(This
->str
);
3758 static const builtin_prop_t RegExp_props
[] = {
3759 {execW
, RegExp_exec
, PROPF_METHOD
|1},
3760 {globalW
, RegExp_global
, 0},
3761 {ignoreCaseW
, RegExp_ignoreCase
, 0},
3762 {lastIndexW
, RegExp_lastIndex
, 0},
3763 {multilineW
, RegExp_multiline
, 0},
3764 {sourceW
, RegExp_source
, 0},
3765 {testW
, RegExp_test
, PROPF_METHOD
|1},
3766 {toStringW
, RegExp_toString
, PROPF_METHOD
}
3769 static const builtin_info_t RegExp_info
= {
3771 {NULL
, RegExp_value
, 0},
3772 sizeof(RegExp_props
)/sizeof(*RegExp_props
),
3778 static HRESULT
alloc_regexp(script_ctx_t
*ctx
, DispatchEx
*object_prototype
, RegExpInstance
**ret
)
3780 RegExpInstance
*regexp
;
3783 regexp
= heap_alloc_zero(sizeof(RegExpInstance
));
3785 return E_OUTOFMEMORY
;
3787 if(object_prototype
)
3788 hres
= init_dispex(®exp
->dispex
, ctx
, &RegExp_info
, object_prototype
);
3790 hres
= init_dispex_from_constr(®exp
->dispex
, ctx
, &RegExp_info
, ctx
->regexp_constr
);
3801 HRESULT
create_regexp(script_ctx_t
*ctx
, const WCHAR
*exp
, int len
, DWORD flags
, DispatchEx
**ret
)
3803 RegExpInstance
*regexp
;
3806 TRACE("%s %x\n", debugstr_w(exp
), flags
);
3808 hres
= alloc_regexp(ctx
, NULL
, ®exp
);
3813 regexp
->str
= SysAllocString(exp
);
3815 regexp
->str
= SysAllocStringLen(exp
, len
);
3817 jsdisp_release(®exp
->dispex
);
3818 return E_OUTOFMEMORY
;
3821 regexp
->jsregexp
= js_NewRegExp(ctx
, regexp
->str
, flags
, FALSE
);
3822 if(!regexp
->jsregexp
) {
3823 WARN("js_NewRegExp failed\n");
3824 jsdisp_release(®exp
->dispex
);
3828 V_VT(®exp
->last_index_var
) = VT_I4
;
3829 V_I4(®exp
->last_index_var
) = 0;
3831 *ret
= ®exp
->dispex
;
3835 HRESULT
create_regexp_var(script_ctx_t
*ctx
, VARIANT
*src_arg
, VARIANT
*flags_arg
, DispatchEx
**ret
)
3837 const WCHAR
*opt
= emptyW
, *src
;
3841 if(V_VT(src_arg
) == VT_DISPATCH
) {
3844 obj
= iface_to_jsdisp((IUnknown
*)V_DISPATCH(src_arg
));
3846 if(is_class(obj
, JSCLASS_REGEXP
)) {
3847 RegExpInstance
*regexp
= (RegExpInstance
*)obj
;
3849 hres
= create_regexp(ctx
, regexp
->str
, -1, regexp
->jsregexp
->flags
, ret
);
3850 jsdisp_release(obj
);
3854 jsdisp_release(obj
);
3858 if(V_VT(src_arg
) != VT_BSTR
) {
3859 FIXME("flags_arg = %s\n", debugstr_variant(flags_arg
));
3863 src
= V_BSTR(src_arg
);
3866 if(V_VT(flags_arg
) != VT_BSTR
) {
3867 FIXME("unimplemented for vt %d\n", V_VT(flags_arg
));
3871 opt
= V_BSTR(flags_arg
);
3874 hres
= parse_regexp_flags(opt
, strlenW(opt
), &flags
);
3878 return create_regexp(ctx
, src
, -1, flags
, ret
);
3881 static HRESULT
RegExpConstr_value(script_ctx_t
*ctx
, vdisp_t
*jsthis
, WORD flags
, DISPPARAMS
*dp
,
3882 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3887 case DISPATCH_METHOD
:
3889 VARIANT
*arg
= get_arg(dp
,0);
3890 if(V_VT(arg
) == VT_DISPATCH
) {
3891 DispatchEx
*jsdisp
= iface_to_jsdisp((IUnknown
*)V_DISPATCH(arg
));
3893 if(is_class(jsdisp
, JSCLASS_REGEXP
)) {
3894 if(arg_cnt(dp
) > 1 && V_VT(get_arg(dp
,1)) != VT_EMPTY
) {
3895 jsdisp_release(jsdisp
);
3896 return throw_regexp_error(ctx
, ei
, IDS_REGEXP_SYNTAX_ERROR
, NULL
);
3900 V_VT(retv
) = VT_DISPATCH
;
3901 V_DISPATCH(retv
) = (IDispatch
*)_IDispatchEx_(jsdisp
);
3903 jsdisp_release(jsdisp
);
3907 jsdisp_release(jsdisp
);
3912 case DISPATCH_CONSTRUCT
: {
3921 hres
= create_regexp_var(ctx
, get_arg(dp
,0), arg_cnt(dp
) > 1 ? get_arg(dp
,1) : NULL
, &ret
);
3926 V_VT(retv
) = VT_DISPATCH
;
3927 V_DISPATCH(retv
) = (IDispatch
*)_IDispatchEx_(ret
);
3929 jsdisp_release(ret
);
3934 FIXME("unimplemented flags: %x\n", flags
);
3941 HRESULT
create_regexp_constr(script_ctx_t
*ctx
, DispatchEx
*object_prototype
, DispatchEx
**ret
)
3943 RegExpInstance
*regexp
;
3946 static const WCHAR RegExpW
[] = {'R','e','g','E','x','p',0};
3948 hres
= alloc_regexp(ctx
, object_prototype
, ®exp
);
3952 hres
= create_builtin_function(ctx
, RegExpConstr_value
, RegExpW
, NULL
,
3953 PROPF_CONSTR
|2, ®exp
->dispex
, ret
);
3955 jsdisp_release(®exp
->dispex
);
3959 HRESULT
parse_regexp_flags(const WCHAR
*str
, DWORD str_len
, DWORD
*ret
)
3964 for (p
= str
; p
< str
+str_len
; p
++) {
3967 flags
|= JSREG_GLOB
;
3970 flags
|= JSREG_FOLD
;
3973 flags
|= JSREG_MULTILINE
;
3976 flags
|= JSREG_STICKY
;
3979 WARN("wrong flag %c\n", *p
);