- move IShellFolder_fnGetDisplayNameOf() contents into a new function
[wine/testsucceed.git] / dlls / oleaut32 / variant.c
blobbaa77e1f8c8cdef9bbfad5e7b9d00bba86e7424e
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * The alorithm for conversion from Julian days to day/month/year is based on
7 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
8 * Copyright 1994-7 Regents of the University of California
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include "config.h"
27 #ifdef HAVE_STRING_H
28 # include <string.h>
29 #endif
30 #ifdef HAVE_STDLIB_H
31 # include <stdlib.h>
32 #endif
33 #include <stdarg.h>
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
37 #include "windef.h"
38 #include "winbase.h"
39 #include "oleauto.h"
40 #include "wine/debug.h"
41 #include "wine/unicode.h"
42 #include "winerror.h"
43 #include "variant.h"
45 WINE_DEFAULT_DEBUG_CHANNEL(ole);
47 const char* wine_vtypes[VT_CLSID] =
49 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
50 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
51 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
52 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
53 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR""32","33","34","35",
54 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
55 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
56 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
57 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
60 const char* wine_vflags[16] =
62 "",
63 "|VT_VECTOR",
64 "|VT_ARRAY",
65 "|VT_VECTOR|VT_ARRAY",
66 "|VT_BYREF",
67 "|VT_VECTOR|VT_ARRAY",
68 "|VT_ARRAY|VT_BYREF",
69 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
70 "|VT_HARDTYPE",
71 "|VT_VECTOR|VT_HARDTYPE",
72 "|VT_ARRAY|VT_HARDTYPE",
73 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
74 "|VT_BYREF|VT_HARDTYPE",
75 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
76 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
77 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
80 /* Convert a variant from one type to another */
81 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
82 VARIANTARG* ps, VARTYPE vt)
84 HRESULT res = DISP_E_TYPEMISMATCH;
85 VARTYPE vtFrom = V_TYPE(ps);
86 DWORD dwFlags = 0;
88 TRACE("(%p->(%s%s),0x%08lx,0x%04x,%p->(%s%s),%s%s)\n", pd, debugstr_VT(pd),
89 debugstr_VF(pd), lcid, wFlags, ps, debugstr_VT(ps), debugstr_VF(ps),
90 debugstr_vt(vt), debugstr_vf(vt));
92 if (vt == VT_BSTR || vtFrom == VT_BSTR)
94 /* All flags passed to low level function are only used for
95 * changing to or from strings. Map these here.
97 if (wFlags & VARIANT_LOCALBOOL)
98 dwFlags |= VAR_LOCALBOOL;
99 if (wFlags & VARIANT_CALENDAR_HIJRI)
100 dwFlags |= VAR_CALENDAR_HIJRI;
101 if (wFlags & VARIANT_CALENDAR_THAI)
102 dwFlags |= VAR_CALENDAR_THAI;
103 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
104 dwFlags |= VAR_CALENDAR_GREGORIAN;
105 if (wFlags & VARIANT_NOUSEROVERRIDE)
106 dwFlags |= LOCALE_NOUSEROVERRIDE;
107 if (wFlags & VARIANT_USE_NLS)
108 dwFlags |= LOCALE_USE_NLS;
111 /* Map int/uint to i4/ui4 */
112 if (vt == VT_INT)
113 vt = VT_I4;
114 else if (vt == VT_UINT)
115 vt = VT_UI4;
117 if (vtFrom == VT_INT)
118 vtFrom = VT_I4;
119 else if (vtFrom == VT_UINT)
120 vtFrom = VT_UI4;
122 if (vt == vtFrom)
123 return VariantCopy(pd, ps);
125 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
127 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
128 * accessing the default object property.
130 return DISP_E_TYPEMISMATCH;
133 switch (vt)
135 case VT_EMPTY:
136 if (vtFrom == VT_NULL)
137 return DISP_E_TYPEMISMATCH;
138 /* ... Fall through */
139 case VT_NULL:
140 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
142 res = VariantClear( pd );
143 if (vt == VT_NULL && SUCCEEDED(res))
144 V_VT(pd) = VT_NULL;
146 return res;
148 case VT_I1:
149 switch (vtFrom)
151 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
152 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
153 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
154 case VT_UI1: return VarI1FromUI1(V_UI1(ps), &V_I1(pd));
155 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
156 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
157 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
158 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
159 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
160 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
161 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
162 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
163 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
164 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
165 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
166 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
168 break;
170 case VT_I2:
171 switch (vtFrom)
173 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
174 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
175 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
176 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
177 case VT_UI2: return VarI2FromUI2(V_UI2(ps), &V_I2(pd));
178 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
179 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
180 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
181 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
182 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
183 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
184 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
185 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
186 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
187 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
188 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
190 break;
192 case VT_I4:
193 switch (vtFrom)
195 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
196 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
197 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
198 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
199 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
200 case VT_UI4: return VarI4FromUI4(V_UI4(ps), &V_I4(pd));
201 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
202 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
203 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
204 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
205 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
206 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
207 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
208 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
209 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
210 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
212 break;
214 case VT_UI1:
215 switch (vtFrom)
217 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
218 case VT_I1: return VarUI1FromI1(V_I1(ps), &V_UI1(pd));
219 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
220 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
221 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
222 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
223 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
224 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
225 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
226 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
227 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
228 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
229 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
230 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
231 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
232 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
234 break;
236 case VT_UI2:
237 switch (vtFrom)
239 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
240 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
241 case VT_I2: return VarUI2FromI2(V_I2(ps), &V_UI2(pd));
242 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
243 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
244 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
245 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
246 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
247 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
248 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
249 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
250 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
251 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
252 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
253 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
254 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
256 break;
258 case VT_UI4:
259 switch (vtFrom)
261 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
262 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
263 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
264 case VT_I4: return VarUI4FromI4(V_I4(ps), &V_UI4(pd));
265 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
266 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
267 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
268 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
269 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
270 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
271 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
272 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
273 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
274 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
275 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
276 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
278 break;
280 case VT_UI8:
281 switch (vtFrom)
283 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
284 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
285 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
286 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
287 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
288 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
289 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
290 case VT_I8: return VarUI8FromI8(V_I8(ps), &V_UI8(pd));
291 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
292 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
293 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
294 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
295 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
296 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
297 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
298 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
300 break;
302 case VT_I8:
303 switch (vtFrom)
305 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
306 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
307 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
308 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
309 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
310 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
311 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
312 case VT_UI8: return VarI8FromUI8(V_I8(ps), &V_I8(pd));
313 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
314 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
315 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
316 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
317 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
318 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
319 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
320 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
322 break;
324 case VT_R4:
325 switch (vtFrom)
327 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
328 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
329 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
330 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
331 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
332 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
333 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
334 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
335 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
336 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
337 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
338 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
339 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
340 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
341 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
342 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
344 break;
346 case VT_R8:
347 switch (vtFrom)
349 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
350 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
351 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
352 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
353 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
354 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
355 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
356 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
357 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
358 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
359 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
360 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
361 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
362 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
363 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
364 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
366 break;
368 case VT_DATE:
369 switch (vtFrom)
371 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
372 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
373 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
374 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
375 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
376 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
377 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
378 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
379 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
380 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
381 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
382 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
383 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
384 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
385 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
386 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
388 break;
390 case VT_BOOL:
391 switch (vtFrom)
393 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
394 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
395 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
396 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
397 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
398 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
399 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
400 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
401 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
402 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
403 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
404 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
405 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
406 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
407 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
408 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
410 break;
412 case VT_BSTR:
413 switch (vtFrom)
415 case VT_EMPTY:
416 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
417 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
418 case VT_BOOL:
419 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
420 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
421 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
422 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
423 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
424 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
425 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
426 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
427 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
428 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
429 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
430 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
431 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
432 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
433 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
434 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
435 /* case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd)); */
437 break;
439 case VT_CY:
440 switch (vtFrom)
442 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
443 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
444 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
445 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
446 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
447 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
448 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
449 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
450 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
451 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
452 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
453 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
454 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
455 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
456 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
457 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
459 break;
461 case VT_DECIMAL:
462 switch (vtFrom)
464 case VT_EMPTY:
465 case VT_BOOL:
466 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
467 DEC_HI32(&V_DECIMAL(pd)) = 0;
468 DEC_MID32(&V_DECIMAL(pd)) = 0;
469 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
470 * VT_NULL and VT_EMPTY always give a 0 value.
472 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
473 return S_OK;
474 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
475 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
476 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
477 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
478 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
479 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
480 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
481 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
482 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
483 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
484 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
485 case VT_CY: return VarDecFromCy(V_CY(pd), &V_DECIMAL(ps));
486 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(ps));
487 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
489 break;
491 case VT_UNKNOWN:
492 switch (vtFrom)
494 case VT_DISPATCH:
495 if (V_DISPATCH(ps) == NULL)
496 V_UNKNOWN(pd) = NULL;
497 else
498 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
499 break;
501 break;
503 case VT_DISPATCH:
504 switch (vtFrom)
506 case VT_UNKNOWN:
507 if (V_UNKNOWN(ps) == NULL)
508 V_DISPATCH(pd) = NULL;
509 else
510 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
511 break;
513 break;
515 case VT_RECORD:
516 break;
518 return res;
521 /* Coerce to/from an array */
522 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
524 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
525 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
527 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
528 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(ps));
530 if (V_VT(ps) == vt)
531 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
533 return DISP_E_TYPEMISMATCH;
536 /******************************************************************************
537 * Check if a variants type is valid.
539 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
541 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
543 vt &= VT_TYPEMASK;
545 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
547 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
549 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
550 return DISP_E_BADVARTYPE;
551 if (vt != (VARTYPE)15)
552 return S_OK;
555 return DISP_E_BADVARTYPE;
558 /******************************************************************************
559 * VariantInit [OLEAUT32.8]
561 * Initialise a variant.
563 * PARAMS
564 * pVarg [O] Variant to initialise
566 * RETURNS
567 * Nothing.
569 * NOTES
570 * This function simply sets the type of the variant to VT_EMPTY. It does not
571 * free any existing value, use VariantClear() for that.
573 void WINAPI VariantInit(VARIANTARG* pVarg)
575 TRACE("(%p)\n", pVarg);
577 V_VT(pVarg) = VT_EMPTY; /* Native doesn't set any other fields */
580 /******************************************************************************
581 * VariantClear [OLEAUT32.9]
583 * Clear a variant.
585 * PARAMS
586 * pVarg [I/O] Variant to clear
588 * RETURNS
589 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
590 * Failure: DISP_E_BADVARTYPE, if the variant is a not a valid variant type.
592 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
594 HRESULT hres = S_OK;
596 TRACE("(%p->(%s%s))\n", pVarg, debugstr_VT(pVarg), debugstr_VF(pVarg));
598 hres = VARIANT_ValidateType(V_VT(pVarg));
600 if (SUCCEEDED(hres))
602 if (!V_ISBYREF(pVarg))
604 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
606 if (V_ARRAY(pVarg))
607 hres = SafeArrayDestroy(V_ARRAY(pVarg));
609 else if (V_VT(pVarg) == VT_BSTR)
611 if (V_BSTR(pVarg))
612 SysFreeString(V_BSTR(pVarg));
614 else if (V_VT(pVarg) == VT_RECORD)
616 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
617 if (pBr->pRecInfo)
619 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
620 IRecordInfo_Release(pBr->pRecInfo);
623 else if (V_VT(pVarg) == VT_DISPATCH ||
624 V_VT(pVarg) == VT_UNKNOWN)
626 if (V_UNKNOWN(pVarg))
627 IUnknown_Release(V_UNKNOWN(pVarg));
629 else if (V_VT(pVarg) == VT_VARIANT)
631 if (V_VARIANTREF(pVarg))
632 VariantClear(V_VARIANTREF(pVarg));
635 V_VT(pVarg) = VT_EMPTY;
637 return hres;
640 /******************************************************************************
641 * Copy an IRecordInfo object contained in a variant.
643 static HRESULT VARIANT_CopyIRecordInfo(struct __tagBRECORD* pBr)
645 HRESULT hres = S_OK;
647 if (pBr->pRecInfo)
649 ULONG ulSize;
651 hres = IRecordInfo_GetSize(pBr->pRecInfo, &ulSize);
652 if (SUCCEEDED(hres))
654 PVOID pvRecord = HeapAlloc(GetProcessHeap(), 0, ulSize);
655 if (!pvRecord)
656 hres = E_OUTOFMEMORY;
657 else
659 memcpy(pvRecord, pBr->pvRecord, ulSize);
660 pBr->pvRecord = pvRecord;
662 hres = IRecordInfo_RecordCopy(pBr->pRecInfo, pvRecord, pvRecord);
663 if (SUCCEEDED(hres))
664 IRecordInfo_AddRef(pBr->pRecInfo);
668 else if (pBr->pvRecord)
669 hres = E_INVALIDARG;
670 return hres;
673 /******************************************************************************
674 * VariantCopy [OLEAUT32.10]
676 * Copy a variant.
678 * PARAMS
679 * pvargDest [O] Destination for copy
680 * pvargSrc [I] Source variant to copy
682 * RETURNS
683 * Success: S_OK. pvargDest contains a copy of pvargSrc.
684 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
685 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
686 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
687 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
689 * NOTES
690 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
691 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
692 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
693 * fails, so does this function.
694 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
695 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
696 * is copied rather than just any pointers to it.
697 * - For by-value object types the object pointer is copied and the objects
698 * reference count increased using IUnknown_AddRef().
699 * - For all by-reference types, only the referencing pointer is copied.
701 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
703 HRESULT hres = S_OK;
705 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
706 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
707 debugstr_VF(pvargSrc));
709 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
710 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
711 return DISP_E_BADVARTYPE;
713 if (pvargSrc != pvargDest &&
714 SUCCEEDED(hres = VariantClear(pvargDest)))
716 *pvargDest = *pvargSrc; /* Shallow copy the value */
718 if (!V_ISBYREF(pvargSrc))
720 if (V_ISARRAY(pvargSrc))
722 if (V_ARRAY(pvargSrc))
723 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
725 else if (V_VT(pvargSrc) == VT_BSTR)
727 if (V_BSTR(pvargSrc))
729 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
730 if (!V_BSTR(pvargDest))
731 hres = E_OUTOFMEMORY;
734 else if (V_VT(pvargSrc) == VT_RECORD)
736 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
738 else if (V_VT(pvargSrc) == VT_DISPATCH ||
739 V_VT(pvargSrc) == VT_UNKNOWN)
741 if (V_UNKNOWN(pvargSrc))
742 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
746 return hres;
749 /* Return the byte size of a variants data */
750 static inline size_t VARIANT_DataSize(const VARIANT* pv)
752 switch (V_TYPE(pv))
754 case VT_I1:
755 case VT_UI1: return sizeof(BYTE); break;
756 case VT_I2:
757 case VT_UI2: return sizeof(SHORT); break;
758 case VT_INT:
759 case VT_UINT:
760 case VT_I4:
761 case VT_UI4: return sizeof(LONG); break;
762 case VT_I8:
763 case VT_UI8: return sizeof(LONGLONG); break;
764 case VT_R4: return sizeof(float); break;
765 case VT_R8: return sizeof(double); break;
766 case VT_DATE: return sizeof(DATE); break;
767 case VT_BOOL: return sizeof(VARIANT_BOOL); break;
768 case VT_DISPATCH:
769 case VT_UNKNOWN:
770 case VT_BSTR: return sizeof(void*); break;
771 case VT_CY: return sizeof(CY); break;
772 case VT_ERROR: return sizeof(SCODE); break;
774 TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv), debugstr_VF(pv));
775 return 0;
778 /******************************************************************************
779 * VariantCopyInd [OLEAUT32.11]
781 * Copy a variant, dereferencing it it is by-reference.
783 * PARAMS
784 * pvargDest [O] Destination for copy
785 * pvargSrc [I] Source variant to copy
787 * RETURNS
788 * Success: S_OK. pvargDest contains a copy of pvargSrc.
789 * Failure: An HRESULT error code indicating the error.
791 * NOTES
792 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
793 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
794 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
795 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
796 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
798 * NOTES
799 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
800 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
801 * value.
802 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
803 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
804 * to it. If clearing pvargDest fails, so does this function.
806 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
808 VARIANTARG vTmp, *pSrc = pvargSrc;
809 VARTYPE vt;
810 HRESULT hres = S_OK;
812 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
813 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
814 debugstr_VF(pvargSrc));
816 if (!V_ISBYREF(pvargSrc))
817 return VariantCopy(pvargDest, pvargSrc);
819 /* Argument checking is more lax than VariantCopy()... */
820 vt = V_TYPE(pvargSrc);
821 if (V_ISARRAY(pvargSrc) ||
822 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
823 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
825 /* OK */
827 else
828 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
830 if (pvargSrc == pvargDest)
832 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
833 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
835 vTmp = *pvargSrc;
836 pSrc = &vTmp;
837 V_VT(pvargDest) = VT_EMPTY;
839 else
841 /* Copy into another variant. Free the variant in pvargDest */
842 if (FAILED(hres = VariantClear(pvargDest)))
843 return hres;
846 if (V_ISARRAY(pSrc))
848 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
849 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
851 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
853 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
854 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
856 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
858 V_UNION(pvargDest,brecVal) = V_UNION(pvargSrc,brecVal);
859 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
861 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
862 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
864 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
865 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
866 if (*V_UNKNOWNREF(pSrc))
867 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
869 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
871 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
872 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
873 hres = E_INVALIDARG; /* Don't dereference more than one level */
874 else
875 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
877 /* Use the dereferenced variants type value, not VT_VARIANT */
878 goto VariantCopyInd_Return;
880 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
882 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
883 sizeof(DECIMAL) - sizeof(USHORT));
885 else
887 /* Copy the pointed to data into this variant */
888 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
891 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
893 VariantCopyInd_Return:
895 if (pSrc != pvargSrc)
896 VariantClear(pSrc);
898 TRACE("returning 0x%08lx, %p->(%s%s)\n", hres, pvargDest,
899 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
900 return hres;
903 /******************************************************************************
904 * VariantChangeType [OLEAUT32.12]
906 * Change the type of a variant.
908 * PARAMS
909 * pvargDest [O] Destination for the converted variant
910 * pvargSrc [O] Source variant to change the type of
911 * wFlags [I] VARIANT_ flags from "oleauto.h"
912 * vt [I] Variant type to change pvargSrc into
914 * RETURNS
915 * Success: S_OK. pvargDest contains the converted value.
916 * Failure: An HRESULT error code describing the failure.
918 * NOTES
919 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
920 * See VariantChangeTypeEx.
922 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
923 USHORT wFlags, VARTYPE vt)
925 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
928 /******************************************************************************
929 * VariantChangeTypeEx [OLEAUT32.147]
931 * Change the type of a variant.
933 * PARAMS
934 * pvargDest [O] Destination for the converted variant
935 * pvargSrc [O] Source variant to change the type of
936 * lcid [I] LCID for the conversion
937 * wFlags [I] VARIANT_ flags from "oleauto.h"
938 * vt [I] Variant type to change pvargSrc into
940 * RETURNS
941 * Success: S_OK. pvargDest contains the converted value.
942 * Failure: An HRESULT error code describing the failure.
944 * NOTES
945 * pvargDest and pvargSrc can point to the same variant to perform an in-place
946 * conversion. If the conversion is successful, pvargSrc will be freed.
948 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
949 LCID lcid, USHORT wFlags, VARTYPE vt)
951 HRESULT res = S_OK;
953 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%04x,%s%s)\n", pvargDest,
954 debugstr_VT(pvargDest), debugstr_VF(pvargDest), pvargSrc,
955 debugstr_VT(pvargSrc), debugstr_VF(pvargSrc), lcid, wFlags,
956 debugstr_vt(vt), debugstr_vf(vt));
958 if (vt == VT_CLSID)
959 res = DISP_E_BADVARTYPE;
960 else
962 res = VARIANT_ValidateType(V_VT(pvargSrc));
964 if (SUCCEEDED(res))
966 res = VARIANT_ValidateType(vt);
968 if (SUCCEEDED(res))
970 VARIANTARG vTmp;
972 V_VT(&vTmp) = VT_EMPTY;
973 res = VariantCopyInd(&vTmp, pvargSrc);
975 if (SUCCEEDED(res))
977 res = VariantClear(pvargDest);
979 if (SUCCEEDED(res))
981 if (V_ISARRAY(&vTmp) || (vt & VT_ARRAY))
982 res = VARIANT_CoerceArray(pvargDest, &vTmp, vt);
983 else
984 res = VARIANT_Coerce(pvargDest, lcid, wFlags, &vTmp, vt);
986 if (SUCCEEDED(res))
987 V_VT(pvargDest) = vt;
989 VariantClear(&vTmp);
995 TRACE("returning 0x%08lx, %p->(%s%s)\n", res, pvargDest,
996 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
997 return res;
1000 /* Date Conversions */
1002 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1004 /* Convert a VT_DATE value to a Julian Date */
1005 static inline int VARIANT_JulianFromDate(int dateIn)
1007 int julianDays = dateIn;
1009 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1010 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1011 return julianDays;
1014 /* Convert a Julian Date to a VT_DATE value */
1015 static inline int VARIANT_DateFromJulian(int dateIn)
1017 int julianDays = dateIn;
1019 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1020 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1021 return julianDays;
1024 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1025 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1027 int j, i, l, n;
1029 l = jd + 68569;
1030 n = l * 4 / 146097;
1031 l -= (n * 146097 + 3) / 4;
1032 i = (4000 * (l + 1)) / 1461001;
1033 l += 31 - (i * 1461) / 4;
1034 j = (l * 80) / 2447;
1035 *day = l - (j * 2447) / 80;
1036 l = j / 11;
1037 *month = (j + 2) - (12 * l);
1038 *year = 100 * (n - 49) + i + l;
1041 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1042 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1044 int m12 = (month - 14) / 12;
1046 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1047 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1050 /* Macros for accessing DOS format date/time fields */
1051 #define DOS_YEAR(x) (1980 + (x >> 9))
1052 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1053 #define DOS_DAY(x) (x & 0x1f)
1054 #define DOS_HOUR(x) (x >> 11)
1055 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1056 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1057 /* Create a DOS format date/time */
1058 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1059 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1061 /* Roll a date forwards or backwards to correct it */
1062 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1064 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1066 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1067 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1069 /* Years < 100 are treated as 1900 + year */
1070 if (lpUd->st.wYear < 100)
1071 lpUd->st.wYear += 1900;
1073 if (!lpUd->st.wMonth)
1075 /* Roll back to December of the previous year */
1076 lpUd->st.wMonth = 12;
1077 lpUd->st.wYear--;
1079 else while (lpUd->st.wMonth > 12)
1081 /* Roll forward the correct number of months */
1082 lpUd->st.wYear++;
1083 lpUd->st.wMonth -= 12;
1086 if (lpUd->st.wYear > 9999 || lpUd->st.wHour > 23 ||
1087 lpUd->st.wMinute > 59 || lpUd->st.wSecond > 59)
1088 return E_INVALIDARG; /* Invalid values */
1090 if (!lpUd->st.wDay)
1092 /* Roll back the date one day */
1093 if (lpUd->st.wMonth == 1)
1095 /* Roll back to December 31 of the previous year */
1096 lpUd->st.wDay = 31;
1097 lpUd->st.wMonth = 12;
1098 lpUd->st.wYear--;
1100 else
1102 lpUd->st.wMonth--; /* Previous month */
1103 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1104 lpUd->st.wDay = 29; /* Februaury has 29 days on leap years */
1105 else
1106 lpUd->st.wDay = days[lpUd->st.wMonth]; /* Last day of the month */
1109 else if (lpUd->st.wDay > 28)
1111 int rollForward = 0;
1113 /* Possibly need to roll the date forward */
1114 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1115 rollForward = lpUd->st.wDay - 29; /* Februaury has 29 days on leap years */
1116 else
1117 rollForward = lpUd->st.wDay - days[lpUd->st.wMonth];
1119 if (rollForward > 0)
1121 lpUd->st.wDay = rollForward;
1122 lpUd->st.wMonth++;
1123 if (lpUd->st.wMonth > 12)
1125 lpUd->st.wMonth = 1; /* Roll forward into January of the next year */
1126 lpUd->st.wYear++;
1130 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1131 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1132 return S_OK;
1135 /**********************************************************************
1136 * DosDateTimeToVariantTime [OLEAUT32.14]
1138 * Convert a Dos format date and time into variant VT_DATE format.
1140 * PARAMS
1141 * wDosDate [I] Dos format date
1142 * wDosTime [I] Dos format time
1143 * pDateOut [O] Destination for VT_DATE format
1145 * RETURNS
1146 * Success: TRUE. pDateOut contains the converted time.
1147 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1149 * NOTES
1150 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1151 * - Dos format times are accurate to only 2 second precision.
1152 * - The format of a Dos Date is:
1153 *| Bits Values Meaning
1154 *| ---- ------ -------
1155 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1156 *| the days in the month rolls forward the extra days.
1157 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1158 *| year. 13-15 are invalid.
1159 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1160 * - The format of a Dos Time is:
1161 *| Bits Values Meaning
1162 *| ---- ------ -------
1163 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1164 *| 5-10 0-59 Minutes. 60-63 are invalid.
1165 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1167 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1168 double *pDateOut)
1170 UDATE ud;
1172 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1173 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1174 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1175 pDateOut);
1177 ud.st.wYear = DOS_YEAR(wDosDate);
1178 ud.st.wMonth = DOS_MONTH(wDosDate);
1179 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1180 return FALSE;
1181 ud.st.wDay = DOS_DAY(wDosDate);
1182 ud.st.wHour = DOS_HOUR(wDosTime);
1183 ud.st.wMinute = DOS_MINUTE(wDosTime);
1184 ud.st.wSecond = DOS_SECOND(wDosTime);
1185 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1187 return !VarDateFromUdate(&ud, 0, pDateOut);
1190 /**********************************************************************
1191 * VariantTimeToDosDateTime [OLEAUT32.13]
1193 * Convert a variant format date into a Dos format date and time.
1195 * dateIn [I] VT_DATE time format
1196 * pwDosDate [O] Destination for Dos format date
1197 * pwDosTime [O] Destination for Dos format time
1199 * RETURNS
1200 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1201 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1203 * NOTES
1204 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1206 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1208 UDATE ud;
1210 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1212 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1213 return FALSE;
1215 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1216 return FALSE;
1218 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1219 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1221 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1222 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1223 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1224 return TRUE;
1227 /***********************************************************************
1228 * SystemTimeToVariantTime [OLEAUT32.184]
1230 * Convert a System format date and time into variant VT_DATE format.
1232 * PARAMS
1233 * lpSt [I] System format date and time
1234 * pDateOut [O] Destination for VT_DATE format date
1236 * RETURNS
1237 * Success: TRUE. *pDateOut contains the converted value.
1238 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1240 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1242 UDATE ud;
1244 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1245 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1247 if (lpSt->wMonth > 12)
1248 return FALSE;
1250 memcpy(&ud.st, lpSt, sizeof(ud.st));
1251 return !VarDateFromUdate(&ud, 0, pDateOut);
1254 /***********************************************************************
1255 * VariantTimeToSystemTime [OLEAUT32.185]
1257 * Convert a variant VT_DATE into a System format date and time.
1259 * PARAMS
1260 * datein [I] Variant VT_DATE format date
1261 * lpSt [O] Destination for System format date and time
1263 * RETURNS
1264 * Success: TRUE. *lpSt contains the converted value.
1265 * Failure: FALSE, if dateIn is too large or small.
1267 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1269 UDATE ud;
1271 TRACE("(%g,%p)\n", dateIn, lpSt);
1273 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1274 return FALSE;
1276 memcpy(lpSt, &ud.st, sizeof(ud.st));
1277 return TRUE;
1280 /***********************************************************************
1281 * VarDateFromUdate [OLEAUT32.330]
1283 * Convert an unpacked format date and time to a variant VT_DATE.
1285 * PARAMS
1286 * pUdateIn [I] Unpacked format date and time to convert
1287 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1288 * pDateOut [O] Destination for variant VT_DATE.
1290 * RETURNS
1291 * Success: S_OK. *pDateOut contains the converted value.
1292 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1294 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1296 UDATE ud;
1297 double dateVal;
1299 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08lx,%p)\n", pUdateIn,
1300 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1301 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1302 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1303 pUdateIn->wDayOfYear, dwFlags, pDateOut);
1305 memcpy(&ud, pUdateIn, sizeof(ud));
1307 if (dwFlags & VAR_VALIDDATE)
1308 WARN("Ignoring VAR_VALIDDATE\n");
1310 if (FAILED(VARIANT_RollUdate(&ud)))
1311 return E_INVALIDARG;
1313 /* Date */
1314 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1316 /* Time */
1317 dateVal += ud.st.wHour / 24.0;
1318 dateVal += ud.st.wMinute / 1440.0;
1319 dateVal += ud.st.wSecond / 86400.0;
1320 dateVal += ud.st.wMilliseconds / 86400000.0;
1322 TRACE("Returning %g\n", dateVal);
1323 *pDateOut = dateVal;
1324 return S_OK;
1327 /***********************************************************************
1328 * VarUdateFromDate [OLEAUT32.331]
1330 * Convert a variant VT_DATE into an unpacked format date and time.
1332 * PARAMS
1333 * datein [I] Variant VT_DATE format date
1334 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1335 * lpUdate [O] Destination for unpacked format date and time
1337 * RETURNS
1338 * Success: S_OK. *lpUdate contains the converted value.
1339 * Failure: E_INVALIDARG, if dateIn is too large or small.
1341 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1343 /* Cumulative totals of days per month */
1344 static const USHORT cumulativeDays[] =
1346 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1348 double datePart, timePart;
1349 int julianDays;
1351 TRACE("(%g,0x%08lx,%p)\n", dateIn, dwFlags, lpUdate);
1353 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1354 return E_INVALIDARG;
1356 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1357 /* Compensate for int truncation (always downwards) */
1358 timePart = dateIn - datePart + 0.00000000001;
1359 if (timePart >= 1.0)
1360 timePart -= 0.00000000001;
1362 /* Date */
1363 julianDays = VARIANT_JulianFromDate(dateIn);
1364 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1365 &lpUdate->st.wDay);
1367 datePart = (datePart + 1.5) / 7.0;
1368 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1369 if (lpUdate->st.wDayOfWeek == 0)
1370 lpUdate->st.wDayOfWeek = 5;
1371 else if (lpUdate->st.wDayOfWeek == 1)
1372 lpUdate->st.wDayOfWeek = 6;
1373 else
1374 lpUdate->st.wDayOfWeek -= 2;
1376 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1377 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1378 else
1379 lpUdate->wDayOfYear = 0;
1381 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1382 lpUdate->wDayOfYear += lpUdate->st.wDay;
1384 /* Time */
1385 timePart *= 24.0;
1386 lpUdate->st.wHour = timePart;
1387 timePart -= lpUdate->st.wHour;
1388 timePart *= 60.0;
1389 lpUdate->st.wMinute = timePart;
1390 timePart -= lpUdate->st.wMinute;
1391 timePart *= 60.0;
1392 lpUdate->st.wSecond = timePart;
1393 timePart -= lpUdate->st.wSecond;
1394 lpUdate->st.wMilliseconds = 0;
1395 if (timePart > 0.5)
1397 /* Round the milliseconds, adjusting the time/date forward if needed */
1398 if (lpUdate->st.wSecond < 59)
1399 lpUdate->st.wSecond++;
1400 else
1402 lpUdate->st.wSecond = 0;
1403 if (lpUdate->st.wMinute < 59)
1404 lpUdate->st.wMinute++;
1405 else
1407 lpUdate->st.wMinute = 0;
1408 if (lpUdate->st.wHour < 23)
1409 lpUdate->st.wHour++;
1410 else
1412 lpUdate->st.wHour = 0;
1413 /* Roll over a whole day */
1414 if (++lpUdate->st.wDay > 28)
1415 VARIANT_RollUdate(lpUdate);
1420 return S_OK;
1423 #define GET_NUMBER_TEXT(fld,name) \
1424 buff[0] = 0; \
1425 if (!GetLocaleInfoW(lcid, lctype|fld, buff, sizeof(WCHAR) * 2)) \
1426 WARN("buffer too small for " #fld "\n"); \
1427 else \
1428 if (buff[0]) lpChars->name = buff[0]; \
1429 TRACE("lcid 0x%lx, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1431 /* Get the valid number characters for an lcid */
1432 void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1434 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1435 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1436 WCHAR buff[4];
1438 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1439 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1440 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1441 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1442 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeperator);
1443 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1444 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeperator);
1446 /* Local currency symbols are often 2 characters */
1447 lpChars->cCurrencyLocal2 = '\0';
1448 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(WCHAR) * 4))
1450 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1451 case 2: lpChars->cCurrencyLocal = buff[0];
1452 break;
1453 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1455 TRACE("lcid 0x%lx, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1456 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1459 /* Number Parsing States */
1460 #define B_PROCESSING_EXPONENT 0x1
1461 #define B_NEGATIVE_EXPONENT 0x2
1462 #define B_EXPONENT_START 0x4
1463 #define B_INEXACT_ZEROS 0x8
1464 #define B_LEADING_ZERO 0x10
1466 /**********************************************************************
1467 * VarParseNumFromStr [OLEAUT32.46]
1469 * Parse a string containing a number into a NUMPARSE structure.
1471 * PARAMS
1472 * lpszStr [I] String to parse number from
1473 * lcid [I] Locale Id for the conversion
1474 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1475 * pNumprs [I/O] Destination for parsed number
1476 * rgbDig [O] Destination for digits read in
1478 * RETURNS
1479 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1480 * the number.
1481 * Failure: E_INVALIDARG, if any parameter is invalid.
1482 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1483 * incorrectly.
1484 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1486 * NOTES
1487 * pNumprs must have the following fields set:
1488 * cDig: Set to the size of rgbDig.
1489 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1490 * from "oleauto.h".
1492 * FIXME
1493 * - I am unsure if this function should parse non-arabic (e.g. Thai)
1494 * numerals, so this has not been implemented.
1496 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1497 NUMPARSE *pNumprs, BYTE *rgbDig)
1499 VARIANT_NUMBER_CHARS chars;
1500 BYTE rgbTmp[1024];
1501 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1502 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1503 int cchUsed = 0;
1505 TRACE("(%s,%ld,0x%08lx,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1507 if (pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1508 FIXME("dwInFlags & NUMPRS_HEX_OCT not yet implemented!\n");
1510 if (!pNumprs || !rgbDig)
1511 return E_INVALIDARG;
1513 if (pNumprs->cDig < iMaxDigits)
1514 iMaxDigits = pNumprs->cDig;
1516 pNumprs->cDig = 0;
1517 pNumprs->dwOutFlags = 0;
1518 pNumprs->cchUsed = 0;
1519 pNumprs->nBaseShift = 0;
1520 pNumprs->nPwr10 = 0;
1522 if (!lpszStr)
1523 return DISP_E_TYPEMISMATCH;
1525 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1527 /* First consume all the leading symbols and space from the string */
1528 while (1)
1530 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1532 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1535 cchUsed++;
1536 lpszStr++;
1537 } while (isspaceW(*lpszStr));
1539 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1540 *lpszStr == chars.cPositiveSymbol &&
1541 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1543 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1544 cchUsed++;
1545 lpszStr++;
1547 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1548 *lpszStr == chars.cNegativeSymbol &&
1549 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1551 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1552 cchUsed++;
1553 lpszStr++;
1555 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1556 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1557 *lpszStr == chars.cCurrencyLocal &&
1558 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1560 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1561 cchUsed++;
1562 lpszStr++;
1563 /* Only accept currency characters */
1564 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1565 chars.cDigitSeperator = chars.cCurrencyDigitSeperator;
1567 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1568 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1570 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1571 cchUsed++;
1572 lpszStr++;
1574 else
1575 break;
1578 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1580 /* Only accept non-currency characters */
1581 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1582 chars.cCurrencyDigitSeperator = chars.cDigitSeperator;
1585 /* Strip Leading zeros */
1586 while (*lpszStr == '0')
1588 dwState |= B_LEADING_ZERO;
1589 cchUsed++;
1590 lpszStr++;
1593 while (*lpszStr)
1595 if (isdigitW(*lpszStr))
1597 if (dwState & B_PROCESSING_EXPONENT)
1599 int exponentSize = 0;
1600 if (dwState & B_EXPONENT_START)
1602 while (*lpszStr == '0')
1604 /* Skip leading zero's in the exponent */
1605 cchUsed++;
1606 lpszStr++;
1608 if (!isdigitW(*lpszStr))
1609 break; /* No exponent digits - invalid */
1612 while (isdigitW(*lpszStr))
1614 exponentSize *= 10;
1615 exponentSize += *lpszStr - '0';
1616 cchUsed++;
1617 lpszStr++;
1619 if (dwState & B_NEGATIVE_EXPONENT)
1620 exponentSize = -exponentSize;
1621 /* Add the exponent into the powers of 10 */
1622 pNumprs->nPwr10 += exponentSize;
1623 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1624 lpszStr--; /* back up to allow processing of next char */
1626 else
1628 if (pNumprs->cDig >= iMaxDigits)
1630 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1632 if (*lpszStr != '0')
1633 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1635 /* This digit can't be represented, but count it in nPwr10 */
1636 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1637 pNumprs->nPwr10--;
1638 else
1639 pNumprs->nPwr10++;
1641 else
1643 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1644 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1645 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1647 pNumprs->cDig++;
1648 cchUsed++;
1651 else if (*lpszStr == chars.cDigitSeperator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1653 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1654 cchUsed++;
1656 else if (*lpszStr == chars.cDecimalPoint &&
1657 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1658 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1660 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1661 cchUsed++;
1663 /* Remove trailing zeros from the whole number part */
1664 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1666 pNumprs->nPwr10++;
1667 pNumprs->cDig--;
1670 /* If we have no digits so far, skip leading zeros */
1671 if (!pNumprs->cDig)
1673 while (lpszStr[1] == '0')
1675 dwState |= B_LEADING_ZERO;
1676 cchUsed++;
1677 lpszStr++;
1681 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1682 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1683 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1685 dwState |= B_PROCESSING_EXPONENT;
1686 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1687 cchUsed++;
1689 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1691 cchUsed++; /* Ignore positive exponent */
1693 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1695 dwState |= B_NEGATIVE_EXPONENT;
1696 cchUsed++;
1698 else
1699 break; /* Stop at an unrecognised character */
1701 lpszStr++;
1704 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1706 /* Ensure a 0 on its own gets stored */
1707 pNumprs->cDig = 1;
1708 rgbTmp[0] = 0;
1711 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1713 pNumprs->cchUsed = cchUsed;
1714 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1717 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1719 if (dwState & B_INEXACT_ZEROS)
1720 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1722 else
1724 /* Remove trailing zeros from the last (whole number or decimal) part */
1725 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1727 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1728 pNumprs->nPwr10--;
1729 else
1730 pNumprs->nPwr10++;
1731 pNumprs->cDig--;
1735 if (pNumprs->cDig <= iMaxDigits)
1736 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1737 else
1738 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1740 /* Copy the digits we processed into rgbDig */
1741 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1743 /* Consume any trailing symbols and space */
1744 while (1)
1746 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1748 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1751 cchUsed++;
1752 lpszStr++;
1753 } while (isspaceW(*lpszStr));
1755 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1756 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1757 *lpszStr == chars.cPositiveSymbol)
1759 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1760 cchUsed++;
1761 lpszStr++;
1763 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1764 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1765 *lpszStr == chars.cNegativeSymbol)
1767 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1768 cchUsed++;
1769 lpszStr++;
1771 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1772 pNumprs->dwOutFlags & NUMPRS_PARENS)
1774 cchUsed++;
1775 lpszStr++;
1776 pNumprs->dwOutFlags |= NUMPRS_NEG;
1778 else
1779 break;
1782 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1784 pNumprs->cchUsed = cchUsed;
1785 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1788 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1789 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1791 if (!pNumprs->cDig)
1792 return DISP_E_TYPEMISMATCH; /* No Number found */
1794 pNumprs->cchUsed = cchUsed;
1795 return S_OK;
1798 /* VTBIT flags indicating an integer value */
1799 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1800 /* VTBIT flags indicating a real number value */
1801 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1803 /**********************************************************************
1804 * VarNumFromParseNum [OLEAUT32.47]
1806 * Convert a NUMPARSE structure into a numeric Variant type.
1808 * PARAMS
1809 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1810 * rgbDig [I] Source for the numbers digits
1811 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1812 * pVarDst [O] Destination for the converted Variant value.
1814 * RETURNS
1815 * Success: S_OK. pVarDst contains the converted value.
1816 * Failure: E_INVALIDARG, if any parameter is invalid.
1817 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1819 * NOTES
1820 * - The smallest favoured type present in dwVtBits that can represent the
1821 * number in pNumprs without losing precision is used.
1822 * - Signed types are preferrred over unsigned types of the same size.
1823 * - Preferred types in order are: integer, float, double, currency then decimal.
1824 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1825 * for details of the rounding method.
1826 * - pVarDst is not cleared before the result is stored in it.
1828 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
1829 ULONG dwVtBits, VARIANT *pVarDst)
1831 /* Scale factors and limits for double arithmetic */
1832 static const double dblMultipliers[11] = {
1833 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
1834 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
1836 static const double dblMinimums[11] = {
1837 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
1838 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
1839 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
1841 static const double dblMaximums[11] = {
1842 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
1843 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
1844 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
1847 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
1849 TRACE("(%p,%p,0x%lx,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
1851 if (pNumprs->nBaseShift)
1853 /* nBaseShift indicates a hex or octal number */
1854 FIXME("nBaseShift=%d not yet implemented, returning overflow\n", pNumprs->nBaseShift);
1855 return DISP_E_OVERFLOW;
1858 /* Count the number of relevant fractional and whole digits stored,
1859 * And compute the divisor/multiplier to scale the number by.
1861 if (pNumprs->nPwr10 < 0)
1863 if (-pNumprs->nPwr10 >= pNumprs->cDig)
1865 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
1866 wholeNumberDigits = 0;
1867 fractionalDigits = pNumprs->cDig;
1868 divisor10 = -pNumprs->nPwr10;
1870 else
1872 /* An exactly represented real number e.g. 1.024 */
1873 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
1874 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
1875 divisor10 = pNumprs->cDig - wholeNumberDigits;
1878 else if (pNumprs->nPwr10 == 0)
1880 /* An exactly represented whole number e.g. 1024 */
1881 wholeNumberDigits = pNumprs->cDig;
1882 fractionalDigits = 0;
1884 else /* pNumprs->nPwr10 > 0 */
1886 /* A whole number followed by nPwr10 0's e.g. 102400 */
1887 wholeNumberDigits = pNumprs->cDig;
1888 fractionalDigits = 0;
1889 multiplier10 = pNumprs->nPwr10;
1892 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d ", pNumprs->cDig,
1893 pNumprs->nPwr10, wholeNumberDigits, fractionalDigits);
1894 TRACE("mult %d; div %d\n", multiplier10, divisor10);
1896 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
1897 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
1899 /* We have one or more integer output choices, and either:
1900 * 1) An integer input value, or
1901 * 2) A real number input value but no floating output choices.
1902 * Alternately, we have a DECIMAL output available and an integer input.
1904 * So, place the integer value into pVarDst, using the smallest type
1905 * possible and preferring signed over unsigned types.
1907 BOOL bOverflow = FALSE, bNegative;
1908 ULONG64 ul64 = 0;
1909 int i;
1911 /* Convert the integer part of the number into a UI8 */
1912 for (i = 0; i < wholeNumberDigits; i++)
1914 if (ul64 > (UI8_MAX / 10 - rgbDig[i]))
1916 TRACE("Overflow multiplying digits\n");
1917 bOverflow = TRUE;
1918 break;
1920 ul64 = ul64 * 10 + rgbDig[i];
1923 /* Account for the scale of the number */
1924 if (!bOverflow && multiplier10)
1926 for (i = 0; i < multiplier10; i++)
1928 if (ul64 > (UI8_MAX / 10))
1930 TRACE("Overflow scaling number\n");
1931 bOverflow = TRUE;
1932 break;
1934 ul64 = ul64 * 10;
1938 /* If we have any fractional digits, round the value.
1939 * Note we don't have to do this if divisor10 is < 1,
1940 * because this means the fractional part must be < 0.5
1942 if (!bOverflow && fractionalDigits && divisor10 > 0)
1944 const BYTE* fracDig = rgbDig + wholeNumberDigits;
1945 BOOL bAdjust = FALSE;
1947 TRACE("first decimal value is %d\n", *fracDig);
1949 if (*fracDig > 5)
1950 bAdjust = TRUE; /* > 0.5 */
1951 else if (*fracDig == 5)
1953 for (i = 1; i < fractionalDigits; i++)
1955 if (fracDig[i])
1957 bAdjust = TRUE; /* > 0.5 */
1958 break;
1961 /* If exactly 0.5, round only odd values */
1962 if (i == fractionalDigits && (ul64 & 1))
1963 bAdjust = TRUE;
1966 if (bAdjust)
1968 if (ul64 == UI8_MAX)
1970 TRACE("Overflow after rounding\n");
1971 bOverflow = TRUE;
1973 ul64++;
1977 /* Zero is not a negative number */
1978 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64 ? TRUE : FALSE;
1980 TRACE("Integer value is %lld, bNeg %d\n", ul64, bNegative);
1982 /* For negative integers, try the signed types in size order */
1983 if (!bOverflow && bNegative)
1985 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
1987 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
1989 V_VT(pVarDst) = VT_I1;
1990 V_I1(pVarDst) = -ul64;
1991 return S_OK;
1993 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
1995 V_VT(pVarDst) = VT_I2;
1996 V_I2(pVarDst) = -ul64;
1997 return S_OK;
1999 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2001 V_VT(pVarDst) = VT_I4;
2002 V_I4(pVarDst) = -ul64;
2003 return S_OK;
2005 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2007 V_VT(pVarDst) = VT_I8;
2008 V_I8(pVarDst) = -ul64;
2009 return S_OK;
2011 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2013 /* Decimal is only output choice left - fast path */
2014 V_VT(pVarDst) = VT_DECIMAL;
2015 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2016 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2017 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2018 return S_OK;
2022 else if (!bOverflow)
2024 /* For positive integers, try signed then unsigned types in size order */
2025 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2027 V_VT(pVarDst) = VT_I1;
2028 V_I1(pVarDst) = ul64;
2029 return S_OK;
2031 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2033 V_VT(pVarDst) = VT_UI1;
2034 V_UI1(pVarDst) = ul64;
2035 return S_OK;
2037 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2039 V_VT(pVarDst) = VT_I2;
2040 V_I2(pVarDst) = ul64;
2041 return S_OK;
2043 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2045 V_VT(pVarDst) = VT_UI2;
2046 V_UI2(pVarDst) = ul64;
2047 return S_OK;
2049 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2051 V_VT(pVarDst) = VT_I4;
2052 V_I4(pVarDst) = ul64;
2053 return S_OK;
2055 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2057 V_VT(pVarDst) = VT_UI4;
2058 V_UI4(pVarDst) = ul64;
2059 return S_OK;
2061 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2063 V_VT(pVarDst) = VT_I8;
2064 V_I8(pVarDst) = ul64;
2065 return S_OK;
2067 else if (dwVtBits & VTBIT_UI8)
2069 V_VT(pVarDst) = VT_UI8;
2070 V_UI8(pVarDst) = ul64;
2071 return S_OK;
2073 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2075 /* Decimal is only output choice left - fast path */
2076 V_VT(pVarDst) = VT_DECIMAL;
2077 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2078 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2079 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2080 return S_OK;
2085 if (dwVtBits & REAL_VTBITS)
2087 /* Try to put the number into a float or real */
2088 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2089 double whole = 0.0;
2090 int i;
2092 /* Convert the number into a double */
2093 for (i = 0; i < pNumprs->cDig; i++)
2094 whole = whole * 10.0 + rgbDig[i];
2096 TRACE("Whole double value is %16.16g\n", whole);
2098 /* Account for the scale */
2099 while (multiplier10 > 10)
2101 if (whole > dblMaximums[10])
2103 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2104 bOverflow = TRUE;
2105 break;
2107 whole = whole * dblMultipliers[10];
2108 multiplier10 -= 10;
2110 if (multiplier10)
2112 if (whole > dblMaximums[multiplier10])
2114 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2115 bOverflow = TRUE;
2117 else
2118 whole = whole * dblMultipliers[multiplier10];
2121 TRACE("Scaled double value is %16.16g\n", whole);
2123 while (divisor10 > 10)
2125 if (whole < dblMinimums[10])
2127 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2128 bOverflow = TRUE;
2129 break;
2131 whole = whole / dblMultipliers[10];
2132 divisor10 -= 10;
2134 if (divisor10)
2136 if (whole < dblMinimums[divisor10])
2138 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2139 bOverflow = TRUE;
2141 else
2142 whole = whole / dblMultipliers[divisor10];
2144 if (!bOverflow)
2145 TRACE("Final double value is %16.16g\n", whole);
2147 if (dwVtBits & VTBIT_R4 &&
2148 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2150 TRACE("Set R4 to final value\n");
2151 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2152 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2153 return S_OK;
2156 if (dwVtBits & VTBIT_R8)
2158 TRACE("Set R8 to final value\n");
2159 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2160 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2161 return S_OK;
2164 if (dwVtBits & VTBIT_CY)
2166 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2168 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2169 TRACE("Set CY to final value\n");
2170 return S_OK;
2172 TRACE("Value Overflows CY\n");
2176 if (dwVtBits & VTBIT_DECIMAL)
2178 int i;
2179 ULONG carry;
2180 ULONG64 tmp;
2181 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2183 DECIMAL_SETZERO(pDec);
2184 DEC_LO32(pDec) = 0;
2186 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2187 DEC_SIGN(pDec) = DECIMAL_NEG;
2188 else
2189 DEC_SIGN(pDec) = DECIMAL_POS;
2191 /* Factor the significant digits */
2192 for (i = 0; i < pNumprs->cDig; i++)
2194 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2195 carry = (ULONG)(tmp >> 32);
2196 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2197 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2198 carry = (ULONG)(tmp >> 32);
2199 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2200 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2201 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2203 if (tmp >> 32 & UI4_MAX)
2205 VarNumFromParseNum_DecOverflow:
2206 TRACE("Overflow\n");
2207 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2208 return DISP_E_OVERFLOW;
2212 /* Account for the scale of the number */
2213 while (multiplier10 > 0)
2215 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2216 carry = (ULONG)(tmp >> 32);
2217 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2218 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2219 carry = (ULONG)(tmp >> 32);
2220 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2221 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2222 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2224 if (tmp >> 32 & UI4_MAX)
2225 goto VarNumFromParseNum_DecOverflow;
2226 multiplier10--;
2228 DEC_SCALE(pDec) = divisor10;
2230 V_VT(pVarDst) = VT_DECIMAL;
2231 return S_OK;
2233 return DISP_E_OVERFLOW; /* No more output choices */
2236 /**********************************************************************
2237 * VarCat [OLEAUT32.318]
2239 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2241 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2242 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), out);
2244 /* Should we VariantClear out? */
2245 /* Can we handle array, vector, by ref etc. */
2246 if ((V_VT(left)&VT_TYPEMASK) == VT_NULL &&
2247 (V_VT(right)&VT_TYPEMASK) == VT_NULL)
2249 V_VT(out) = VT_NULL;
2250 return S_OK;
2253 if (V_VT(left) == VT_BSTR && V_VT(right) == VT_BSTR)
2255 V_VT(out) = VT_BSTR;
2256 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2257 return S_OK;
2259 if (V_VT(left) == VT_BSTR) {
2260 VARIANT bstrvar;
2261 HRESULT hres;
2263 V_VT(out) = VT_BSTR;
2264 hres = VariantChangeTypeEx(&bstrvar,right,0,0,VT_BSTR);
2265 if (hres) {
2266 FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
2267 return hres;
2269 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar), &V_BSTR(out));
2270 return S_OK;
2272 if (V_VT(right) == VT_BSTR) {
2273 VARIANT bstrvar;
2274 HRESULT hres;
2276 V_VT(out) = VT_BSTR;
2277 hres = VariantChangeTypeEx(&bstrvar,left,0,0,VT_BSTR);
2278 if (hres) {
2279 FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
2280 return hres;
2282 VarBstrCat (V_BSTR(&bstrvar), V_BSTR(right), &V_BSTR(out));
2283 return S_OK;
2285 FIXME ("types %d / %d not supported\n",V_VT(left)&VT_TYPEMASK, V_VT(right)&VT_TYPEMASK);
2286 return S_OK;
2289 /**********************************************************************
2290 * VarCmp [OLEAUT32.176]
2292 * flags can be:
2293 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS
2294 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2297 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2299 BOOL lOk = TRUE;
2300 BOOL rOk = TRUE;
2301 LONGLONG lVal = -1;
2302 LONGLONG rVal = -1;
2303 VARIANT rv,lv;
2304 DWORD xmask;
2305 HRESULT rc;
2307 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%08lx)\n", left, debugstr_VT(left),
2308 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), lcid, flags);
2310 VariantInit(&lv);VariantInit(&rv);
2311 V_VT(right) &= ~0x8000; /* hack since we sometime get this flag. */
2312 V_VT(left) &= ~0x8000; /* hack since we sometime get this flag. */
2314 /* If either are null, then return VARCMP_NULL */
2315 if ((V_VT(left)&VT_TYPEMASK) == VT_NULL ||
2316 (V_VT(right)&VT_TYPEMASK) == VT_NULL)
2317 return VARCMP_NULL;
2319 /* Strings - use VarBstrCmp */
2320 if ((V_VT(left)&VT_TYPEMASK) == VT_BSTR &&
2321 (V_VT(right)&VT_TYPEMASK) == VT_BSTR) {
2322 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2325 xmask = (1<<(V_VT(left)&VT_TYPEMASK))|(1<<(V_VT(right)&VT_TYPEMASK));
2326 if (xmask & (1<<VT_R8)) {
2327 rc = VariantChangeType(&lv,left,0,VT_R8);
2328 if (FAILED(rc)) return rc;
2329 rc = VariantChangeType(&rv,right,0,VT_R8);
2330 if (FAILED(rc)) return rc;
2332 if (V_R8(&lv) == V_R8(&rv)) return VARCMP_EQ;
2333 if (V_R8(&lv) < V_R8(&rv)) return VARCMP_LT;
2334 if (V_R8(&lv) > V_R8(&rv)) return VARCMP_GT;
2335 return E_FAIL; /* can't get here */
2337 if (xmask & (1<<VT_R4)) {
2338 rc = VariantChangeType(&lv,left,0,VT_R4);
2339 if (FAILED(rc)) return rc;
2340 rc = VariantChangeType(&rv,right,0,VT_R4);
2341 if (FAILED(rc)) return rc;
2343 if (V_R4(&lv) == V_R4(&rv)) return VARCMP_EQ;
2344 if (V_R4(&lv) < V_R4(&rv)) return VARCMP_LT;
2345 if (V_R4(&lv) > V_R4(&rv)) return VARCMP_GT;
2346 return E_FAIL; /* can't get here */
2349 /* Integers - Ideally like to use VarDecCmp, but no Dec support yet
2350 Use LONGLONG to maximize ranges */
2351 lOk = TRUE;
2352 switch (V_VT(left)&VT_TYPEMASK) {
2353 case VT_I1 : lVal = V_UNION(left,cVal); break;
2354 case VT_I2 : lVal = V_UNION(left,iVal); break;
2355 case VT_I4 : lVal = V_UNION(left,lVal); break;
2356 case VT_INT : lVal = V_UNION(left,lVal); break;
2357 case VT_UI1 : lVal = V_UNION(left,bVal); break;
2358 case VT_UI2 : lVal = V_UNION(left,uiVal); break;
2359 case VT_UI4 : lVal = V_UNION(left,ulVal); break;
2360 case VT_UINT : lVal = V_UNION(left,ulVal); break;
2361 case VT_BOOL : lVal = V_UNION(left,boolVal); break;
2362 default: lOk = FALSE;
2365 rOk = TRUE;
2366 switch (V_VT(right)&VT_TYPEMASK) {
2367 case VT_I1 : rVal = V_UNION(right,cVal); break;
2368 case VT_I2 : rVal = V_UNION(right,iVal); break;
2369 case VT_I4 : rVal = V_UNION(right,lVal); break;
2370 case VT_INT : rVal = V_UNION(right,lVal); break;
2371 case VT_UI1 : rVal = V_UNION(right,bVal); break;
2372 case VT_UI2 : rVal = V_UNION(right,uiVal); break;
2373 case VT_UI4 : rVal = V_UNION(right,ulVal); break;
2374 case VT_UINT : rVal = V_UNION(right,ulVal); break;
2375 case VT_BOOL : rVal = V_UNION(right,boolVal); break;
2376 default: rOk = FALSE;
2379 if (lOk && rOk) {
2380 if (lVal < rVal) {
2381 return VARCMP_LT;
2382 } else if (lVal > rVal) {
2383 return VARCMP_GT;
2384 } else {
2385 return VARCMP_EQ;
2389 /* Strings - use VarBstrCmp */
2390 if ((V_VT(left)&VT_TYPEMASK) == VT_DATE &&
2391 (V_VT(right)&VT_TYPEMASK) == VT_DATE) {
2393 if (floor(V_UNION(left,date)) == floor(V_UNION(right,date))) {
2394 /* Due to floating point rounding errors, calculate varDate in whole numbers) */
2395 double wholePart = 0.0;
2396 double leftR;
2397 double rightR;
2399 /* Get the fraction * 24*60*60 to make it into whole seconds */
2400 wholePart = (double) floor( V_UNION(left,date) );
2401 if (wholePart == 0) wholePart = 1;
2402 leftR = floor(fmod( V_UNION(left,date), wholePart ) * (24*60*60));
2404 wholePart = (double) floor( V_UNION(right,date) );
2405 if (wholePart == 0) wholePart = 1;
2406 rightR = floor(fmod( V_UNION(right,date), wholePart ) * (24*60*60));
2408 if (leftR < rightR) {
2409 return VARCMP_LT;
2410 } else if (leftR > rightR) {
2411 return VARCMP_GT;
2412 } else {
2413 return VARCMP_EQ;
2416 } else if (V_UNION(left,date) < V_UNION(right,date)) {
2417 return VARCMP_LT;
2418 } else if (V_UNION(left,date) > V_UNION(right,date)) {
2419 return VARCMP_GT;
2422 FIXME("VarCmp partial implementation, doesn't support vt 0x%x / 0x%x\n",V_VT(left), V_VT(right));
2423 return E_FAIL;
2426 /**********************************************************************
2427 * VarAnd [OLEAUT32.142]
2430 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2432 HRESULT rc = E_FAIL;
2434 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2435 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2437 if ((V_VT(left)&VT_TYPEMASK) == VT_BOOL &&
2438 (V_VT(right)&VT_TYPEMASK) == VT_BOOL) {
2440 V_VT(result) = VT_BOOL;
2441 if (V_BOOL(left) && V_BOOL(right)) {
2442 V_BOOL(result) = VARIANT_TRUE;
2443 } else {
2444 V_BOOL(result) = VARIANT_FALSE;
2446 rc = S_OK;
2448 } else {
2449 /* Integers */
2450 BOOL lOk = TRUE;
2451 BOOL rOk = TRUE;
2452 LONGLONG lVal = -1;
2453 LONGLONG rVal = -1;
2454 LONGLONG res = -1;
2455 int resT = 0; /* Testing has shown I2 & I2 == I2, all else
2456 becomes I4, even unsigned ints (incl. UI2) */
2458 lOk = TRUE;
2459 switch (V_VT(left)&VT_TYPEMASK) {
2460 case VT_I1 : lVal = V_UNION(left,cVal); resT=VT_I4; break;
2461 case VT_I2 : lVal = V_UNION(left,iVal); resT=VT_I2; break;
2462 case VT_I4 : lVal = V_UNION(left,lVal); resT=VT_I4; break;
2463 case VT_INT : lVal = V_UNION(left,lVal); resT=VT_I4; break;
2464 case VT_UI1 : lVal = V_UNION(left,bVal); resT=VT_I4; break;
2465 case VT_UI2 : lVal = V_UNION(left,uiVal); resT=VT_I4; break;
2466 case VT_UI4 : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
2467 case VT_UINT : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
2468 default: lOk = FALSE;
2471 rOk = TRUE;
2472 switch (V_VT(right)&VT_TYPEMASK) {
2473 case VT_I1 : rVal = V_UNION(right,cVal); resT=VT_I4; break;
2474 case VT_I2 : rVal = V_UNION(right,iVal); resT=max(VT_I2, resT); break;
2475 case VT_I4 : rVal = V_UNION(right,lVal); resT=VT_I4; break;
2476 case VT_INT : rVal = V_UNION(right,lVal); resT=VT_I4; break;
2477 case VT_UI1 : rVal = V_UNION(right,bVal); resT=VT_I4; break;
2478 case VT_UI2 : rVal = V_UNION(right,uiVal); resT=VT_I4; break;
2479 case VT_UI4 : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
2480 case VT_UINT : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
2481 default: rOk = FALSE;
2484 if (lOk && rOk) {
2485 res = (lVal & rVal);
2486 V_VT(result) = resT;
2487 switch (resT) {
2488 case VT_I2 : V_UNION(result,iVal) = res; break;
2489 case VT_I4 : V_UNION(result,lVal) = res; break;
2490 default:
2491 FIXME("Unexpected result variant type %x\n", resT);
2492 V_UNION(result,lVal) = res;
2494 rc = S_OK;
2496 } else {
2497 FIXME("VarAnd stub\n");
2501 TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result),
2502 debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result));
2503 return rc;
2506 /**********************************************************************
2507 * VarAdd [OLEAUT32.141]
2508 * FIXME: From MSDN: If ... Then
2509 * Both expressions are of the string type Concatenated.
2510 * One expression is a string type and the other a character Addition.
2511 * One expression is numeric and the other is a string Addition.
2512 * Both expressions are numeric Addition.
2513 * Either expression is NULL NULL is returned.
2514 * Both expressions are empty Integer subtype is returned.
2517 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2519 HRESULT rc = E_FAIL;
2521 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2522 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2524 if ((V_VT(left)&VT_TYPEMASK) == VT_EMPTY)
2525 return VariantCopy(result,right);
2527 if ((V_VT(right)&VT_TYPEMASK) == VT_EMPTY)
2528 return VariantCopy(result,left);
2530 /* check if we add doubles */
2531 if (((V_VT(left)&VT_TYPEMASK) == VT_R8) || ((V_VT(right)&VT_TYPEMASK) == VT_R8)) {
2532 BOOL lOk = TRUE;
2533 BOOL rOk = TRUE;
2534 double lVal = -1;
2535 double rVal = -1;
2536 double res = -1;
2538 lOk = TRUE;
2539 switch (V_VT(left)&VT_TYPEMASK) {
2540 case VT_I1 : lVal = V_UNION(left,cVal); break;
2541 case VT_I2 : lVal = V_UNION(left,iVal); break;
2542 case VT_I4 : lVal = V_UNION(left,lVal); break;
2543 case VT_INT : lVal = V_UNION(left,lVal); break;
2544 case VT_UI1 : lVal = V_UNION(left,bVal); break;
2545 case VT_UI2 : lVal = V_UNION(left,uiVal); break;
2546 case VT_UI4 : lVal = V_UNION(left,ulVal); break;
2547 case VT_UINT : lVal = V_UNION(left,ulVal); break;
2548 case VT_R4 : lVal = V_UNION(left,fltVal); break;
2549 case VT_R8 : lVal = V_UNION(left,dblVal); break;
2550 case VT_NULL : lVal = 0.0; break;
2551 default: lOk = FALSE;
2554 rOk = TRUE;
2555 switch (V_VT(right)&VT_TYPEMASK) {
2556 case VT_I1 : rVal = V_UNION(right,cVal); break;
2557 case VT_I2 : rVal = V_UNION(right,iVal); break;
2558 case VT_I4 : rVal = V_UNION(right,lVal); break;
2559 case VT_INT : rVal = V_UNION(right,lVal); break;
2560 case VT_UI1 : rVal = V_UNION(right,bVal); break;
2561 case VT_UI2 : rVal = V_UNION(right,uiVal); break;
2562 case VT_UI4 : rVal = V_UNION(right,ulVal); break;
2563 case VT_UINT : rVal = V_UNION(right,ulVal); break;
2564 case VT_R4 : rVal = V_UNION(right,fltVal);break;
2565 case VT_R8 : rVal = V_UNION(right,dblVal);break;
2566 case VT_NULL : rVal = 0.0; break;
2567 default: rOk = FALSE;
2570 if (lOk && rOk) {
2571 res = (lVal + rVal);
2572 V_VT(result) = VT_R8;
2573 V_UNION(result,dblVal) = res;
2574 rc = S_OK;
2575 } else {
2576 FIXME("Unhandled type pair %d / %d in double addition.\n",
2577 (V_VT(left)&VT_TYPEMASK),
2578 (V_VT(right)&VT_TYPEMASK)
2581 return rc;
2584 /* now check if we add floats. VT_R8 can no longer happen here! */
2585 if (((V_VT(left)&VT_TYPEMASK) == VT_R4) || ((V_VT(right)&VT_TYPEMASK) == VT_R4)) {
2586 BOOL lOk = TRUE;
2587 BOOL rOk = TRUE;
2588 float lVal = -1;
2589 float rVal = -1;
2590 float res = -1;
2592 lOk = TRUE;
2593 switch (V_VT(left)&VT_TYPEMASK) {
2594 case VT_I1 : lVal = V_UNION(left,cVal); break;
2595 case VT_I2 : lVal = V_UNION(left,iVal); break;
2596 case VT_I4 : lVal = V_UNION(left,lVal); break;
2597 case VT_INT : lVal = V_UNION(left,lVal); break;
2598 case VT_UI1 : lVal = V_UNION(left,bVal); break;
2599 case VT_UI2 : lVal = V_UNION(left,uiVal); break;
2600 case VT_UI4 : lVal = V_UNION(left,ulVal); break;
2601 case VT_UINT : lVal = V_UNION(left,ulVal); break;
2602 case VT_R4 : lVal = V_UNION(left,fltVal); break;
2603 case VT_NULL : lVal = 0.0; break;
2604 default: lOk = FALSE;
2607 rOk = TRUE;
2608 switch (V_VT(right)&VT_TYPEMASK) {
2609 case VT_I1 : rVal = V_UNION(right,cVal); break;
2610 case VT_I2 : rVal = V_UNION(right,iVal); break;
2611 case VT_I4 : rVal = V_UNION(right,lVal); break;
2612 case VT_INT : rVal = V_UNION(right,lVal); break;
2613 case VT_UI1 : rVal = V_UNION(right,bVal); break;
2614 case VT_UI2 : rVal = V_UNION(right,uiVal); break;
2615 case VT_UI4 : rVal = V_UNION(right,ulVal); break;
2616 case VT_UINT : rVal = V_UNION(right,ulVal); break;
2617 case VT_R4 : rVal = V_UNION(right,fltVal);break;
2618 case VT_NULL : rVal = 0.0; break;
2619 default: rOk = FALSE;
2622 if (lOk && rOk) {
2623 res = (lVal + rVal);
2624 V_VT(result) = VT_R4;
2625 V_UNION(result,fltVal) = res;
2626 rc = S_OK;
2627 } else {
2628 FIXME("Unhandled type pair %d / %d in float addition.\n",
2629 (V_VT(left)&VT_TYPEMASK),
2630 (V_VT(right)&VT_TYPEMASK)
2633 return rc;
2636 /* Handle strings as concat */
2637 if ((V_VT(left)&VT_TYPEMASK) == VT_BSTR &&
2638 (V_VT(right)&VT_TYPEMASK) == VT_BSTR) {
2639 V_VT(result) = VT_BSTR;
2640 return VarBstrCat(V_BSTR(left), V_BSTR(right), &V_BSTR(result));
2641 } else {
2643 /* Integers */
2644 BOOL lOk = TRUE;
2645 BOOL rOk = TRUE;
2646 LONGLONG lVal = -1;
2647 LONGLONG rVal = -1;
2648 LONGLONG res = -1;
2649 int resT = 0; /* Testing has shown I2 + I2 == I2, all else
2650 becomes I4 */
2652 lOk = TRUE;
2653 switch (V_VT(left)&VT_TYPEMASK) {
2654 case VT_I1 : lVal = V_UNION(left,cVal); resT=VT_I4; break;
2655 case VT_I2 : lVal = V_UNION(left,iVal); resT=VT_I2; break;
2656 case VT_I4 : lVal = V_UNION(left,lVal); resT=VT_I4; break;
2657 case VT_INT : lVal = V_UNION(left,lVal); resT=VT_I4; break;
2658 case VT_UI1 : lVal = V_UNION(left,bVal); resT=VT_I4; break;
2659 case VT_UI2 : lVal = V_UNION(left,uiVal); resT=VT_I4; break;
2660 case VT_UI4 : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
2661 case VT_UINT : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
2662 case VT_NULL : lVal = 0; resT = VT_I4; break;
2663 default: lOk = FALSE;
2666 rOk = TRUE;
2667 switch (V_VT(right)&VT_TYPEMASK) {
2668 case VT_I1 : rVal = V_UNION(right,cVal); resT=VT_I4; break;
2669 case VT_I2 : rVal = V_UNION(right,iVal); resT=max(VT_I2, resT); break;
2670 case VT_I4 : rVal = V_UNION(right,lVal); resT=VT_I4; break;
2671 case VT_INT : rVal = V_UNION(right,lVal); resT=VT_I4; break;
2672 case VT_UI1 : rVal = V_UNION(right,bVal); resT=VT_I4; break;
2673 case VT_UI2 : rVal = V_UNION(right,uiVal); resT=VT_I4; break;
2674 case VT_UI4 : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
2675 case VT_UINT : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
2676 case VT_NULL : rVal = 0; resT=VT_I4; break;
2677 default: rOk = FALSE;
2680 if (lOk && rOk) {
2681 res = (lVal + rVal);
2682 V_VT(result) = resT;
2683 switch (resT) {
2684 case VT_I2 : V_UNION(result,iVal) = res; break;
2685 case VT_I4 : V_UNION(result,lVal) = res; break;
2686 default:
2687 FIXME("Unexpected result variant type %x\n", resT);
2688 V_UNION(result,lVal) = res;
2690 rc = S_OK;
2692 } else {
2693 FIXME("unimplemented part (0x%x + 0x%x)\n",V_VT(left), V_VT(right));
2697 TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result),
2698 debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result));
2699 return rc;
2702 /**********************************************************************
2703 * VarMul [OLEAUT32.156]
2706 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2708 HRESULT rc = E_FAIL;
2709 VARTYPE lvt,rvt,resvt;
2710 VARIANT lv,rv;
2711 BOOL found;
2713 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2714 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2716 VariantInit(&lv);VariantInit(&rv);
2717 lvt = V_VT(left)&VT_TYPEMASK;
2718 rvt = V_VT(right)&VT_TYPEMASK;
2719 found = FALSE;resvt=VT_VOID;
2720 if (((1<<lvt) | (1<<rvt)) & ((1<<VT_R4)|(1<<VT_R8))) {
2721 found = TRUE;
2722 resvt = VT_R8;
2724 if (!found && (((1<<lvt) | (1<<rvt)) & ((1<<VT_I1)|(1<<VT_I2)|(1<<VT_UI1)|(1<<VT_UI2)|(1<<VT_I4)|(1<<VT_UI4)|(1<<VT_INT)|(1<<VT_UINT)))) {
2725 found = TRUE;
2726 resvt = VT_I4;
2728 if (!found) {
2729 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
2730 return E_FAIL;
2732 rc = VariantChangeType(&lv, left, 0, resvt);
2733 if (FAILED(rc)) {
2734 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
2735 return rc;
2737 rc = VariantChangeType(&rv, right, 0, resvt);
2738 if (FAILED(rc)) {
2739 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
2740 return rc;
2742 switch (resvt) {
2743 case VT_R8:
2744 V_VT(result) = resvt;
2745 V_R8(result) = V_R8(&lv) * V_R8(&rv);
2746 rc = S_OK;
2747 break;
2748 case VT_I4:
2749 V_VT(result) = resvt;
2750 V_I4(result) = V_I4(&lv) * V_I4(&rv);
2751 rc = S_OK;
2752 break;
2754 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
2755 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
2756 return rc;
2759 /**********************************************************************
2760 * VarDiv [OLEAUT32.143]
2763 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2765 HRESULT rc = E_FAIL;
2766 VARTYPE lvt,rvt,resvt;
2767 VARIANT lv,rv;
2768 BOOL found;
2770 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2771 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2773 VariantInit(&lv);VariantInit(&rv);
2774 lvt = V_VT(left)&VT_TYPEMASK;
2775 rvt = V_VT(right)&VT_TYPEMASK;
2776 found = FALSE;resvt = VT_VOID;
2777 if (((1<<lvt) | (1<<rvt)) & ((1<<VT_R4)|(1<<VT_R8))) {
2778 found = TRUE;
2779 resvt = VT_R8;
2781 if (!found && (((1<<lvt) | (1<<rvt)) & ((1<<VT_I1)|(1<<VT_I2)|(1<<VT_UI1)|(1<<VT_UI2)|(1<<VT_I4)|(1<<VT_UI4)|(1<<VT_INT)|(1<<VT_UINT)))) {
2782 found = TRUE;
2783 resvt = VT_I4;
2785 if (!found) {
2786 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
2787 return E_FAIL;
2789 rc = VariantChangeType(&lv, left, 0, resvt);
2790 if (FAILED(rc)) {
2791 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
2792 return rc;
2794 rc = VariantChangeType(&rv, right, 0, resvt);
2795 if (FAILED(rc)) {
2796 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
2797 return rc;
2799 switch (resvt) {
2800 case VT_R8:
2801 V_VT(result) = resvt;
2802 V_R8(result) = V_R8(&lv) / V_R8(&rv);
2803 rc = S_OK;
2804 break;
2805 case VT_I4:
2806 V_VT(result) = resvt;
2807 V_I4(result) = V_I4(&lv) / V_I4(&rv);
2808 rc = S_OK;
2809 break;
2811 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
2812 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
2813 return rc;
2816 /**********************************************************************
2817 * VarSub [OLEAUT32.159]
2820 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2822 HRESULT rc = E_FAIL;
2823 VARTYPE lvt,rvt,resvt;
2824 VARIANT lv,rv;
2825 BOOL found;
2827 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2828 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2830 VariantInit(&lv);VariantInit(&rv);
2831 lvt = V_VT(left)&VT_TYPEMASK;
2832 rvt = V_VT(right)&VT_TYPEMASK;
2833 found = FALSE;resvt = VT_VOID;
2834 if (((1<<lvt) | (1<<rvt)) & ((1<<VT_DATE)|(1<<VT_R4)|(1<<VT_R8))) {
2835 found = TRUE;
2836 resvt = VT_R8;
2838 if (!found && (((1<<lvt) | (1<<rvt)) & ((1<<VT_I1)|(1<<VT_I2)|(1<<VT_UI1)|(1<<VT_UI2)|(1<<VT_I4)|(1<<VT_UI4)|(1<<VT_INT)|(1<<VT_UINT)))) {
2839 found = TRUE;
2840 resvt = VT_I4;
2842 if (!found) {
2843 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
2844 return E_FAIL;
2846 rc = VariantChangeType(&lv, left, 0, resvt);
2847 if (FAILED(rc)) {
2848 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
2849 return rc;
2851 rc = VariantChangeType(&rv, right, 0, resvt);
2852 if (FAILED(rc)) {
2853 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
2854 return rc;
2856 switch (resvt) {
2857 case VT_R8:
2858 V_VT(result) = resvt;
2859 V_R8(result) = V_R8(&lv) - V_R8(&rv);
2860 rc = S_OK;
2861 break;
2862 case VT_I4:
2863 V_VT(result) = resvt;
2864 V_I4(result) = V_I4(&lv) - V_I4(&rv);
2865 rc = S_OK;
2866 break;
2868 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
2869 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
2870 return rc;
2873 /**********************************************************************
2874 * VarOr [OLEAUT32.157]
2877 HRESULT WINAPI VarOr(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2879 HRESULT rc = E_FAIL;
2881 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2882 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2884 if ((V_VT(left)&VT_TYPEMASK) == VT_BOOL &&
2885 (V_VT(right)&VT_TYPEMASK) == VT_BOOL) {
2887 V_VT(result) = VT_BOOL;
2888 if (V_BOOL(left) || V_BOOL(right)) {
2889 V_BOOL(result) = VARIANT_TRUE;
2890 } else {
2891 V_BOOL(result) = VARIANT_FALSE;
2893 rc = S_OK;
2895 } else {
2896 /* Integers */
2897 BOOL lOk = TRUE;
2898 BOOL rOk = TRUE;
2899 LONGLONG lVal = -1;
2900 LONGLONG rVal = -1;
2901 LONGLONG res = -1;
2902 int resT = 0; /* Testing has shown I2 & I2 == I2, all else
2903 becomes I4, even unsigned ints (incl. UI2) */
2905 lOk = TRUE;
2906 switch (V_VT(left)&VT_TYPEMASK) {
2907 case VT_I1 : lVal = V_UNION(left,cVal); resT=VT_I4; break;
2908 case VT_I2 : lVal = V_UNION(left,iVal); resT=VT_I2; break;
2909 case VT_I4 : lVal = V_UNION(left,lVal); resT=VT_I4; break;
2910 case VT_INT : lVal = V_UNION(left,lVal); resT=VT_I4; break;
2911 case VT_UI1 : lVal = V_UNION(left,bVal); resT=VT_I4; break;
2912 case VT_UI2 : lVal = V_UNION(left,uiVal); resT=VT_I4; break;
2913 case VT_UI4 : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
2914 case VT_UINT : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
2915 default: lOk = FALSE;
2918 rOk = TRUE;
2919 switch (V_VT(right)&VT_TYPEMASK) {
2920 case VT_I1 : rVal = V_UNION(right,cVal); resT=VT_I4; break;
2921 case VT_I2 : rVal = V_UNION(right,iVal); resT=max(VT_I2, resT); break;
2922 case VT_I4 : rVal = V_UNION(right,lVal); resT=VT_I4; break;
2923 case VT_INT : rVal = V_UNION(right,lVal); resT=VT_I4; break;
2924 case VT_UI1 : rVal = V_UNION(right,bVal); resT=VT_I4; break;
2925 case VT_UI2 : rVal = V_UNION(right,uiVal); resT=VT_I4; break;
2926 case VT_UI4 : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
2927 case VT_UINT : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
2928 default: rOk = FALSE;
2931 if (lOk && rOk) {
2932 res = (lVal | rVal);
2933 V_VT(result) = resT;
2934 switch (resT) {
2935 case VT_I2 : V_UNION(result,iVal) = res; break;
2936 case VT_I4 : V_UNION(result,lVal) = res; break;
2937 default:
2938 FIXME("Unexpected result variant type %x\n", resT);
2939 V_UNION(result,lVal) = res;
2941 rc = S_OK;
2943 } else {
2944 FIXME("unimplemented part\n");
2948 TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result),
2949 debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result));
2950 return rc;
2953 /**********************************************************************
2954 * VarAbs [OLEAUT32.168]
2956 * Convert a variant to its absolute value.
2958 * PARAMS
2959 * pVarIn [I] Source variant
2960 * pVarOut [O] Destination for converted value
2962 * RETURNS
2963 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
2964 * Failure: An HRESULT error code indicating the error.
2966 * NOTES
2967 * - This function does not process by-reference variants.
2968 * - The type of the value stored in pVarOut depends on the type of pVarIn,
2969 * according to the following table:
2970 *| Input Type Output Type
2971 *| ---------- -----------
2972 *| VT_BOOL VT_I2
2973 *| VT_BSTR VT_R8
2974 *| (All others) Unchanged
2976 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
2978 VARIANT varIn;
2979 HRESULT hRet = S_OK;
2981 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
2982 debugstr_VF(pVarIn), pVarOut);
2984 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
2985 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
2986 V_VT(pVarIn) == VT_ERROR)
2987 return DISP_E_TYPEMISMATCH;
2989 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
2991 #define ABS_CASE(typ,min) \
2992 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
2993 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
2994 break
2996 switch (V_VT(pVarIn))
2998 ABS_CASE(I1,I1_MIN);
2999 case VT_BOOL:
3000 V_VT(pVarOut) = VT_I2;
3001 /* BOOL->I2, Fall through ... */
3002 ABS_CASE(I2,I2_MIN);
3003 case VT_INT:
3004 ABS_CASE(I4,I4_MIN);
3005 ABS_CASE(I8,I8_MIN);
3006 ABS_CASE(R4,R4_MIN);
3007 case VT_BSTR:
3008 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
3009 if (FAILED(hRet))
3010 break;
3011 V_VT(pVarOut) = VT_R8;
3012 pVarIn = &varIn;
3013 /* Fall through ... */
3014 case VT_DATE:
3015 ABS_CASE(R8,R8_MIN);
3016 case VT_CY:
3017 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
3018 break;
3019 case VT_DECIMAL:
3020 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
3021 break;
3022 case VT_UI1:
3023 case VT_UI2:
3024 case VT_UINT:
3025 case VT_UI4:
3026 case VT_UI8:
3027 case VT_EMPTY:
3028 case VT_NULL:
3029 /* No-Op */
3030 break;
3031 default:
3032 hRet = DISP_E_BADVARTYPE;
3035 return hRet;
3038 /**********************************************************************
3039 * VarFix [OLEAUT32.169]
3041 * Truncate a variants value to a whole number.
3043 * PARAMS
3044 * pVarIn [I] Source variant
3045 * pVarOut [O] Destination for converted value
3047 * RETURNS
3048 * Success: S_OK. pVarOut contains the converted value.
3049 * Failure: An HRESULT error code indicating the error.
3051 * NOTES
3052 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3053 * according to the following table:
3054 *| Input Type Output Type
3055 *| ---------- -----------
3056 *| VT_BOOL VT_I2
3057 *| VT_EMPTY VT_I2
3058 *| VT_BSTR VT_R8
3059 *| All Others Unchanged
3060 * - The difference between this function and VarInt() is that VarInt() rounds
3061 * negative numbers away from 0, while this function rounds them towards zero.
3063 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
3065 HRESULT hRet = S_OK;
3067 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3068 debugstr_VF(pVarIn), pVarOut);
3070 V_VT(pVarOut) = V_VT(pVarIn);
3072 switch (V_VT(pVarIn))
3074 case VT_UI1:
3075 V_UI1(pVarOut) = V_UI1(pVarIn);
3076 break;
3077 case VT_BOOL:
3078 V_VT(pVarOut) = VT_I2;
3079 /* Fall through */
3080 case VT_I2:
3081 V_I2(pVarOut) = V_I2(pVarIn);
3082 break;
3083 case VT_I4:
3084 V_I4(pVarOut) = V_I4(pVarIn);
3085 break;
3086 case VT_I8:
3087 V_I8(pVarOut) = V_I8(pVarIn);
3088 break;
3089 case VT_R4:
3090 if (V_R4(pVarIn) < 0.0f)
3091 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
3092 else
3093 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
3094 break;
3095 case VT_BSTR:
3096 V_VT(pVarOut) = VT_R8;
3097 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3098 pVarIn = pVarOut;
3099 /* Fall through */
3100 case VT_DATE:
3101 case VT_R8:
3102 if (V_R8(pVarIn) < 0.0)
3103 V_R8(pVarOut) = ceil(V_R8(pVarIn));
3104 else
3105 V_R8(pVarOut) = floor(V_R8(pVarIn));
3106 break;
3107 case VT_CY:
3108 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
3109 break;
3110 case VT_DECIMAL:
3111 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3112 break;
3113 case VT_EMPTY:
3114 V_VT(pVarOut) = VT_I2;
3115 V_I2(pVarOut) = 0;
3116 break;
3117 case VT_NULL:
3118 /* No-Op */
3119 break;
3120 default:
3121 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
3122 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
3123 hRet = DISP_E_BADVARTYPE;
3124 else
3125 hRet = DISP_E_TYPEMISMATCH;
3127 if (FAILED(hRet))
3128 V_VT(pVarOut) = VT_EMPTY;
3130 return hRet;
3133 /**********************************************************************
3134 * VarInt [OLEAUT32.172]
3136 * Truncate a variants value to a whole number.
3138 * PARAMS
3139 * pVarIn [I] Source variant
3140 * pVarOut [O] Destination for converted value
3142 * RETURNS
3143 * Success: S_OK. pVarOut contains the converted value.
3144 * Failure: An HRESULT error code indicating the error.
3146 * NOTES
3147 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3148 * according to the following table:
3149 *| Input Type Output Type
3150 *| ---------- -----------
3151 *| VT_BOOL VT_I2
3152 *| VT_EMPTY VT_I2
3153 *| VT_BSTR VT_R8
3154 *| All Others Unchanged
3155 * - The difference between this function and VarFix() is that VarFix() rounds
3156 * negative numbers towards 0, while this function rounds them away from zero.
3158 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
3160 HRESULT hRet = S_OK;
3162 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3163 debugstr_VF(pVarIn), pVarOut);
3165 V_VT(pVarOut) = V_VT(pVarIn);
3167 switch (V_VT(pVarIn))
3169 case VT_R4:
3170 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
3171 break;
3172 case VT_BSTR:
3173 V_VT(pVarOut) = VT_R8;
3174 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3175 pVarIn = pVarOut;
3176 /* Fall through */
3177 case VT_DATE:
3178 case VT_R8:
3179 V_R8(pVarOut) = floor(V_R8(pVarIn));
3180 break;
3181 case VT_CY:
3182 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
3183 break;
3184 case VT_DECIMAL:
3185 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3186 break;
3187 default:
3188 return VarFix(pVarIn, pVarOut);
3191 return hRet;
3194 /**********************************************************************
3195 * VarNeg [OLEAUT32.173]
3197 * Negate the value of a variant.
3199 * PARAMS
3200 * pVarIn [I] Source variant
3201 * pVarOut [O] Destination for converted value
3203 * RETURNS
3204 * Success: S_OK. pVarOut contains the converted value.
3205 * Failure: An HRESULT error code indicating the error.
3207 * NOTES
3208 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3209 * according to the following table:
3210 *| Input Type Output Type
3211 *| ---------- -----------
3212 *| VT_EMPTY VT_I2
3213 *| VT_UI1 VT_I2
3214 *| VT_BOOL VT_I2
3215 *| VT_BSTR VT_R8
3216 *| All Others Unchanged (unless promoted)
3217 * - Where the negated value of a variant does not fit in its base type, the type
3218 * is promoted according to the following table:
3219 *| Input Type Promoted To
3220 *| ---------- -----------
3221 *| VT_I2 VT_I4
3222 *| VT_I4 VT_R8
3223 *| VT_I8 VT_R8
3224 * - The native version of this function returns DISP_E_BADVARTYPE for valid
3225 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
3226 * for types which are not valid. Since this is in contravention of the
3227 * meaning of those error codes and unlikely to be relied on by applications,
3228 * this implementation returns errors consistent with the other high level
3229 * variant math functions.
3231 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
3233 HRESULT hRet = S_OK;
3235 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3236 debugstr_VF(pVarIn), pVarOut);
3238 V_VT(pVarOut) = V_VT(pVarIn);
3240 switch (V_VT(pVarIn))
3242 case VT_UI1:
3243 V_VT(pVarOut) = VT_I2;
3244 V_I2(pVarOut) = -V_UI1(pVarIn);
3245 break;
3246 case VT_BOOL:
3247 V_VT(pVarOut) = VT_I2;
3248 /* Fall through */
3249 case VT_I2:
3250 if (V_I2(pVarIn) == I2_MIN)
3252 V_VT(pVarOut) = VT_I4;
3253 V_I4(pVarOut) = -(int)V_I2(pVarIn);
3255 else
3256 V_I2(pVarOut) = -V_I2(pVarIn);
3257 break;
3258 case VT_I4:
3259 if (V_I4(pVarIn) == I4_MIN)
3261 V_VT(pVarOut) = VT_R8;
3262 V_R8(pVarOut) = -(double)V_I4(pVarIn);
3264 else
3265 V_I4(pVarOut) = -V_I4(pVarIn);
3266 break;
3267 case VT_I8:
3268 if (V_I8(pVarIn) == I8_MIN)
3270 V_VT(pVarOut) = VT_R8;
3271 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
3272 V_R8(pVarOut) *= -1.0;
3274 else
3275 V_I8(pVarOut) = -V_I8(pVarIn);
3276 break;
3277 case VT_R4:
3278 V_R4(pVarOut) = -V_R4(pVarIn);
3279 break;
3280 case VT_DATE:
3281 case VT_R8:
3282 V_R8(pVarOut) = -V_R8(pVarIn);
3283 break;
3284 case VT_CY:
3285 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
3286 break;
3287 case VT_DECIMAL:
3288 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3289 break;
3290 case VT_BSTR:
3291 V_VT(pVarOut) = VT_R8;
3292 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3293 V_R8(pVarOut) = -V_R8(pVarOut);
3294 break;
3295 case VT_EMPTY:
3296 V_VT(pVarOut) = VT_I2;
3297 V_I2(pVarOut) = 0;
3298 break;
3299 case VT_NULL:
3300 /* No-Op */
3301 break;
3302 default:
3303 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
3304 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
3305 hRet = DISP_E_BADVARTYPE;
3306 else
3307 hRet = DISP_E_TYPEMISMATCH;
3309 if (FAILED(hRet))
3310 V_VT(pVarOut) = VT_EMPTY;
3312 return hRet;
3315 /**********************************************************************
3316 * VarNot [OLEAUT32.174]
3318 * Perform a not operation on a variant.
3320 * PARAMS
3321 * pVarIn [I] Source variant
3322 * pVarOut [O] Destination for converted value
3324 * RETURNS
3325 * Success: S_OK. pVarOut contains the converted value.
3326 * Failure: An HRESULT error code indicating the error.
3328 * NOTES
3329 * - Strictly speaking, this function performs a bitwise ones compliment
3330 * on the variants value (after possibly converting to VT_I4, see below).
3331 * This only behaves like a boolean not operation if the value in
3332 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
3333 * - To perform a genuine not operation, convert the variant to a VT_BOOL
3334 * before calling this function.
3335 * - This function does not process by-reference variants.
3336 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3337 * according to the following table:
3338 *| Input Type Output Type
3339 *| ---------- -----------
3340 *| VT_R4 VT_I4
3341 *| VT_R8 VT_I4
3342 *| VT_BSTR VT_I4
3343 *| VT_DECIMAL VT_I4
3344 *| VT_CY VT_I4
3345 *| (All others) Unchanged
3347 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
3349 VARIANT varIn;
3350 HRESULT hRet = S_OK;
3352 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3353 debugstr_VF(pVarIn), pVarOut);
3355 V_VT(pVarOut) = V_VT(pVarIn);
3357 switch (V_VT(pVarIn))
3359 case VT_I1: V_I1(pVarOut) = ~V_I1(pVarIn); break;
3360 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
3361 case VT_BOOL:
3362 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
3363 case VT_UI2: V_UI2(pVarOut) = ~V_UI2(pVarIn); break;
3364 case VT_DECIMAL:
3365 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
3366 if (FAILED(hRet))
3367 break;
3368 pVarIn = &varIn;
3369 V_VT(pVarOut) = VT_I4;
3370 /* Fall through ... */
3371 case VT_INT:
3372 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
3373 case VT_UINT:
3374 case VT_UI4: V_UI4(pVarOut) = ~V_UI4(pVarIn); break;
3375 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
3376 case VT_UI8: V_UI8(pVarOut) = ~V_UI8(pVarIn); break;
3377 case VT_R4:
3378 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
3379 V_I4(pVarOut) = ~V_I4(pVarOut);
3380 V_VT(pVarOut) = VT_I4;
3381 break;
3382 case VT_BSTR:
3383 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
3384 if (FAILED(hRet))
3385 break;
3386 pVarIn = &varIn;
3387 /* Fall through ... */
3388 case VT_DATE:
3389 case VT_R8:
3390 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
3391 V_I4(pVarOut) = ~V_I4(pVarOut);
3392 V_VT(pVarOut) = VT_I4;
3393 break;
3394 case VT_CY:
3395 /* FIXME: */
3396 break;
3397 case VT_EMPTY:
3398 case VT_NULL:
3399 /* No-Op */
3400 break;
3401 default:
3402 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
3403 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
3404 hRet = DISP_E_BADVARTYPE;
3405 else
3406 hRet = DISP_E_TYPEMISMATCH;
3408 if (FAILED(hRet))
3409 V_VT(pVarOut) = VT_EMPTY;
3411 return hRet;
3414 /**********************************************************************
3415 * VarMod [OLEAUT32.154]
3418 HRESULT WINAPI VarMod(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3420 FIXME("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3421 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3422 debugstr_VF(pVarRight), pVarOut);
3423 return E_FAIL;
3426 /**********************************************************************
3427 * VarPow [OLEAUT32.158]
3430 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3432 HRESULT hr;
3433 VARIANT dl,dr;
3435 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left),
3436 right, debugstr_VT(right), debugstr_VF(right), result);
3438 hr = VariantChangeType(&dl,left,0,VT_R8);
3439 if (!SUCCEEDED(hr)) {
3440 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
3441 return E_FAIL;
3443 hr = VariantChangeType(&dr,right,0,VT_R8);
3444 if (!SUCCEEDED(hr)) {
3445 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
3446 return E_FAIL;
3448 V_VT(result) = VT_R8;
3449 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
3450 return S_OK;