4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
40 #include "wine/unicode.h"
44 #include "wine/debug.h"
46 WINE_DEFAULT_DEBUG_CHANNEL(variant
);
48 const char * const wine_vtypes
[VT_CLSID
+1] =
50 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
51 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
52 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
53 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
54 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
55 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
56 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
57 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
58 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
61 const char * const wine_vflags
[16] =
66 "|VT_VECTOR|VT_ARRAY",
68 "|VT_VECTOR|VT_ARRAY",
70 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
72 "|VT_VECTOR|VT_HARDTYPE",
73 "|VT_ARRAY|VT_HARDTYPE",
74 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
75 "|VT_BYREF|VT_HARDTYPE",
76 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
77 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
78 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
81 /* Convert a variant from one type to another */
82 static inline HRESULT
VARIANT_Coerce(VARIANTARG
* pd
, LCID lcid
, USHORT wFlags
,
83 VARIANTARG
* ps
, VARTYPE vt
)
85 HRESULT res
= DISP_E_TYPEMISMATCH
;
86 VARTYPE vtFrom
= V_TYPE(ps
);
89 TRACE("(%p->(%s%s),0x%08x,0x%04x,%p->(%s%s),%s%s)\n", pd
, debugstr_VT(pd
),
90 debugstr_VF(pd
), lcid
, wFlags
, ps
, debugstr_VT(ps
), debugstr_VF(ps
),
91 debugstr_vt(vt
), debugstr_vf(vt
));
93 if (vt
== VT_BSTR
|| vtFrom
== VT_BSTR
)
95 /* All flags passed to low level function are only used for
96 * changing to or from strings. Map these here.
98 if (wFlags
& VARIANT_LOCALBOOL
)
99 dwFlags
|= VAR_LOCALBOOL
;
100 if (wFlags
& VARIANT_CALENDAR_HIJRI
)
101 dwFlags
|= VAR_CALENDAR_HIJRI
;
102 if (wFlags
& VARIANT_CALENDAR_THAI
)
103 dwFlags
|= VAR_CALENDAR_THAI
;
104 if (wFlags
& VARIANT_CALENDAR_GREGORIAN
)
105 dwFlags
|= VAR_CALENDAR_GREGORIAN
;
106 if (wFlags
& VARIANT_NOUSEROVERRIDE
)
107 dwFlags
|= LOCALE_NOUSEROVERRIDE
;
108 if (wFlags
& VARIANT_USE_NLS
)
109 dwFlags
|= LOCALE_USE_NLS
;
112 /* Map int/uint to i4/ui4 */
115 else if (vt
== VT_UINT
)
118 if (vtFrom
== VT_INT
)
120 else if (vtFrom
== VT_UINT
)
124 return VariantCopy(pd
, ps
);
126 if (wFlags
& VARIANT_NOVALUEPROP
&& vtFrom
== VT_DISPATCH
&& vt
!= VT_UNKNOWN
)
128 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
129 * accessing the default object property.
131 return DISP_E_TYPEMISMATCH
;
137 if (vtFrom
== VT_NULL
)
138 return DISP_E_TYPEMISMATCH
;
139 /* ... Fall through */
141 if (vtFrom
<= VT_UINT
&& vtFrom
!= (VARTYPE
)15 && vtFrom
!= VT_ERROR
)
143 res
= VariantClear( pd
);
144 if (vt
== VT_NULL
&& SUCCEEDED(res
))
152 case VT_EMPTY
: V_I1(pd
) = 0; return S_OK
;
153 case VT_I2
: return VarI1FromI2(V_I2(ps
), &V_I1(pd
));
154 case VT_I4
: return VarI1FromI4(V_I4(ps
), &V_I1(pd
));
155 case VT_UI1
: V_I1(pd
) = V_UI1(ps
); return S_OK
;
156 case VT_UI2
: return VarI1FromUI2(V_UI2(ps
), &V_I1(pd
));
157 case VT_UI4
: return VarI1FromUI4(V_UI4(ps
), &V_I1(pd
));
158 case VT_I8
: return VarI1FromI8(V_I8(ps
), &V_I1(pd
));
159 case VT_UI8
: return VarI1FromUI8(V_UI8(ps
), &V_I1(pd
));
160 case VT_R4
: return VarI1FromR4(V_R4(ps
), &V_I1(pd
));
161 case VT_R8
: return VarI1FromR8(V_R8(ps
), &V_I1(pd
));
162 case VT_DATE
: return VarI1FromDate(V_DATE(ps
), &V_I1(pd
));
163 case VT_BOOL
: return VarI1FromBool(V_BOOL(ps
), &V_I1(pd
));
164 case VT_CY
: return VarI1FromCy(V_CY(ps
), &V_I1(pd
));
165 case VT_DECIMAL
: return VarI1FromDec(&V_DECIMAL(ps
), &V_I1(pd
) );
166 case VT_DISPATCH
: return VarI1FromDisp(V_DISPATCH(ps
), lcid
, &V_I1(pd
) );
167 case VT_BSTR
: return VarI1FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I1(pd
) );
174 case VT_EMPTY
: V_I2(pd
) = 0; return S_OK
;
175 case VT_I1
: return VarI2FromI1(V_I1(ps
), &V_I2(pd
));
176 case VT_I4
: return VarI2FromI4(V_I4(ps
), &V_I2(pd
));
177 case VT_UI1
: return VarI2FromUI1(V_UI1(ps
), &V_I2(pd
));
178 case VT_UI2
: V_I2(pd
) = V_UI2(ps
); return S_OK
;
179 case VT_UI4
: return VarI2FromUI4(V_UI4(ps
), &V_I2(pd
));
180 case VT_I8
: return VarI2FromI8(V_I8(ps
), &V_I2(pd
));
181 case VT_UI8
: return VarI2FromUI8(V_UI8(ps
), &V_I2(pd
));
182 case VT_R4
: return VarI2FromR4(V_R4(ps
), &V_I2(pd
));
183 case VT_R8
: return VarI2FromR8(V_R8(ps
), &V_I2(pd
));
184 case VT_DATE
: return VarI2FromDate(V_DATE(ps
), &V_I2(pd
));
185 case VT_BOOL
: return VarI2FromBool(V_BOOL(ps
), &V_I2(pd
));
186 case VT_CY
: return VarI2FromCy(V_CY(ps
), &V_I2(pd
));
187 case VT_DECIMAL
: return VarI2FromDec(&V_DECIMAL(ps
), &V_I2(pd
));
188 case VT_DISPATCH
: return VarI2FromDisp(V_DISPATCH(ps
), lcid
, &V_I2(pd
));
189 case VT_BSTR
: return VarI2FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I2(pd
));
196 case VT_EMPTY
: V_I4(pd
) = 0; return S_OK
;
197 case VT_I1
: return VarI4FromI1(V_I1(ps
), &V_I4(pd
));
198 case VT_I2
: return VarI4FromI2(V_I2(ps
), &V_I4(pd
));
199 case VT_UI1
: return VarI4FromUI1(V_UI1(ps
), &V_I4(pd
));
200 case VT_UI2
: return VarI4FromUI2(V_UI2(ps
), &V_I4(pd
));
201 case VT_UI4
: V_I4(pd
) = V_UI4(ps
); return S_OK
;
202 case VT_I8
: return VarI4FromI8(V_I8(ps
), &V_I4(pd
));
203 case VT_UI8
: return VarI4FromUI8(V_UI8(ps
), &V_I4(pd
));
204 case VT_R4
: return VarI4FromR4(V_R4(ps
), &V_I4(pd
));
205 case VT_R8
: return VarI4FromR8(V_R8(ps
), &V_I4(pd
));
206 case VT_DATE
: return VarI4FromDate(V_DATE(ps
), &V_I4(pd
));
207 case VT_BOOL
: return VarI4FromBool(V_BOOL(ps
), &V_I4(pd
));
208 case VT_CY
: return VarI4FromCy(V_CY(ps
), &V_I4(pd
));
209 case VT_DECIMAL
: return VarI4FromDec(&V_DECIMAL(ps
), &V_I4(pd
));
210 case VT_DISPATCH
: return VarI4FromDisp(V_DISPATCH(ps
), lcid
, &V_I4(pd
));
211 case VT_BSTR
: return VarI4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I4(pd
));
218 case VT_EMPTY
: V_UI1(pd
) = 0; return S_OK
;
219 case VT_I1
: V_UI1(pd
) = V_I1(ps
); return S_OK
;
220 case VT_I2
: return VarUI1FromI2(V_I2(ps
), &V_UI1(pd
));
221 case VT_I4
: return VarUI1FromI4(V_I4(ps
), &V_UI1(pd
));
222 case VT_UI2
: return VarUI1FromUI2(V_UI2(ps
), &V_UI1(pd
));
223 case VT_UI4
: return VarUI1FromUI4(V_UI4(ps
), &V_UI1(pd
));
224 case VT_I8
: return VarUI1FromI8(V_I8(ps
), &V_UI1(pd
));
225 case VT_UI8
: return VarUI1FromUI8(V_UI8(ps
), &V_UI1(pd
));
226 case VT_R4
: return VarUI1FromR4(V_R4(ps
), &V_UI1(pd
));
227 case VT_R8
: return VarUI1FromR8(V_R8(ps
), &V_UI1(pd
));
228 case VT_DATE
: return VarUI1FromDate(V_DATE(ps
), &V_UI1(pd
));
229 case VT_BOOL
: return VarUI1FromBool(V_BOOL(ps
), &V_UI1(pd
));
230 case VT_CY
: return VarUI1FromCy(V_CY(ps
), &V_UI1(pd
));
231 case VT_DECIMAL
: return VarUI1FromDec(&V_DECIMAL(ps
), &V_UI1(pd
));
232 case VT_DISPATCH
: return VarUI1FromDisp(V_DISPATCH(ps
), lcid
, &V_UI1(pd
));
233 case VT_BSTR
: return VarUI1FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI1(pd
));
240 case VT_EMPTY
: V_UI2(pd
) = 0; return S_OK
;
241 case VT_I1
: return VarUI2FromI1(V_I1(ps
), &V_UI2(pd
));
242 case VT_I2
: V_UI2(pd
) = V_I2(ps
); return S_OK
;
243 case VT_I4
: return VarUI2FromI4(V_I4(ps
), &V_UI2(pd
));
244 case VT_UI1
: return VarUI2FromUI1(V_UI1(ps
), &V_UI2(pd
));
245 case VT_UI4
: return VarUI2FromUI4(V_UI4(ps
), &V_UI2(pd
));
246 case VT_I8
: return VarUI4FromI8(V_I8(ps
), &V_UI4(pd
));
247 case VT_UI8
: return VarUI4FromUI8(V_UI8(ps
), &V_UI4(pd
));
248 case VT_R4
: return VarUI2FromR4(V_R4(ps
), &V_UI2(pd
));
249 case VT_R8
: return VarUI2FromR8(V_R8(ps
), &V_UI2(pd
));
250 case VT_DATE
: return VarUI2FromDate(V_DATE(ps
), &V_UI2(pd
));
251 case VT_BOOL
: return VarUI2FromBool(V_BOOL(ps
), &V_UI2(pd
));
252 case VT_CY
: return VarUI2FromCy(V_CY(ps
), &V_UI2(pd
));
253 case VT_DECIMAL
: return VarUI2FromDec(&V_DECIMAL(ps
), &V_UI2(pd
));
254 case VT_DISPATCH
: return VarUI2FromDisp(V_DISPATCH(ps
), lcid
, &V_UI2(pd
));
255 case VT_BSTR
: return VarUI2FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI2(pd
));
262 case VT_EMPTY
: V_UI4(pd
) = 0; return S_OK
;
263 case VT_I1
: return VarUI4FromI1(V_I1(ps
), &V_UI4(pd
));
264 case VT_I2
: return VarUI4FromI2(V_I2(ps
), &V_UI4(pd
));
265 case VT_I4
: V_UI4(pd
) = V_I4(ps
); return S_OK
;
266 case VT_UI1
: return VarUI4FromUI1(V_UI1(ps
), &V_UI4(pd
));
267 case VT_UI2
: return VarUI4FromUI2(V_UI2(ps
), &V_UI4(pd
));
268 case VT_I8
: return VarUI4FromI8(V_I8(ps
), &V_UI4(pd
));
269 case VT_UI8
: return VarUI4FromUI8(V_UI8(ps
), &V_UI4(pd
));
270 case VT_R4
: return VarUI4FromR4(V_R4(ps
), &V_UI4(pd
));
271 case VT_R8
: return VarUI4FromR8(V_R8(ps
), &V_UI4(pd
));
272 case VT_DATE
: return VarUI4FromDate(V_DATE(ps
), &V_UI4(pd
));
273 case VT_BOOL
: return VarUI4FromBool(V_BOOL(ps
), &V_UI4(pd
));
274 case VT_CY
: return VarUI4FromCy(V_CY(ps
), &V_UI4(pd
));
275 case VT_DECIMAL
: return VarUI4FromDec(&V_DECIMAL(ps
), &V_UI4(pd
));
276 case VT_DISPATCH
: return VarUI4FromDisp(V_DISPATCH(ps
), lcid
, &V_UI4(pd
));
277 case VT_BSTR
: return VarUI4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI4(pd
));
284 case VT_EMPTY
: V_UI8(pd
) = 0; return S_OK
;
285 case VT_I4
: if (V_I4(ps
) < 0) return DISP_E_OVERFLOW
; V_UI8(pd
) = V_I4(ps
); return S_OK
;
286 case VT_I1
: return VarUI8FromI1(V_I1(ps
), &V_UI8(pd
));
287 case VT_I2
: return VarUI8FromI2(V_I2(ps
), &V_UI8(pd
));
288 case VT_UI1
: return VarUI8FromUI1(V_UI1(ps
), &V_UI8(pd
));
289 case VT_UI2
: return VarUI8FromUI2(V_UI2(ps
), &V_UI8(pd
));
290 case VT_UI4
: return VarUI8FromUI4(V_UI4(ps
), &V_UI8(pd
));
291 case VT_I8
: V_UI8(pd
) = V_I8(ps
); return S_OK
;
292 case VT_R4
: return VarUI8FromR4(V_R4(ps
), &V_UI8(pd
));
293 case VT_R8
: return VarUI8FromR8(V_R8(ps
), &V_UI8(pd
));
294 case VT_DATE
: return VarUI8FromDate(V_DATE(ps
), &V_UI8(pd
));
295 case VT_BOOL
: return VarUI8FromBool(V_BOOL(ps
), &V_UI8(pd
));
296 case VT_CY
: return VarUI8FromCy(V_CY(ps
), &V_UI8(pd
));
297 case VT_DECIMAL
: return VarUI8FromDec(&V_DECIMAL(ps
), &V_UI8(pd
));
298 case VT_DISPATCH
: return VarUI8FromDisp(V_DISPATCH(ps
), lcid
, &V_UI8(pd
));
299 case VT_BSTR
: return VarUI8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI8(pd
));
306 case VT_EMPTY
: V_I8(pd
) = 0; return S_OK
;
307 case VT_I4
: V_I8(pd
) = V_I4(ps
); return S_OK
;
308 case VT_I1
: return VarI8FromI1(V_I1(ps
), &V_I8(pd
));
309 case VT_I2
: return VarI8FromI2(V_I2(ps
), &V_I8(pd
));
310 case VT_UI1
: return VarI8FromUI1(V_UI1(ps
), &V_I8(pd
));
311 case VT_UI2
: return VarI8FromUI2(V_UI2(ps
), &V_I8(pd
));
312 case VT_UI4
: return VarI8FromUI4(V_UI4(ps
), &V_I8(pd
));
313 case VT_UI8
: V_I8(pd
) = V_UI8(ps
); return S_OK
;
314 case VT_R4
: return VarI8FromR4(V_R4(ps
), &V_I8(pd
));
315 case VT_R8
: return VarI8FromR8(V_R8(ps
), &V_I8(pd
));
316 case VT_DATE
: return VarI8FromDate(V_DATE(ps
), &V_I8(pd
));
317 case VT_BOOL
: return VarI8FromBool(V_BOOL(ps
), &V_I8(pd
));
318 case VT_CY
: return VarI8FromCy(V_CY(ps
), &V_I8(pd
));
319 case VT_DECIMAL
: return VarI8FromDec(&V_DECIMAL(ps
), &V_I8(pd
));
320 case VT_DISPATCH
: return VarI8FromDisp(V_DISPATCH(ps
), lcid
, &V_I8(pd
));
321 case VT_BSTR
: return VarI8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I8(pd
));
328 case VT_EMPTY
: V_R4(pd
) = 0.0f
; return S_OK
;
329 case VT_I1
: return VarR4FromI1(V_I1(ps
), &V_R4(pd
));
330 case VT_I2
: return VarR4FromI2(V_I2(ps
), &V_R4(pd
));
331 case VT_I4
: return VarR4FromI4(V_I4(ps
), &V_R4(pd
));
332 case VT_UI1
: return VarR4FromUI1(V_UI1(ps
), &V_R4(pd
));
333 case VT_UI2
: return VarR4FromUI2(V_UI2(ps
), &V_R4(pd
));
334 case VT_UI4
: return VarR4FromUI4(V_UI4(ps
), &V_R4(pd
));
335 case VT_I8
: return VarR4FromI8(V_I8(ps
), &V_R4(pd
));
336 case VT_UI8
: return VarR4FromUI8(V_UI8(ps
), &V_R4(pd
));
337 case VT_R8
: return VarR4FromR8(V_R8(ps
), &V_R4(pd
));
338 case VT_DATE
: return VarR4FromDate(V_DATE(ps
), &V_R4(pd
));
339 case VT_BOOL
: return VarR4FromBool(V_BOOL(ps
), &V_R4(pd
));
340 case VT_CY
: return VarR4FromCy(V_CY(ps
), &V_R4(pd
));
341 case VT_DECIMAL
: return VarR4FromDec(&V_DECIMAL(ps
), &V_R4(pd
));
342 case VT_DISPATCH
: return VarR4FromDisp(V_DISPATCH(ps
), lcid
, &V_R4(pd
));
343 case VT_BSTR
: return VarR4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_R4(pd
));
350 case VT_EMPTY
: V_R8(pd
) = 0.0; return S_OK
;
351 case VT_I1
: return VarR8FromI1(V_I1(ps
), &V_R8(pd
));
352 case VT_I2
: return VarR8FromI2(V_I2(ps
), &V_R8(pd
));
353 case VT_I4
: return VarR8FromI4(V_I4(ps
), &V_R8(pd
));
354 case VT_UI1
: return VarR8FromUI1(V_UI1(ps
), &V_R8(pd
));
355 case VT_UI2
: return VarR8FromUI2(V_UI2(ps
), &V_R8(pd
));
356 case VT_UI4
: return VarR8FromUI4(V_UI4(ps
), &V_R8(pd
));
357 case VT_I8
: return VarR8FromI8(V_I8(ps
), &V_R8(pd
));
358 case VT_UI8
: return VarR8FromUI8(V_UI8(ps
), &V_R8(pd
));
359 case VT_R4
: return VarR8FromR4(V_R4(ps
), &V_R8(pd
));
360 case VT_DATE
: return VarR8FromDate(V_DATE(ps
), &V_R8(pd
));
361 case VT_BOOL
: return VarR8FromBool(V_BOOL(ps
), &V_R8(pd
));
362 case VT_CY
: return VarR8FromCy(V_CY(ps
), &V_R8(pd
));
363 case VT_DECIMAL
: return VarR8FromDec(&V_DECIMAL(ps
), &V_R8(pd
));
364 case VT_DISPATCH
: return VarR8FromDisp(V_DISPATCH(ps
), lcid
, &V_R8(pd
));
365 case VT_BSTR
: return VarR8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_R8(pd
));
372 case VT_EMPTY
: V_DATE(pd
) = 0.0; return S_OK
;
373 case VT_I1
: return VarDateFromI1(V_I1(ps
), &V_DATE(pd
));
374 case VT_I2
: return VarDateFromI2(V_I2(ps
), &V_DATE(pd
));
375 case VT_I4
: return VarDateFromI4(V_I4(ps
), &V_DATE(pd
));
376 case VT_UI1
: return VarDateFromUI1(V_UI1(ps
), &V_DATE(pd
));
377 case VT_UI2
: return VarDateFromUI2(V_UI2(ps
), &V_DATE(pd
));
378 case VT_UI4
: return VarDateFromUI4(V_UI4(ps
), &V_DATE(pd
));
379 case VT_I8
: return VarDateFromI8(V_I8(ps
), &V_DATE(pd
));
380 case VT_UI8
: return VarDateFromUI8(V_UI8(ps
), &V_DATE(pd
));
381 case VT_R4
: return VarDateFromR4(V_R4(ps
), &V_DATE(pd
));
382 case VT_R8
: return VarDateFromR8(V_R8(ps
), &V_DATE(pd
));
383 case VT_BOOL
: return VarDateFromBool(V_BOOL(ps
), &V_DATE(pd
));
384 case VT_CY
: return VarDateFromCy(V_CY(ps
), &V_DATE(pd
));
385 case VT_DECIMAL
: return VarDateFromDec(&V_DECIMAL(ps
), &V_DATE(pd
));
386 case VT_DISPATCH
: return VarDateFromDisp(V_DISPATCH(ps
), lcid
, &V_DATE(pd
));
387 case VT_BSTR
: return VarDateFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_DATE(pd
));
394 case VT_EMPTY
: V_BOOL(pd
) = 0; return S_OK
;
395 case VT_I1
: return VarBoolFromI1(V_I1(ps
), &V_BOOL(pd
));
396 case VT_I2
: return VarBoolFromI2(V_I2(ps
), &V_BOOL(pd
));
397 case VT_I4
: return VarBoolFromI4(V_I4(ps
), &V_BOOL(pd
));
398 case VT_UI1
: return VarBoolFromUI1(V_UI1(ps
), &V_BOOL(pd
));
399 case VT_UI2
: return VarBoolFromUI2(V_UI2(ps
), &V_BOOL(pd
));
400 case VT_UI4
: return VarBoolFromUI4(V_UI4(ps
), &V_BOOL(pd
));
401 case VT_I8
: return VarBoolFromI8(V_I8(ps
), &V_BOOL(pd
));
402 case VT_UI8
: return VarBoolFromUI8(V_UI8(ps
), &V_BOOL(pd
));
403 case VT_R4
: return VarBoolFromR4(V_R4(ps
), &V_BOOL(pd
));
404 case VT_R8
: return VarBoolFromR8(V_R8(ps
), &V_BOOL(pd
));
405 case VT_DATE
: return VarBoolFromDate(V_DATE(ps
), &V_BOOL(pd
));
406 case VT_CY
: return VarBoolFromCy(V_CY(ps
), &V_BOOL(pd
));
407 case VT_DECIMAL
: return VarBoolFromDec(&V_DECIMAL(ps
), &V_BOOL(pd
));
408 case VT_DISPATCH
: return VarBoolFromDisp(V_DISPATCH(ps
), lcid
, &V_BOOL(pd
));
409 case VT_BSTR
: return VarBoolFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_BOOL(pd
));
417 V_BSTR(pd
) = SysAllocStringLen(NULL
, 0);
418 return V_BSTR(pd
) ? S_OK
: E_OUTOFMEMORY
;
420 if (wFlags
& (VARIANT_ALPHABOOL
|VARIANT_LOCALBOOL
))
421 return VarBstrFromBool(V_BOOL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
422 return VarBstrFromI2(V_BOOL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
423 case VT_I1
: return VarBstrFromI1(V_I1(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
424 case VT_I2
: return VarBstrFromI2(V_I2(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
425 case VT_I4
: return VarBstrFromI4(V_I4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
426 case VT_UI1
: return VarBstrFromUI1(V_UI1(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
427 case VT_UI2
: return VarBstrFromUI2(V_UI2(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
428 case VT_UI4
: return VarBstrFromUI4(V_UI4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
429 case VT_I8
: return VarBstrFromI8(V_I8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
430 case VT_UI8
: return VarBstrFromUI8(V_UI8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
431 case VT_R4
: return VarBstrFromR4(V_R4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
432 case VT_R8
: return VarBstrFromR8(V_R8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
433 case VT_DATE
: return VarBstrFromDate(V_DATE(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
434 case VT_CY
: return VarBstrFromCy(V_CY(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
435 case VT_DECIMAL
: return VarBstrFromDec(&V_DECIMAL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
436 case VT_DISPATCH
: return VarBstrFromDisp(V_DISPATCH(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
443 case VT_EMPTY
: V_CY(pd
).int64
= 0; return S_OK
;
444 case VT_I1
: return VarCyFromI1(V_I1(ps
), &V_CY(pd
));
445 case VT_I2
: return VarCyFromI2(V_I2(ps
), &V_CY(pd
));
446 case VT_I4
: return VarCyFromI4(V_I4(ps
), &V_CY(pd
));
447 case VT_UI1
: return VarCyFromUI1(V_UI1(ps
), &V_CY(pd
));
448 case VT_UI2
: return VarCyFromUI2(V_UI2(ps
), &V_CY(pd
));
449 case VT_UI4
: return VarCyFromUI4(V_UI4(ps
), &V_CY(pd
));
450 case VT_I8
: return VarCyFromI8(V_I8(ps
), &V_CY(pd
));
451 case VT_UI8
: return VarCyFromUI8(V_UI8(ps
), &V_CY(pd
));
452 case VT_R4
: return VarCyFromR4(V_R4(ps
), &V_CY(pd
));
453 case VT_R8
: return VarCyFromR8(V_R8(ps
), &V_CY(pd
));
454 case VT_DATE
: return VarCyFromDate(V_DATE(ps
), &V_CY(pd
));
455 case VT_BOOL
: return VarCyFromBool(V_BOOL(ps
), &V_CY(pd
));
456 case VT_DECIMAL
: return VarCyFromDec(&V_DECIMAL(ps
), &V_CY(pd
));
457 case VT_DISPATCH
: return VarCyFromDisp(V_DISPATCH(ps
), lcid
, &V_CY(pd
));
458 case VT_BSTR
: return VarCyFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_CY(pd
));
467 DEC_SIGNSCALE(&V_DECIMAL(pd
)) = SIGNSCALE(DECIMAL_POS
,0);
468 DEC_HI32(&V_DECIMAL(pd
)) = 0;
469 DEC_MID32(&V_DECIMAL(pd
)) = 0;
470 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
471 * VT_NULL and VT_EMPTY always give a 0 value.
473 DEC_LO32(&V_DECIMAL(pd
)) = vtFrom
== VT_BOOL
&& V_BOOL(ps
) ? 1 : 0;
475 case VT_I1
: return VarDecFromI1(V_I1(ps
), &V_DECIMAL(pd
));
476 case VT_I2
: return VarDecFromI2(V_I2(ps
), &V_DECIMAL(pd
));
477 case VT_I4
: return VarDecFromI4(V_I4(ps
), &V_DECIMAL(pd
));
478 case VT_UI1
: return VarDecFromUI1(V_UI1(ps
), &V_DECIMAL(pd
));
479 case VT_UI2
: return VarDecFromUI2(V_UI2(ps
), &V_DECIMAL(pd
));
480 case VT_UI4
: return VarDecFromUI4(V_UI4(ps
), &V_DECIMAL(pd
));
481 case VT_I8
: return VarDecFromI8(V_I8(ps
), &V_DECIMAL(pd
));
482 case VT_UI8
: return VarDecFromUI8(V_UI8(ps
), &V_DECIMAL(pd
));
483 case VT_R4
: return VarDecFromR4(V_R4(ps
), &V_DECIMAL(pd
));
484 case VT_R8
: return VarDecFromR8(V_R8(ps
), &V_DECIMAL(pd
));
485 case VT_DATE
: return VarDecFromDate(V_DATE(ps
), &V_DECIMAL(pd
));
486 case VT_CY
: return VarDecFromCy(V_CY(ps
), &V_DECIMAL(pd
));
487 case VT_DISPATCH
: return VarDecFromDisp(V_DISPATCH(ps
), lcid
, &V_DECIMAL(pd
));
488 case VT_BSTR
: return VarDecFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_DECIMAL(pd
));
496 if (V_DISPATCH(ps
) == NULL
)
497 V_UNKNOWN(pd
) = NULL
;
499 res
= IDispatch_QueryInterface(V_DISPATCH(ps
), &IID_IUnknown
, (LPVOID
*)&V_UNKNOWN(pd
));
508 if (V_UNKNOWN(ps
) == NULL
)
509 V_DISPATCH(pd
) = NULL
;
511 res
= IUnknown_QueryInterface(V_UNKNOWN(ps
), &IID_IDispatch
, (LPVOID
*)&V_DISPATCH(pd
));
522 /* Coerce to/from an array */
523 static inline HRESULT
VARIANT_CoerceArray(VARIANTARG
* pd
, VARIANTARG
* ps
, VARTYPE vt
)
525 if (vt
== VT_BSTR
&& V_VT(ps
) == (VT_ARRAY
|VT_UI1
))
526 return BstrFromVector(V_ARRAY(ps
), &V_BSTR(pd
));
528 if (V_VT(ps
) == VT_BSTR
&& vt
== (VT_ARRAY
|VT_UI1
))
529 return VectorFromBstr(V_BSTR(ps
), &V_ARRAY(ps
));
532 return SafeArrayCopy(V_ARRAY(ps
), &V_ARRAY(pd
));
534 return DISP_E_TYPEMISMATCH
;
537 /******************************************************************************
538 * Check if a variants type is valid.
540 static inline HRESULT
VARIANT_ValidateType(VARTYPE vt
)
542 VARTYPE vtExtra
= vt
& VT_EXTRA_TYPE
;
546 if (!(vtExtra
& (VT_VECTOR
|VT_RESERVED
)))
548 if (vt
< VT_VOID
|| vt
== VT_RECORD
|| vt
== VT_CLSID
)
550 if ((vtExtra
& (VT_BYREF
|VT_ARRAY
)) && vt
<= VT_NULL
)
551 return DISP_E_BADVARTYPE
;
552 if (vt
!= (VARTYPE
)15)
556 return DISP_E_BADVARTYPE
;
559 /******************************************************************************
560 * VariantInit [OLEAUT32.8]
562 * Initialise a variant.
565 * pVarg [O] Variant to initialise
571 * This function simply sets the type of the variant to VT_EMPTY. It does not
572 * free any existing value, use VariantClear() for that.
574 void WINAPI
VariantInit(VARIANTARG
* pVarg
)
576 TRACE("(%p)\n", pVarg
);
578 V_VT(pVarg
) = VT_EMPTY
; /* Native doesn't set any other fields */
581 HRESULT
VARIANT_ClearInd(VARIANTARG
*pVarg
)
585 TRACE("(%p->(%s%s))\n", pVarg
, debugstr_VT(pVarg
), debugstr_VF(pVarg
));
587 hres
= VARIANT_ValidateType(V_VT(pVarg
));
595 if (V_UNKNOWN(pVarg
))
596 IUnknown_Release(V_UNKNOWN(pVarg
));
598 case VT_UNKNOWN
| VT_BYREF
:
599 case VT_DISPATCH
| VT_BYREF
:
600 if(*V_UNKNOWNREF(pVarg
))
601 IUnknown_Release(*V_UNKNOWNREF(pVarg
));
604 SysFreeString(V_BSTR(pVarg
));
606 case VT_BSTR
| VT_BYREF
:
607 SysFreeString(*V_BSTRREF(pVarg
));
609 case VT_VARIANT
| VT_BYREF
:
610 VariantClear(V_VARIANTREF(pVarg
));
613 case VT_RECORD
| VT_BYREF
:
615 struct __tagBRECORD
* pBr
= &V_UNION(pVarg
,brecVal
);
618 IRecordInfo_RecordClear(pBr
->pRecInfo
, pBr
->pvRecord
);
619 IRecordInfo_Release(pBr
->pRecInfo
);
624 if (V_ISARRAY(pVarg
) || (V_VT(pVarg
) & ~VT_BYREF
) == VT_SAFEARRAY
)
626 if (V_ISBYREF(pVarg
))
628 if (*V_ARRAYREF(pVarg
))
629 hres
= SafeArrayDestroy(*V_ARRAYREF(pVarg
));
631 else if (V_ARRAY(pVarg
))
632 hres
= SafeArrayDestroy(V_ARRAY(pVarg
));
637 V_VT(pVarg
) = VT_EMPTY
;
641 /******************************************************************************
642 * VariantClear [OLEAUT32.9]
647 * pVarg [I/O] Variant to clear
650 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
651 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
653 HRESULT WINAPI
VariantClear(VARIANTARG
* pVarg
)
657 TRACE("(%p->(%s%s))\n", pVarg
, debugstr_VT(pVarg
), debugstr_VF(pVarg
));
659 hres
= VARIANT_ValidateType(V_VT(pVarg
));
663 if (!V_ISBYREF(pVarg
))
665 if (V_ISARRAY(pVarg
) || V_VT(pVarg
) == VT_SAFEARRAY
)
667 hres
= SafeArrayDestroy(V_ARRAY(pVarg
));
669 else if (V_VT(pVarg
) == VT_BSTR
)
671 SysFreeString(V_BSTR(pVarg
));
673 else if (V_VT(pVarg
) == VT_RECORD
)
675 struct __tagBRECORD
* pBr
= &V_UNION(pVarg
,brecVal
);
678 IRecordInfo_RecordClear(pBr
->pRecInfo
, pBr
->pvRecord
);
679 IRecordInfo_Release(pBr
->pRecInfo
);
682 else if (V_VT(pVarg
) == VT_DISPATCH
||
683 V_VT(pVarg
) == VT_UNKNOWN
)
685 if (V_UNKNOWN(pVarg
))
686 IUnknown_Release(V_UNKNOWN(pVarg
));
689 V_VT(pVarg
) = VT_EMPTY
;
694 /******************************************************************************
695 * Copy an IRecordInfo object contained in a variant.
697 static HRESULT
VARIANT_CopyIRecordInfo(struct __tagBRECORD
* pBr
)
705 hres
= IRecordInfo_GetSize(pBr
->pRecInfo
, &ulSize
);
708 PVOID pvRecord
= HeapAlloc(GetProcessHeap(), 0, ulSize
);
710 hres
= E_OUTOFMEMORY
;
713 memcpy(pvRecord
, pBr
->pvRecord
, ulSize
);
714 pBr
->pvRecord
= pvRecord
;
716 hres
= IRecordInfo_RecordCopy(pBr
->pRecInfo
, pvRecord
, pvRecord
);
718 IRecordInfo_AddRef(pBr
->pRecInfo
);
722 else if (pBr
->pvRecord
)
727 /******************************************************************************
728 * VariantCopy [OLEAUT32.10]
733 * pvargDest [O] Destination for copy
734 * pvargSrc [I] Source variant to copy
737 * Success: S_OK. pvargDest contains a copy of pvargSrc.
738 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
739 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
740 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
741 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
744 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
745 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
746 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
747 * fails, so does this function.
748 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
749 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
750 * is copied rather than just any pointers to it.
751 * - For by-value object types the object pointer is copied and the objects
752 * reference count increased using IUnknown_AddRef().
753 * - For all by-reference types, only the referencing pointer is copied.
755 HRESULT WINAPI
VariantCopy(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
)
759 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest
, debugstr_VT(pvargDest
),
760 debugstr_VF(pvargDest
), pvargSrc
, debugstr_VT(pvargSrc
),
761 debugstr_VF(pvargSrc
));
763 if (V_TYPE(pvargSrc
) == VT_CLSID
|| /* VT_CLSID is a special case */
764 FAILED(VARIANT_ValidateType(V_VT(pvargSrc
))))
765 return DISP_E_BADVARTYPE
;
767 if (pvargSrc
!= pvargDest
&&
768 SUCCEEDED(hres
= VariantClear(pvargDest
)))
770 *pvargDest
= *pvargSrc
; /* Shallow copy the value */
772 if (!V_ISBYREF(pvargSrc
))
774 if (V_ISARRAY(pvargSrc
))
776 if (V_ARRAY(pvargSrc
))
777 hres
= SafeArrayCopy(V_ARRAY(pvargSrc
), &V_ARRAY(pvargDest
));
779 else if (V_VT(pvargSrc
) == VT_BSTR
)
781 V_BSTR(pvargDest
) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc
), SysStringByteLen(V_BSTR(pvargSrc
)));
782 if (!V_BSTR(pvargDest
))
784 TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc
)));
785 hres
= E_OUTOFMEMORY
;
788 else if (V_VT(pvargSrc
) == VT_RECORD
)
790 hres
= VARIANT_CopyIRecordInfo(&V_UNION(pvargDest
,brecVal
));
792 else if (V_VT(pvargSrc
) == VT_DISPATCH
||
793 V_VT(pvargSrc
) == VT_UNKNOWN
)
795 if (V_UNKNOWN(pvargSrc
))
796 IUnknown_AddRef(V_UNKNOWN(pvargSrc
));
803 /* Return the byte size of a variants data */
804 static inline size_t VARIANT_DataSize(const VARIANT
* pv
)
809 case VT_UI1
: return sizeof(BYTE
);
811 case VT_UI2
: return sizeof(SHORT
);
815 case VT_UI4
: return sizeof(LONG
);
817 case VT_UI8
: return sizeof(LONGLONG
);
818 case VT_R4
: return sizeof(float);
819 case VT_R8
: return sizeof(double);
820 case VT_DATE
: return sizeof(DATE
);
821 case VT_BOOL
: return sizeof(VARIANT_BOOL
);
824 case VT_BSTR
: return sizeof(void*);
825 case VT_CY
: return sizeof(CY
);
826 case VT_ERROR
: return sizeof(SCODE
);
828 TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv
), debugstr_VF(pv
));
832 /******************************************************************************
833 * VariantCopyInd [OLEAUT32.11]
835 * Copy a variant, dereferencing it if it is by-reference.
838 * pvargDest [O] Destination for copy
839 * pvargSrc [I] Source variant to copy
842 * Success: S_OK. pvargDest contains a copy of pvargSrc.
843 * Failure: An HRESULT error code indicating the error.
846 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
847 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
848 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
849 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
850 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
853 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
854 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
856 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
857 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
858 * to it. If clearing pvargDest fails, so does this function.
860 HRESULT WINAPI
VariantCopyInd(VARIANT
* pvargDest
, VARIANTARG
* pvargSrc
)
862 VARIANTARG vTmp
, *pSrc
= pvargSrc
;
866 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest
, debugstr_VT(pvargDest
),
867 debugstr_VF(pvargDest
), pvargSrc
, debugstr_VT(pvargSrc
),
868 debugstr_VF(pvargSrc
));
870 if (!V_ISBYREF(pvargSrc
))
871 return VariantCopy(pvargDest
, pvargSrc
);
873 /* Argument checking is more lax than VariantCopy()... */
874 vt
= V_TYPE(pvargSrc
);
875 if (V_ISARRAY(pvargSrc
) ||
876 (vt
> VT_NULL
&& vt
!= (VARTYPE
)15 && vt
< VT_VOID
&&
877 !(V_VT(pvargSrc
) & (VT_VECTOR
|VT_RESERVED
))))
882 return E_INVALIDARG
; /* ...And the return value for invalid types differs too */
884 if (pvargSrc
== pvargDest
)
886 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
887 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
891 V_VT(pvargDest
) = VT_EMPTY
;
895 /* Copy into another variant. Free the variant in pvargDest */
896 if (FAILED(hres
= VariantClear(pvargDest
)))
898 TRACE("VariantClear() of destination failed\n");
905 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
906 hres
= SafeArrayCopy(*V_ARRAYREF(pSrc
), &V_ARRAY(pvargDest
));
908 else if (V_VT(pSrc
) == (VT_BSTR
|VT_BYREF
))
910 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
911 V_BSTR(pvargDest
) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc
), SysStringByteLen(*V_BSTRREF(pSrc
)));
913 else if (V_VT(pSrc
) == (VT_RECORD
|VT_BYREF
))
915 V_UNION(pvargDest
,brecVal
) = V_UNION(pvargSrc
,brecVal
);
916 hres
= VARIANT_CopyIRecordInfo(&V_UNION(pvargDest
,brecVal
));
918 else if (V_VT(pSrc
) == (VT_DISPATCH
|VT_BYREF
) ||
919 V_VT(pSrc
) == (VT_UNKNOWN
|VT_BYREF
))
921 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
922 V_UNKNOWN(pvargDest
) = *V_UNKNOWNREF(pSrc
);
923 if (*V_UNKNOWNREF(pSrc
))
924 IUnknown_AddRef(*V_UNKNOWNREF(pSrc
));
926 else if (V_VT(pSrc
) == (VT_VARIANT
|VT_BYREF
))
928 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
929 if (V_VT(V_VARIANTREF(pSrc
)) == (VT_VARIANT
|VT_BYREF
))
930 hres
= E_INVALIDARG
; /* Don't dereference more than one level */
932 hres
= VariantCopyInd(pvargDest
, V_VARIANTREF(pSrc
));
934 /* Use the dereferenced variants type value, not VT_VARIANT */
935 goto VariantCopyInd_Return
;
937 else if (V_VT(pSrc
) == (VT_DECIMAL
|VT_BYREF
))
939 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest
)), &DEC_SCALE(V_DECIMALREF(pSrc
)),
940 sizeof(DECIMAL
) - sizeof(USHORT
));
944 /* Copy the pointed to data into this variant */
945 memcpy(&V_BYREF(pvargDest
), V_BYREF(pSrc
), VARIANT_DataSize(pSrc
));
948 V_VT(pvargDest
) = V_VT(pSrc
) & ~VT_BYREF
;
950 VariantCopyInd_Return
:
952 if (pSrc
!= pvargSrc
)
955 TRACE("returning 0x%08x, %p->(%s%s)\n", hres
, pvargDest
,
956 debugstr_VT(pvargDest
), debugstr_VF(pvargDest
));
960 /******************************************************************************
961 * VariantChangeType [OLEAUT32.12]
963 * Change the type of a variant.
966 * pvargDest [O] Destination for the converted variant
967 * pvargSrc [O] Source variant to change the type of
968 * wFlags [I] VARIANT_ flags from "oleauto.h"
969 * vt [I] Variant type to change pvargSrc into
972 * Success: S_OK. pvargDest contains the converted value.
973 * Failure: An HRESULT error code describing the failure.
976 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
977 * See VariantChangeTypeEx.
979 HRESULT WINAPI
VariantChangeType(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
,
980 USHORT wFlags
, VARTYPE vt
)
982 return VariantChangeTypeEx( pvargDest
, pvargSrc
, LOCALE_USER_DEFAULT
, wFlags
, vt
);
985 /******************************************************************************
986 * VariantChangeTypeEx [OLEAUT32.147]
988 * Change the type of a variant.
991 * pvargDest [O] Destination for the converted variant
992 * pvargSrc [O] Source variant to change the type of
993 * lcid [I] LCID for the conversion
994 * wFlags [I] VARIANT_ flags from "oleauto.h"
995 * vt [I] Variant type to change pvargSrc into
998 * Success: S_OK. pvargDest contains the converted value.
999 * Failure: An HRESULT error code describing the failure.
1002 * pvargDest and pvargSrc can point to the same variant to perform an in-place
1003 * conversion. If the conversion is successful, pvargSrc will be freed.
1005 HRESULT WINAPI
VariantChangeTypeEx(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
,
1006 LCID lcid
, USHORT wFlags
, VARTYPE vt
)
1010 TRACE("(%p->(%s%s),%p->(%s%s),0x%08x,0x%04x,%s%s)\n", pvargDest
,
1011 debugstr_VT(pvargDest
), debugstr_VF(pvargDest
), pvargSrc
,
1012 debugstr_VT(pvargSrc
), debugstr_VF(pvargSrc
), lcid
, wFlags
,
1013 debugstr_vt(vt
), debugstr_vf(vt
));
1016 res
= DISP_E_BADVARTYPE
;
1019 res
= VARIANT_ValidateType(V_VT(pvargSrc
));
1023 res
= VARIANT_ValidateType(vt
);
1027 VARIANTARG vTmp
, vSrcDeref
;
1029 if(V_ISBYREF(pvargSrc
) && !V_BYREF(pvargSrc
))
1030 res
= DISP_E_TYPEMISMATCH
;
1033 V_VT(&vTmp
) = VT_EMPTY
;
1034 V_VT(&vSrcDeref
) = VT_EMPTY
;
1035 VariantClear(&vTmp
);
1036 VariantClear(&vSrcDeref
);
1041 res
= VariantCopyInd(&vSrcDeref
, pvargSrc
);
1044 if (V_ISARRAY(&vSrcDeref
) || (vt
& VT_ARRAY
))
1045 res
= VARIANT_CoerceArray(&vTmp
, &vSrcDeref
, vt
);
1047 res
= VARIANT_Coerce(&vTmp
, lcid
, wFlags
, &vSrcDeref
, vt
);
1049 if (SUCCEEDED(res
)) {
1051 VariantCopy(pvargDest
, &vTmp
);
1053 VariantClear(&vTmp
);
1054 VariantClear(&vSrcDeref
);
1061 TRACE("returning 0x%08x, %p->(%s%s)\n", res
, pvargDest
,
1062 debugstr_VT(pvargDest
), debugstr_VF(pvargDest
));
1066 /* Date Conversions */
1068 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1070 /* Convert a VT_DATE value to a Julian Date */
1071 static inline int VARIANT_JulianFromDate(int dateIn
)
1073 int julianDays
= dateIn
;
1075 julianDays
-= DATE_MIN
; /* Convert to + days from 1 Jan 100 AD */
1076 julianDays
+= 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1080 /* Convert a Julian Date to a VT_DATE value */
1081 static inline int VARIANT_DateFromJulian(int dateIn
)
1083 int julianDays
= dateIn
;
1085 julianDays
-= 1757585; /* Convert to + days from 1 Jan 100 AD */
1086 julianDays
+= DATE_MIN
; /* Convert to +/- days from 1 Jan 1899 AD */
1090 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1091 static inline void VARIANT_DMYFromJulian(int jd
, USHORT
*year
, USHORT
*month
, USHORT
*day
)
1097 l
-= (n
* 146097 + 3) / 4;
1098 i
= (4000 * (l
+ 1)) / 1461001;
1099 l
+= 31 - (i
* 1461) / 4;
1100 j
= (l
* 80) / 2447;
1101 *day
= l
- (j
* 2447) / 80;
1103 *month
= (j
+ 2) - (12 * l
);
1104 *year
= 100 * (n
- 49) + i
+ l
;
1107 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1108 static inline double VARIANT_JulianFromDMY(USHORT year
, USHORT month
, USHORT day
)
1110 int m12
= (month
- 14) / 12;
1112 return ((1461 * (year
+ 4800 + m12
)) / 4 + (367 * (month
- 2 - 12 * m12
)) / 12 -
1113 (3 * ((year
+ 4900 + m12
) / 100)) / 4 + day
- 32075);
1116 /* Macros for accessing DOS format date/time fields */
1117 #define DOS_YEAR(x) (1980 + (x >> 9))
1118 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1119 #define DOS_DAY(x) (x & 0x1f)
1120 #define DOS_HOUR(x) (x >> 11)
1121 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1122 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1123 /* Create a DOS format date/time */
1124 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1125 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1127 /* Roll a date forwards or backwards to correct it */
1128 static HRESULT
VARIANT_RollUdate(UDATE
*lpUd
)
1130 static const BYTE days
[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1131 short iYear
, iMonth
, iDay
, iHour
, iMinute
, iSecond
;
1133 /* interpret values signed */
1134 iYear
= lpUd
->st
.wYear
;
1135 iMonth
= lpUd
->st
.wMonth
;
1136 iDay
= lpUd
->st
.wDay
;
1137 iHour
= lpUd
->st
.wHour
;
1138 iMinute
= lpUd
->st
.wMinute
;
1139 iSecond
= lpUd
->st
.wSecond
;
1141 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay
, iMonth
,
1142 iYear
, iHour
, iMinute
, iSecond
);
1144 if (iYear
> 9999 || iYear
< -9999)
1145 return E_INVALIDARG
; /* Invalid value */
1146 /* Years < 100 are treated as 1900 + year */
1147 if (iYear
> 0 && iYear
< 100)
1150 iMinute
+= iSecond
/ 60;
1151 iSecond
= iSecond
% 60;
1152 iHour
+= iMinute
/ 60;
1153 iMinute
= iMinute
% 60;
1156 iYear
+= iMonth
/ 12;
1157 iMonth
= iMonth
% 12;
1158 if (iMonth
<=0) {iMonth
+=12; iYear
--;}
1159 while (iDay
> days
[iMonth
])
1161 if (iMonth
== 2 && IsLeapYear(iYear
))
1164 iDay
-= days
[iMonth
];
1166 iYear
+= iMonth
/ 12;
1167 iMonth
= iMonth
% 12;
1172 if (iMonth
<=0) {iMonth
+=12; iYear
--;}
1173 if (iMonth
== 2 && IsLeapYear(iYear
))
1176 iDay
+= days
[iMonth
];
1179 if (iSecond
<0){iSecond
+=60; iMinute
--;}
1180 if (iMinute
<0){iMinute
+=60; iHour
--;}
1181 if (iHour
<0) {iHour
+=24; iDay
--;}
1182 if (iYear
<=0) iYear
+=2000;
1184 lpUd
->st
.wYear
= iYear
;
1185 lpUd
->st
.wMonth
= iMonth
;
1186 lpUd
->st
.wDay
= iDay
;
1187 lpUd
->st
.wHour
= iHour
;
1188 lpUd
->st
.wMinute
= iMinute
;
1189 lpUd
->st
.wSecond
= iSecond
;
1191 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd
->st
.wDay
, lpUd
->st
.wMonth
,
1192 lpUd
->st
.wYear
, lpUd
->st
.wHour
, lpUd
->st
.wMinute
, lpUd
->st
.wSecond
);
1196 /**********************************************************************
1197 * DosDateTimeToVariantTime [OLEAUT32.14]
1199 * Convert a Dos format date and time into variant VT_DATE format.
1202 * wDosDate [I] Dos format date
1203 * wDosTime [I] Dos format time
1204 * pDateOut [O] Destination for VT_DATE format
1207 * Success: TRUE. pDateOut contains the converted time.
1208 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1211 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1212 * - Dos format times are accurate to only 2 second precision.
1213 * - The format of a Dos Date is:
1214 *| Bits Values Meaning
1215 *| ---- ------ -------
1216 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1217 *| the days in the month rolls forward the extra days.
1218 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1219 *| year. 13-15 are invalid.
1220 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1221 * - The format of a Dos Time is:
1222 *| Bits Values Meaning
1223 *| ---- ------ -------
1224 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1225 *| 5-10 0-59 Minutes. 60-63 are invalid.
1226 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1228 INT WINAPI
DosDateTimeToVariantTime(USHORT wDosDate
, USHORT wDosTime
,
1233 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1234 wDosDate
, DOS_YEAR(wDosDate
), DOS_MONTH(wDosDate
), DOS_DAY(wDosDate
),
1235 wDosTime
, DOS_HOUR(wDosTime
), DOS_MINUTE(wDosTime
), DOS_SECOND(wDosTime
),
1238 ud
.st
.wYear
= DOS_YEAR(wDosDate
);
1239 ud
.st
.wMonth
= DOS_MONTH(wDosDate
);
1240 if (ud
.st
.wYear
> 2099 || ud
.st
.wMonth
> 12)
1242 ud
.st
.wDay
= DOS_DAY(wDosDate
);
1243 ud
.st
.wHour
= DOS_HOUR(wDosTime
);
1244 ud
.st
.wMinute
= DOS_MINUTE(wDosTime
);
1245 ud
.st
.wSecond
= DOS_SECOND(wDosTime
);
1246 ud
.st
.wDayOfWeek
= ud
.st
.wMilliseconds
= 0;
1247 if (ud
.st
.wHour
> 23 || ud
.st
.wMinute
> 59 || ud
.st
.wSecond
> 59)
1248 return FALSE
; /* Invalid values in Dos*/
1250 return VarDateFromUdate(&ud
, 0, pDateOut
) == S_OK
;
1253 /**********************************************************************
1254 * VariantTimeToDosDateTime [OLEAUT32.13]
1256 * Convert a variant format date into a Dos format date and time.
1258 * dateIn [I] VT_DATE time format
1259 * pwDosDate [O] Destination for Dos format date
1260 * pwDosTime [O] Destination for Dos format time
1263 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1264 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1267 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1269 INT WINAPI
VariantTimeToDosDateTime(double dateIn
, USHORT
*pwDosDate
, USHORT
*pwDosTime
)
1273 TRACE("(%g,%p,%p)\n", dateIn
, pwDosDate
, pwDosTime
);
1275 if (FAILED(VarUdateFromDate(dateIn
, 0, &ud
)))
1278 if (ud
.st
.wYear
< 1980 || ud
.st
.wYear
> 2099)
1281 *pwDosDate
= DOS_DATE(ud
.st
.wDay
, ud
.st
.wMonth
, ud
.st
.wYear
);
1282 *pwDosTime
= DOS_TIME(ud
.st
.wHour
, ud
.st
.wMinute
, ud
.st
.wSecond
);
1284 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1285 *pwDosDate
, DOS_YEAR(*pwDosDate
), DOS_MONTH(*pwDosDate
), DOS_DAY(*pwDosDate
),
1286 *pwDosTime
, DOS_HOUR(*pwDosTime
), DOS_MINUTE(*pwDosTime
), DOS_SECOND(*pwDosTime
));
1290 /***********************************************************************
1291 * SystemTimeToVariantTime [OLEAUT32.184]
1293 * Convert a System format date and time into variant VT_DATE format.
1296 * lpSt [I] System format date and time
1297 * pDateOut [O] Destination for VT_DATE format date
1300 * Success: TRUE. *pDateOut contains the converted value.
1301 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1303 INT WINAPI
SystemTimeToVariantTime(LPSYSTEMTIME lpSt
, double *pDateOut
)
1307 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt
, lpSt
->wDay
, lpSt
->wMonth
,
1308 lpSt
->wYear
, lpSt
->wHour
, lpSt
->wMinute
, lpSt
->wSecond
, pDateOut
);
1310 if (lpSt
->wMonth
> 12)
1314 return VarDateFromUdate(&ud
, 0, pDateOut
) == S_OK
;
1317 /***********************************************************************
1318 * VariantTimeToSystemTime [OLEAUT32.185]
1320 * Convert a variant VT_DATE into a System format date and time.
1323 * datein [I] Variant VT_DATE format date
1324 * lpSt [O] Destination for System format date and time
1327 * Success: TRUE. *lpSt contains the converted value.
1328 * Failure: FALSE, if dateIn is too large or small.
1330 INT WINAPI
VariantTimeToSystemTime(double dateIn
, LPSYSTEMTIME lpSt
)
1334 TRACE("(%g,%p)\n", dateIn
, lpSt
);
1336 if (FAILED(VarUdateFromDate(dateIn
, 0, &ud
)))
1343 /***********************************************************************
1344 * VarDateFromUdateEx [OLEAUT32.319]
1346 * Convert an unpacked format date and time to a variant VT_DATE.
1349 * pUdateIn [I] Unpacked format date and time to convert
1350 * lcid [I] Locale identifier for the conversion
1351 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1352 * pDateOut [O] Destination for variant VT_DATE.
1355 * Success: S_OK. *pDateOut contains the converted value.
1356 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1358 HRESULT WINAPI
VarDateFromUdateEx(UDATE
*pUdateIn
, LCID lcid
, ULONG dwFlags
, DATE
*pDateOut
)
1361 double dateVal
, dateSign
;
1363 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn
,
1364 pUdateIn
->st
.wMonth
, pUdateIn
->st
.wDay
, pUdateIn
->st
.wYear
,
1365 pUdateIn
->st
.wHour
, pUdateIn
->st
.wMinute
, pUdateIn
->st
.wSecond
,
1366 pUdateIn
->st
.wMilliseconds
, pUdateIn
->st
.wDayOfWeek
,
1367 pUdateIn
->wDayOfYear
, lcid
, dwFlags
, pDateOut
);
1369 if (lcid
!= MAKELCID(MAKELANGID(LANG_ENGLISH
, SUBLANG_ENGLISH_US
), SORT_DEFAULT
))
1370 FIXME("lcid possibly not handled, treating as en-us\n");
1374 if (dwFlags
& VAR_VALIDDATE
)
1375 WARN("Ignoring VAR_VALIDDATE\n");
1377 if (FAILED(VARIANT_RollUdate(&ud
)))
1378 return E_INVALIDARG
;
1381 dateVal
= VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud
.st
.wYear
, ud
.st
.wMonth
, ud
.st
.wDay
));
1384 dateSign
= (dateVal
< 0.0) ? -1.0 : 1.0;
1387 dateVal
+= ud
.st
.wHour
/ 24.0 * dateSign
;
1388 dateVal
+= ud
.st
.wMinute
/ 1440.0 * dateSign
;
1389 dateVal
+= ud
.st
.wSecond
/ 86400.0 * dateSign
;
1391 TRACE("Returning %g\n", dateVal
);
1392 *pDateOut
= dateVal
;
1396 /***********************************************************************
1397 * VarDateFromUdate [OLEAUT32.330]
1399 * Convert an unpacked format date and time to a variant VT_DATE.
1402 * pUdateIn [I] Unpacked format date and time to convert
1403 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1404 * pDateOut [O] Destination for variant VT_DATE.
1407 * Success: S_OK. *pDateOut contains the converted value.
1408 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1411 * This function uses the United States English locale for the conversion. Use
1412 * VarDateFromUdateEx() for alternate locales.
1414 HRESULT WINAPI
VarDateFromUdate(UDATE
*pUdateIn
, ULONG dwFlags
, DATE
*pDateOut
)
1416 LCID lcid
= MAKELCID(MAKELANGID(LANG_ENGLISH
, SUBLANG_ENGLISH_US
), SORT_DEFAULT
);
1418 return VarDateFromUdateEx(pUdateIn
, lcid
, dwFlags
, pDateOut
);
1421 /***********************************************************************
1422 * VarUdateFromDate [OLEAUT32.331]
1424 * Convert a variant VT_DATE into an unpacked format date and time.
1427 * datein [I] Variant VT_DATE format date
1428 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1429 * lpUdate [O] Destination for unpacked format date and time
1432 * Success: S_OK. *lpUdate contains the converted value.
1433 * Failure: E_INVALIDARG, if dateIn is too large or small.
1435 HRESULT WINAPI
VarUdateFromDate(DATE dateIn
, ULONG dwFlags
, UDATE
*lpUdate
)
1437 /* Cumulative totals of days per month */
1438 static const USHORT cumulativeDays
[] =
1440 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1442 double datePart
, timePart
;
1445 TRACE("(%g,0x%08x,%p)\n", dateIn
, dwFlags
, lpUdate
);
1447 if (dateIn
<= (DATE_MIN
- 1.0) || dateIn
>= (DATE_MAX
+ 1.0))
1448 return E_INVALIDARG
;
1450 datePart
= dateIn
< 0.0 ? ceil(dateIn
) : floor(dateIn
);
1451 /* Compensate for int truncation (always downwards) */
1452 timePart
= fabs(dateIn
- datePart
) + 0.00000000001;
1453 if (timePart
>= 1.0)
1454 timePart
-= 0.00000000001;
1457 julianDays
= VARIANT_JulianFromDate(dateIn
);
1458 VARIANT_DMYFromJulian(julianDays
, &lpUdate
->st
.wYear
, &lpUdate
->st
.wMonth
,
1461 datePart
= (datePart
+ 1.5) / 7.0;
1462 lpUdate
->st
.wDayOfWeek
= (datePart
- floor(datePart
)) * 7;
1463 if (lpUdate
->st
.wDayOfWeek
== 0)
1464 lpUdate
->st
.wDayOfWeek
= 5;
1465 else if (lpUdate
->st
.wDayOfWeek
== 1)
1466 lpUdate
->st
.wDayOfWeek
= 6;
1468 lpUdate
->st
.wDayOfWeek
-= 2;
1470 if (lpUdate
->st
.wMonth
> 2 && IsLeapYear(lpUdate
->st
.wYear
))
1471 lpUdate
->wDayOfYear
= 1; /* After February, in a leap year */
1473 lpUdate
->wDayOfYear
= 0;
1475 lpUdate
->wDayOfYear
+= cumulativeDays
[lpUdate
->st
.wMonth
];
1476 lpUdate
->wDayOfYear
+= lpUdate
->st
.wDay
;
1480 lpUdate
->st
.wHour
= timePart
;
1481 timePart
-= lpUdate
->st
.wHour
;
1483 lpUdate
->st
.wMinute
= timePart
;
1484 timePart
-= lpUdate
->st
.wMinute
;
1486 lpUdate
->st
.wSecond
= timePart
;
1487 timePart
-= lpUdate
->st
.wSecond
;
1488 lpUdate
->st
.wMilliseconds
= 0;
1491 /* Round the milliseconds, adjusting the time/date forward if needed */
1492 if (lpUdate
->st
.wSecond
< 59)
1493 lpUdate
->st
.wSecond
++;
1496 lpUdate
->st
.wSecond
= 0;
1497 if (lpUdate
->st
.wMinute
< 59)
1498 lpUdate
->st
.wMinute
++;
1501 lpUdate
->st
.wMinute
= 0;
1502 if (lpUdate
->st
.wHour
< 23)
1503 lpUdate
->st
.wHour
++;
1506 lpUdate
->st
.wHour
= 0;
1507 /* Roll over a whole day */
1508 if (++lpUdate
->st
.wDay
> 28)
1509 VARIANT_RollUdate(lpUdate
);
1517 #define GET_NUMBER_TEXT(fld,name) \
1519 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1520 WARN("buffer too small for " #fld "\n"); \
1522 if (buff[0]) lpChars->name = buff[0]; \
1523 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1525 /* Get the valid number characters for an lcid */
1526 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS
*lpChars
, LCID lcid
, DWORD dwFlags
)
1528 static const VARIANT_NUMBER_CHARS defaultChars
= { '-','+','.',',','$',0,'.',',' };
1529 static CRITICAL_SECTION csLastChars
= { NULL
, -1, 0, 0, 0, 0 };
1530 static VARIANT_NUMBER_CHARS lastChars
;
1531 static LCID lastLcid
= -1;
1532 static DWORD lastFlags
= 0;
1533 LCTYPE lctype
= dwFlags
& LOCALE_NOUSEROVERRIDE
;
1536 /* To make caching thread-safe, a critical section is needed */
1537 EnterCriticalSection(&csLastChars
);
1539 /* Asking for default locale entries is very expensive: It is a registry
1540 server call. So cache one locally, as Microsoft does it too */
1541 if(lcid
== lastLcid
&& dwFlags
== lastFlags
)
1543 memcpy(lpChars
, &lastChars
, sizeof(defaultChars
));
1544 LeaveCriticalSection(&csLastChars
);
1548 memcpy(lpChars
, &defaultChars
, sizeof(defaultChars
));
1549 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN
, cNegativeSymbol
);
1550 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN
, cPositiveSymbol
);
1551 GET_NUMBER_TEXT(LOCALE_SDECIMAL
, cDecimalPoint
);
1552 GET_NUMBER_TEXT(LOCALE_STHOUSAND
, cDigitSeparator
);
1553 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP
, cCurrencyDecimalPoint
);
1554 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP
, cCurrencyDigitSeparator
);
1556 /* Local currency symbols are often 2 characters */
1557 lpChars
->cCurrencyLocal2
= '\0';
1558 switch(GetLocaleInfoW(lcid
, lctype
|LOCALE_SCURRENCY
, buff
, sizeof(buff
)/sizeof(WCHAR
)))
1560 case 3: lpChars
->cCurrencyLocal2
= buff
[1]; /* Fall through */
1561 case 2: lpChars
->cCurrencyLocal
= buff
[0];
1563 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1565 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid
, lpChars
->cCurrencyLocal
,
1566 lpChars
->cCurrencyLocal2
, lpChars
->cCurrencyLocal
, lpChars
->cCurrencyLocal2
);
1568 memcpy(&lastChars
, lpChars
, sizeof(defaultChars
));
1570 lastFlags
= dwFlags
;
1571 LeaveCriticalSection(&csLastChars
);
1574 /* Number Parsing States */
1575 #define B_PROCESSING_EXPONENT 0x1
1576 #define B_NEGATIVE_EXPONENT 0x2
1577 #define B_EXPONENT_START 0x4
1578 #define B_INEXACT_ZEROS 0x8
1579 #define B_LEADING_ZERO 0x10
1580 #define B_PROCESSING_HEX 0x20
1581 #define B_PROCESSING_OCT 0x40
1583 /**********************************************************************
1584 * VarParseNumFromStr [OLEAUT32.46]
1586 * Parse a string containing a number into a NUMPARSE structure.
1589 * lpszStr [I] String to parse number from
1590 * lcid [I] Locale Id for the conversion
1591 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1592 * pNumprs [I/O] Destination for parsed number
1593 * rgbDig [O] Destination for digits read in
1596 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1598 * Failure: E_INVALIDARG, if any parameter is invalid.
1599 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1601 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1604 * pNumprs must have the following fields set:
1605 * cDig: Set to the size of rgbDig.
1606 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1610 * - I am unsure if this function should parse non-arabic (e.g. Thai)
1611 * numerals, so this has not been implemented.
1613 HRESULT WINAPI
VarParseNumFromStr(OLECHAR
*lpszStr
, LCID lcid
, ULONG dwFlags
,
1614 NUMPARSE
*pNumprs
, BYTE
*rgbDig
)
1616 VARIANT_NUMBER_CHARS chars
;
1618 DWORD dwState
= B_EXPONENT_START
|B_INEXACT_ZEROS
;
1619 int iMaxDigits
= sizeof(rgbTmp
) / sizeof(BYTE
);
1622 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr
), lcid
, dwFlags
, pNumprs
, rgbDig
);
1624 if (!pNumprs
|| !rgbDig
)
1625 return E_INVALIDARG
;
1627 if (pNumprs
->cDig
< iMaxDigits
)
1628 iMaxDigits
= pNumprs
->cDig
;
1631 pNumprs
->dwOutFlags
= 0;
1632 pNumprs
->cchUsed
= 0;
1633 pNumprs
->nBaseShift
= 0;
1634 pNumprs
->nPwr10
= 0;
1637 return DISP_E_TYPEMISMATCH
;
1639 VARIANT_GetLocalisedNumberChars(&chars
, lcid
, dwFlags
);
1641 /* First consume all the leading symbols and space from the string */
1644 if (pNumprs
->dwInFlags
& NUMPRS_LEADING_WHITE
&& isspaceW(*lpszStr
))
1646 pNumprs
->dwOutFlags
|= NUMPRS_LEADING_WHITE
;
1651 } while (isspaceW(*lpszStr
));
1653 else if (pNumprs
->dwInFlags
& NUMPRS_LEADING_PLUS
&&
1654 *lpszStr
== chars
.cPositiveSymbol
&&
1655 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_PLUS
))
1657 pNumprs
->dwOutFlags
|= NUMPRS_LEADING_PLUS
;
1661 else if (pNumprs
->dwInFlags
& NUMPRS_LEADING_MINUS
&&
1662 *lpszStr
== chars
.cNegativeSymbol
&&
1663 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_MINUS
))
1665 pNumprs
->dwOutFlags
|= (NUMPRS_LEADING_MINUS
|NUMPRS_NEG
);
1669 else if (pNumprs
->dwInFlags
& NUMPRS_CURRENCY
&&
1670 !(pNumprs
->dwOutFlags
& NUMPRS_CURRENCY
) &&
1671 *lpszStr
== chars
.cCurrencyLocal
&&
1672 (!chars
.cCurrencyLocal2
|| lpszStr
[1] == chars
.cCurrencyLocal2
))
1674 pNumprs
->dwOutFlags
|= NUMPRS_CURRENCY
;
1677 /* Only accept currency characters */
1678 chars
.cDecimalPoint
= chars
.cCurrencyDecimalPoint
;
1679 chars
.cDigitSeparator
= chars
.cCurrencyDigitSeparator
;
1681 else if (pNumprs
->dwInFlags
& NUMPRS_PARENS
&& *lpszStr
== '(' &&
1682 !(pNumprs
->dwOutFlags
& NUMPRS_PARENS
))
1684 pNumprs
->dwOutFlags
|= NUMPRS_PARENS
;
1692 if (!(pNumprs
->dwOutFlags
& NUMPRS_CURRENCY
))
1694 /* Only accept non-currency characters */
1695 chars
.cCurrencyDecimalPoint
= chars
.cDecimalPoint
;
1696 chars
.cCurrencyDigitSeparator
= chars
.cDigitSeparator
;
1699 if ((*lpszStr
== '&' && (*(lpszStr
+1) == 'H' || *(lpszStr
+1) == 'h')) &&
1700 pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1702 dwState
|= B_PROCESSING_HEX
;
1703 pNumprs
->dwOutFlags
|= NUMPRS_HEX_OCT
;
1707 else if ((*lpszStr
== '&' && (*(lpszStr
+1) == 'O' || *(lpszStr
+1) == 'o')) &&
1708 pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1710 dwState
|= B_PROCESSING_OCT
;
1711 pNumprs
->dwOutFlags
|= NUMPRS_HEX_OCT
;
1716 /* Strip Leading zeros */
1717 while (*lpszStr
== '0')
1719 dwState
|= B_LEADING_ZERO
;
1726 if (isdigitW(*lpszStr
))
1728 if (dwState
& B_PROCESSING_EXPONENT
)
1730 int exponentSize
= 0;
1731 if (dwState
& B_EXPONENT_START
)
1733 if (!isdigitW(*lpszStr
))
1734 break; /* No exponent digits - invalid */
1735 while (*lpszStr
== '0')
1737 /* Skip leading zero's in the exponent */
1743 while (isdigitW(*lpszStr
))
1746 exponentSize
+= *lpszStr
- '0';
1750 if (dwState
& B_NEGATIVE_EXPONENT
)
1751 exponentSize
= -exponentSize
;
1752 /* Add the exponent into the powers of 10 */
1753 pNumprs
->nPwr10
+= exponentSize
;
1754 dwState
&= ~(B_PROCESSING_EXPONENT
|B_EXPONENT_START
);
1755 lpszStr
--; /* back up to allow processing of next char */
1759 if ((pNumprs
->cDig
>= iMaxDigits
) && !(dwState
& B_PROCESSING_HEX
)
1760 && !(dwState
& B_PROCESSING_OCT
))
1762 pNumprs
->dwOutFlags
|= NUMPRS_INEXACT
;
1764 if (*lpszStr
!= '0')
1765 dwState
&= ~B_INEXACT_ZEROS
; /* Inexact number with non-trailing zeros */
1767 /* This digit can't be represented, but count it in nPwr10 */
1768 if (pNumprs
->dwOutFlags
& NUMPRS_DECIMAL
)
1775 if ((dwState
& B_PROCESSING_OCT
) && ((*lpszStr
== '8') || (*lpszStr
== '9'))) {
1776 return DISP_E_TYPEMISMATCH
;
1779 if (pNumprs
->dwOutFlags
& NUMPRS_DECIMAL
)
1780 pNumprs
->nPwr10
--; /* Count decimal points in nPwr10 */
1782 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- '0';
1788 else if (*lpszStr
== chars
.cDigitSeparator
&& pNumprs
->dwInFlags
& NUMPRS_THOUSANDS
)
1790 pNumprs
->dwOutFlags
|= NUMPRS_THOUSANDS
;
1793 else if (*lpszStr
== chars
.cDecimalPoint
&&
1794 pNumprs
->dwInFlags
& NUMPRS_DECIMAL
&&
1795 !(pNumprs
->dwOutFlags
& (NUMPRS_DECIMAL
|NUMPRS_EXPONENT
)))
1797 pNumprs
->dwOutFlags
|= NUMPRS_DECIMAL
;
1800 /* If we have no digits so far, skip leading zeros */
1803 while (lpszStr
[1] == '0')
1805 dwState
|= B_LEADING_ZERO
;
1812 else if (((*lpszStr
>= 'a' && *lpszStr
<= 'f') ||
1813 (*lpszStr
>= 'A' && *lpszStr
<= 'F')) &&
1814 dwState
& B_PROCESSING_HEX
)
1816 if (pNumprs
->cDig
>= iMaxDigits
)
1818 return DISP_E_OVERFLOW
;
1822 if (*lpszStr
>= 'a')
1823 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- 'a' + 10;
1825 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- 'A' + 10;
1830 else if ((*lpszStr
== 'e' || *lpszStr
== 'E') &&
1831 pNumprs
->dwInFlags
& NUMPRS_EXPONENT
&&
1832 !(pNumprs
->dwOutFlags
& NUMPRS_EXPONENT
))
1834 dwState
|= B_PROCESSING_EXPONENT
;
1835 pNumprs
->dwOutFlags
|= NUMPRS_EXPONENT
;
1838 else if (dwState
& B_PROCESSING_EXPONENT
&& *lpszStr
== chars
.cPositiveSymbol
)
1840 cchUsed
++; /* Ignore positive exponent */
1842 else if (dwState
& B_PROCESSING_EXPONENT
&& *lpszStr
== chars
.cNegativeSymbol
)
1844 dwState
|= B_NEGATIVE_EXPONENT
;
1848 break; /* Stop at an unrecognised character */
1853 if (!pNumprs
->cDig
&& dwState
& B_LEADING_ZERO
)
1855 /* Ensure a 0 on its own gets stored */
1860 if (pNumprs
->dwOutFlags
& NUMPRS_EXPONENT
&& dwState
& B_PROCESSING_EXPONENT
)
1862 pNumprs
->cchUsed
= cchUsed
;
1863 WARN("didn't completely parse exponent\n");
1864 return DISP_E_TYPEMISMATCH
; /* Failed to completely parse the exponent */
1867 if (pNumprs
->dwOutFlags
& NUMPRS_INEXACT
)
1869 if (dwState
& B_INEXACT_ZEROS
)
1870 pNumprs
->dwOutFlags
&= ~NUMPRS_INEXACT
; /* All zeros doesn't set NUMPRS_INEXACT */
1871 } else if(pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1873 /* copy all of the digits into the output digit buffer */
1874 /* this is exactly what windows does although it also returns */
1875 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1876 memcpy(rgbDig
, rgbTmp
, pNumprs
->cDig
* sizeof(BYTE
));
1878 if (dwState
& B_PROCESSING_HEX
) {
1879 /* hex numbers have always the same format */
1881 pNumprs
->nBaseShift
=4;
1883 if (dwState
& B_PROCESSING_OCT
) {
1884 /* oct numbers have always the same format */
1886 pNumprs
->nBaseShift
=3;
1888 while (pNumprs
->cDig
> 1 && !rgbTmp
[pNumprs
->cDig
- 1])
1897 /* Remove trailing zeros from the last (whole number or decimal) part */
1898 while (pNumprs
->cDig
> 1 && !rgbTmp
[pNumprs
->cDig
- 1])
1905 if (pNumprs
->cDig
<= iMaxDigits
)
1906 pNumprs
->dwOutFlags
&= ~NUMPRS_INEXACT
; /* Ignore stripped zeros for NUMPRS_INEXACT */
1908 pNumprs
->cDig
= iMaxDigits
; /* Only return iMaxDigits worth of digits */
1910 /* Copy the digits we processed into rgbDig */
1911 memcpy(rgbDig
, rgbTmp
, pNumprs
->cDig
* sizeof(BYTE
));
1913 /* Consume any trailing symbols and space */
1916 if ((pNumprs
->dwInFlags
& NUMPRS_TRAILING_WHITE
) && isspaceW(*lpszStr
))
1918 pNumprs
->dwOutFlags
|= NUMPRS_TRAILING_WHITE
;
1923 } while (isspaceW(*lpszStr
));
1925 else if (pNumprs
->dwInFlags
& NUMPRS_TRAILING_PLUS
&&
1926 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_PLUS
) &&
1927 *lpszStr
== chars
.cPositiveSymbol
)
1929 pNumprs
->dwOutFlags
|= NUMPRS_TRAILING_PLUS
;
1933 else if (pNumprs
->dwInFlags
& NUMPRS_TRAILING_MINUS
&&
1934 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_MINUS
) &&
1935 *lpszStr
== chars
.cNegativeSymbol
)
1937 pNumprs
->dwOutFlags
|= (NUMPRS_TRAILING_MINUS
|NUMPRS_NEG
);
1941 else if (pNumprs
->dwInFlags
& NUMPRS_PARENS
&& *lpszStr
== ')' &&
1942 pNumprs
->dwOutFlags
& NUMPRS_PARENS
)
1946 pNumprs
->dwOutFlags
|= NUMPRS_NEG
;
1952 if (pNumprs
->dwOutFlags
& NUMPRS_PARENS
&& !(pNumprs
->dwOutFlags
& NUMPRS_NEG
))
1954 pNumprs
->cchUsed
= cchUsed
;
1955 return DISP_E_TYPEMISMATCH
; /* Opening parenthesis not matched */
1958 if (pNumprs
->dwInFlags
& NUMPRS_USE_ALL
&& *lpszStr
!= '\0')
1959 return DISP_E_TYPEMISMATCH
; /* Not all chars were consumed */
1962 return DISP_E_TYPEMISMATCH
; /* No Number found */
1964 pNumprs
->cchUsed
= cchUsed
;
1968 /* VTBIT flags indicating an integer value */
1969 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1970 /* VTBIT flags indicating a real number value */
1971 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1973 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1974 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1975 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1976 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1978 /**********************************************************************
1979 * VarNumFromParseNum [OLEAUT32.47]
1981 * Convert a NUMPARSE structure into a numeric Variant type.
1984 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1985 * rgbDig [I] Source for the numbers digits
1986 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1987 * pVarDst [O] Destination for the converted Variant value.
1990 * Success: S_OK. pVarDst contains the converted value.
1991 * Failure: E_INVALIDARG, if any parameter is invalid.
1992 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1995 * - The smallest favoured type present in dwVtBits that can represent the
1996 * number in pNumprs without losing precision is used.
1997 * - Signed types are preferred over unsigned types of the same size.
1998 * - Preferred types in order are: integer, float, double, currency then decimal.
1999 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
2000 * for details of the rounding method.
2001 * - pVarDst is not cleared before the result is stored in it.
2002 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
2003 * design?): If some other VTBIT's for integers are specified together
2004 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
2005 * the number to the smallest requested integer truncating this way the
2006 * number. Wine doesn't implement this "feature" (yet?).
2008 HRESULT WINAPI
VarNumFromParseNum(NUMPARSE
*pNumprs
, BYTE
*rgbDig
,
2009 ULONG dwVtBits
, VARIANT
*pVarDst
)
2011 /* Scale factors and limits for double arithmetic */
2012 static const double dblMultipliers
[11] = {
2013 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2014 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2016 static const double dblMinimums
[11] = {
2017 R8_MIN
, R8_MIN
*10.0, R8_MIN
*100.0, R8_MIN
*1000.0, R8_MIN
*10000.0,
2018 R8_MIN
*100000.0, R8_MIN
*1000000.0, R8_MIN
*10000000.0,
2019 R8_MIN
*100000000.0, R8_MIN
*1000000000.0, R8_MIN
*10000000000.0
2021 static const double dblMaximums
[11] = {
2022 R8_MAX
, R8_MAX
/10.0, R8_MAX
/100.0, R8_MAX
/1000.0, R8_MAX
/10000.0,
2023 R8_MAX
/100000.0, R8_MAX
/1000000.0, R8_MAX
/10000000.0,
2024 R8_MAX
/100000000.0, R8_MAX
/1000000000.0, R8_MAX
/10000000000.0
2027 int wholeNumberDigits
, fractionalDigits
, divisor10
= 0, multiplier10
= 0;
2029 TRACE("(%p,%p,0x%x,%p)\n", pNumprs
, rgbDig
, dwVtBits
, pVarDst
);
2031 if (pNumprs
->nBaseShift
)
2033 /* nBaseShift indicates a hex or octal number */
2038 /* Convert the hex or octal number string into a UI64 */
2039 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2041 if (ul64
> ((UI8_MAX
>>pNumprs
->nBaseShift
) - rgbDig
[i
]))
2043 TRACE("Overflow multiplying digits\n");
2044 return DISP_E_OVERFLOW
;
2046 ul64
= (ul64
<<pNumprs
->nBaseShift
) + rgbDig
[i
];
2049 /* also make a negative representation */
2052 /* Try signed and unsigned types in size order */
2053 if (dwVtBits
& VTBIT_I1
&& FITS_AS_I1(ul64
))
2055 V_VT(pVarDst
) = VT_I1
;
2056 V_I1(pVarDst
) = ul64
;
2059 else if (dwVtBits
& VTBIT_UI1
&& FITS_AS_I1(ul64
))
2061 V_VT(pVarDst
) = VT_UI1
;
2062 V_UI1(pVarDst
) = ul64
;
2065 else if (dwVtBits
& VTBIT_I2
&& FITS_AS_I2(ul64
))
2067 V_VT(pVarDst
) = VT_I2
;
2068 V_I2(pVarDst
) = ul64
;
2071 else if (dwVtBits
& VTBIT_UI2
&& FITS_AS_I2(ul64
))
2073 V_VT(pVarDst
) = VT_UI2
;
2074 V_UI2(pVarDst
) = ul64
;
2077 else if (dwVtBits
& VTBIT_I4
&& FITS_AS_I4(ul64
))
2079 V_VT(pVarDst
) = VT_I4
;
2080 V_I4(pVarDst
) = ul64
;
2083 else if (dwVtBits
& VTBIT_UI4
&& FITS_AS_I4(ul64
))
2085 V_VT(pVarDst
) = VT_UI4
;
2086 V_UI4(pVarDst
) = ul64
;
2089 else if (dwVtBits
& VTBIT_I8
&& ((ul64
<= I8_MAX
)||(l64
>=I8_MIN
)))
2091 V_VT(pVarDst
) = VT_I8
;
2092 V_I8(pVarDst
) = ul64
;
2095 else if (dwVtBits
& VTBIT_UI8
)
2097 V_VT(pVarDst
) = VT_UI8
;
2098 V_UI8(pVarDst
) = ul64
;
2101 else if ((dwVtBits
& VTBIT_DECIMAL
) == VTBIT_DECIMAL
)
2103 V_VT(pVarDst
) = VT_DECIMAL
;
2104 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_POS
,0);
2105 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2106 DEC_LO64(&V_DECIMAL(pVarDst
)) = ul64
;
2109 else if (dwVtBits
& VTBIT_R4
&& ((ul64
<= I4_MAX
)||(l64
>= I4_MIN
)))
2111 V_VT(pVarDst
) = VT_R4
;
2113 V_R4(pVarDst
) = ul64
;
2115 V_R4(pVarDst
) = l64
;
2118 else if (dwVtBits
& VTBIT_R8
&& ((ul64
<= I4_MAX
)||(l64
>= I4_MIN
)))
2120 V_VT(pVarDst
) = VT_R8
;
2122 V_R8(pVarDst
) = ul64
;
2124 V_R8(pVarDst
) = l64
;
2128 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits
, wine_dbgstr_longlong(ul64
));
2129 return DISP_E_OVERFLOW
;
2132 /* Count the number of relevant fractional and whole digits stored,
2133 * And compute the divisor/multiplier to scale the number by.
2135 if (pNumprs
->nPwr10
< 0)
2137 if (-pNumprs
->nPwr10
>= pNumprs
->cDig
)
2139 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2140 wholeNumberDigits
= 0;
2141 fractionalDigits
= pNumprs
->cDig
;
2142 divisor10
= -pNumprs
->nPwr10
;
2146 /* An exactly represented real number e.g. 1.024 */
2147 wholeNumberDigits
= pNumprs
->cDig
+ pNumprs
->nPwr10
;
2148 fractionalDigits
= pNumprs
->cDig
- wholeNumberDigits
;
2149 divisor10
= pNumprs
->cDig
- wholeNumberDigits
;
2152 else if (pNumprs
->nPwr10
== 0)
2154 /* An exactly represented whole number e.g. 1024 */
2155 wholeNumberDigits
= pNumprs
->cDig
;
2156 fractionalDigits
= 0;
2158 else /* pNumprs->nPwr10 > 0 */
2160 /* A whole number followed by nPwr10 0's e.g. 102400 */
2161 wholeNumberDigits
= pNumprs
->cDig
;
2162 fractionalDigits
= 0;
2163 multiplier10
= pNumprs
->nPwr10
;
2166 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2167 pNumprs
->cDig
, pNumprs
->nPwr10
, wholeNumberDigits
, fractionalDigits
,
2168 multiplier10
, divisor10
);
2170 if (dwVtBits
& (INTEGER_VTBITS
|VTBIT_DECIMAL
) &&
2171 (!fractionalDigits
|| !(dwVtBits
& (REAL_VTBITS
|VTBIT_CY
|VTBIT_DECIMAL
))))
2173 /* We have one or more integer output choices, and either:
2174 * 1) An integer input value, or
2175 * 2) A real number input value but no floating output choices.
2176 * Alternately, we have a DECIMAL output available and an integer input.
2178 * So, place the integer value into pVarDst, using the smallest type
2179 * possible and preferring signed over unsigned types.
2181 BOOL bOverflow
= FALSE
, bNegative
;
2185 /* Convert the integer part of the number into a UI8 */
2186 for (i
= 0; i
< wholeNumberDigits
; i
++)
2188 if (ul64
> UI8_MAX
/ 10 || (ul64
== UI8_MAX
/ 10 && rgbDig
[i
] > UI8_MAX
% 10))
2190 TRACE("Overflow multiplying digits\n");
2194 ul64
= ul64
* 10 + rgbDig
[i
];
2197 /* Account for the scale of the number */
2198 if (!bOverflow
&& multiplier10
)
2200 for (i
= 0; i
< multiplier10
; i
++)
2202 if (ul64
> (UI8_MAX
/ 10))
2204 TRACE("Overflow scaling number\n");
2212 /* If we have any fractional digits, round the value.
2213 * Note we don't have to do this if divisor10 is < 1,
2214 * because this means the fractional part must be < 0.5
2216 if (!bOverflow
&& fractionalDigits
&& divisor10
> 0)
2218 const BYTE
* fracDig
= rgbDig
+ wholeNumberDigits
;
2219 BOOL bAdjust
= FALSE
;
2221 TRACE("first decimal value is %d\n", *fracDig
);
2224 bAdjust
= TRUE
; /* > 0.5 */
2225 else if (*fracDig
== 5)
2227 for (i
= 1; i
< fractionalDigits
; i
++)
2231 bAdjust
= TRUE
; /* > 0.5 */
2235 /* If exactly 0.5, round only odd values */
2236 if (i
== fractionalDigits
&& (ul64
& 1))
2242 if (ul64
== UI8_MAX
)
2244 TRACE("Overflow after rounding\n");
2251 /* Zero is not a negative number */
2252 bNegative
= pNumprs
->dwOutFlags
& NUMPRS_NEG
&& ul64
? TRUE
: FALSE
;
2254 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64
), bNegative
);
2256 /* For negative integers, try the signed types in size order */
2257 if (!bOverflow
&& bNegative
)
2259 if (dwVtBits
& (VTBIT_I1
|VTBIT_I2
|VTBIT_I4
|VTBIT_I8
))
2261 if (dwVtBits
& VTBIT_I1
&& ul64
<= -I1_MIN
)
2263 V_VT(pVarDst
) = VT_I1
;
2264 V_I1(pVarDst
) = -ul64
;
2267 else if (dwVtBits
& VTBIT_I2
&& ul64
<= -I2_MIN
)
2269 V_VT(pVarDst
) = VT_I2
;
2270 V_I2(pVarDst
) = -ul64
;
2273 else if (dwVtBits
& VTBIT_I4
&& ul64
<= -((LONGLONG
)I4_MIN
))
2275 V_VT(pVarDst
) = VT_I4
;
2276 V_I4(pVarDst
) = -ul64
;
2279 else if (dwVtBits
& VTBIT_I8
&& ul64
<= (ULONGLONG
)I8_MAX
+ 1)
2281 V_VT(pVarDst
) = VT_I8
;
2282 V_I8(pVarDst
) = -ul64
;
2285 else if ((dwVtBits
& REAL_VTBITS
) == VTBIT_DECIMAL
)
2287 /* Decimal is only output choice left - fast path */
2288 V_VT(pVarDst
) = VT_DECIMAL
;
2289 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_NEG
,0);
2290 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2291 DEC_LO64(&V_DECIMAL(pVarDst
)) = -ul64
;
2296 else if (!bOverflow
)
2298 /* For positive integers, try signed then unsigned types in size order */
2299 if (dwVtBits
& VTBIT_I1
&& ul64
<= I1_MAX
)
2301 V_VT(pVarDst
) = VT_I1
;
2302 V_I1(pVarDst
) = ul64
;
2305 else if (dwVtBits
& VTBIT_UI1
&& ul64
<= UI1_MAX
)
2307 V_VT(pVarDst
) = VT_UI1
;
2308 V_UI1(pVarDst
) = ul64
;
2311 else if (dwVtBits
& VTBIT_I2
&& ul64
<= I2_MAX
)
2313 V_VT(pVarDst
) = VT_I2
;
2314 V_I2(pVarDst
) = ul64
;
2317 else if (dwVtBits
& VTBIT_UI2
&& ul64
<= UI2_MAX
)
2319 V_VT(pVarDst
) = VT_UI2
;
2320 V_UI2(pVarDst
) = ul64
;
2323 else if (dwVtBits
& VTBIT_I4
&& ul64
<= I4_MAX
)
2325 V_VT(pVarDst
) = VT_I4
;
2326 V_I4(pVarDst
) = ul64
;
2329 else if (dwVtBits
& VTBIT_UI4
&& ul64
<= UI4_MAX
)
2331 V_VT(pVarDst
) = VT_UI4
;
2332 V_UI4(pVarDst
) = ul64
;
2335 else if (dwVtBits
& VTBIT_I8
&& ul64
<= I8_MAX
)
2337 V_VT(pVarDst
) = VT_I8
;
2338 V_I8(pVarDst
) = ul64
;
2341 else if (dwVtBits
& VTBIT_UI8
)
2343 V_VT(pVarDst
) = VT_UI8
;
2344 V_UI8(pVarDst
) = ul64
;
2347 else if ((dwVtBits
& REAL_VTBITS
) == VTBIT_DECIMAL
)
2349 /* Decimal is only output choice left - fast path */
2350 V_VT(pVarDst
) = VT_DECIMAL
;
2351 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_POS
,0);
2352 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2353 DEC_LO64(&V_DECIMAL(pVarDst
)) = ul64
;
2359 if (dwVtBits
& REAL_VTBITS
)
2361 /* Try to put the number into a float or real */
2362 BOOL bOverflow
= FALSE
, bNegative
= pNumprs
->dwOutFlags
& NUMPRS_NEG
;
2366 /* Convert the number into a double */
2367 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2368 whole
= whole
* 10.0 + rgbDig
[i
];
2370 TRACE("Whole double value is %16.16g\n", whole
);
2372 /* Account for the scale */
2373 while (multiplier10
> 10)
2375 if (whole
> dblMaximums
[10])
2377 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
);
2381 whole
= whole
* dblMultipliers
[10];
2384 if (multiplier10
&& !bOverflow
)
2386 if (whole
> dblMaximums
[multiplier10
])
2388 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
);
2392 whole
= whole
* dblMultipliers
[multiplier10
];
2396 TRACE("Scaled double value is %16.16g\n", whole
);
2398 while (divisor10
> 10 && !bOverflow
)
2400 if (whole
< dblMinimums
[10] && whole
!= 0)
2402 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
); /* Underflow */
2406 whole
= whole
/ dblMultipliers
[10];
2409 if (divisor10
&& !bOverflow
)
2411 if (whole
< dblMinimums
[divisor10
] && whole
!= 0)
2413 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
); /* Underflow */
2417 whole
= whole
/ dblMultipliers
[divisor10
];
2420 TRACE("Final double value is %16.16g\n", whole
);
2422 if (dwVtBits
& VTBIT_R4
&&
2423 ((whole
<= R4_MAX
&& whole
>= R4_MIN
) || whole
== 0.0))
2425 TRACE("Set R4 to final value\n");
2426 V_VT(pVarDst
) = VT_R4
; /* Fits into a float */
2427 V_R4(pVarDst
) = pNumprs
->dwOutFlags
& NUMPRS_NEG
? -whole
: whole
;
2431 if (dwVtBits
& VTBIT_R8
)
2433 TRACE("Set R8 to final value\n");
2434 V_VT(pVarDst
) = VT_R8
; /* Fits into a double */
2435 V_R8(pVarDst
) = pNumprs
->dwOutFlags
& NUMPRS_NEG
? -whole
: whole
;
2439 if (dwVtBits
& VTBIT_CY
)
2441 if (SUCCEEDED(VarCyFromR8(bNegative
? -whole
: whole
, &V_CY(pVarDst
))))
2443 V_VT(pVarDst
) = VT_CY
; /* Fits into a currency */
2444 TRACE("Set CY to final value\n");
2447 TRACE("Value Overflows CY\n");
2451 if (dwVtBits
& VTBIT_DECIMAL
)
2456 DECIMAL
* pDec
= &V_DECIMAL(pVarDst
);
2458 DECIMAL_SETZERO(*pDec
);
2461 if (pNumprs
->dwOutFlags
& NUMPRS_NEG
)
2462 DEC_SIGN(pDec
) = DECIMAL_NEG
;
2464 DEC_SIGN(pDec
) = DECIMAL_POS
;
2466 /* Factor the significant digits */
2467 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2469 tmp
= (ULONG64
)DEC_LO32(pDec
) * 10 + rgbDig
[i
];
2470 carry
= (ULONG
)(tmp
>> 32);
2471 DEC_LO32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2472 tmp
= (ULONG64
)DEC_MID32(pDec
) * 10 + carry
;
2473 carry
= (ULONG
)(tmp
>> 32);
2474 DEC_MID32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2475 tmp
= (ULONG64
)DEC_HI32(pDec
) * 10 + carry
;
2476 DEC_HI32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2478 if (tmp
>> 32 & UI4_MAX
)
2480 VarNumFromParseNum_DecOverflow
:
2481 TRACE("Overflow\n");
2482 DEC_LO32(pDec
) = DEC_MID32(pDec
) = DEC_HI32(pDec
) = UI4_MAX
;
2483 return DISP_E_OVERFLOW
;
2487 /* Account for the scale of the number */
2488 while (multiplier10
> 0)
2490 tmp
= (ULONG64
)DEC_LO32(pDec
) * 10;
2491 carry
= (ULONG
)(tmp
>> 32);
2492 DEC_LO32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2493 tmp
= (ULONG64
)DEC_MID32(pDec
) * 10 + carry
;
2494 carry
= (ULONG
)(tmp
>> 32);
2495 DEC_MID32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2496 tmp
= (ULONG64
)DEC_HI32(pDec
) * 10 + carry
;
2497 DEC_HI32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2499 if (tmp
>> 32 & UI4_MAX
)
2500 goto VarNumFromParseNum_DecOverflow
;
2503 DEC_SCALE(pDec
) = divisor10
;
2505 V_VT(pVarDst
) = VT_DECIMAL
;
2508 return DISP_E_OVERFLOW
; /* No more output choices */
2511 /**********************************************************************
2512 * VarCat [OLEAUT32.318]
2514 * Concatenates one variant onto another.
2517 * left [I] First variant
2518 * right [I] Second variant
2519 * result [O] Result variant
2523 * Failure: An HRESULT error code indicating the error.
2525 HRESULT WINAPI
VarCat(LPVARIANT left
, LPVARIANT right
, LPVARIANT out
)
2527 VARTYPE leftvt
,rightvt
,resultvt
;
2529 static WCHAR str_true
[32];
2530 static WCHAR str_false
[32];
2531 static const WCHAR sz_empty
[] = {'\0'};
2532 leftvt
= V_VT(left
);
2533 rightvt
= V_VT(right
);
2535 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
2536 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), out
);
2539 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT
, IDS_FALSE
, str_false
);
2540 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT
, IDS_TRUE
, str_true
);
2543 /* when both left and right are NULL the result is NULL */
2544 if (leftvt
== VT_NULL
&& rightvt
== VT_NULL
)
2546 V_VT(out
) = VT_NULL
;
2551 resultvt
= VT_EMPTY
;
2553 /* There are many special case for errors and return types */
2554 if (leftvt
== VT_VARIANT
&& (rightvt
== VT_ERROR
||
2555 rightvt
== VT_DATE
|| rightvt
== VT_DECIMAL
))
2556 hres
= DISP_E_TYPEMISMATCH
;
2557 else if ((leftvt
== VT_I2
|| leftvt
== VT_I4
||
2558 leftvt
== VT_R4
|| leftvt
== VT_R8
||
2559 leftvt
== VT_CY
|| leftvt
== VT_BOOL
||
2560 leftvt
== VT_BSTR
|| leftvt
== VT_I1
||
2561 leftvt
== VT_UI1
|| leftvt
== VT_UI2
||
2562 leftvt
== VT_UI4
|| leftvt
== VT_I8
||
2563 leftvt
== VT_UI8
|| leftvt
== VT_INT
||
2564 leftvt
== VT_UINT
|| leftvt
== VT_EMPTY
||
2565 leftvt
== VT_NULL
|| leftvt
== VT_DATE
||
2566 leftvt
== VT_DECIMAL
|| leftvt
== VT_DISPATCH
)
2568 (rightvt
== VT_I2
|| rightvt
== VT_I4
||
2569 rightvt
== VT_R4
|| rightvt
== VT_R8
||
2570 rightvt
== VT_CY
|| rightvt
== VT_BOOL
||
2571 rightvt
== VT_BSTR
|| rightvt
== VT_I1
||
2572 rightvt
== VT_UI1
|| rightvt
== VT_UI2
||
2573 rightvt
== VT_UI4
|| rightvt
== VT_I8
||
2574 rightvt
== VT_UI8
|| rightvt
== VT_INT
||
2575 rightvt
== VT_UINT
|| rightvt
== VT_EMPTY
||
2576 rightvt
== VT_NULL
|| rightvt
== VT_DATE
||
2577 rightvt
== VT_DECIMAL
|| rightvt
== VT_DISPATCH
))
2579 else if (rightvt
== VT_ERROR
&& leftvt
< VT_VOID
)
2580 hres
= DISP_E_TYPEMISMATCH
;
2581 else if (leftvt
== VT_ERROR
&& (rightvt
== VT_DATE
||
2582 rightvt
== VT_ERROR
|| rightvt
== VT_DECIMAL
))
2583 hres
= DISP_E_TYPEMISMATCH
;
2584 else if (rightvt
== VT_DATE
|| rightvt
== VT_ERROR
||
2585 rightvt
== VT_DECIMAL
)
2586 hres
= DISP_E_BADVARTYPE
;
2587 else if (leftvt
== VT_ERROR
|| rightvt
== VT_ERROR
)
2588 hres
= DISP_E_TYPEMISMATCH
;
2589 else if (leftvt
== VT_VARIANT
)
2590 hres
= DISP_E_TYPEMISMATCH
;
2591 else if (rightvt
== VT_VARIANT
&& (leftvt
== VT_EMPTY
||
2592 leftvt
== VT_NULL
|| leftvt
== VT_I2
||
2593 leftvt
== VT_I4
|| leftvt
== VT_R4
||
2594 leftvt
== VT_R8
|| leftvt
== VT_CY
||
2595 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
2596 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
2597 leftvt
== VT_I1
|| leftvt
== VT_UI1
||
2598 leftvt
== VT_UI2
|| leftvt
== VT_UI4
||
2599 leftvt
== VT_I8
|| leftvt
== VT_UI8
||
2600 leftvt
== VT_INT
|| leftvt
== VT_UINT
))
2601 hres
= DISP_E_TYPEMISMATCH
;
2603 hres
= DISP_E_BADVARTYPE
;
2605 /* if result type is not S_OK, then no need to go further */
2608 V_VT(out
) = resultvt
;
2611 /* Else proceed with formatting inputs to strings */
2614 VARIANT bstrvar_left
, bstrvar_right
;
2615 V_VT(out
) = VT_BSTR
;
2617 VariantInit(&bstrvar_left
);
2618 VariantInit(&bstrvar_right
);
2620 /* Convert left side variant to string */
2621 if (leftvt
!= VT_BSTR
)
2623 if (leftvt
== VT_BOOL
)
2625 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2626 V_VT(&bstrvar_left
) = VT_BSTR
;
2627 if (V_BOOL(left
) == TRUE
)
2628 V_BSTR(&bstrvar_left
) = SysAllocString(str_true
);
2630 V_BSTR(&bstrvar_left
) = SysAllocString(str_false
);
2632 /* Fill with empty string for later concat with right side */
2633 else if (leftvt
== VT_NULL
)
2635 V_VT(&bstrvar_left
) = VT_BSTR
;
2636 V_BSTR(&bstrvar_left
) = SysAllocString(sz_empty
);
2640 hres
= VariantChangeTypeEx(&bstrvar_left
,left
,0,0,VT_BSTR
);
2642 VariantClear(&bstrvar_left
);
2643 VariantClear(&bstrvar_right
);
2644 if (leftvt
== VT_NULL
&& (rightvt
== VT_EMPTY
||
2645 rightvt
== VT_NULL
|| rightvt
== VT_I2
||
2646 rightvt
== VT_I4
|| rightvt
== VT_R4
||
2647 rightvt
== VT_R8
|| rightvt
== VT_CY
||
2648 rightvt
== VT_DATE
|| rightvt
== VT_BSTR
||
2649 rightvt
== VT_BOOL
|| rightvt
== VT_DECIMAL
||
2650 rightvt
== VT_I1
|| rightvt
== VT_UI1
||
2651 rightvt
== VT_UI2
|| rightvt
== VT_UI4
||
2652 rightvt
== VT_I8
|| rightvt
== VT_UI8
||
2653 rightvt
== VT_INT
|| rightvt
== VT_UINT
))
2654 return DISP_E_BADVARTYPE
;
2660 /* convert right side variant to string */
2661 if (rightvt
!= VT_BSTR
)
2663 if (rightvt
== VT_BOOL
)
2665 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2666 V_VT(&bstrvar_right
) = VT_BSTR
;
2667 if (V_BOOL(right
) == TRUE
)
2668 V_BSTR(&bstrvar_right
) = SysAllocString(str_true
);
2670 V_BSTR(&bstrvar_right
) = SysAllocString(str_false
);
2672 /* Fill with empty string for later concat with right side */
2673 else if (rightvt
== VT_NULL
)
2675 V_VT(&bstrvar_right
) = VT_BSTR
;
2676 V_BSTR(&bstrvar_right
) = SysAllocString(sz_empty
);
2680 hres
= VariantChangeTypeEx(&bstrvar_right
,right
,0,0,VT_BSTR
);
2682 VariantClear(&bstrvar_left
);
2683 VariantClear(&bstrvar_right
);
2684 if (rightvt
== VT_NULL
&& (leftvt
== VT_EMPTY
||
2685 leftvt
== VT_NULL
|| leftvt
== VT_I2
||
2686 leftvt
== VT_I4
|| leftvt
== VT_R4
||
2687 leftvt
== VT_R8
|| leftvt
== VT_CY
||
2688 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
2689 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
2690 leftvt
== VT_I1
|| leftvt
== VT_UI1
||
2691 leftvt
== VT_UI2
|| leftvt
== VT_UI4
||
2692 leftvt
== VT_I8
|| leftvt
== VT_UI8
||
2693 leftvt
== VT_INT
|| leftvt
== VT_UINT
))
2694 return DISP_E_BADVARTYPE
;
2700 /* Concat the resulting strings together */
2701 if (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
)
2702 VarBstrCat (V_BSTR(left
), V_BSTR(right
), &V_BSTR(out
));
2703 else if (leftvt
!= VT_BSTR
&& rightvt
!= VT_BSTR
)
2704 VarBstrCat (V_BSTR(&bstrvar_left
), V_BSTR(&bstrvar_right
), &V_BSTR(out
));
2705 else if (leftvt
!= VT_BSTR
&& rightvt
== VT_BSTR
)
2706 VarBstrCat (V_BSTR(&bstrvar_left
), V_BSTR(right
), &V_BSTR(out
));
2707 else if (leftvt
== VT_BSTR
&& rightvt
!= VT_BSTR
)
2708 VarBstrCat (V_BSTR(left
), V_BSTR(&bstrvar_right
), &V_BSTR(out
));
2710 VariantClear(&bstrvar_left
);
2711 VariantClear(&bstrvar_right
);
2717 /* Wrapper around VariantChangeTypeEx() which permits changing a
2718 variant with VT_RESERVED flag set. Needed by VarCmp. */
2719 static HRESULT
_VarChangeTypeExWrap (VARIANTARG
* pvargDest
,
2720 VARIANTARG
* pvargSrc
, LCID lcid
, USHORT wFlags
, VARTYPE vt
)
2725 flags
= V_VT(pvargSrc
) & ~VT_TYPEMASK
;
2726 V_VT(pvargSrc
) &= ~VT_RESERVED
;
2727 res
= VariantChangeTypeEx(pvargDest
,pvargSrc
,lcid
,wFlags
,vt
);
2728 V_VT(pvargSrc
) |= flags
;
2733 /**********************************************************************
2734 * VarCmp [OLEAUT32.176]
2736 * Compare two variants.
2739 * left [I] First variant
2740 * right [I] Second variant
2741 * lcid [I] LCID (locale identifier) for the comparison
2742 * flags [I] Flags to be used in the comparison:
2743 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2744 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2747 * VARCMP_LT: left variant is less than right variant.
2748 * VARCMP_EQ: input variants are equal.
2749 * VARCMP_GT: left variant is greater than right variant.
2750 * VARCMP_NULL: either one of the input variants is NULL.
2751 * Failure: An HRESULT error code indicating the error.
2754 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2755 * UI8 and UINT as input variants. INT is accepted only as left variant.
2757 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2758 * an ERROR variant will trigger an error.
2760 * Both input variants can have VT_RESERVED flag set which is ignored
2761 * unless one and only one of the variants is a BSTR and the other one
2762 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2763 * different meaning:
2764 * - BSTR and other: BSTR is always greater than the other variant.
2765 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2766 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2767 * comparison will take place else the BSTR is always greater.
2768 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2769 * variant is ignored and the return value depends only on the sign
2770 * of the BSTR if it is a number else the BSTR is always greater. A
2771 * positive BSTR is greater, a negative one is smaller than the other
2775 * VarBstrCmp for the lcid and flags usage.
2777 HRESULT WINAPI
VarCmp(LPVARIANT left
, LPVARIANT right
, LCID lcid
, DWORD flags
)
2779 VARTYPE lvt
, rvt
, vt
;
2784 TRACE("(%p->(%s%s),%p->(%s%s),0x%08x,0x%08x)\n", left
, debugstr_VT(left
),
2785 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), lcid
, flags
);
2787 lvt
= V_VT(left
) & VT_TYPEMASK
;
2788 rvt
= V_VT(right
) & VT_TYPEMASK
;
2789 xmask
= (1 << lvt
) | (1 << rvt
);
2791 /* If we have any flag set except VT_RESERVED bail out.
2792 Same for the left input variant type > VT_INT and for the
2793 right input variant type > VT_I8. Yes, VT_INT is only supported
2794 as left variant. Go figure */
2795 if (((V_VT(left
) | V_VT(right
)) & ~VT_TYPEMASK
& ~VT_RESERVED
) ||
2796 lvt
> VT_INT
|| rvt
> VT_I8
) {
2797 return DISP_E_BADVARTYPE
;
2800 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2801 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2802 if (rvt
== VT_INT
|| xmask
& (VTBIT_I1
| VTBIT_UI2
| VTBIT_UI4
| VTBIT_UI8
|
2803 VTBIT_DISPATCH
| VTBIT_VARIANT
| VTBIT_UNKNOWN
| VTBIT_15
))
2804 return DISP_E_TYPEMISMATCH
;
2806 /* If both variants are VT_ERROR return VARCMP_EQ */
2807 if (xmask
== VTBIT_ERROR
)
2809 else if (xmask
& VTBIT_ERROR
)
2810 return DISP_E_TYPEMISMATCH
;
2812 if (xmask
& VTBIT_NULL
)
2818 /* Two BSTRs, ignore VT_RESERVED */
2819 if (xmask
== VTBIT_BSTR
)
2820 return VarBstrCmp(V_BSTR(left
), V_BSTR(right
), lcid
, flags
);
2822 /* A BSTR and an other variant; we have to take care of VT_RESERVED */
2823 if (xmask
& VTBIT_BSTR
) {
2824 VARIANT
*bstrv
, *nonbv
;
2828 /* Swap the variants so the BSTR is always on the left */
2829 if (lvt
== VT_BSTR
) {
2840 /* BSTR and EMPTY: ignore VT_RESERVED */
2841 if (nonbvt
== VT_EMPTY
)
2842 rc
= (!V_BSTR(bstrv
) || !*V_BSTR(bstrv
)) ? VARCMP_EQ
: VARCMP_GT
;
2844 VARTYPE breserv
= V_VT(bstrv
) & ~VT_TYPEMASK
;
2845 VARTYPE nreserv
= V_VT(nonbv
) & ~VT_TYPEMASK
;
2847 if (!breserv
&& !nreserv
)
2848 /* No VT_RESERVED set ==> BSTR always greater */
2850 else if (breserv
&& !nreserv
) {
2851 /* BSTR has VT_RESERVED set. Do a string comparison */
2852 rc
= VariantChangeTypeEx(&rv
,nonbv
,lcid
,0,VT_BSTR
);
2855 rc
= VarBstrCmp(V_BSTR(bstrv
), V_BSTR(&rv
), lcid
, flags
);
2857 } else if (V_BSTR(bstrv
) && *V_BSTR(bstrv
)) {
2858 /* Non NULL nor empty BSTR */
2859 /* If the BSTR is not a number the BSTR is greater */
2860 rc
= _VarChangeTypeExWrap(&lv
,bstrv
,lcid
,0,VT_R8
);
2863 else if (breserv
&& nreserv
)
2864 /* FIXME: This is strange: with both VT_RESERVED set it
2865 looks like the result depends only on the sign of
2867 rc
= (V_R8(&lv
) >= 0) ? VARCMP_GT
: VARCMP_LT
;
2869 /* Numeric comparison, will be handled below.
2870 VARCMP_NULL used only to break out. */
2875 /* Empty or NULL BSTR */
2878 /* Fixup the return code if we swapped left and right */
2880 if (rc
== VARCMP_GT
)
2882 else if (rc
== VARCMP_LT
)
2885 if (rc
!= VARCMP_NULL
)
2889 if (xmask
& VTBIT_DECIMAL
)
2891 else if (xmask
& VTBIT_BSTR
)
2893 else if (xmask
& VTBIT_R4
)
2895 else if (xmask
& (VTBIT_R8
| VTBIT_DATE
))
2897 else if (xmask
& VTBIT_CY
)
2903 /* Coerce the variants */
2904 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2905 if (rc
== DISP_E_OVERFLOW
&& vt
!= VT_R8
) {
2906 /* Overflow, change to R8 */
2908 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2912 rc
= _VarChangeTypeExWrap(&rv
,right
,lcid
,0,vt
);
2913 if (rc
== DISP_E_OVERFLOW
&& vt
!= VT_R8
) {
2914 /* Overflow, change to R8 */
2916 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2919 rc
= _VarChangeTypeExWrap(&rv
,right
,lcid
,0,vt
);
2924 #define _VARCMP(a,b) \
2925 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2929 return VarCyCmp(V_CY(&lv
), V_CY(&rv
));
2931 return VarDecCmp(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
));
2933 return _VARCMP(V_I8(&lv
), V_I8(&rv
));
2935 return _VARCMP(V_R4(&lv
), V_R4(&rv
));
2937 return _VARCMP(V_R8(&lv
), V_R8(&rv
));
2939 /* We should never get here */
2945 static HRESULT
VARIANT_FetchDispatchValue(LPVARIANT pvDispatch
, LPVARIANT pValue
)
2948 static DISPPARAMS emptyParams
= { NULL
, NULL
, 0, 0 };
2950 if ((V_VT(pvDispatch
) & VT_TYPEMASK
) == VT_DISPATCH
) {
2951 if (NULL
== V_DISPATCH(pvDispatch
)) return DISP_E_TYPEMISMATCH
;
2952 hres
= IDispatch_Invoke(V_DISPATCH(pvDispatch
), DISPID_VALUE
, &IID_NULL
,
2953 LOCALE_USER_DEFAULT
, DISPATCH_PROPERTYGET
, &emptyParams
, pValue
,
2956 hres
= DISP_E_TYPEMISMATCH
;
2961 /**********************************************************************
2962 * VarAnd [OLEAUT32.142]
2964 * Computes the logical AND of two variants.
2967 * left [I] First variant
2968 * right [I] Second variant
2969 * result [O] Result variant
2973 * Failure: An HRESULT error code indicating the error.
2975 HRESULT WINAPI
VarAnd(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
2977 HRESULT hres
= S_OK
;
2978 VARTYPE resvt
= VT_EMPTY
;
2979 VARTYPE leftvt
,rightvt
;
2980 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
2981 VARIANT varLeft
, varRight
;
2982 VARIANT tempLeft
, tempRight
;
2984 VariantInit(&varLeft
);
2985 VariantInit(&varRight
);
2986 VariantInit(&tempLeft
);
2987 VariantInit(&tempRight
);
2989 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
2990 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
2992 /* Handle VT_DISPATCH by storing and taking address of returned value */
2993 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
2995 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
2996 if (FAILED(hres
)) goto VarAnd_Exit
;
2999 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3001 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3002 if (FAILED(hres
)) goto VarAnd_Exit
;
3006 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3007 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3008 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3009 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3011 if (leftExtraFlags
!= rightExtraFlags
)
3013 hres
= DISP_E_BADVARTYPE
;
3016 ExtraFlags
= leftExtraFlags
;
3018 /* Native VarAnd always returns an error when using extra
3019 * flags or if the variant combination is I8 and INT.
3021 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
3022 (leftvt
== VT_INT
&& rightvt
== VT_I8
) ||
3025 hres
= DISP_E_BADVARTYPE
;
3029 /* Determine return type */
3030 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
3032 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
3033 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
3034 leftvt
== VT_INT
|| rightvt
== VT_INT
||
3035 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
3036 leftvt
== VT_R4
|| rightvt
== VT_R4
||
3037 leftvt
== VT_R8
|| rightvt
== VT_R8
||
3038 leftvt
== VT_CY
|| rightvt
== VT_CY
||
3039 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
3040 leftvt
== VT_I1
|| rightvt
== VT_I1
||
3041 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
3042 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
3043 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
3044 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3046 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
||
3047 leftvt
== VT_I2
|| rightvt
== VT_I2
||
3048 leftvt
== VT_EMPTY
|| rightvt
== VT_EMPTY
)
3049 if ((leftvt
== VT_NULL
&& rightvt
== VT_UI1
) ||
3050 (leftvt
== VT_UI1
&& rightvt
== VT_NULL
) ||
3051 (leftvt
== VT_UI1
&& rightvt
== VT_UI1
))
3055 else if (leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3056 (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
))
3058 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
||
3059 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
3063 hres
= DISP_E_BADVARTYPE
;
3067 if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3070 * Special cases for when left variant is VT_NULL
3071 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3073 if (leftvt
== VT_NULL
)
3078 case VT_I1
: if (V_I1(right
)) resvt
= VT_NULL
; break;
3079 case VT_UI1
: if (V_UI1(right
)) resvt
= VT_NULL
; break;
3080 case VT_I2
: if (V_I2(right
)) resvt
= VT_NULL
; break;
3081 case VT_UI2
: if (V_UI2(right
)) resvt
= VT_NULL
; break;
3082 case VT_I4
: if (V_I4(right
)) resvt
= VT_NULL
; break;
3083 case VT_UI4
: if (V_UI4(right
)) resvt
= VT_NULL
; break;
3084 case VT_I8
: if (V_I8(right
)) resvt
= VT_NULL
; break;
3085 case VT_UI8
: if (V_UI8(right
)) resvt
= VT_NULL
; break;
3086 case VT_INT
: if (V_INT(right
)) resvt
= VT_NULL
; break;
3087 case VT_UINT
: if (V_UINT(right
)) resvt
= VT_NULL
; break;
3088 case VT_BOOL
: if (V_BOOL(right
)) resvt
= VT_NULL
; break;
3089 case VT_R4
: if (V_R4(right
)) resvt
= VT_NULL
; break;
3090 case VT_R8
: if (V_R8(right
)) resvt
= VT_NULL
; break;
3092 if(V_CY(right
).int64
)
3096 if (DEC_HI32(&V_DECIMAL(right
)) ||
3097 DEC_LO64(&V_DECIMAL(right
)))
3101 hres
= VarBoolFromStr(V_BSTR(right
),
3102 LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
3106 V_VT(result
) = VT_NULL
;
3109 V_VT(result
) = VT_BOOL
;
3115 V_VT(result
) = resvt
;
3119 hres
= VariantCopy(&varLeft
, left
);
3120 if (FAILED(hres
)) goto VarAnd_Exit
;
3122 hres
= VariantCopy(&varRight
, right
);
3123 if (FAILED(hres
)) goto VarAnd_Exit
;
3125 if (resvt
== VT_I4
&& V_VT(&varLeft
) == VT_UI4
)
3126 V_VT(&varLeft
) = VT_I4
; /* Don't overflow */
3131 if (V_VT(&varLeft
) == VT_BSTR
&&
3132 FAILED(VarR8FromStr(V_BSTR(&varLeft
),
3133 LOCALE_USER_DEFAULT
, 0, &d
)))
3134 hres
= VariantChangeType(&varLeft
,&varLeft
,
3135 VARIANT_LOCALBOOL
, VT_BOOL
);
3136 if (SUCCEEDED(hres
) && V_VT(&varLeft
) != resvt
)
3137 hres
= VariantChangeType(&varLeft
,&varLeft
,0,resvt
);
3138 if (FAILED(hres
)) goto VarAnd_Exit
;
3141 if (resvt
== VT_I4
&& V_VT(&varRight
) == VT_UI4
)
3142 V_VT(&varRight
) = VT_I4
; /* Don't overflow */
3147 if (V_VT(&varRight
) == VT_BSTR
&&
3148 FAILED(VarR8FromStr(V_BSTR(&varRight
),
3149 LOCALE_USER_DEFAULT
, 0, &d
)))
3150 hres
= VariantChangeType(&varRight
, &varRight
,
3151 VARIANT_LOCALBOOL
, VT_BOOL
);
3152 if (SUCCEEDED(hres
) && V_VT(&varRight
) != resvt
)
3153 hres
= VariantChangeType(&varRight
, &varRight
, 0, resvt
);
3154 if (FAILED(hres
)) goto VarAnd_Exit
;
3157 V_VT(result
) = resvt
;
3161 V_I8(result
) = V_I8(&varLeft
) & V_I8(&varRight
);
3164 V_I4(result
) = V_I4(&varLeft
) & V_I4(&varRight
);
3167 V_I2(result
) = V_I2(&varLeft
) & V_I2(&varRight
);
3170 V_UI1(result
) = V_UI1(&varLeft
) & V_UI1(&varRight
);
3173 V_BOOL(result
) = V_BOOL(&varLeft
) & V_BOOL(&varRight
);
3176 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3181 VariantClear(&varLeft
);
3182 VariantClear(&varRight
);
3183 VariantClear(&tempLeft
);
3184 VariantClear(&tempRight
);
3189 /**********************************************************************
3190 * VarAdd [OLEAUT32.141]
3195 * left [I] First variant
3196 * right [I] Second variant
3197 * result [O] Result variant
3201 * Failure: An HRESULT error code indicating the error.
3204 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3205 * UI8, INT and UINT as input variants.
3207 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3211 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3214 HRESULT WINAPI
VarAdd(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3217 VARTYPE lvt
, rvt
, resvt
, tvt
;
3219 VARIANT tempLeft
, tempRight
;
3222 /* Variant priority for coercion. Sorted from lowest to highest.
3223 VT_ERROR shows an invalid input variant type. */
3224 enum coerceprio
{ vt_EMPTY
, vt_UI1
, vt_I2
, vt_I4
, vt_I8
, vt_BSTR
,vt_R4
,
3225 vt_R8
, vt_CY
, vt_DATE
, vt_DECIMAL
, vt_DISPATCH
, vt_NULL
,
3227 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3228 static const VARTYPE prio2vt
[] = { VT_EMPTY
, VT_UI1
, VT_I2
, VT_I4
, VT_I8
, VT_BSTR
, VT_R4
,
3229 VT_R8
, VT_CY
, VT_DATE
, VT_DECIMAL
, VT_DISPATCH
,
3230 VT_NULL
, VT_ERROR
};
3232 /* Mapping for coercion from input variant to priority of result variant. */
3233 static const VARTYPE coerce
[] = {
3234 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3235 vt_EMPTY
, vt_NULL
, vt_I2
, vt_I4
, vt_R4
,
3236 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3237 vt_R8
, vt_CY
, vt_DATE
, vt_BSTR
, vt_DISPATCH
,
3238 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3239 vt_ERROR
, vt_I2
, vt_ERROR
, vt_ERROR
, vt_DECIMAL
,
3240 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3241 vt_ERROR
, vt_ERROR
, vt_UI1
, vt_ERROR
, vt_ERROR
, vt_I8
3244 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3245 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
),
3251 VariantInit(&tempLeft
);
3252 VariantInit(&tempRight
);
3254 /* Handle VT_DISPATCH by storing and taking address of returned value */
3255 if ((V_VT(left
) & VT_TYPEMASK
) != VT_NULL
&& (V_VT(right
) & VT_TYPEMASK
) != VT_NULL
)
3257 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3259 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3260 if (FAILED(hres
)) goto end
;
3263 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3265 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3266 if (FAILED(hres
)) goto end
;
3271 lvt
= V_VT(left
)&VT_TYPEMASK
;
3272 rvt
= V_VT(right
)&VT_TYPEMASK
;
3274 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3275 Same for any input variant type > VT_I8 */
3276 if (V_VT(left
) & ~VT_TYPEMASK
|| V_VT(right
) & ~VT_TYPEMASK
||
3277 lvt
> VT_I8
|| rvt
> VT_I8
) {
3278 hres
= DISP_E_BADVARTYPE
;
3282 /* Determine the variant type to coerce to. */
3283 if (coerce
[lvt
] > coerce
[rvt
]) {
3284 resvt
= prio2vt
[coerce
[lvt
]];
3285 tvt
= prio2vt
[coerce
[rvt
]];
3287 resvt
= prio2vt
[coerce
[rvt
]];
3288 tvt
= prio2vt
[coerce
[lvt
]];
3291 /* Special cases where the result variant type is defined by both
3292 input variants and not only that with the highest priority */
3293 if (resvt
== VT_BSTR
) {
3294 if (tvt
== VT_EMPTY
|| tvt
== VT_BSTR
)
3299 if (resvt
== VT_R4
&& (tvt
== VT_BSTR
|| tvt
== VT_I8
|| tvt
== VT_I4
))
3302 /* For overflow detection use the biggest compatible type for the
3306 hres
= DISP_E_BADVARTYPE
;
3310 V_VT(result
) = VT_NULL
;
3313 FIXME("cannot handle variant type VT_DISPATCH\n");
3314 hres
= DISP_E_TYPEMISMATCH
;
3333 /* Now coerce the variants */
3334 hres
= VariantChangeType(&lv
, left
, 0, tvt
);
3337 hres
= VariantChangeType(&rv
, right
, 0, tvt
);
3343 V_VT(result
) = resvt
;
3346 hres
= VarDecAdd(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
),
3347 &V_DECIMAL(result
));
3350 hres
= VarCyAdd(V_CY(&lv
), V_CY(&rv
), &V_CY(result
));
3353 /* We do not add those, we concatenate them. */
3354 hres
= VarBstrCat(V_BSTR(&lv
), V_BSTR(&rv
), &V_BSTR(result
));
3357 /* Overflow detection */
3358 r8res
= (double)V_I8(&lv
) + (double)V_I8(&rv
);
3359 if (r8res
> (double)I8_MAX
|| r8res
< (double)I8_MIN
) {
3360 V_VT(result
) = VT_R8
;
3361 V_R8(result
) = r8res
;
3365 V_I8(&tv
) = V_I8(&lv
) + V_I8(&rv
);
3370 /* FIXME: overflow detection */
3371 V_R8(&tv
) = V_R8(&lv
) + V_R8(&rv
);
3374 ERR("We shouldn't get here! tvt = %d!\n", tvt
);
3378 if ((hres
= VariantChangeType(result
, &tv
, 0, resvt
)) != S_OK
) {
3379 /* Overflow! Change to the vartype with the next higher priority.
3380 With one exception: I4 ==> R8 even if it would fit in I8 */
3384 resvt
= prio2vt
[coerce
[resvt
] + 1];
3385 hres
= VariantChangeType(result
, &tv
, 0, resvt
);
3388 hres
= VariantCopy(result
, &tv
);
3392 V_VT(result
) = VT_EMPTY
;
3393 V_I4(result
) = 0; /* No V_EMPTY */
3398 VariantClear(&tempLeft
);
3399 VariantClear(&tempRight
);
3400 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
3404 /**********************************************************************
3405 * VarMul [OLEAUT32.156]
3407 * Multiply two variants.
3410 * left [I] First variant
3411 * right [I] Second variant
3412 * result [O] Result variant
3416 * Failure: An HRESULT error code indicating the error.
3419 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3420 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3422 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3426 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3429 HRESULT WINAPI
VarMul(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3432 VARTYPE lvt
, rvt
, resvt
, tvt
;
3434 VARIANT tempLeft
, tempRight
;
3437 /* Variant priority for coercion. Sorted from lowest to highest.
3438 VT_ERROR shows an invalid input variant type. */
3439 enum coerceprio
{ vt_UI1
= 0, vt_I2
, vt_I4
, vt_I8
, vt_CY
, vt_R4
, vt_R8
,
3440 vt_DECIMAL
, vt_NULL
, vt_ERROR
};
3441 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3442 static const VARTYPE prio2vt
[] = { VT_UI1
, VT_I2
, VT_I4
, VT_I8
, VT_CY
, VT_R4
, VT_R8
,
3443 VT_DECIMAL
, VT_NULL
, VT_ERROR
};
3445 /* Mapping for coercion from input variant to priority of result variant. */
3446 static const VARTYPE coerce
[] = {
3447 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3448 vt_UI1
, vt_NULL
, vt_I2
, vt_I4
, vt_R4
,
3449 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3450 vt_R8
, vt_CY
, vt_R8
, vt_R8
, vt_ERROR
,
3451 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3452 vt_ERROR
, vt_I2
, vt_ERROR
, vt_ERROR
, vt_DECIMAL
,
3453 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3454 vt_ERROR
, vt_ERROR
, vt_UI1
, vt_ERROR
, vt_ERROR
, vt_I8
3457 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3458 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
),
3464 VariantInit(&tempLeft
);
3465 VariantInit(&tempRight
);
3467 /* Handle VT_DISPATCH by storing and taking address of returned value */
3468 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3470 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3471 if (FAILED(hres
)) goto end
;
3474 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3476 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3477 if (FAILED(hres
)) goto end
;
3481 lvt
= V_VT(left
)&VT_TYPEMASK
;
3482 rvt
= V_VT(right
)&VT_TYPEMASK
;
3484 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3485 Same for any input variant type > VT_I8 */
3486 if (V_VT(left
) & ~VT_TYPEMASK
|| V_VT(right
) & ~VT_TYPEMASK
||
3487 lvt
> VT_I8
|| rvt
> VT_I8
) {
3488 hres
= DISP_E_BADVARTYPE
;
3492 /* Determine the variant type to coerce to. */
3493 if (coerce
[lvt
] > coerce
[rvt
]) {
3494 resvt
= prio2vt
[coerce
[lvt
]];
3495 tvt
= prio2vt
[coerce
[rvt
]];
3497 resvt
= prio2vt
[coerce
[rvt
]];
3498 tvt
= prio2vt
[coerce
[lvt
]];
3501 /* Special cases where the result variant type is defined by both
3502 input variants and not only that with the highest priority */
3503 if (resvt
== VT_R4
&& (tvt
== VT_CY
|| tvt
== VT_I8
|| tvt
== VT_I4
))
3505 if (lvt
== VT_EMPTY
&& rvt
== VT_EMPTY
)
3508 /* For overflow detection use the biggest compatible type for the
3512 hres
= DISP_E_BADVARTYPE
;
3516 V_VT(result
) = VT_NULL
;
3531 /* Now coerce the variants */
3532 hres
= VariantChangeType(&lv
, left
, 0, tvt
);
3535 hres
= VariantChangeType(&rv
, right
, 0, tvt
);
3542 V_VT(result
) = resvt
;
3545 hres
= VarDecMul(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
),
3546 &V_DECIMAL(result
));
3549 hres
= VarCyMul(V_CY(&lv
), V_CY(&rv
), &V_CY(result
));
3552 /* Overflow detection */
3553 r8res
= (double)V_I8(&lv
) * (double)V_I8(&rv
);
3554 if (r8res
> (double)I8_MAX
|| r8res
< (double)I8_MIN
) {
3555 V_VT(result
) = VT_R8
;
3556 V_R8(result
) = r8res
;
3559 V_I8(&tv
) = V_I8(&lv
) * V_I8(&rv
);
3562 /* FIXME: overflow detection */
3563 V_R8(&tv
) = V_R8(&lv
) * V_R8(&rv
);
3566 ERR("We shouldn't get here! tvt = %d!\n", tvt
);
3570 while ((hres
= VariantChangeType(result
, &tv
, 0, resvt
)) != S_OK
) {
3571 /* Overflow! Change to the vartype with the next higher priority.
3572 With one exception: I4 ==> R8 even if it would fit in I8 */
3576 resvt
= prio2vt
[coerce
[resvt
] + 1];
3579 hres
= VariantCopy(result
, &tv
);
3583 V_VT(result
) = VT_EMPTY
;
3584 V_I4(result
) = 0; /* No V_EMPTY */
3589 VariantClear(&tempLeft
);
3590 VariantClear(&tempRight
);
3591 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
3595 /**********************************************************************
3596 * VarDiv [OLEAUT32.143]
3598 * Divides one variant with another.
3601 * left [I] First variant
3602 * right [I] Second variant
3603 * result [O] Result variant
3607 * Failure: An HRESULT error code indicating the error.
3609 HRESULT WINAPI
VarDiv(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3611 HRESULT hres
= S_OK
;
3612 VARTYPE resvt
= VT_EMPTY
;
3613 VARTYPE leftvt
,rightvt
;
3614 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
3616 VARIANT tempLeft
, tempRight
;
3618 VariantInit(&tempLeft
);
3619 VariantInit(&tempRight
);
3623 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3624 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
3626 /* Handle VT_DISPATCH by storing and taking address of returned value */
3627 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3629 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3630 if (FAILED(hres
)) goto end
;
3633 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3635 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3636 if (FAILED(hres
)) goto end
;
3640 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3641 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3642 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3643 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3645 if (leftExtraFlags
!= rightExtraFlags
)
3647 hres
= DISP_E_BADVARTYPE
;
3650 ExtraFlags
= leftExtraFlags
;
3652 /* Native VarDiv always returns an error when using extra flags */
3653 if (ExtraFlags
!= 0)
3655 hres
= DISP_E_BADVARTYPE
;
3659 /* Determine return type */
3660 if (!(rightvt
== VT_EMPTY
))
3662 if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3664 V_VT(result
) = VT_NULL
;
3668 else if (leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3670 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
||
3671 leftvt
== VT_CY
|| rightvt
== VT_CY
||
3672 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
3673 leftvt
== VT_I4
|| rightvt
== VT_I4
||
3674 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
||
3675 leftvt
== VT_I2
|| rightvt
== VT_I2
||
3676 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3677 leftvt
== VT_R8
|| rightvt
== VT_R8
||
3678 leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
3680 if ((leftvt
== VT_UI1
&& rightvt
== VT_R4
) ||
3681 (leftvt
== VT_R4
&& rightvt
== VT_UI1
))
3683 else if ((leftvt
== VT_R4
&& (rightvt
== VT_BOOL
||
3684 rightvt
== VT_I2
)) || (rightvt
== VT_R4
&&
3685 (leftvt
== VT_BOOL
|| leftvt
== VT_I2
)))
3690 else if (leftvt
== VT_R4
|| rightvt
== VT_R4
)
3693 else if (leftvt
== VT_NULL
&& rightvt
== VT_EMPTY
)
3695 V_VT(result
) = VT_NULL
;
3701 hres
= DISP_E_BADVARTYPE
;
3705 /* coerce to the result type */
3706 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
3707 if (hres
!= S_OK
) goto end
;
3709 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
3710 if (hres
!= S_OK
) goto end
;
3713 V_VT(result
) = resvt
;
3717 if (V_R4(&lv
) == 0.0 && V_R4(&rv
) == 0.0)
3719 hres
= DISP_E_OVERFLOW
;
3720 V_VT(result
) = VT_EMPTY
;
3722 else if (V_R4(&rv
) == 0.0)
3724 hres
= DISP_E_DIVBYZERO
;
3725 V_VT(result
) = VT_EMPTY
;
3728 V_R4(result
) = V_R4(&lv
) / V_R4(&rv
);
3731 if (V_R8(&lv
) == 0.0 && V_R8(&rv
) == 0.0)
3733 hres
= DISP_E_OVERFLOW
;
3734 V_VT(result
) = VT_EMPTY
;
3736 else if (V_R8(&rv
) == 0.0)
3738 hres
= DISP_E_DIVBYZERO
;
3739 V_VT(result
) = VT_EMPTY
;
3742 V_R8(result
) = V_R8(&lv
) / V_R8(&rv
);
3745 hres
= VarDecDiv(&(V_DECIMAL(&lv
)), &(V_DECIMAL(&rv
)), &(V_DECIMAL(result
)));
3752 VariantClear(&tempLeft
);
3753 VariantClear(&tempRight
);
3754 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
3758 /**********************************************************************
3759 * VarSub [OLEAUT32.159]
3761 * Subtract two variants.
3764 * left [I] First variant
3765 * right [I] Second variant
3766 * result [O] Result variant
3770 * Failure: An HRESULT error code indicating the error.
3772 HRESULT WINAPI
VarSub(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3774 HRESULT hres
= S_OK
;
3775 VARTYPE resvt
= VT_EMPTY
;
3776 VARTYPE leftvt
,rightvt
;
3777 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
3779 VARIANT tempLeft
, tempRight
;
3783 VariantInit(&tempLeft
);
3784 VariantInit(&tempRight
);
3786 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3787 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
3789 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
&&
3790 (V_VT(left
)&(~VT_TYPEMASK
)) == 0 &&
3791 (V_VT(right
) & VT_TYPEMASK
) != VT_NULL
)
3793 if (NULL
== V_DISPATCH(left
)) {
3794 if ((V_VT(right
) & VT_TYPEMASK
) >= VT_INT_PTR
)
3795 hres
= DISP_E_BADVARTYPE
;
3796 else if ((V_VT(right
) & VT_TYPEMASK
) >= VT_UI8
&&
3797 (V_VT(right
) & VT_TYPEMASK
) < VT_RECORD
)
3798 hres
= DISP_E_BADVARTYPE
;
3799 else switch (V_VT(right
) & VT_TYPEMASK
)
3807 hres
= DISP_E_BADVARTYPE
;
3809 if (FAILED(hres
)) goto end
;
3811 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3812 if (FAILED(hres
)) goto end
;
3815 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
&&
3816 (V_VT(right
)&(~VT_TYPEMASK
)) == 0 &&
3817 (V_VT(left
) & VT_TYPEMASK
) != VT_NULL
)
3819 if (NULL
== V_DISPATCH(right
))
3821 if ((V_VT(left
) & VT_TYPEMASK
) >= VT_INT_PTR
)
3822 hres
= DISP_E_BADVARTYPE
;
3823 else if ((V_VT(left
) & VT_TYPEMASK
) >= VT_UI8
&&
3824 (V_VT(left
) & VT_TYPEMASK
) < VT_RECORD
)
3825 hres
= DISP_E_BADVARTYPE
;
3826 else switch (V_VT(left
) & VT_TYPEMASK
)
3834 hres
= DISP_E_BADVARTYPE
;
3836 if (FAILED(hres
)) goto end
;
3838 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3839 if (FAILED(hres
)) goto end
;
3843 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3844 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3845 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3846 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3848 if (leftExtraFlags
!= rightExtraFlags
)
3850 hres
= DISP_E_BADVARTYPE
;
3853 ExtraFlags
= leftExtraFlags
;
3855 /* determine return type and return code */
3856 /* All extra flags produce errors */
3857 if (ExtraFlags
== (VT_VECTOR
|VT_BYREF
|VT_RESERVED
) ||
3858 ExtraFlags
== (VT_VECTOR
|VT_RESERVED
) ||
3859 ExtraFlags
== (VT_VECTOR
|VT_BYREF
) ||
3860 ExtraFlags
== (VT_BYREF
|VT_RESERVED
) ||
3861 ExtraFlags
== VT_VECTOR
||
3862 ExtraFlags
== VT_BYREF
||
3863 ExtraFlags
== VT_RESERVED
)
3865 hres
= DISP_E_BADVARTYPE
;
3868 else if (ExtraFlags
>= VT_ARRAY
)
3870 hres
= DISP_E_TYPEMISMATCH
;
3873 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3874 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3875 else if (leftvt
== VT_CLSID
|| rightvt
== VT_CLSID
||
3876 leftvt
== VT_VARIANT
|| rightvt
== VT_VARIANT
||
3877 leftvt
== VT_I1
|| rightvt
== VT_I1
||
3878 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
3879 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
3880 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
3881 leftvt
== VT_INT
|| rightvt
== VT_INT
||
3882 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
3883 leftvt
== VT_UNKNOWN
|| rightvt
== VT_UNKNOWN
||
3884 leftvt
== VT_RECORD
|| rightvt
== VT_RECORD
)
3886 if (leftvt
== VT_RECORD
&& rightvt
== VT_I8
)
3887 hres
= DISP_E_TYPEMISMATCH
;
3888 else if (leftvt
< VT_UI1
&& rightvt
== VT_RECORD
)
3889 hres
= DISP_E_TYPEMISMATCH
;
3890 else if (leftvt
>= VT_UI1
&& rightvt
== VT_RECORD
)
3891 hres
= DISP_E_TYPEMISMATCH
;
3892 else if (leftvt
== VT_RECORD
&& rightvt
<= VT_UI1
)
3893 hres
= DISP_E_TYPEMISMATCH
;
3894 else if (leftvt
== VT_RECORD
&& rightvt
> VT_UI1
)
3895 hres
= DISP_E_BADVARTYPE
;
3897 hres
= DISP_E_BADVARTYPE
;
3900 /* The following flags/types are invalid for left variant */
3901 else if (!((leftvt
<= VT_LPWSTR
|| leftvt
== VT_RECORD
||
3902 leftvt
== VT_CLSID
) && leftvt
!= (VARTYPE
)15 /* undefined vt */ &&
3903 (leftvt
< VT_VOID
|| leftvt
> VT_LPWSTR
)))
3905 hres
= DISP_E_BADVARTYPE
;
3908 /* The following flags/types are invalid for right variant */
3909 else if (!((rightvt
<= VT_LPWSTR
|| rightvt
== VT_RECORD
||
3910 rightvt
== VT_CLSID
) && rightvt
!= (VARTYPE
)15 /* undefined vt */ &&
3911 (rightvt
< VT_VOID
|| rightvt
> VT_LPWSTR
)))
3913 hres
= DISP_E_BADVARTYPE
;
3916 else if ((leftvt
== VT_NULL
&& rightvt
== VT_DISPATCH
) ||
3917 (leftvt
== VT_DISPATCH
&& rightvt
== VT_NULL
))
3919 else if (leftvt
== VT_DISPATCH
|| rightvt
== VT_DISPATCH
||
3920 leftvt
== VT_ERROR
|| rightvt
== VT_ERROR
)
3922 hres
= DISP_E_TYPEMISMATCH
;
3925 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3927 else if ((leftvt
== VT_EMPTY
&& rightvt
== VT_BSTR
) ||
3928 (leftvt
== VT_DATE
&& rightvt
== VT_DATE
) ||
3929 (leftvt
== VT_BSTR
&& rightvt
== VT_EMPTY
) ||
3930 (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
))
3932 else if (leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3934 else if (leftvt
== VT_DATE
|| rightvt
== VT_DATE
)
3936 else if (leftvt
== VT_CY
|| rightvt
== VT_CY
)
3938 else if (leftvt
== VT_R8
|| rightvt
== VT_R8
)
3940 else if (leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
3942 else if (leftvt
== VT_R4
|| rightvt
== VT_R4
)
3944 if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
3945 leftvt
== VT_I8
|| rightvt
== VT_I8
)
3950 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
3952 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
)
3954 else if (leftvt
== VT_I2
|| rightvt
== VT_I2
||
3955 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3956 (leftvt
== VT_EMPTY
&& rightvt
== VT_EMPTY
))
3958 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
3962 hres
= DISP_E_TYPEMISMATCH
;
3966 /* coerce to the result type */
3967 if (leftvt
== VT_BSTR
&& rightvt
== VT_DATE
)
3968 hres
= VariantChangeType(&lv
, left
, 0, VT_R8
);
3970 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
3971 if (hres
!= S_OK
) goto end
;
3972 if (leftvt
== VT_DATE
&& rightvt
== VT_BSTR
)
3973 hres
= VariantChangeType(&rv
, right
, 0, VT_R8
);
3975 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
3976 if (hres
!= S_OK
) goto end
;
3979 V_VT(result
) = resvt
;
3985 V_DATE(result
) = V_DATE(&lv
) - V_DATE(&rv
);
3988 hres
= VarCySub(V_CY(&lv
), V_CY(&rv
), &(V_CY(result
)));
3991 V_R4(result
) = V_R4(&lv
) - V_R4(&rv
);
3994 V_I8(result
) = V_I8(&lv
) - V_I8(&rv
);
3997 V_I4(result
) = V_I4(&lv
) - V_I4(&rv
);
4000 V_I2(result
) = V_I2(&lv
) - V_I2(&rv
);
4003 V_I1(result
) = V_I1(&lv
) - V_I1(&rv
);
4006 V_UI1(result
) = V_UI2(&lv
) - V_UI1(&rv
);
4009 V_R8(result
) = V_R8(&lv
) - V_R8(&rv
);
4012 hres
= VarDecSub(&(V_DECIMAL(&lv
)), &(V_DECIMAL(&rv
)), &(V_DECIMAL(result
)));
4019 VariantClear(&tempLeft
);
4020 VariantClear(&tempRight
);
4021 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
4026 /**********************************************************************
4027 * VarOr [OLEAUT32.157]
4029 * Perform a logical or (OR) operation on two variants.
4032 * pVarLeft [I] First variant
4033 * pVarRight [I] Variant to OR with pVarLeft
4034 * pVarOut [O] Destination for OR result
4037 * Success: S_OK. pVarOut contains the result of the operation with its type
4038 * taken from the table listed under VarXor().
4039 * Failure: An HRESULT error code indicating the error.
4042 * See the Notes section of VarXor() for further information.
4044 HRESULT WINAPI
VarOr(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4047 VARIANT varLeft
, varRight
, varStr
;
4049 VARIANT tempLeft
, tempRight
;
4051 VariantInit(&tempLeft
);
4052 VariantInit(&tempRight
);
4053 VariantInit(&varLeft
);
4054 VariantInit(&varRight
);
4055 VariantInit(&varStr
);
4057 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft
, debugstr_VT(pVarLeft
),
4058 debugstr_VF(pVarLeft
), pVarRight
, debugstr_VT(pVarRight
),
4059 debugstr_VF(pVarRight
), pVarOut
);
4061 /* Handle VT_DISPATCH by storing and taking address of returned value */
4062 if ((V_VT(pVarLeft
) & VT_TYPEMASK
) == VT_DISPATCH
)
4064 hRet
= VARIANT_FetchDispatchValue(pVarLeft
, &tempLeft
);
4065 if (FAILED(hRet
)) goto VarOr_Exit
;
4066 pVarLeft
= &tempLeft
;
4068 if ((V_VT(pVarRight
) & VT_TYPEMASK
) == VT_DISPATCH
)
4070 hRet
= VARIANT_FetchDispatchValue(pVarRight
, &tempRight
);
4071 if (FAILED(hRet
)) goto VarOr_Exit
;
4072 pVarRight
= &tempRight
;
4075 if (V_EXTRA_TYPE(pVarLeft
) || V_EXTRA_TYPE(pVarRight
) ||
4076 V_VT(pVarLeft
) == VT_UNKNOWN
|| V_VT(pVarRight
) == VT_UNKNOWN
||
4077 V_VT(pVarLeft
) == VT_DISPATCH
|| V_VT(pVarRight
) == VT_DISPATCH
||
4078 V_VT(pVarLeft
) == VT_RECORD
|| V_VT(pVarRight
) == VT_RECORD
)
4080 hRet
= DISP_E_BADVARTYPE
;
4084 V_VT(&varLeft
) = V_VT(&varRight
) = V_VT(&varStr
) = VT_EMPTY
;
4086 if (V_VT(pVarLeft
) == VT_NULL
|| V_VT(pVarRight
) == VT_NULL
)
4088 /* NULL OR Zero is NULL, NULL OR value is value */
4089 if (V_VT(pVarLeft
) == VT_NULL
)
4090 pVarLeft
= pVarRight
; /* point to the non-NULL var */
4092 V_VT(pVarOut
) = VT_NULL
;
4095 switch (V_VT(pVarLeft
))
4097 case VT_DATE
: case VT_R8
:
4103 if (V_BOOL(pVarLeft
))
4104 *pVarOut
= *pVarLeft
;
4107 case VT_I2
: case VT_UI2
:
4118 if (V_UI1(pVarLeft
))
4119 *pVarOut
= *pVarLeft
;
4127 case VT_I4
: case VT_UI4
: case VT_INT
: case VT_UINT
:
4133 if (V_CY(pVarLeft
).int64
)
4137 case VT_I8
: case VT_UI8
:
4143 if (DEC_HI32(&V_DECIMAL(pVarLeft
)) || DEC_LO64(&V_DECIMAL(pVarLeft
)))
4151 if (!V_BSTR(pVarLeft
))
4153 hRet
= DISP_E_BADVARTYPE
;
4157 hRet
= VarBoolFromStr(V_BSTR(pVarLeft
), LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
4158 if (SUCCEEDED(hRet
) && b
)
4160 V_VT(pVarOut
) = VT_BOOL
;
4161 V_BOOL(pVarOut
) = b
;
4165 case VT_NULL
: case VT_EMPTY
:
4166 V_VT(pVarOut
) = VT_NULL
;
4170 hRet
= DISP_E_BADVARTYPE
;
4175 if (V_VT(pVarLeft
) == VT_EMPTY
|| V_VT(pVarRight
) == VT_EMPTY
)
4177 if (V_VT(pVarLeft
) == VT_EMPTY
)
4178 pVarLeft
= pVarRight
; /* point to the non-EMPTY var */
4181 /* Since one argument is empty (0), OR'ing it with the other simply
4182 * gives the others value (as 0|x => x). So just convert the other
4183 * argument to the required result type.
4185 switch (V_VT(pVarLeft
))
4188 if (!V_BSTR(pVarLeft
))
4190 hRet
= DISP_E_BADVARTYPE
;
4194 hRet
= VariantCopy(&varStr
, pVarLeft
);
4198 hRet
= VariantChangeType(pVarLeft
, pVarLeft
, 0, VT_BOOL
);
4201 /* Fall Through ... */
4202 case VT_EMPTY
: case VT_UI1
: case VT_BOOL
: case VT_I2
:
4203 V_VT(pVarOut
) = VT_I2
;
4205 case VT_DATE
: case VT_CY
: case VT_DECIMAL
: case VT_R4
: case VT_R8
:
4206 case VT_I1
: case VT_UI2
: case VT_I4
: case VT_UI4
:
4207 case VT_INT
: case VT_UINT
: case VT_UI8
:
4208 V_VT(pVarOut
) = VT_I4
;
4211 V_VT(pVarOut
) = VT_I8
;
4214 hRet
= DISP_E_BADVARTYPE
;
4217 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4220 pVarLeft
= &varLeft
;
4221 hRet
= VariantChangeType(pVarOut
, pVarLeft
, 0, V_VT(pVarOut
));
4225 if (V_VT(pVarLeft
) == VT_BOOL
&& V_VT(pVarRight
) == VT_BOOL
)
4227 V_VT(pVarOut
) = VT_BOOL
;
4228 V_BOOL(pVarOut
) = V_BOOL(pVarLeft
) | V_BOOL(pVarRight
);
4233 if (V_VT(pVarLeft
) == VT_UI1
&& V_VT(pVarRight
) == VT_UI1
)
4235 V_VT(pVarOut
) = VT_UI1
;
4236 V_UI1(pVarOut
) = V_UI1(pVarLeft
) | V_UI1(pVarRight
);
4241 if (V_VT(pVarLeft
) == VT_BSTR
)
4243 hRet
= VariantCopy(&varStr
, pVarLeft
);
4247 hRet
= VariantChangeType(pVarLeft
, pVarLeft
, 0, VT_BOOL
);
4252 if (V_VT(pVarLeft
) == VT_BOOL
&&
4253 (V_VT(pVarRight
) == VT_BOOL
|| V_VT(pVarRight
) == VT_BSTR
))
4257 else if ((V_VT(pVarLeft
) == VT_BOOL
|| V_VT(pVarLeft
) == VT_UI1
||
4258 V_VT(pVarLeft
) == VT_I2
|| V_VT(pVarLeft
) == VT_BSTR
) &&
4259 (V_VT(pVarRight
) == VT_BOOL
|| V_VT(pVarRight
) == VT_UI1
||
4260 V_VT(pVarRight
) == VT_I2
|| V_VT(pVarRight
) == VT_BSTR
))
4264 else if (V_VT(pVarLeft
) == VT_I8
|| V_VT(pVarRight
) == VT_I8
)
4266 if (V_VT(pVarLeft
) == VT_INT
|| V_VT(pVarRight
) == VT_INT
)
4268 hRet
= DISP_E_TYPEMISMATCH
;
4274 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4278 hRet
= VariantCopy(&varRight
, pVarRight
);
4282 if (vt
== VT_I4
&& V_VT(&varLeft
) == VT_UI4
)
4283 V_VT(&varLeft
) = VT_I4
; /* Don't overflow */
4288 if (V_VT(&varLeft
) == VT_BSTR
&&
4289 FAILED(VarR8FromStr(V_BSTR(&varLeft
), LOCALE_USER_DEFAULT
, 0, &d
)))
4290 hRet
= VariantChangeType(&varLeft
, &varLeft
, VARIANT_LOCALBOOL
, VT_BOOL
);
4291 if (SUCCEEDED(hRet
) && V_VT(&varLeft
) != vt
)
4292 hRet
= VariantChangeType(&varLeft
, &varLeft
, 0, vt
);
4297 if (vt
== VT_I4
&& V_VT(&varRight
) == VT_UI4
)
4298 V_VT(&varRight
) = VT_I4
; /* Don't overflow */
4303 if (V_VT(&varRight
) == VT_BSTR
&&
4304 FAILED(VarR8FromStr(V_BSTR(&varRight
), LOCALE_USER_DEFAULT
, 0, &d
)))
4305 hRet
= VariantChangeType(&varRight
, &varRight
, VARIANT_LOCALBOOL
, VT_BOOL
);
4306 if (SUCCEEDED(hRet
) && V_VT(&varRight
) != vt
)
4307 hRet
= VariantChangeType(&varRight
, &varRight
, 0, vt
);
4315 V_I8(pVarOut
) = V_I8(&varLeft
) | V_I8(&varRight
);
4317 else if (vt
== VT_I4
)
4319 V_I4(pVarOut
) = V_I4(&varLeft
) | V_I4(&varRight
);
4323 V_I2(pVarOut
) = V_I2(&varLeft
) | V_I2(&varRight
);
4327 VariantClear(&varStr
);
4328 VariantClear(&varLeft
);
4329 VariantClear(&varRight
);
4330 VariantClear(&tempLeft
);
4331 VariantClear(&tempRight
);
4335 /**********************************************************************
4336 * VarAbs [OLEAUT32.168]
4338 * Convert a variant to its absolute value.
4341 * pVarIn [I] Source variant
4342 * pVarOut [O] Destination for converted value
4345 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4346 * Failure: An HRESULT error code indicating the error.
4349 * - This function does not process by-reference variants.
4350 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4351 * according to the following table:
4352 *| Input Type Output Type
4353 *| ---------- -----------
4356 *| (All others) Unchanged
4358 HRESULT WINAPI
VarAbs(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4361 HRESULT hRet
= S_OK
;
4366 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4367 debugstr_VF(pVarIn
), pVarOut
);
4369 /* Handle VT_DISPATCH by storing and taking address of returned value */
4370 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4372 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4373 if (FAILED(hRet
)) goto VarAbs_Exit
;
4377 if (V_ISARRAY(pVarIn
) || V_VT(pVarIn
) == VT_UNKNOWN
||
4378 V_VT(pVarIn
) == VT_DISPATCH
|| V_VT(pVarIn
) == VT_RECORD
||
4379 V_VT(pVarIn
) == VT_ERROR
)
4381 hRet
= DISP_E_TYPEMISMATCH
;
4384 *pVarOut
= *pVarIn
; /* Shallow copy the value, and invert it if needed */
4386 #define ABS_CASE(typ,min) \
4387 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4388 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4391 switch (V_VT(pVarIn
))
4393 ABS_CASE(I1
,I1_MIN
);
4395 V_VT(pVarOut
) = VT_I2
;
4396 /* BOOL->I2, Fall through ... */
4397 ABS_CASE(I2
,I2_MIN
);
4399 ABS_CASE(I4
,I4_MIN
);
4400 ABS_CASE(I8
,I8_MIN
);
4401 ABS_CASE(R4
,R4_MIN
);
4403 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
4406 V_VT(pVarOut
) = VT_R8
;
4408 /* Fall through ... */
4410 ABS_CASE(R8
,R8_MIN
);
4412 hRet
= VarCyAbs(V_CY(pVarIn
), & V_CY(pVarOut
));
4415 DEC_SIGN(&V_DECIMAL(pVarOut
)) &= ~DECIMAL_NEG
;
4425 V_VT(pVarOut
) = VT_I2
;
4430 hRet
= DISP_E_BADVARTYPE
;
4434 VariantClear(&temp
);
4438 /**********************************************************************
4439 * VarFix [OLEAUT32.169]
4441 * Truncate a variants value to a whole number.
4444 * pVarIn [I] Source variant
4445 * pVarOut [O] Destination for converted value
4448 * Success: S_OK. pVarOut contains the converted value.
4449 * Failure: An HRESULT error code indicating the error.
4452 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4453 * according to the following table:
4454 *| Input Type Output Type
4455 *| ---------- -----------
4459 *| All Others Unchanged
4460 * - The difference between this function and VarInt() is that VarInt() rounds
4461 * negative numbers away from 0, while this function rounds them towards zero.
4463 HRESULT WINAPI
VarFix(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4465 HRESULT hRet
= S_OK
;
4470 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4471 debugstr_VF(pVarIn
), pVarOut
);
4473 /* Handle VT_DISPATCH by storing and taking address of returned value */
4474 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4476 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4477 if (FAILED(hRet
)) goto VarFix_Exit
;
4480 V_VT(pVarOut
) = V_VT(pVarIn
);
4482 switch (V_VT(pVarIn
))
4485 V_UI1(pVarOut
) = V_UI1(pVarIn
);
4488 V_VT(pVarOut
) = VT_I2
;
4491 V_I2(pVarOut
) = V_I2(pVarIn
);
4494 V_I4(pVarOut
) = V_I4(pVarIn
);
4497 V_I8(pVarOut
) = V_I8(pVarIn
);
4500 if (V_R4(pVarIn
) < 0.0f
)
4501 V_R4(pVarOut
) = (float)ceil(V_R4(pVarIn
));
4503 V_R4(pVarOut
) = (float)floor(V_R4(pVarIn
));
4506 V_VT(pVarOut
) = VT_R8
;
4507 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4512 if (V_R8(pVarIn
) < 0.0)
4513 V_R8(pVarOut
) = ceil(V_R8(pVarIn
));
4515 V_R8(pVarOut
) = floor(V_R8(pVarIn
));
4518 hRet
= VarCyFix(V_CY(pVarIn
), &V_CY(pVarOut
));
4521 hRet
= VarDecFix(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4524 V_VT(pVarOut
) = VT_I2
;
4531 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
4532 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
4533 hRet
= DISP_E_BADVARTYPE
;
4535 hRet
= DISP_E_TYPEMISMATCH
;
4539 V_VT(pVarOut
) = VT_EMPTY
;
4540 VariantClear(&temp
);
4545 /**********************************************************************
4546 * VarInt [OLEAUT32.172]
4548 * Truncate a variants value to a whole number.
4551 * pVarIn [I] Source variant
4552 * pVarOut [O] Destination for converted value
4555 * Success: S_OK. pVarOut contains the converted value.
4556 * Failure: An HRESULT error code indicating the error.
4559 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4560 * according to the following table:
4561 *| Input Type Output Type
4562 *| ---------- -----------
4566 *| All Others Unchanged
4567 * - The difference between this function and VarFix() is that VarFix() rounds
4568 * negative numbers towards 0, while this function rounds them away from zero.
4570 HRESULT WINAPI
VarInt(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4572 HRESULT hRet
= S_OK
;
4577 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4578 debugstr_VF(pVarIn
), pVarOut
);
4580 /* Handle VT_DISPATCH by storing and taking address of returned value */
4581 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4583 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4584 if (FAILED(hRet
)) goto VarInt_Exit
;
4587 V_VT(pVarOut
) = V_VT(pVarIn
);
4589 switch (V_VT(pVarIn
))
4592 V_R4(pVarOut
) = (float)floor(V_R4(pVarIn
));
4595 V_VT(pVarOut
) = VT_R8
;
4596 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4601 V_R8(pVarOut
) = floor(V_R8(pVarIn
));
4604 hRet
= VarCyInt(V_CY(pVarIn
), &V_CY(pVarOut
));
4607 hRet
= VarDecInt(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4610 hRet
= VarFix(pVarIn
, pVarOut
);
4613 VariantClear(&temp
);
4618 /**********************************************************************
4619 * VarXor [OLEAUT32.167]
4621 * Perform a logical exclusive-or (XOR) operation on two variants.
4624 * pVarLeft [I] First variant
4625 * pVarRight [I] Variant to XOR with pVarLeft
4626 * pVarOut [O] Destination for XOR result
4629 * Success: S_OK. pVarOut contains the result of the operation with its type
4630 * taken from the table below).
4631 * Failure: An HRESULT error code indicating the error.
4634 * - Neither pVarLeft or pVarRight are modified by this function.
4635 * - This function does not process by-reference variants.
4636 * - Input types of VT_BSTR may be numeric strings or boolean text.
4637 * - The type of result stored in pVarOut depends on the types of pVarLeft
4638 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4639 * or VT_NULL if the function succeeds.
4640 * - Type promotion is inconsistent and as a result certain combinations of
4641 * values will return DISP_E_OVERFLOW even when they could be represented.
4642 * This matches the behaviour of native oleaut32.
4644 HRESULT WINAPI
VarXor(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4647 VARIANT varLeft
, varRight
;
4648 VARIANT tempLeft
, tempRight
;
4652 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft
, debugstr_VT(pVarLeft
),
4653 debugstr_VF(pVarLeft
), pVarRight
, debugstr_VT(pVarRight
),
4654 debugstr_VF(pVarRight
), pVarOut
);
4656 if (V_EXTRA_TYPE(pVarLeft
) || V_EXTRA_TYPE(pVarRight
) ||
4657 V_VT(pVarLeft
) > VT_UINT
|| V_VT(pVarRight
) > VT_UINT
||
4658 V_VT(pVarLeft
) == VT_VARIANT
|| V_VT(pVarRight
) == VT_VARIANT
||
4659 V_VT(pVarLeft
) == VT_UNKNOWN
|| V_VT(pVarRight
) == VT_UNKNOWN
||
4660 V_VT(pVarLeft
) == (VARTYPE
)15 || V_VT(pVarRight
) == (VARTYPE
)15 ||
4661 V_VT(pVarLeft
) == VT_ERROR
|| V_VT(pVarRight
) == VT_ERROR
)
4662 return DISP_E_BADVARTYPE
;
4664 if (V_VT(pVarLeft
) == VT_NULL
|| V_VT(pVarRight
) == VT_NULL
)
4666 /* NULL XOR anything valid is NULL */
4667 V_VT(pVarOut
) = VT_NULL
;
4671 VariantInit(&tempLeft
);
4672 VariantInit(&tempRight
);
4674 /* Handle VT_DISPATCH by storing and taking address of returned value */
4675 if ((V_VT(pVarLeft
) & VT_TYPEMASK
) == VT_DISPATCH
)
4677 hRet
= VARIANT_FetchDispatchValue(pVarLeft
, &tempLeft
);
4678 if (FAILED(hRet
)) goto VarXor_Exit
;
4679 pVarLeft
= &tempLeft
;
4681 if ((V_VT(pVarRight
) & VT_TYPEMASK
) == VT_DISPATCH
)
4683 hRet
= VARIANT_FetchDispatchValue(pVarRight
, &tempRight
);
4684 if (FAILED(hRet
)) goto VarXor_Exit
;
4685 pVarRight
= &tempRight
;
4688 /* Copy our inputs so we don't disturb anything */
4689 V_VT(&varLeft
) = V_VT(&varRight
) = VT_EMPTY
;
4691 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4695 hRet
= VariantCopy(&varRight
, pVarRight
);
4699 /* Try any strings first as numbers, then as VT_BOOL */
4700 if (V_VT(&varLeft
) == VT_BSTR
)
4702 hRet
= VarR8FromStr(V_BSTR(&varLeft
), LOCALE_USER_DEFAULT
, 0, &d
);
4703 hRet
= VariantChangeType(&varLeft
, &varLeft
, VARIANT_LOCALBOOL
,
4704 FAILED(hRet
) ? VT_BOOL
: VT_I4
);
4709 if (V_VT(&varRight
) == VT_BSTR
)
4711 hRet
= VarR8FromStr(V_BSTR(&varRight
), LOCALE_USER_DEFAULT
, 0, &d
);
4712 hRet
= VariantChangeType(&varRight
, &varRight
, VARIANT_LOCALBOOL
,
4713 FAILED(hRet
) ? VT_BOOL
: VT_I4
);
4718 /* Determine the result type */
4719 if (V_VT(&varLeft
) == VT_I8
|| V_VT(&varRight
) == VT_I8
)
4721 if (V_VT(pVarLeft
) == VT_INT
|| V_VT(pVarRight
) == VT_INT
)
4723 hRet
= DISP_E_TYPEMISMATCH
;
4730 switch ((V_VT(&varLeft
) << 16) | V_VT(&varRight
))
4732 case (VT_BOOL
<< 16) | VT_BOOL
:
4735 case (VT_UI1
<< 16) | VT_UI1
:
4738 case (VT_EMPTY
<< 16) | VT_EMPTY
:
4739 case (VT_EMPTY
<< 16) | VT_UI1
:
4740 case (VT_EMPTY
<< 16) | VT_I2
:
4741 case (VT_EMPTY
<< 16) | VT_BOOL
:
4742 case (VT_UI1
<< 16) | VT_EMPTY
:
4743 case (VT_UI1
<< 16) | VT_I2
:
4744 case (VT_UI1
<< 16) | VT_BOOL
:
4745 case (VT_I2
<< 16) | VT_EMPTY
:
4746 case (VT_I2
<< 16) | VT_UI1
:
4747 case (VT_I2
<< 16) | VT_I2
:
4748 case (VT_I2
<< 16) | VT_BOOL
:
4749 case (VT_BOOL
<< 16) | VT_EMPTY
:
4750 case (VT_BOOL
<< 16) | VT_UI1
:
4751 case (VT_BOOL
<< 16) | VT_I2
:
4760 /* VT_UI4 does not overflow */
4763 if (V_VT(&varLeft
) == VT_UI4
)
4764 V_VT(&varLeft
) = VT_I4
;
4765 if (V_VT(&varRight
) == VT_UI4
)
4766 V_VT(&varRight
) = VT_I4
;
4769 /* Convert our input copies to the result type */
4770 if (V_VT(&varLeft
) != vt
)
4771 hRet
= VariantChangeType(&varLeft
, &varLeft
, 0, vt
);
4775 if (V_VT(&varRight
) != vt
)
4776 hRet
= VariantChangeType(&varRight
, &varRight
, 0, vt
);
4782 /* Calculate the result */
4786 V_I8(pVarOut
) = V_I8(&varLeft
) ^ V_I8(&varRight
);
4789 V_I4(pVarOut
) = V_I4(&varLeft
) ^ V_I4(&varRight
);
4793 V_I2(pVarOut
) = V_I2(&varLeft
) ^ V_I2(&varRight
);
4796 V_UI1(pVarOut
) = V_UI1(&varLeft
) ^ V_UI1(&varRight
);
4801 VariantClear(&varLeft
);
4802 VariantClear(&varRight
);
4803 VariantClear(&tempLeft
);
4804 VariantClear(&tempRight
);
4808 /**********************************************************************
4809 * VarEqv [OLEAUT32.172]
4811 * Determine if two variants contain the same value.
4814 * pVarLeft [I] First variant to compare
4815 * pVarRight [I] Variant to compare to pVarLeft
4816 * pVarOut [O] Destination for comparison result
4819 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4820 * if equivalent or non-zero otherwise.
4821 * Failure: An HRESULT error code indicating the error.
4824 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4827 HRESULT WINAPI
VarEqv(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4831 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft
, debugstr_VT(pVarLeft
),
4832 debugstr_VF(pVarLeft
), pVarRight
, debugstr_VT(pVarRight
),
4833 debugstr_VF(pVarRight
), pVarOut
);
4835 hRet
= VarXor(pVarLeft
, pVarRight
, pVarOut
);
4836 if (SUCCEEDED(hRet
))
4838 if (V_VT(pVarOut
) == VT_I8
)
4839 V_I8(pVarOut
) = ~V_I8(pVarOut
);
4841 V_UI4(pVarOut
) = ~V_UI4(pVarOut
);
4846 /**********************************************************************
4847 * VarNeg [OLEAUT32.173]
4849 * Negate the value of a variant.
4852 * pVarIn [I] Source variant
4853 * pVarOut [O] Destination for converted value
4856 * Success: S_OK. pVarOut contains the converted value.
4857 * Failure: An HRESULT error code indicating the error.
4860 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4861 * according to the following table:
4862 *| Input Type Output Type
4863 *| ---------- -----------
4868 *| All Others Unchanged (unless promoted)
4869 * - Where the negated value of a variant does not fit in its base type, the type
4870 * is promoted according to the following table:
4871 *| Input Type Promoted To
4872 *| ---------- -----------
4876 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4877 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4878 * for types which are not valid. Since this is in contravention of the
4879 * meaning of those error codes and unlikely to be relied on by applications,
4880 * this implementation returns errors consistent with the other high level
4881 * variant math functions.
4883 HRESULT WINAPI
VarNeg(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4885 HRESULT hRet
= S_OK
;
4890 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4891 debugstr_VF(pVarIn
), pVarOut
);
4893 /* Handle VT_DISPATCH by storing and taking address of returned value */
4894 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4896 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4897 if (FAILED(hRet
)) goto VarNeg_Exit
;
4900 V_VT(pVarOut
) = V_VT(pVarIn
);
4902 switch (V_VT(pVarIn
))
4905 V_VT(pVarOut
) = VT_I2
;
4906 V_I2(pVarOut
) = -V_UI1(pVarIn
);
4909 V_VT(pVarOut
) = VT_I2
;
4912 if (V_I2(pVarIn
) == I2_MIN
)
4914 V_VT(pVarOut
) = VT_I4
;
4915 V_I4(pVarOut
) = -(int)V_I2(pVarIn
);
4918 V_I2(pVarOut
) = -V_I2(pVarIn
);
4921 if (V_I4(pVarIn
) == I4_MIN
)
4923 V_VT(pVarOut
) = VT_R8
;
4924 V_R8(pVarOut
) = -(double)V_I4(pVarIn
);
4927 V_I4(pVarOut
) = -V_I4(pVarIn
);
4930 if (V_I8(pVarIn
) == I8_MIN
)
4932 V_VT(pVarOut
) = VT_R8
;
4933 hRet
= VarR8FromI8(V_I8(pVarIn
), &V_R8(pVarOut
));
4934 V_R8(pVarOut
) *= -1.0;
4937 V_I8(pVarOut
) = -V_I8(pVarIn
);
4940 V_R4(pVarOut
) = -V_R4(pVarIn
);
4944 V_R8(pVarOut
) = -V_R8(pVarIn
);
4947 hRet
= VarCyNeg(V_CY(pVarIn
), &V_CY(pVarOut
));
4950 hRet
= VarDecNeg(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4953 V_VT(pVarOut
) = VT_R8
;
4954 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4955 V_R8(pVarOut
) = -V_R8(pVarOut
);
4958 V_VT(pVarOut
) = VT_I2
;
4965 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
4966 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
4967 hRet
= DISP_E_BADVARTYPE
;
4969 hRet
= DISP_E_TYPEMISMATCH
;
4973 V_VT(pVarOut
) = VT_EMPTY
;
4974 VariantClear(&temp
);
4979 /**********************************************************************
4980 * VarNot [OLEAUT32.174]
4982 * Perform a not operation on a variant.
4985 * pVarIn [I] Source variant
4986 * pVarOut [O] Destination for converted value
4989 * Success: S_OK. pVarOut contains the converted value.
4990 * Failure: An HRESULT error code indicating the error.
4993 * - Strictly speaking, this function performs a bitwise ones complement
4994 * on the variants value (after possibly converting to VT_I4, see below).
4995 * This only behaves like a boolean not operation if the value in
4996 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4997 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4998 * before calling this function.
4999 * - This function does not process by-reference variants.
5000 * - The type of the value stored in pVarOut depends on the type of pVarIn,
5001 * according to the following table:
5002 *| Input Type Output Type
5003 *| ---------- -----------
5010 *| (All others) Unchanged
5012 HRESULT WINAPI
VarNot(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
5015 HRESULT hRet
= S_OK
;
5020 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
5021 debugstr_VF(pVarIn
), pVarOut
);
5023 /* Handle VT_DISPATCH by storing and taking address of returned value */
5024 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
5026 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
5027 if (FAILED(hRet
)) goto VarNot_Exit
;
5031 V_VT(pVarOut
) = V_VT(pVarIn
);
5033 switch (V_VT(pVarIn
))
5036 V_I4(pVarOut
) = ~V_I1(pVarIn
);
5037 V_VT(pVarOut
) = VT_I4
;
5039 case VT_UI1
: V_UI1(pVarOut
) = ~V_UI1(pVarIn
); break;
5041 case VT_I2
: V_I2(pVarOut
) = ~V_I2(pVarIn
); break;
5043 V_I4(pVarOut
) = ~V_UI2(pVarIn
);
5044 V_VT(pVarOut
) = VT_I4
;
5047 hRet
= VarI4FromDec(&V_DECIMAL(pVarIn
), &V_I4(&varIn
));
5051 /* Fall through ... */
5053 V_VT(pVarOut
) = VT_I4
;
5054 /* Fall through ... */
5055 case VT_I4
: V_I4(pVarOut
) = ~V_I4(pVarIn
); break;
5058 V_I4(pVarOut
) = ~V_UI4(pVarIn
);
5059 V_VT(pVarOut
) = VT_I4
;
5061 case VT_I8
: V_I8(pVarOut
) = ~V_I8(pVarIn
); break;
5063 V_I4(pVarOut
) = ~V_UI8(pVarIn
);
5064 V_VT(pVarOut
) = VT_I4
;
5067 hRet
= VarI4FromR4(V_R4(pVarIn
), &V_I4(pVarOut
));
5068 V_I4(pVarOut
) = ~V_I4(pVarOut
);
5069 V_VT(pVarOut
) = VT_I4
;
5072 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
5076 /* Fall through ... */
5079 hRet
= VarI4FromR8(V_R8(pVarIn
), &V_I4(pVarOut
));
5080 V_I4(pVarOut
) = ~V_I4(pVarOut
);
5081 V_VT(pVarOut
) = VT_I4
;
5084 hRet
= VarI4FromCy(V_CY(pVarIn
), &V_I4(pVarOut
));
5085 V_I4(pVarOut
) = ~V_I4(pVarOut
);
5086 V_VT(pVarOut
) = VT_I4
;
5090 V_VT(pVarOut
) = VT_I2
;
5096 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
5097 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
5098 hRet
= DISP_E_BADVARTYPE
;
5100 hRet
= DISP_E_TYPEMISMATCH
;
5104 V_VT(pVarOut
) = VT_EMPTY
;
5105 VariantClear(&temp
);
5110 /**********************************************************************
5111 * VarRound [OLEAUT32.175]
5113 * Perform a round operation on a variant.
5116 * pVarIn [I] Source variant
5117 * deci [I] Number of decimals to round to
5118 * pVarOut [O] Destination for converted value
5121 * Success: S_OK. pVarOut contains the converted value.
5122 * Failure: An HRESULT error code indicating the error.
5125 * - Floating point values are rounded to the desired number of decimals.
5126 * - Some integer types are just copied to the return variable.
5127 * - Some other integer types are not handled and fail.
5129 HRESULT WINAPI
VarRound(LPVARIANT pVarIn
, int deci
, LPVARIANT pVarOut
)
5132 HRESULT hRet
= S_OK
;
5138 TRACE("(%p->(%s%s),%d)\n", pVarIn
, debugstr_VT(pVarIn
), debugstr_VF(pVarIn
), deci
);
5140 /* Handle VT_DISPATCH by storing and taking address of returned value */
5141 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
5143 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
5144 if (FAILED(hRet
)) goto VarRound_Exit
;
5148 switch (V_VT(pVarIn
))
5150 /* cases that fail on windows */
5155 hRet
= DISP_E_BADVARTYPE
;
5158 /* cases just copying in to out */
5160 V_VT(pVarOut
) = V_VT(pVarIn
);
5161 V_UI1(pVarOut
) = V_UI1(pVarIn
);
5164 V_VT(pVarOut
) = V_VT(pVarIn
);
5165 V_I2(pVarOut
) = V_I2(pVarIn
);
5168 V_VT(pVarOut
) = V_VT(pVarIn
);
5169 V_I4(pVarOut
) = V_I4(pVarIn
);
5172 V_VT(pVarOut
) = V_VT(pVarIn
);
5173 /* value unchanged */
5176 /* cases that change type */
5178 V_VT(pVarOut
) = VT_I2
;
5182 V_VT(pVarOut
) = VT_I2
;
5183 V_I2(pVarOut
) = V_BOOL(pVarIn
);
5186 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
5191 /* Fall through ... */
5193 /* cases we need to do math */
5195 if (V_R8(pVarIn
)>0) {
5196 V_R8(pVarOut
)=floor(V_R8(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5198 V_R8(pVarOut
)=ceil(V_R8(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5200 V_VT(pVarOut
) = V_VT(pVarIn
);
5203 if (V_R4(pVarIn
)>0) {
5204 V_R4(pVarOut
)=floor(V_R4(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5206 V_R4(pVarOut
)=ceil(V_R4(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5208 V_VT(pVarOut
) = V_VT(pVarIn
);
5211 if (V_DATE(pVarIn
)>0) {
5212 V_DATE(pVarOut
)=floor(V_DATE(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5214 V_DATE(pVarOut
)=ceil(V_DATE(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5216 V_VT(pVarOut
) = V_VT(pVarIn
);
5222 factor
=pow(10, 4-deci
);
5224 if (V_CY(pVarIn
).int64
>0) {
5225 V_CY(pVarOut
).int64
=floor(V_CY(pVarIn
).int64
/factor
)*factor
;
5227 V_CY(pVarOut
).int64
=ceil(V_CY(pVarIn
).int64
/factor
)*factor
;
5229 V_VT(pVarOut
) = V_VT(pVarIn
);
5232 /* cases we don't know yet */
5234 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5235 V_VT(pVarIn
) & VT_TYPEMASK
, deci
);
5236 hRet
= DISP_E_BADVARTYPE
;
5240 V_VT(pVarOut
) = VT_EMPTY
;
5241 VariantClear(&temp
);
5243 TRACE("returning 0x%08x (%s%s),%f\n", hRet
, debugstr_VT(pVarOut
),
5244 debugstr_VF(pVarOut
), (V_VT(pVarOut
) == VT_R4
) ? V_R4(pVarOut
) :
5245 (V_VT(pVarOut
) == VT_R8
) ? V_R8(pVarOut
) : 0);
5250 /**********************************************************************
5251 * VarIdiv [OLEAUT32.153]
5253 * Converts input variants to integers and divides them.
5256 * left [I] Left hand variant
5257 * right [I] Right hand variant
5258 * result [O] Destination for quotient
5261 * Success: S_OK. result contains the quotient.
5262 * Failure: An HRESULT error code indicating the error.
5265 * If either expression is null, null is returned, as per MSDN
5267 HRESULT WINAPI
VarIdiv(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5269 HRESULT hres
= S_OK
;
5270 VARTYPE resvt
= VT_EMPTY
;
5271 VARTYPE leftvt
,rightvt
;
5272 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5274 VARIANT tempLeft
, tempRight
;
5276 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
5277 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5281 VariantInit(&tempLeft
);
5282 VariantInit(&tempRight
);
5284 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5285 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5286 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5287 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5289 if (leftExtraFlags
!= rightExtraFlags
)
5291 hres
= DISP_E_BADVARTYPE
;
5294 ExtraFlags
= leftExtraFlags
;
5296 /* Native VarIdiv always returns an error when using extra
5297 * flags or if the variant combination is I8 and INT.
5299 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
5300 (leftvt
== VT_INT
&& rightvt
== VT_I8
) ||
5301 (rightvt
== VT_EMPTY
&& leftvt
!= VT_NULL
) ||
5304 hres
= DISP_E_BADVARTYPE
;
5308 /* Determine variant type */
5309 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
5311 V_VT(result
) = VT_NULL
;
5315 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
5317 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
5318 leftvt
== VT_INT
|| rightvt
== VT_INT
||
5319 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
5320 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
5321 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
5322 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
5323 leftvt
== VT_I1
|| rightvt
== VT_I1
||
5324 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
||
5325 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
5326 leftvt
== VT_CY
|| rightvt
== VT_CY
||
5327 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
||
5328 leftvt
== VT_R8
|| rightvt
== VT_R8
||
5329 leftvt
== VT_R4
|| rightvt
== VT_R4
)
5331 else if (leftvt
== VT_I2
|| rightvt
== VT_I2
||
5332 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
5335 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
5339 hres
= DISP_E_BADVARTYPE
;
5343 /* coerce to the result type */
5344 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
5345 if (hres
!= S_OK
) goto end
;
5346 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
5347 if (hres
!= S_OK
) goto end
;
5350 V_VT(result
) = resvt
;
5354 if (V_UI1(&rv
) == 0)
5356 hres
= DISP_E_DIVBYZERO
;
5357 V_VT(result
) = VT_EMPTY
;
5360 V_UI1(result
) = V_UI1(&lv
) / V_UI1(&rv
);
5365 hres
= DISP_E_DIVBYZERO
;
5366 V_VT(result
) = VT_EMPTY
;
5369 V_I2(result
) = V_I2(&lv
) / V_I2(&rv
);
5374 hres
= DISP_E_DIVBYZERO
;
5375 V_VT(result
) = VT_EMPTY
;
5378 V_I4(result
) = V_I4(&lv
) / V_I4(&rv
);
5383 hres
= DISP_E_DIVBYZERO
;
5384 V_VT(result
) = VT_EMPTY
;
5387 V_I8(result
) = V_I8(&lv
) / V_I8(&rv
);
5390 FIXME("Couldn't integer divide variant types %d,%d\n",
5397 VariantClear(&tempLeft
);
5398 VariantClear(&tempRight
);
5404 /**********************************************************************
5405 * VarMod [OLEAUT32.155]
5407 * Perform the modulus operation of the right hand variant on the left
5410 * left [I] Left hand variant
5411 * right [I] Right hand variant
5412 * result [O] Destination for converted value
5415 * Success: S_OK. result contains the remainder.
5416 * Failure: An HRESULT error code indicating the error.
5419 * If an error occurs the type of result will be modified but the value will not be.
5420 * Doesn't support arrays or any special flags yet.
5422 HRESULT WINAPI
VarMod(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5425 HRESULT rc
= E_FAIL
;
5428 VARIANT tempLeft
, tempRight
;
5430 VariantInit(&tempLeft
);
5431 VariantInit(&tempRight
);
5435 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
5436 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5438 /* Handle VT_DISPATCH by storing and taking address of returned value */
5439 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5441 rc
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5442 if (FAILED(rc
)) goto end
;
5445 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5447 rc
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5448 if (FAILED(rc
)) goto end
;
5452 /* check for invalid inputs */
5454 switch (V_VT(left
) & VT_TYPEMASK
) {
5476 V_VT(result
) = VT_EMPTY
;
5477 rc
= DISP_E_TYPEMISMATCH
;
5480 rc
= DISP_E_TYPEMISMATCH
;
5483 V_VT(result
) = VT_EMPTY
;
5484 rc
= DISP_E_TYPEMISMATCH
;
5489 V_VT(result
) = VT_EMPTY
;
5490 rc
= DISP_E_BADVARTYPE
;
5495 switch (V_VT(right
) & VT_TYPEMASK
) {
5501 if((V_VT(left
) == VT_INT
) && (V_VT(right
) == VT_I8
))
5503 V_VT(result
) = VT_EMPTY
;
5504 rc
= DISP_E_TYPEMISMATCH
;
5508 if((V_VT(right
) == VT_INT
) && (V_VT(left
) == VT_I8
))
5510 V_VT(result
) = VT_EMPTY
;
5511 rc
= DISP_E_TYPEMISMATCH
;
5522 if(V_VT(left
) == VT_EMPTY
)
5524 V_VT(result
) = VT_I4
;
5531 if(V_VT(left
) == VT_ERROR
)
5533 V_VT(result
) = VT_EMPTY
;
5534 rc
= DISP_E_TYPEMISMATCH
;
5538 if(V_VT(left
) == VT_NULL
)
5540 V_VT(result
) = VT_NULL
;
5547 V_VT(result
) = VT_EMPTY
;
5548 rc
= DISP_E_BADVARTYPE
;
5551 if(V_VT(left
) == VT_VOID
)
5553 V_VT(result
) = VT_EMPTY
;
5554 rc
= DISP_E_BADVARTYPE
;
5555 } else if((V_VT(left
) == VT_NULL
) || (V_VT(left
) == VT_EMPTY
) || (V_VT(left
) == VT_ERROR
) ||
5558 V_VT(result
) = VT_NULL
;
5562 V_VT(result
) = VT_NULL
;
5563 rc
= DISP_E_BADVARTYPE
;
5568 V_VT(result
) = VT_EMPTY
;
5569 rc
= DISP_E_TYPEMISMATCH
;
5572 rc
= DISP_E_TYPEMISMATCH
;
5575 if((V_VT(left
) == 15) || ((V_VT(left
) >= 24) && (V_VT(left
) <= 35)) || !lOk
)
5577 V_VT(result
) = VT_EMPTY
;
5578 rc
= DISP_E_BADVARTYPE
;
5581 V_VT(result
) = VT_EMPTY
;
5582 rc
= DISP_E_TYPEMISMATCH
;
5586 V_VT(result
) = VT_EMPTY
;
5587 rc
= DISP_E_BADVARTYPE
;
5591 /* determine the result type */
5592 if((V_VT(left
) == VT_I8
) || (V_VT(right
) == VT_I8
)) resT
= VT_I8
;
5593 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5594 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_UI1
)) resT
= VT_UI1
;
5595 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5596 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5597 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_UI1
)) resT
= VT_I2
;
5598 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5599 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5600 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_UI1
)) resT
= VT_I2
;
5601 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5602 else resT
= VT_I4
; /* most outputs are I4 */
5604 /* convert to I8 for the modulo */
5605 rc
= VariantChangeType(&lv
, left
, 0, VT_I8
);
5608 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left
), VT_I8
, rc
);
5612 rc
= VariantChangeType(&rv
, right
, 0, VT_I8
);
5615 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right
), VT_I8
, rc
);
5619 /* if right is zero set VT_EMPTY and return divide by zero */
5622 V_VT(result
) = VT_EMPTY
;
5623 rc
= DISP_E_DIVBYZERO
;
5627 /* perform the modulo operation */
5628 V_VT(result
) = VT_I8
;
5629 V_I8(result
) = V_I8(&lv
) % V_I8(&rv
);
5631 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5632 wine_dbgstr_longlong(V_I8(&lv
)), wine_dbgstr_longlong(V_I8(&rv
)),
5633 wine_dbgstr_longlong(V_I8(result
)));
5635 /* convert left and right to the destination type */
5636 rc
= VariantChangeType(result
, result
, 0, resT
);
5639 FIXME("Could not convert 0x%x to %d?\n", V_VT(result
), resT
);
5640 /* fall to end of function */
5646 VariantClear(&tempLeft
);
5647 VariantClear(&tempRight
);
5651 /**********************************************************************
5652 * VarPow [OLEAUT32.158]
5654 * Computes the power of one variant to another variant.
5657 * left [I] First variant
5658 * right [I] Second variant
5659 * result [O] Result variant
5663 * Failure: An HRESULT error code indicating the error.
5665 HRESULT WINAPI
VarPow(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5669 VARTYPE resvt
= VT_EMPTY
;
5670 VARTYPE leftvt
,rightvt
;
5671 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5672 VARIANT tempLeft
, tempRight
;
5674 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
), debugstr_VF(left
),
5675 right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5679 VariantInit(&tempLeft
);
5680 VariantInit(&tempRight
);
5682 /* Handle VT_DISPATCH by storing and taking address of returned value */
5683 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5685 hr
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5686 if (FAILED(hr
)) goto end
;
5689 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5691 hr
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5692 if (FAILED(hr
)) goto end
;
5696 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5697 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5698 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5699 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5701 if (leftExtraFlags
!= rightExtraFlags
)
5703 hr
= DISP_E_BADVARTYPE
;
5706 ExtraFlags
= leftExtraFlags
;
5708 /* Native VarPow always returns an error when using extra flags */
5709 if (ExtraFlags
!= 0)
5711 hr
= DISP_E_BADVARTYPE
;
5715 /* Determine return type */
5716 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
) {
5717 V_VT(result
) = VT_NULL
;
5721 else if ((leftvt
== VT_EMPTY
|| leftvt
== VT_I2
||
5722 leftvt
== VT_I4
|| leftvt
== VT_R4
||
5723 leftvt
== VT_R8
|| leftvt
== VT_CY
||
5724 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
5725 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
5726 (leftvt
>= VT_I1
&& leftvt
<= VT_UINT
)) &&
5727 (rightvt
== VT_EMPTY
|| rightvt
== VT_I2
||
5728 rightvt
== VT_I4
|| rightvt
== VT_R4
||
5729 rightvt
== VT_R8
|| rightvt
== VT_CY
||
5730 rightvt
== VT_DATE
|| rightvt
== VT_BSTR
||
5731 rightvt
== VT_BOOL
|| rightvt
== VT_DECIMAL
||
5732 (rightvt
>= VT_I1
&& rightvt
<= VT_UINT
)))
5736 hr
= DISP_E_BADVARTYPE
;
5740 hr
= VariantChangeType(&dl
,left
,0,resvt
);
5742 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5747 hr
= VariantChangeType(&dr
,right
,0,resvt
);
5749 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5754 V_VT(result
) = VT_R8
;
5755 V_R8(result
) = pow(V_R8(&dl
),V_R8(&dr
));
5760 VariantClear(&tempLeft
);
5761 VariantClear(&tempRight
);
5766 /**********************************************************************
5767 * VarImp [OLEAUT32.154]
5769 * Bitwise implication of two variants.
5772 * left [I] First variant
5773 * right [I] Second variant
5774 * result [O] Result variant
5778 * Failure: An HRESULT error code indicating the error.
5780 HRESULT WINAPI
VarImp(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5782 HRESULT hres
= S_OK
;
5783 VARTYPE resvt
= VT_EMPTY
;
5784 VARTYPE leftvt
,rightvt
;
5785 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5788 VARIANT tempLeft
, tempRight
;
5792 VariantInit(&tempLeft
);
5793 VariantInit(&tempRight
);
5795 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
5796 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5798 /* Handle VT_DISPATCH by storing and taking address of returned value */
5799 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5801 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5802 if (FAILED(hres
)) goto VarImp_Exit
;
5805 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5807 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5808 if (FAILED(hres
)) goto VarImp_Exit
;
5812 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5813 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5814 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5815 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5817 if (leftExtraFlags
!= rightExtraFlags
)
5819 hres
= DISP_E_BADVARTYPE
;
5822 ExtraFlags
= leftExtraFlags
;
5824 /* Native VarImp always returns an error when using extra
5825 * flags or if the variants are I8 and INT.
5827 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
5830 hres
= DISP_E_BADVARTYPE
;
5834 /* Determine result type */
5835 else if ((leftvt
== VT_NULL
&& rightvt
== VT_NULL
) ||
5836 (leftvt
== VT_NULL
&& rightvt
== VT_EMPTY
))
5838 V_VT(result
) = VT_NULL
;
5842 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
5844 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
5845 leftvt
== VT_INT
|| rightvt
== VT_INT
||
5846 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
5847 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
5848 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
5849 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
5850 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
||
5851 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
5852 leftvt
== VT_CY
|| rightvt
== VT_CY
||
5853 leftvt
== VT_R8
|| rightvt
== VT_R8
||
5854 leftvt
== VT_R4
|| rightvt
== VT_R4
||
5855 leftvt
== VT_I1
|| rightvt
== VT_I1
)
5857 else if ((leftvt
== VT_UI1
&& rightvt
== VT_UI1
) ||
5858 (leftvt
== VT_UI1
&& rightvt
== VT_NULL
) ||
5859 (leftvt
== VT_NULL
&& rightvt
== VT_UI1
))
5861 else if (leftvt
== VT_EMPTY
|| rightvt
== VT_EMPTY
||
5862 leftvt
== VT_I2
|| rightvt
== VT_I2
||
5863 leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
5865 else if (leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
5866 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
5869 /* VT_NULL requires special handling for when the opposite
5870 * variant is equal to something other than -1.
5871 * (NULL Imp 0 = NULL, NULL Imp n = n)
5873 if (leftvt
== VT_NULL
)
5878 case VT_I1
: if (!V_I1(right
)) resvt
= VT_NULL
; break;
5879 case VT_UI1
: if (!V_UI1(right
)) resvt
= VT_NULL
; break;
5880 case VT_I2
: if (!V_I2(right
)) resvt
= VT_NULL
; break;
5881 case VT_UI2
: if (!V_UI2(right
)) resvt
= VT_NULL
; break;
5882 case VT_I4
: if (!V_I4(right
)) resvt
= VT_NULL
; break;
5883 case VT_UI4
: if (!V_UI4(right
)) resvt
= VT_NULL
; break;
5884 case VT_I8
: if (!V_I8(right
)) resvt
= VT_NULL
; break;
5885 case VT_UI8
: if (!V_UI8(right
)) resvt
= VT_NULL
; break;
5886 case VT_INT
: if (!V_INT(right
)) resvt
= VT_NULL
; break;
5887 case VT_UINT
: if (!V_UINT(right
)) resvt
= VT_NULL
; break;
5888 case VT_BOOL
: if (!V_BOOL(right
)) resvt
= VT_NULL
; break;
5889 case VT_R4
: if (!V_R4(right
)) resvt
= VT_NULL
; break;
5890 case VT_R8
: if (!V_R8(right
)) resvt
= VT_NULL
; break;
5891 case VT_DATE
: if (!V_DATE(right
)) resvt
= VT_NULL
; break;
5892 case VT_CY
: if (!V_CY(right
).int64
) resvt
= VT_NULL
; break;
5894 if (!(DEC_HI32(&V_DECIMAL(right
)) || DEC_LO64(&V_DECIMAL(right
))))
5898 hres
= VarBoolFromStr(V_BSTR(right
),LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
5899 if (FAILED(hres
)) goto VarImp_Exit
;
5901 V_VT(result
) = VT_NULL
;
5904 V_VT(result
) = VT_BOOL
;
5909 if (resvt
== VT_NULL
)
5911 V_VT(result
) = resvt
;
5916 hres
= VariantChangeType(result
,right
,0,resvt
);
5921 /* Special handling is required when NULL is the right variant.
5922 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5924 else if (rightvt
== VT_NULL
)
5929 case VT_I1
: if (V_I1(left
) == -1) resvt
= VT_NULL
; break;
5930 case VT_UI1
: if (V_UI1(left
) == 0xff) resvt
= VT_NULL
; break;
5931 case VT_I2
: if (V_I2(left
) == -1) resvt
= VT_NULL
; break;
5932 case VT_UI2
: if (V_UI2(left
) == 0xffff) resvt
= VT_NULL
; break;
5933 case VT_INT
: if (V_INT(left
) == -1) resvt
= VT_NULL
; break;
5934 case VT_UINT
: if (V_UINT(left
) == ~0u) resvt
= VT_NULL
; break;
5935 case VT_I4
: if (V_I4(left
) == -1) resvt
= VT_NULL
; break;
5936 case VT_UI4
: if (V_UI4(left
) == ~0u) resvt
= VT_NULL
; break;
5937 case VT_I8
: if (V_I8(left
) == -1) resvt
= VT_NULL
; break;
5938 case VT_UI8
: if (V_UI8(left
) == ~(ULONGLONG
)0) resvt
= VT_NULL
; break;
5939 case VT_BOOL
: if (V_BOOL(left
) == VARIANT_TRUE
) resvt
= VT_NULL
; break;
5940 case VT_R4
: if (V_R4(left
) == -1.0) resvt
= VT_NULL
; break;
5941 case VT_R8
: if (V_R8(left
) == -1.0) resvt
= VT_NULL
; break;
5942 case VT_CY
: if (V_CY(left
).int64
== -1) resvt
= VT_NULL
; break;
5944 if (DEC_HI32(&V_DECIMAL(left
)) == 0xffffffff)
5948 hres
= VarBoolFromStr(V_BSTR(left
),LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
5949 if (FAILED(hres
)) goto VarImp_Exit
;
5950 else if (b
== VARIANT_TRUE
)
5953 if (resvt
== VT_NULL
)
5955 V_VT(result
) = resvt
;
5960 hres
= VariantCopy(&lv
, left
);
5961 if (FAILED(hres
)) goto VarImp_Exit
;
5963 if (rightvt
== VT_NULL
)
5965 memset( &rv
, 0, sizeof(rv
) );
5970 hres
= VariantCopy(&rv
, right
);
5971 if (FAILED(hres
)) goto VarImp_Exit
;
5974 if (V_VT(&lv
) == VT_BSTR
&&
5975 FAILED(VarR8FromStr(V_BSTR(&lv
),LOCALE_USER_DEFAULT
, 0, &d
)))
5976 hres
= VariantChangeType(&lv
,&lv
,VARIANT_LOCALBOOL
, VT_BOOL
);
5977 if (SUCCEEDED(hres
) && V_VT(&lv
) != resvt
)
5978 hres
= VariantChangeType(&lv
,&lv
,0,resvt
);
5979 if (FAILED(hres
)) goto VarImp_Exit
;
5981 if (V_VT(&rv
) == VT_BSTR
&&
5982 FAILED(VarR8FromStr(V_BSTR(&rv
),LOCALE_USER_DEFAULT
, 0, &d
)))
5983 hres
= VariantChangeType(&rv
, &rv
,VARIANT_LOCALBOOL
, VT_BOOL
);
5984 if (SUCCEEDED(hres
) && V_VT(&rv
) != resvt
)
5985 hres
= VariantChangeType(&rv
, &rv
, 0, resvt
);
5986 if (FAILED(hres
)) goto VarImp_Exit
;
5989 V_VT(result
) = resvt
;
5993 V_I8(result
) = (~V_I8(&lv
)) | V_I8(&rv
);
5996 V_I4(result
) = (~V_I4(&lv
)) | V_I4(&rv
);
5999 V_I2(result
) = (~V_I2(&lv
)) | V_I2(&rv
);
6002 V_UI1(result
) = (~V_UI1(&lv
)) | V_UI1(&rv
);
6005 V_BOOL(result
) = (~V_BOOL(&lv
)) | V_BOOL(&rv
);
6008 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
6016 VariantClear(&tempLeft
);
6017 VariantClear(&tempRight
);