1 /* Unit test suite for Rtl* API functions
3 * Copyright 2003 Thomas Mertes
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
20 * We use function pointers here as there is no import library for NTDLL on
26 #include "ntdll_test.h"
29 #ifndef __WINE_WINTERNL_H
31 typedef struct _RTL_HANDLE
33 struct _RTL_HANDLE
* Next
;
36 typedef struct _RTL_HANDLE_TABLE
49 /* avoid #include <winsock2.h> */
51 #ifdef WORDS_BIGENDIAN
52 #define htons(s) ((USHORT)(s))
53 #else /* WORDS_BIGENDIAN */
54 static inline USHORT
__my_ushort_swap(USHORT s
)
56 return (s
>> 8) | (s
<< 8);
58 #define htons(s) __my_ushort_swap(s)
59 #endif /* WORDS_BIGENDIAN */
63 /* Function ptrs for ntdll calls */
64 static HMODULE hntdll
= 0;
65 static SIZE_T (WINAPI
*pRtlCompareMemory
)(LPCVOID
,LPCVOID
,SIZE_T
);
66 static SIZE_T (WINAPI
*pRtlCompareMemoryUlong
)(PULONG
, SIZE_T
, ULONG
);
67 static NTSTATUS (WINAPI
*pRtlDeleteTimer
)(HANDLE
, HANDLE
, HANDLE
);
68 static VOID (WINAPI
*pRtlMoveMemory
)(LPVOID
,LPCVOID
,SIZE_T
);
69 static VOID (WINAPI
*pRtlFillMemory
)(LPVOID
,SIZE_T
,BYTE
);
70 static VOID (WINAPI
*pRtlFillMemoryUlong
)(LPVOID
,SIZE_T
,ULONG
);
71 static VOID (WINAPI
*pRtlZeroMemory
)(LPVOID
,SIZE_T
);
72 static ULONGLONG (WINAPIV
*pRtlUlonglongByteSwap
)(ULONGLONG source
);
73 static ULONG (WINAPI
*pRtlUniform
)(PULONG
);
74 static ULONG (WINAPI
*pRtlRandom
)(PULONG
);
75 static BOOLEAN (WINAPI
*pRtlAreAllAccessesGranted
)(ACCESS_MASK
, ACCESS_MASK
);
76 static BOOLEAN (WINAPI
*pRtlAreAnyAccessesGranted
)(ACCESS_MASK
, ACCESS_MASK
);
77 static DWORD (WINAPI
*pRtlComputeCrc32
)(DWORD
,const BYTE
*,INT
);
78 static void (WINAPI
* pRtlInitializeHandleTable
)(ULONG
, ULONG
, RTL_HANDLE_TABLE
*);
79 static BOOLEAN (WINAPI
* pRtlIsValidIndexHandle
)(const RTL_HANDLE_TABLE
*, ULONG
, RTL_HANDLE
**);
80 static NTSTATUS (WINAPI
* pRtlDestroyHandleTable
)(RTL_HANDLE_TABLE
*);
81 static RTL_HANDLE
* (WINAPI
* pRtlAllocateHandle
)(RTL_HANDLE_TABLE
*, ULONG
*);
82 static BOOLEAN (WINAPI
* pRtlFreeHandle
)(RTL_HANDLE_TABLE
*, RTL_HANDLE
*);
83 static NTSTATUS (WINAPI
*pRtlAllocateAndInitializeSid
)(PSID_IDENTIFIER_AUTHORITY
,BYTE
,DWORD
,DWORD
,DWORD
,DWORD
,DWORD
,DWORD
,DWORD
,DWORD
,PSID
*);
84 static NTSTATUS (WINAPI
*pRtlFreeSid
)(PSID
);
85 static struct _TEB
* (WINAPI
*pNtCurrentTeb
)(void);
86 static DWORD (WINAPI
*pRtlGetThreadErrorMode
)(void);
87 static NTSTATUS (WINAPI
*pRtlSetThreadErrorMode
)(DWORD
, LPDWORD
);
88 static IMAGE_BASE_RELOCATION
*(WINAPI
*pLdrProcessRelocationBlock
)(void*,UINT
,USHORT
*,INT_PTR
);
89 static CHAR
* (WINAPI
*pRtlIpv4AddressToStringA
)(const IN_ADDR
*, LPSTR
);
90 static NTSTATUS (WINAPI
*pRtlIpv4AddressToStringExA
)(const IN_ADDR
*, USHORT
, LPSTR
, PULONG
);
91 static NTSTATUS (WINAPI
*pRtlIpv4StringToAddressA
)(PCSTR
, BOOLEAN
, PCSTR
*, IN_ADDR
*);
93 static HMODULE hkernel32
= 0;
94 static BOOL (WINAPI
*pIsWow64Process
)(HANDLE
, PBOOL
);
98 static const char* src_src
= "This is a test!"; /* 16 bytes long, incl NUL */
99 static ULONG src_aligned_block
[4];
100 static ULONG dest_aligned_block
[32];
101 static const char *src
= (const char*)src_aligned_block
;
102 static char* dest
= (char*)dest_aligned_block
;
104 static void InitFunctionPtrs(void)
106 hntdll
= LoadLibraryA("ntdll.dll");
107 ok(hntdll
!= 0, "LoadLibrary failed\n");
109 pRtlCompareMemory
= (void *)GetProcAddress(hntdll
, "RtlCompareMemory");
110 pRtlCompareMemoryUlong
= (void *)GetProcAddress(hntdll
, "RtlCompareMemoryUlong");
111 pRtlDeleteTimer
= (void *)GetProcAddress(hntdll
, "RtlDeleteTimer");
112 pRtlMoveMemory
= (void *)GetProcAddress(hntdll
, "RtlMoveMemory");
113 pRtlFillMemory
= (void *)GetProcAddress(hntdll
, "RtlFillMemory");
114 pRtlFillMemoryUlong
= (void *)GetProcAddress(hntdll
, "RtlFillMemoryUlong");
115 pRtlZeroMemory
= (void *)GetProcAddress(hntdll
, "RtlZeroMemory");
116 pRtlUlonglongByteSwap
= (void *)GetProcAddress(hntdll
, "RtlUlonglongByteSwap");
117 pRtlUniform
= (void *)GetProcAddress(hntdll
, "RtlUniform");
118 pRtlRandom
= (void *)GetProcAddress(hntdll
, "RtlRandom");
119 pRtlAreAllAccessesGranted
= (void *)GetProcAddress(hntdll
, "RtlAreAllAccessesGranted");
120 pRtlAreAnyAccessesGranted
= (void *)GetProcAddress(hntdll
, "RtlAreAnyAccessesGranted");
121 pRtlComputeCrc32
= (void *)GetProcAddress(hntdll
, "RtlComputeCrc32");
122 pRtlInitializeHandleTable
= (void *)GetProcAddress(hntdll
, "RtlInitializeHandleTable");
123 pRtlIsValidIndexHandle
= (void *)GetProcAddress(hntdll
, "RtlIsValidIndexHandle");
124 pRtlDestroyHandleTable
= (void *)GetProcAddress(hntdll
, "RtlDestroyHandleTable");
125 pRtlAllocateHandle
= (void *)GetProcAddress(hntdll
, "RtlAllocateHandle");
126 pRtlFreeHandle
= (void *)GetProcAddress(hntdll
, "RtlFreeHandle");
127 pRtlAllocateAndInitializeSid
= (void *)GetProcAddress(hntdll
, "RtlAllocateAndInitializeSid");
128 pRtlFreeSid
= (void *)GetProcAddress(hntdll
, "RtlFreeSid");
129 pNtCurrentTeb
= (void *)GetProcAddress(hntdll
, "NtCurrentTeb");
130 pRtlGetThreadErrorMode
= (void *)GetProcAddress(hntdll
, "RtlGetThreadErrorMode");
131 pRtlSetThreadErrorMode
= (void *)GetProcAddress(hntdll
, "RtlSetThreadErrorMode");
132 pLdrProcessRelocationBlock
= (void *)GetProcAddress(hntdll
, "LdrProcessRelocationBlock");
133 pRtlIpv4AddressToStringA
= (void *)GetProcAddress(hntdll
, "RtlIpv4AddressToStringA");
134 pRtlIpv4AddressToStringExA
= (void *)GetProcAddress(hntdll
, "RtlIpv4AddressToStringExA");
135 pRtlIpv4StringToAddressA
= (void *)GetProcAddress(hntdll
, "RtlIpv4StringToAddressA");
137 hkernel32
= LoadLibraryA("kernel32.dll");
138 ok(hkernel32
!= 0, "LoadLibrary failed\n");
140 pIsWow64Process
= (void *)GetProcAddress(hkernel32
, "IsWow64Process");
142 strcpy((char*)src_aligned_block
, src_src
);
143 ok(strlen(src
) == 15, "Source must be 16 bytes long!\n");
146 #define COMP(str1,str2,cmplen,len) size = pRtlCompareMemory(str1, str2, cmplen); \
147 ok(size == len, "Expected %ld, got %ld\n", size, (SIZE_T)len)
149 static void test_RtlCompareMemory(void)
153 if (!pRtlCompareMemory
)
155 win_skip("RtlCompareMemory is not available\n");
162 COMP(src
,src
,LEN
,LEN
);
164 COMP(src
,dest
,LEN
,0);
167 static void test_RtlCompareMemoryUlong(void)
172 if (!pRtlCompareMemoryUlong
)
174 win_skip("RtlCompareMemoryUlong is not available\n");
182 result
= pRtlCompareMemoryUlong(a
, 0, 0x0123);
183 ok(result
== 0, "RtlCompareMemoryUlong(%p, 0, 0x0123) returns %u, expected 0\n", a
, result
);
184 result
= pRtlCompareMemoryUlong(a
, 3, 0x0123);
185 ok(result
== 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %u, expected 0\n", a
, result
);
186 result
= pRtlCompareMemoryUlong(a
, 4, 0x0123);
187 ok(result
== 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %u, expected 4\n", a
, result
);
188 result
= pRtlCompareMemoryUlong(a
, 5, 0x0123);
189 ok(result
== 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %u, expected 4\n", a
, result
);
190 result
= pRtlCompareMemoryUlong(a
, 7, 0x0123);
191 ok(result
== 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %u, expected 4\n", a
, result
);
192 result
= pRtlCompareMemoryUlong(a
, 8, 0x0123);
193 ok(result
== 4, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %u, expected 4\n", a
, result
);
194 result
= pRtlCompareMemoryUlong(a
, 9, 0x0123);
195 ok(result
== 4, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %u, expected 4\n", a
, result
);
196 result
= pRtlCompareMemoryUlong(a
, 4, 0x0127);
197 ok(result
== 0, "RtlCompareMemoryUlong(%p, 4, 0x0127) returns %u, expected 0\n", a
, result
);
198 result
= pRtlCompareMemoryUlong(a
, 4, 0x7123);
199 ok(result
== 0, "RtlCompareMemoryUlong(%p, 4, 0x7123) returns %u, expected 0\n", a
, result
);
200 result
= pRtlCompareMemoryUlong(a
, 16, 0x4567);
201 ok(result
== 0, "RtlCompareMemoryUlong(%p, 16, 0x4567) returns %u, expected 0\n", a
, result
);
204 result
= pRtlCompareMemoryUlong(a
, 3, 0x0123);
205 ok(result
== 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %u, expected 0\n", a
, result
);
206 result
= pRtlCompareMemoryUlong(a
, 4, 0x0123);
207 ok(result
== 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %u, expected 4\n", a
, result
);
208 result
= pRtlCompareMemoryUlong(a
, 5, 0x0123);
209 ok(result
== 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %u, expected 4\n", a
, result
);
210 result
= pRtlCompareMemoryUlong(a
, 7, 0x0123);
211 ok(result
== 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %u, expected 4\n", a
, result
);
212 result
= pRtlCompareMemoryUlong(a
, 8, 0x0123);
213 ok(result
== 8, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %u, expected 8\n", a
, result
);
214 result
= pRtlCompareMemoryUlong(a
, 9, 0x0123);
215 ok(result
== 8, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %u, expected 8\n", a
, result
);
218 #define COPY(len) memset(dest,0,sizeof(dest_aligned_block)); pRtlMoveMemory(dest, src, len)
219 #define CMP(str) ok(strcmp(dest,str) == 0, "Expected '%s', got '%s'\n", str, dest)
221 static void test_RtlMoveMemory(void)
225 win_skip("RtlMoveMemory is not available\n");
229 /* Length should be in bytes and not rounded. Use strcmp to ensure we
230 * didn't write past the end (it checks for the final NUL left by memset)
236 COPY(4); CMP("This");
237 COPY(5); CMP("This ");
238 COPY(6); CMP("This i");
239 COPY(7); CMP("This is");
240 COPY(8); CMP("This is ");
241 COPY(9); CMP("This is a");
244 strcpy(dest
, src
); pRtlMoveMemory(dest
, dest
+ 1, strlen(src
) - 1);
245 CMP("his is a test!!");
246 strcpy(dest
, src
); pRtlMoveMemory(dest
+ 1, dest
, strlen(src
));
247 CMP("TThis is a test!");
250 #define FILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemory(dest,len,'x')
252 static void test_RtlFillMemory(void)
256 win_skip("RtlFillMemory is not available\n");
260 /* Length should be in bytes and not rounded. Use strcmp to ensure we
261 * didn't write past the end (the remainder of the string should match)
263 FILL(0); CMP("This is a test!");
264 FILL(1); CMP("xhis is a test!");
265 FILL(2); CMP("xxis is a test!");
266 FILL(3); CMP("xxxs is a test!");
267 FILL(4); CMP("xxxx is a test!");
268 FILL(5); CMP("xxxxxis a test!");
269 FILL(6); CMP("xxxxxxs a test!");
270 FILL(7); CMP("xxxxxxx a test!");
271 FILL(8); CMP("xxxxxxxxa test!");
272 FILL(9); CMP("xxxxxxxxx test!");
275 #define LFILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemoryUlong(dest,len,val)
277 static void test_RtlFillMemoryUlong(void)
279 ULONG val
= ('x' << 24) | ('x' << 16) | ('x' << 8) | 'x';
280 if (!pRtlFillMemoryUlong
)
282 win_skip("RtlFillMemoryUlong is not available\n");
286 /* Length should be in bytes and not rounded. Use strcmp to ensure we
287 * didn't write past the end (the remainder of the string should match)
289 LFILL(0); CMP("This is a test!");
290 LFILL(1); CMP("This is a test!");
291 LFILL(2); CMP("This is a test!");
292 LFILL(3); CMP("This is a test!");
293 LFILL(4); CMP("xxxx is a test!");
294 LFILL(5); CMP("xxxx is a test!");
295 LFILL(6); CMP("xxxx is a test!");
296 LFILL(7); CMP("xxxx is a test!");
297 LFILL(8); CMP("xxxxxxxxa test!");
298 LFILL(9); CMP("xxxxxxxxa test!");
301 #define ZERO(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlZeroMemory(dest,len)
302 #define MCMP(str) ok(memcmp(dest,str,LEN) == 0, "Memcmp failed\n")
304 static void test_RtlZeroMemory(void)
308 win_skip("RtlZeroMemory is not available\n");
312 /* Length should be in bytes and not rounded. */
313 ZERO(0); MCMP("This is a test!");
314 ZERO(1); MCMP("\0his is a test!");
315 ZERO(2); MCMP("\0\0is is a test!");
316 ZERO(3); MCMP("\0\0\0s is a test!");
317 ZERO(4); MCMP("\0\0\0\0 is a test!");
318 ZERO(5); MCMP("\0\0\0\0\0is a test!");
319 ZERO(6); MCMP("\0\0\0\0\0\0s a test!");
320 ZERO(7); MCMP("\0\0\0\0\0\0\0 a test!");
321 ZERO(8); MCMP("\0\0\0\0\0\0\0\0a test!");
322 ZERO(9); MCMP("\0\0\0\0\0\0\0\0\0 test!");
325 static void test_RtlUlonglongByteSwap(void)
329 if ( !pRtlUlonglongByteSwap
)
331 win_skip("RtlUlonglongByteSwap is not available\n");
335 if ( pRtlUlonglongByteSwap( 0 ) != 0 )
337 win_skip("Broken RtlUlonglongByteSwap in win2k\n");
341 result
= pRtlUlonglongByteSwap( ((ULONGLONG
)0x76543210 << 32) | 0x87654321 );
342 ok( (((ULONGLONG
)0x21436587 << 32) | 0x10325476) == result
,
343 "RtlUlonglongByteSwap(0x7654321087654321) returns 0x%x%08x, expected 0x2143658710325476\n",
344 (DWORD
)(result
>> 32), (DWORD
)result
);
348 static void test_RtlUniform(void)
358 win_skip("RtlUniform is not available\n");
363 * According to the documentation RtlUniform is using D.H. Lehmer's 1948
364 * algorithm. This algorithm is:
366 * seed = (seed * const_1 + const_2) % const_3;
368 * According to the documentation the random number is distributed over
369 * [0..MAXLONG]. Therefore const_3 is MAXLONG + 1:
371 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
373 * Because MAXLONG is 0x7fffffff (and MAXLONG + 1 is 0x80000000) the
374 * algorithm can be expressed without division as:
376 * seed = (seed * const_1 + const_2) & MAXLONG;
378 * To find out const_2 we just call RtlUniform with seed set to 0:
381 expected
= 0x7fffffc3;
382 result
= pRtlUniform(&seed
);
383 ok(result
== expected
,
384 "RtlUniform(&seed (seed == 0)) returns %x, expected %x\n",
387 * The algorithm is now:
389 * seed = (seed * const_1 + 0x7fffffc3) & MAXLONG;
391 * To find out const_1 we can use:
393 * const_1 = RtlUniform(1) - 0x7fffffc3;
395 * If that does not work a search loop can try all possible values of
396 * const_1 and compare to the result to RtlUniform(1).
397 * This way we find out that const_1 is 0xffffffed.
399 * For seed = 1 the const_2 is 0x7fffffc4:
402 expected
= seed
* 0xffffffed + 0x7fffffc3 + 1;
403 result
= pRtlUniform(&seed
);
404 ok(result
== expected
,
405 "RtlUniform(&seed (seed == 1)) returns %x, expected %x\n",
408 * For seed = 2 the const_2 is 0x7fffffc3:
411 expected
= seed
* 0xffffffed + 0x7fffffc3;
412 result
= pRtlUniform(&seed
);
415 * Windows Vista uses different algorithms, so skip the rest of the tests
416 * until that is figured out. Trace output for the failures is about 10.5 MB!
419 if (result
== 0x7fffff9f) {
420 skip("Most likely running on Windows Vista which uses a different algorithm\n");
424 ok(result
== expected
,
425 "RtlUniform(&seed (seed == 2)) returns %x, expected %x\n",
429 * More tests show that if seed is odd the result must be incremented by 1:
432 expected
= seed
* 0xffffffed + 0x7fffffc3 + (seed
& 1);
433 result
= pRtlUniform(&seed
);
434 ok(result
== expected
,
435 "RtlUniform(&seed (seed == 3)) returns %x, expected %x\n",
439 expected
= seed
* 0xffffffed + 0x7fffffc3;
440 result
= pRtlUniform(&seed
);
441 ok(result
== expected
,
442 "RtlUniform(&seed (seed == 0x6bca1aa)) returns %x, expected %x\n",
446 expected
= seed
* 0xffffffed + 0x7fffffc3 + 1;
447 result
= pRtlUniform(&seed
);
448 ok(result
== expected
,
449 "RtlUniform(&seed (seed == 0x6bca1ab)) returns %x, expected %x\n",
452 * When seed is 0x6bca1ac there is an exception:
455 expected
= seed
* 0xffffffed + 0x7fffffc3 + 2;
456 result
= pRtlUniform(&seed
);
457 ok(result
== expected
,
458 "RtlUniform(&seed (seed == 0x6bca1ac)) returns %x, expected %x\n",
461 * Note that up to here const_3 is not used
462 * (the highest bit of the result is not set).
464 * Starting with 0x6bca1ad: If seed is even the result must be incremented by 1:
467 expected
= (seed
* 0xffffffed + 0x7fffffc3) & MAXLONG
;
468 result
= pRtlUniform(&seed
);
469 ok(result
== expected
,
470 "RtlUniform(&seed (seed == 0x6bca1ad)) returns %x, expected %x\n",
474 expected
= (seed
* 0xffffffed + 0x7fffffc3 + 1) & MAXLONG
;
475 result
= pRtlUniform(&seed
);
476 ok(result
== expected
,
477 "RtlUniform(&seed (seed == 0x6bca1ae)) returns %x, expected %x\n",
480 * There are several ranges where for odd or even seed the result must be
481 * incremented by 1. You can see this ranges in the following test.
483 * For a full test use one of the following loop heads:
485 * for (num = 0; num <= 0xffffffff; num++) {
490 * for (num = 0; num <= 0xffffffff; num++) {
494 for (num
= 0; num
<= 100000; num
++) {
496 expected
= seed
* 0xffffffed + 0x7fffffc3;
497 if (seed
< 0x6bca1ac) {
498 expected
= expected
+ (seed
& 1);
499 } else if (seed
== 0x6bca1ac) {
500 expected
= (expected
+ 2) & MAXLONG
;
501 } else if (seed
< 0xd79435c) {
502 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
503 } else if (seed
< 0x1435e50b) {
504 expected
= expected
+ (seed
& 1);
505 } else if (seed
< 0x1af286ba) {
506 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
507 } else if (seed
< 0x21af2869) {
508 expected
= expected
+ (seed
& 1);
509 } else if (seed
< 0x286bca18) {
510 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
511 } else if (seed
< 0x2f286bc7) {
512 expected
= expected
+ (seed
& 1);
513 } else if (seed
< 0x35e50d77) {
514 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
515 } else if (seed
< 0x3ca1af26) {
516 expected
= expected
+ (seed
& 1);
517 } else if (seed
< 0x435e50d5) {
518 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
519 } else if (seed
< 0x4a1af284) {
520 expected
= expected
+ (seed
& 1);
521 } else if (seed
< 0x50d79433) {
522 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
523 } else if (seed
< 0x579435e2) {
524 expected
= expected
+ (seed
& 1);
525 } else if (seed
< 0x5e50d792) {
526 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
527 } else if (seed
< 0x650d7941) {
528 expected
= expected
+ (seed
& 1);
529 } else if (seed
< 0x6bca1af0) {
530 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
531 } else if (seed
< 0x7286bc9f) {
532 expected
= expected
+ (seed
& 1);
533 } else if (seed
< 0x79435e4e) {
534 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
535 } else if (seed
< 0x7ffffffd) {
536 expected
= expected
+ (seed
& 1);
537 } else if (seed
< 0x86bca1ac) {
538 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
539 } else if (seed
== 0x86bca1ac) {
540 expected
= (expected
+ 1) & MAXLONG
;
541 } else if (seed
< 0x8d79435c) {
542 expected
= expected
+ (seed
& 1);
543 } else if (seed
< 0x9435e50b) {
544 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
545 } else if (seed
< 0x9af286ba) {
546 expected
= expected
+ (seed
& 1);
547 } else if (seed
< 0xa1af2869) {
548 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
549 } else if (seed
< 0xa86bca18) {
550 expected
= expected
+ (seed
& 1);
551 } else if (seed
< 0xaf286bc7) {
552 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
553 } else if (seed
== 0xaf286bc7) {
554 expected
= (expected
+ 2) & MAXLONG
;
555 } else if (seed
< 0xb5e50d77) {
556 expected
= expected
+ (seed
& 1);
557 } else if (seed
< 0xbca1af26) {
558 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
559 } else if (seed
< 0xc35e50d5) {
560 expected
= expected
+ (seed
& 1);
561 } else if (seed
< 0xca1af284) {
562 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
563 } else if (seed
< 0xd0d79433) {
564 expected
= expected
+ (seed
& 1);
565 } else if (seed
< 0xd79435e2) {
566 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
567 } else if (seed
< 0xde50d792) {
568 expected
= expected
+ (seed
& 1);
569 } else if (seed
< 0xe50d7941) {
570 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
571 } else if (seed
< 0xebca1af0) {
572 expected
= expected
+ (seed
& 1);
573 } else if (seed
< 0xf286bc9f) {
574 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
575 } else if (seed
< 0xf9435e4e) {
576 expected
= expected
+ (seed
& 1);
577 } else if (seed
< 0xfffffffd) {
578 expected
= (expected
+ (~seed
& 1)) & MAXLONG
;
580 expected
= expected
+ (seed
& 1);
583 result
= pRtlUniform(&seed
);
584 ok(result
== expected
,
585 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
586 (DWORD
)(num
>> 32), (DWORD
)num
, seed_bak
, result
, expected
);
588 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
589 (DWORD
)(num
>> 32), (DWORD
)num
, seed_bak
, result
, expected
);
592 * Further investigation shows: In the different regions the highest bit
593 * is set or cleared when even or odd seeds need an increment by 1.
594 * This leads to a simplified algorithm:
596 * seed = seed * 0xffffffed + 0x7fffffc3;
597 * if (seed == 0xffffffff || seed == 0x7ffffffe) {
598 * seed = (seed + 2) & MAXLONG;
599 * } else if (seed == 0x7fffffff) {
601 * } else if ((seed & 0x80000000) == 0) {
602 * seed = seed + (~seed & 1);
604 * seed = (seed + (seed & 1)) & MAXLONG;
607 * This is also the algorithm used for RtlUniform of wine (see dlls/ntdll/rtl.c).
609 * Now comes the funny part:
610 * It took me one weekend, to find the complicated algorithm and one day more,
611 * to find the simplified algorithm. Several weeks later I found out: The value
612 * MAXLONG (=0x7fffffff) is never returned, neither with the native function
613 * nor with the simplified algorithm. In reality the native function and our
614 * function return a random number distributed over [0..MAXLONG-1]. Note
615 * that this is different from what native documentation states [0..MAXLONG].
616 * Expressed with D.H. Lehmer's 1948 algorithm it looks like:
618 * seed = (seed * const_1 + const_2) % MAXLONG;
620 * Further investigations show that the real algorithm is:
622 * seed = (seed * 0x7fffffed + 0x7fffffc3) % MAXLONG;
624 * This is checked with the test below:
627 for (num
= 0; num
<= 100000; num
++) {
628 expected
= (seed
* 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
630 result
= pRtlUniform(&seed
);
631 ok(result
== expected
,
632 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
633 (DWORD
)(num
>> 32), (DWORD
)num
, seed_bak
, result
, expected
);
635 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
636 (DWORD
)(num
>> 32), (DWORD
)num
, seed_bak
, result
, expected
);
639 * More tests show that RtlUniform does not return 0x7ffffffd for seed values
640 * in the range [0..MAXLONG-1]. Additionally 2 is returned twice. This shows
641 * that there is more than one cycle of generated randon numbers ...
646 static ULONG
my_RtlRandom(PULONG seed
)
648 static ULONG saved_value
[128] =
649 { /* 0 */ 0x4c8bc0aa, 0x4c022957, 0x2232827a, 0x2f1e7626, 0x7f8bdafb, 0x5c37d02a, 0x0ab48f72, 0x2f0c4ffa,
650 /* 8 */ 0x290e1954, 0x6b635f23, 0x5d3885c0, 0x74b49ff8, 0x5155fa54, 0x6214ad3f, 0x111e9c29, 0x242a3a09,
651 /* 16 */ 0x75932ae1, 0x40ac432e, 0x54f7ba7a, 0x585ccbd5, 0x6df5c727, 0x0374dad1, 0x7112b3f1, 0x735fc311,
652 /* 24 */ 0x404331a9, 0x74d97781, 0x64495118, 0x323e04be, 0x5974b425, 0x4862e393, 0x62389c1d, 0x28a68b82,
653 /* 32 */ 0x0f95da37, 0x7a50bbc6, 0x09b0091c, 0x22cdb7b4, 0x4faaed26, 0x66417ccd, 0x189e4bfa, 0x1ce4e8dd,
654 /* 40 */ 0x5274c742, 0x3bdcf4dc, 0x2d94e907, 0x32eac016, 0x26d33ca3, 0x60415a8a, 0x31f57880, 0x68c8aa52,
655 /* 48 */ 0x23eb16da, 0x6204f4a1, 0x373927c1, 0x0d24eb7c, 0x06dd7379, 0x2b3be507, 0x0f9c55b1, 0x2c7925eb,
656 /* 56 */ 0x36d67c9a, 0x42f831d9, 0x5e3961cb, 0x65d637a8, 0x24bb3820, 0x4d08e33d, 0x2188754f, 0x147e409e,
657 /* 64 */ 0x6a9620a0, 0x62e26657, 0x7bd8ce81, 0x11da0abb, 0x5f9e7b50, 0x23e444b6, 0x25920c78, 0x5fc894f0,
658 /* 72 */ 0x5e338cbb, 0x404237fd, 0x1d60f80f, 0x320a1743, 0x76013d2b, 0x070294ee, 0x695e243b, 0x56b177fd,
659 /* 80 */ 0x752492e1, 0x6decd52f, 0x125f5219, 0x139d2e78, 0x1898d11e, 0x2f7ee785, 0x4db405d8, 0x1a028a35,
660 /* 88 */ 0x63f6f323, 0x1f6d0078, 0x307cfd67, 0x3f32a78a, 0x6980796c, 0x462b3d83, 0x34b639f2, 0x53fce379,
661 /* 96 */ 0x74ba50f4, 0x1abc2c4b, 0x5eeaeb8d, 0x335a7a0d, 0x3973dd20, 0x0462d66b, 0x159813ff, 0x1e4643fd,
662 /* 104 */ 0x06bc5c62, 0x3115e3fc, 0x09101613, 0x47af2515, 0x4f11ec54, 0x78b99911, 0x3db8dd44, 0x1ec10b9b,
663 /* 112 */ 0x5b5506ca, 0x773ce092, 0x567be81a, 0x5475b975, 0x7a2cde1a, 0x494536f5, 0x34737bb4, 0x76d9750b,
664 /* 120 */ 0x2a1f6232, 0x2e49644d, 0x7dddcbe7, 0x500cebdb, 0x619dab9e, 0x48c626fe, 0x1cda3193, 0x52dabe9d };
669 rand
= (*seed
* 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
670 *seed
= (rand
* 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
672 result
= saved_value
[pos
];
673 saved_value
[pos
] = rand
;
678 static void test_RtlRandom(void)
685 ULONG result_expected
;
689 win_skip("RtlRandom is not available\n");
694 * Unlike RtlUniform, RtlRandom is not documented. We guess that for
695 * RtlRandom D.H. Lehmer's 1948 algorithm is used like stated in
696 * the documentation of the RtlUniform function. This algorithm is:
698 * seed = (seed * const_1 + const_2) % const_3;
700 * According to the RtlUniform documentation the random number is
701 * distributed over [0..MAXLONG], but in reality it is distributed
702 * over [0..MAXLONG-1]. Therefore const_3 might be MAXLONG + 1 or
705 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
709 * seed = (seed * const_1 + const_2) % MAXLONG;
711 * To find out const_2 we just call RtlRandom with seed set to 0:
714 result_expected
= 0x320a1743;
715 seed_expected
=0x44b;
716 result
= pRtlRandom(&seed
);
719 * Windows Vista uses different algorithms, so skip the rest of the tests
720 * until that is figured out. Trace output for the failures is about 10.5 MB!
724 skip("Most likely running on Windows Vista which uses a different algorithm\n");
728 ok(result
== result_expected
,
729 "pRtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
730 result
, result_expected
);
731 ok(seed
== seed_expected
,
732 "pRtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
733 seed
, seed_expected
);
735 * Seed is not equal to result as with RtlUniform. To see more we
736 * call RtlRandom again with seed set to 0:
739 result_expected
= 0x7fffffc3;
740 seed_expected
=0x44b;
741 result
= pRtlRandom(&seed
);
742 ok(result
== result_expected
,
743 "RtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
744 result
, result_expected
);
745 ok(seed
== seed_expected
,
746 "RtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
747 seed
, seed_expected
);
749 * Seed is set to the same value as before but the result is different.
750 * To see more we call RtlRandom again with seed set to 0:
753 result_expected
= 0x7fffffc3;
754 seed_expected
=0x44b;
755 result
= pRtlRandom(&seed
);
756 ok(result
== result_expected
,
757 "RtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
758 result
, result_expected
);
759 ok(seed
== seed_expected
,
760 "RtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
761 seed
, seed_expected
);
763 * Seed is again set to the same value as before. This time we also
764 * have the same result as before. Interestingly the value of the
765 * result is 0x7fffffc3 which is the same value used in RtlUniform
766 * as const_2. If we do
769 * result = RtlUniform(&seed);
771 * we get the same result (0x7fffffc3) as with
776 * result = RtlRandom(&seed);
778 * And there is another interesting thing. If we do
784 * seed is set to the value 0x44b which ist the same value that
789 * assigns to seed. Putting these two findings together leads to
790 * the conclusion that RtlRandom saves the value in some variable,
791 * like in the following algorithm:
793 * result = saved_value;
794 * saved_value = RtlUniform(&seed);
798 * Now we do further tests with seed set to 1:
801 result_expected
= 0x7a50bbc6;
802 seed_expected
=0x5a1;
803 result
= pRtlRandom(&seed
);
804 ok(result
== result_expected
,
805 "RtlRandom(&seed (seed == 1)) returns %x, expected %x\n",
806 result
, result_expected
);
807 ok(seed
== seed_expected
,
808 "RtlRandom(&seed (seed == 1)) sets seed to %x, expected %x\n",
809 seed
, seed_expected
);
811 * If there is just one saved_value the result now would be
812 * 0x7fffffc3. From this test we can see that there is more than
813 * one saved_value, like with this algorithm:
815 * result = saved_value[pos];
816 * saved_value[pos] = RtlUniform(&seed);
820 * But how is the value of pos determined? The calls to RtlUniform
821 * create a sequence of random numbers. Every second random number
822 * is put into the saved_value array and is used in some later call
823 * of RtlRandom as result. The only reasonable source to determine
824 * pos are the random numbers generated by RtlUniform which are not
825 * put into the saved_value array. This are the values of seed
826 * between the two calls of RtlUniform as in this algorithm:
828 * rand = RtlUniform(&seed);
830 * pos = position(seed);
831 * result = saved_value[pos];
832 * saved_value[pos] = rand;
835 * What remains to be determined is: The size of the saved_value array,
836 * the initial values of the saved_value array and the function
837 * position(seed). These tests are not shown here.
838 * The result of these tests is: The size of the saved_value array
839 * is 128, the initial values can be seen in the my_RtlRandom
840 * function and the position(seed) function is (seed & 0x7f).
842 * For a full test of RtlRandom use one of the following loop heads:
844 * for (num = 0; num <= 0xffffffff; num++) {
849 * for (num = 0; num <= 0xffffffff; num++) {
853 for (num
= 0; num
<= 100000; num
++) {
855 seed_expected
= seed
;
856 result_expected
= my_RtlRandom(&seed_expected
);
857 /* The following corrections are necessary because the */
858 /* previous tests changed the saved_value array */
860 result_expected
= 0x7fffffc3;
861 } else if (num
== 81) {
862 result_expected
= 0x7fffffb1;
864 result
= pRtlRandom(&seed
);
865 ok(result
== result_expected
,
866 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
867 (DWORD
)(num
>> 32), (DWORD
)num
, seed_bak
, result
, result_expected
);
868 ok(seed
== seed_expected
,
869 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
870 (DWORD
)(num
>> 32), (DWORD
)num
, seed_bak
, result
, seed_expected
);
876 ACCESS_MASK GrantedAccess
;
877 ACCESS_MASK DesiredAccess
;
881 static const all_accesses_t all_accesses
[] = {
882 {0xFEDCBA76, 0xFEDCBA76, 1},
883 {0x00000000, 0xFEDCBA76, 0},
884 {0xFEDCBA76, 0x00000000, 1},
885 {0x00000000, 0x00000000, 1},
886 {0xFEDCBA76, 0xFEDCBA70, 1},
887 {0xFEDCBA70, 0xFEDCBA76, 0},
888 {0xFEDCBA76, 0xFEDC8A76, 1},
889 {0xFEDC8A76, 0xFEDCBA76, 0},
890 {0xFEDCBA76, 0xC8C4B242, 1},
891 {0xC8C4B242, 0xFEDCBA76, 0},
893 #define NB_ALL_ACCESSES (sizeof(all_accesses)/sizeof(*all_accesses))
896 static void test_RtlAreAllAccessesGranted(void)
898 unsigned int test_num
;
901 if (!pRtlAreAllAccessesGranted
)
903 win_skip("RtlAreAllAccessesGranted is not available\n");
907 for (test_num
= 0; test_num
< NB_ALL_ACCESSES
; test_num
++) {
908 result
= pRtlAreAllAccessesGranted(all_accesses
[test_num
].GrantedAccess
,
909 all_accesses
[test_num
].DesiredAccess
);
910 ok(all_accesses
[test_num
].result
== result
,
911 "(test %d): RtlAreAllAccessesGranted(%08x, %08x) returns %d, expected %d\n",
912 test_num
, all_accesses
[test_num
].GrantedAccess
,
913 all_accesses
[test_num
].DesiredAccess
,
914 result
, all_accesses
[test_num
].result
);
920 ACCESS_MASK GrantedAccess
;
921 ACCESS_MASK DesiredAccess
;
925 static const any_accesses_t any_accesses
[] = {
926 {0xFEDCBA76, 0xFEDCBA76, 1},
927 {0x00000000, 0xFEDCBA76, 0},
928 {0xFEDCBA76, 0x00000000, 0},
929 {0x00000000, 0x00000000, 0},
930 {0xFEDCBA76, 0x01234589, 0},
931 {0x00040000, 0xFEDCBA76, 1},
932 {0x00040000, 0xFED8BA76, 0},
933 {0xFEDCBA76, 0x00040000, 1},
934 {0xFED8BA76, 0x00040000, 0},
936 #define NB_ANY_ACCESSES (sizeof(any_accesses)/sizeof(*any_accesses))
939 static void test_RtlAreAnyAccessesGranted(void)
941 unsigned int test_num
;
944 if (!pRtlAreAnyAccessesGranted
)
946 win_skip("RtlAreAnyAccessesGranted is not available\n");
950 for (test_num
= 0; test_num
< NB_ANY_ACCESSES
; test_num
++) {
951 result
= pRtlAreAnyAccessesGranted(any_accesses
[test_num
].GrantedAccess
,
952 any_accesses
[test_num
].DesiredAccess
);
953 ok(any_accesses
[test_num
].result
== result
,
954 "(test %d): RtlAreAnyAccessesGranted(%08x, %08x) returns %d, expected %d\n",
955 test_num
, any_accesses
[test_num
].GrantedAccess
,
956 any_accesses
[test_num
].DesiredAccess
,
957 result
, any_accesses
[test_num
].result
);
961 static void test_RtlComputeCrc32(void)
965 if (!pRtlComputeCrc32
)
967 win_skip("RtlComputeCrc32 is not available\n");
971 crc
= pRtlComputeCrc32(crc
, (const BYTE
*)src
, LEN
);
972 ok(crc
== 0x40861dc2,"Expected 0x40861dc2, got %8x\n", crc
);
976 typedef struct MY_HANDLE
978 RTL_HANDLE RtlHandle
;
982 static inline void RtlpMakeHandleAllocated(RTL_HANDLE
* Handle
)
984 ULONG_PTR
*AllocatedBit
= (ULONG_PTR
*)(&Handle
->Next
);
985 *AllocatedBit
= *AllocatedBit
| 1;
988 static void test_HandleTables(void)
993 MY_HANDLE
* MyHandle
;
994 RTL_HANDLE_TABLE HandleTable
;
996 if (!pRtlInitializeHandleTable
)
998 win_skip("RtlInitializeHandleTable is not available\n");
1002 pRtlInitializeHandleTable(0x3FFF, sizeof(MY_HANDLE
), &HandleTable
);
1003 MyHandle
= (MY_HANDLE
*)pRtlAllocateHandle(&HandleTable
, &Index
);
1004 ok(MyHandle
!= NULL
, "RtlAllocateHandle failed\n");
1005 RtlpMakeHandleAllocated(&MyHandle
->RtlHandle
);
1007 result
= pRtlIsValidIndexHandle(&HandleTable
, Index
, (RTL_HANDLE
**)&MyHandle
);
1008 ok(result
, "Handle %p wasn't valid\n", MyHandle
);
1009 result
= pRtlFreeHandle(&HandleTable
, &MyHandle
->RtlHandle
);
1010 ok(result
, "Couldn't free handle %p\n", MyHandle
);
1011 status
= pRtlDestroyHandleTable(&HandleTable
);
1012 ok(status
== STATUS_SUCCESS
, "RtlDestroyHandleTable failed with error 0x%08x\n", status
);
1015 static void test_RtlAllocateAndInitializeSid(void)
1018 SID_IDENTIFIER_AUTHORITY sia
= {{ 1, 2, 3, 4, 5, 6 }};
1021 if (!pRtlAllocateAndInitializeSid
)
1023 win_skip("RtlAllocateAndInitializeSid is not available\n");
1027 ret
= pRtlAllocateAndInitializeSid(&sia
, 0, 1, 2, 3, 4, 5, 6, 7, 8, &psid
);
1028 ok(!ret
, "RtlAllocateAndInitializeSid error %08x\n", ret
);
1029 ret
= pRtlFreeSid(psid
);
1030 ok(!ret
, "RtlFreeSid error %08x\n", ret
);
1032 /* these tests crash on XP */
1035 pRtlAllocateAndInitializeSid(NULL
, 0, 1, 2, 3, 4, 5, 6, 7, 8, &psid
);
1036 pRtlAllocateAndInitializeSid(&sia
, 0, 1, 2, 3, 4, 5, 6, 7, 8, NULL
);
1039 ret
= pRtlAllocateAndInitializeSid(&sia
, 9, 1, 2, 3, 4, 5, 6, 7, 8, &psid
);
1040 ok(ret
== STATUS_INVALID_SID
, "wrong error %08x\n", ret
);
1043 static void test_RtlDeleteTimer(void)
1047 if (!pRtlDeleteTimer
)
1049 win_skip("RtlDeleteTimer is not available\n");
1053 ret
= pRtlDeleteTimer(NULL
, NULL
, NULL
);
1054 ok(ret
== STATUS_INVALID_PARAMETER_1
||
1055 ret
== STATUS_INVALID_PARAMETER
, /* W2K */
1056 "expected STATUS_INVALID_PARAMETER_1 or STATUS_INVALID_PARAMETER, got %x\n", ret
);
1059 static void test_RtlThreadErrorMode(void)
1066 if (!pRtlGetThreadErrorMode
|| !pRtlSetThreadErrorMode
)
1068 win_skip("RtlGetThreadErrorMode and/or RtlSetThreadErrorMode not available\n");
1072 if (!pIsWow64Process
|| !pIsWow64Process(GetCurrentProcess(), &is_wow64
))
1075 oldmode
= pRtlGetThreadErrorMode();
1077 status
= pRtlSetThreadErrorMode(0x70, &mode
);
1078 ok(status
== STATUS_SUCCESS
||
1079 status
== STATUS_WAIT_1
, /* Vista */
1080 "RtlSetThreadErrorMode failed with error 0x%08x\n", status
);
1082 "RtlSetThreadErrorMode returned mode 0x%x, expected 0x%x\n",
1084 ok(pRtlGetThreadErrorMode() == 0x70,
1085 "RtlGetThreadErrorMode returned 0x%x, expected 0x%x\n", mode
, 0x70);
1086 if (!is_wow64
&& pNtCurrentTeb
)
1087 ok(pNtCurrentTeb()->HardErrorDisabled
== 0x70,
1088 "The TEB contains 0x%x, expected 0x%x\n",
1089 pNtCurrentTeb()->HardErrorDisabled
, 0x70);
1091 status
= pRtlSetThreadErrorMode(0, &mode
);
1092 ok(status
== STATUS_SUCCESS
||
1093 status
== STATUS_WAIT_1
, /* Vista */
1094 "RtlSetThreadErrorMode failed with error 0x%08x\n", status
);
1096 "RtlSetThreadErrorMode returned mode 0x%x, expected 0x%x\n",
1098 ok(pRtlGetThreadErrorMode() == 0,
1099 "RtlGetThreadErrorMode returned 0x%x, expected 0x%x\n", mode
, 0);
1100 if (!is_wow64
&& pNtCurrentTeb
)
1101 ok(pNtCurrentTeb()->HardErrorDisabled
== 0,
1102 "The TEB contains 0x%x, expected 0x%x\n",
1103 pNtCurrentTeb()->HardErrorDisabled
, 0);
1105 for (mode
= 1; mode
; mode
<<= 1)
1107 status
= pRtlSetThreadErrorMode(mode
, NULL
);
1109 ok(status
== STATUS_SUCCESS
||
1110 status
== STATUS_WAIT_1
, /* Vista */
1111 "RtlSetThreadErrorMode(%x,NULL) failed with error 0x%08x\n",
1114 ok(status
== STATUS_INVALID_PARAMETER_1
,
1115 "RtlSetThreadErrorMode(%x,NULL) returns 0x%08x, "
1116 "expected STATUS_INVALID_PARAMETER_1\n",
1120 pRtlSetThreadErrorMode(oldmode
, NULL
);
1123 static void test_LdrProcessRelocationBlock(void)
1125 IMAGE_BASE_RELOCATION
*ret
;
1130 if(!pLdrProcessRelocationBlock
) {
1131 win_skip("LdrProcessRelocationBlock not available\n");
1136 reloc
= IMAGE_REL_BASED_HIGHLOW
<<12;
1137 ret
= pLdrProcessRelocationBlock(&addr32
, 1, &reloc
, 0x500050);
1138 ok((USHORT
*)ret
== &reloc
+1, "ret = %p, expected %p\n", ret
, &reloc
+1);
1139 ok(addr32
== 0x550055, "addr32 = %x, expected 0x550055\n", addr32
);
1142 reloc
= IMAGE_REL_BASED_HIGH
<<12;
1143 ret
= pLdrProcessRelocationBlock(&addr16
, 1, &reloc
, 0x500060);
1144 ok((USHORT
*)ret
== &reloc
+1, "ret = %p, expected %p\n", ret
, &reloc
+1);
1145 ok(addr16
== 0x555, "addr16 = %x, expected 0x555\n", addr16
);
1148 reloc
= IMAGE_REL_BASED_LOW
<<12;
1149 ret
= pLdrProcessRelocationBlock(&addr16
, 1, &reloc
, 0x500060);
1150 ok((USHORT
*)ret
== &reloc
+1, "ret = %p, expected %p\n", ret
, &reloc
+1);
1151 ok(addr16
== 0x565, "addr16 = %x, expected 0x565\n", addr16
);
1154 static void test_RtlIpv4AddressToString(void)
1161 if (!pRtlIpv4AddressToStringA
)
1163 win_skip("RtlIpv4AddressToStringA not available\n");
1167 ip
.S_un
.S_un_b
.s_b1
= 1;
1168 ip
.S_un
.S_un_b
.s_b2
= 2;
1169 ip
.S_un
.S_un_b
.s_b3
= 3;
1170 ip
.S_un
.S_un_b
.s_b4
= 4;
1172 memset(buffer
, '#', sizeof(buffer
) - 1);
1173 buffer
[sizeof(buffer
) -1] = 0;
1174 res
= pRtlIpv4AddressToStringA(&ip
, buffer
);
1175 len
= strlen(buffer
);
1176 ok(res
== (buffer
+ len
), "got %p with '%s' (expected %p)\n", res
, buffer
, buffer
+ len
);
1178 res
= pRtlIpv4AddressToStringA(&ip
, NULL
);
1179 ok( (res
== (char *)~0) ||
1180 broken(res
== (char *)len
), /* XP and w2003 */
1181 "got %p (expected ~0)\n", res
);
1184 /* this crashes in windows */
1185 memset(buffer
, '#', sizeof(buffer
) - 1);
1186 buffer
[sizeof(buffer
) -1] = 0;
1187 res
= pRtlIpv4AddressToStringA(NULL
, buffer
);
1188 trace("got %p with '%s'\n", res
, buffer
);
1192 /* this crashes in windows */
1193 res
= pRtlIpv4AddressToStringA(NULL
, NULL
);
1194 trace("got %p\n", res
);
1198 static void test_RtlIpv4AddressToStringEx(void)
1200 CHAR ip_1234
[] = "1.2.3.4";
1201 CHAR ip_1234_80
[] = "1.2.3.4:80";
1210 if (!pRtlIpv4AddressToStringExA
)
1212 win_skip("RtlIpv4AddressToStringExA not available\n");
1216 ip
.S_un
.S_un_b
.s_b1
= 1;
1217 ip
.S_un
.S_un_b
.s_b2
= 2;
1218 ip
.S_un
.S_un_b
.s_b3
= 3;
1219 ip
.S_un
.S_un_b
.s_b4
= 4;
1222 expect
= ip_1234_80
;
1224 size
= sizeof(buffer
);
1225 memset(buffer
, '#', sizeof(buffer
) - 1);
1226 buffer
[sizeof(buffer
) -1] = 0;
1227 res
= pRtlIpv4AddressToStringExA(&ip
, port
, buffer
, &size
);
1228 used
= strlen(buffer
);
1229 ok( (res
== STATUS_SUCCESS
) &&
1230 (size
== strlen(expect
) + 1) && !strcmp(buffer
, expect
),
1231 "got 0x%x and size %d with '%s'\n", res
, size
, buffer
);
1234 memset(buffer
, '#', sizeof(buffer
) - 1);
1235 buffer
[sizeof(buffer
) -1] = 0;
1236 res
= pRtlIpv4AddressToStringExA(&ip
, port
, buffer
, &size
);
1237 ok( (res
== STATUS_SUCCESS
) &&
1238 (size
== strlen(expect
) + 1) && !strcmp(buffer
, expect
),
1239 "got 0x%x and size %d with '%s'\n", res
, size
, buffer
);
1242 memset(buffer
, '#', sizeof(buffer
) - 1);
1243 buffer
[sizeof(buffer
) -1] = 0;
1244 res
= pRtlIpv4AddressToStringExA(&ip
, port
, buffer
, &size
);
1245 ok( (res
== STATUS_INVALID_PARAMETER
) && (size
== used
+ 1),
1246 "got 0x%x and %d with '%s' (expected STATUS_INVALID_PARAMETER and %d)\n",
1247 res
, size
, buffer
, used
+ 1);
1250 memset(buffer
, '#', sizeof(buffer
) - 1);
1251 buffer
[sizeof(buffer
) -1] = 0;
1252 res
= pRtlIpv4AddressToStringExA(&ip
, port
, buffer
, &size
);
1253 ok( (res
== STATUS_INVALID_PARAMETER
) && (size
== used
+ 1),
1254 "got 0x%x and %d with '%s' (expected STATUS_INVALID_PARAMETER and %d)\n",
1255 res
, size
, buffer
, used
+ 1);
1258 /* to get only the ip, use 0 as port */
1262 size
= sizeof(buffer
);
1263 memset(buffer
, '#', sizeof(buffer
) - 1);
1264 buffer
[sizeof(buffer
) -1] = 0;
1265 res
= pRtlIpv4AddressToStringExA(&ip
, port
, buffer
, &size
);
1266 used
= strlen(buffer
);
1267 ok( (res
== STATUS_SUCCESS
) &&
1268 (size
== strlen(expect
) + 1) && !strcmp(buffer
, expect
),
1269 "got 0x%x and size %d with '%s'\n", res
, size
, buffer
);
1272 memset(buffer
, '#', sizeof(buffer
) - 1);
1273 buffer
[sizeof(buffer
) -1] = 0;
1274 res
= pRtlIpv4AddressToStringExA(&ip
, port
, buffer
, &size
);
1275 ok( (res
== STATUS_SUCCESS
) &&
1276 (size
== strlen(expect
) + 1) && !strcmp(buffer
, expect
),
1277 "got 0x%x and size %d with '%s'\n", res
, size
, buffer
);
1280 memset(buffer
, '#', sizeof(buffer
) - 1);
1281 buffer
[sizeof(buffer
) -1] = 0;
1282 res
= pRtlIpv4AddressToStringExA(&ip
, port
, buffer
, &size
);
1283 ok( (res
== STATUS_INVALID_PARAMETER
) && (size
== used
+ 1),
1284 "got 0x%x and %d with '%s' (expected STATUS_INVALID_PARAMETER and %d)\n",
1285 res
, size
, buffer
, used
+ 1);
1288 memset(buffer
, '#', sizeof(buffer
) - 1);
1289 buffer
[sizeof(buffer
) -1] = 0;
1290 res
= pRtlIpv4AddressToStringExA(&ip
, port
, buffer
, &size
);
1291 ok( (res
== STATUS_INVALID_PARAMETER
) && (size
== used
+ 1),
1292 "got 0x%x and %d with '%s' (expected STATUS_INVALID_PARAMETER and %d)\n",
1293 res
, size
, buffer
, used
+ 1);
1296 /* parameters are checked */
1297 memset(buffer
, '#', sizeof(buffer
) - 1);
1298 buffer
[sizeof(buffer
) -1] = 0;
1299 res
= pRtlIpv4AddressToStringExA(&ip
, 0, buffer
, NULL
);
1300 ok(res
== STATUS_INVALID_PARAMETER
,
1301 "got 0x%x with '%s' (expected STATUS_INVALID_PARAMETER)\n", res
, buffer
);
1303 size
= sizeof(buffer
);
1304 res
= pRtlIpv4AddressToStringExA(&ip
, 0, NULL
, &size
);
1305 ok( res
== STATUS_INVALID_PARAMETER
,
1306 "got 0x%x and size %d (expected STATUS_INVALID_PARAMETER)\n", res
, size
);
1308 size
= sizeof(buffer
);
1309 memset(buffer
, '#', sizeof(buffer
) - 1);
1310 buffer
[sizeof(buffer
) -1] = 0;
1311 res
= pRtlIpv4AddressToStringExA(NULL
, 0, buffer
, &size
);
1312 ok( res
== STATUS_INVALID_PARAMETER
,
1313 "got 0x%x and size %d with '%s' (expected STATUS_INVALID_PARAMETER)\n",
1317 static void test_RtlIpv4StringToAddress(void)
1320 IN_ADDR ip
, expected_ip
;
1327 int terminator_offset
;
1329 BOOL strict_is_different
;
1330 NTSTATUS res_strict
;
1331 int terminator_offset_strict
;
1335 { "", STATUS_INVALID_PARAMETER
, 0, { -1 } },
1336 { " ", STATUS_INVALID_PARAMETER
, 0, { -1 } },
1337 { "1.1.1.1", STATUS_SUCCESS
, 7, { 1, 1, 1, 1 } },
1338 { "0.0.0.0", STATUS_SUCCESS
, 7, { 0, 0, 0, 0 } },
1339 { "255.255.255.255", STATUS_SUCCESS
, 15, { 255, 255, 255, 255 } },
1340 { "255.255.255.255:123",
1341 STATUS_SUCCESS
, 15, { 255, 255, 255, 255 } },
1342 { "255.255.255.256", STATUS_INVALID_PARAMETER
, 15, { -1 } },
1343 { "255.255.255.4294967295",
1344 STATUS_INVALID_PARAMETER
, 22, { -1 } },
1345 { "255.255.255.4294967296",
1346 STATUS_INVALID_PARAMETER
, 21, { -1 } },
1347 { "255.255.255.4294967297",
1348 STATUS_INVALID_PARAMETER
, 21, { -1 } },
1349 { "a", STATUS_INVALID_PARAMETER
, 0, { -1 } },
1350 { "1.1.1.0xaA", STATUS_SUCCESS
, 10, { 1, 1, 1, 170 },
1351 TRUE
, STATUS_INVALID_PARAMETER
, 8, { -1 } },
1352 { "1.1.1.0XaA", STATUS_SUCCESS
, 10, { 1, 1, 1, 170 },
1353 TRUE
, STATUS_INVALID_PARAMETER
, 8, { -1 } },
1354 { "1.1.1.0x", STATUS_INVALID_PARAMETER
, 8, { -1 } },
1355 { "1.1.1.0xff", STATUS_SUCCESS
, 10, { 1, 1, 1, 255 },
1356 TRUE
, STATUS_INVALID_PARAMETER
, 8, { -1 } },
1357 { "1.1.1.0x100", STATUS_INVALID_PARAMETER
, 11, { -1 },
1358 TRUE
, STATUS_INVALID_PARAMETER
, 8, { -1 } },
1359 { "1.1.1.0xffffffff",STATUS_INVALID_PARAMETER
, 16, { -1 },
1360 TRUE
, STATUS_INVALID_PARAMETER
, 8, { -1 } },
1361 { "1.1.1.0x100000000",
1362 STATUS_INVALID_PARAMETER
, 16, { -1, 0, 0, 0 },
1363 TRUE
, STATUS_INVALID_PARAMETER
, 8, { -1 } },
1364 { "1.1.1.010", STATUS_SUCCESS
, 9, { 1, 1, 1, 8 },
1365 TRUE
, STATUS_INVALID_PARAMETER
, 7, { -1 } },
1366 { "1.1.1.00", STATUS_SUCCESS
, 8, { 1, 1, 1, 0 },
1367 TRUE
, STATUS_INVALID_PARAMETER
, 7, { -1 } },
1368 { "1.1.1.007", STATUS_SUCCESS
, 9, { 1, 1, 1, 7 },
1369 TRUE
, STATUS_INVALID_PARAMETER
, 7, { -1 } },
1370 { "1.1.1.08", STATUS_INVALID_PARAMETER
, 7, { -1 } },
1371 { "1.1.1.008", STATUS_SUCCESS
, 8, { 1, 1, 1, 0 },
1372 TRUE
, STATUS_INVALID_PARAMETER
, 7, { -1 } },
1373 { "1.1.1.0a", STATUS_SUCCESS
, 7, { 1, 1, 1, 0 } },
1374 { "1.1.1.0o10", STATUS_SUCCESS
, 7, { 1, 1, 1, 0 } },
1375 { "1.1.1.0b10", STATUS_SUCCESS
, 7, { 1, 1, 1, 0 } },
1376 { "1.1.1.-2", STATUS_INVALID_PARAMETER
, 6, { -1 } },
1377 { "1", STATUS_SUCCESS
, 1, { 0, 0, 0, 1 },
1378 TRUE
, STATUS_INVALID_PARAMETER
, 1, { -1 } },
1379 { "-1", STATUS_INVALID_PARAMETER
, 0, { -1 } },
1380 { "203569230", STATUS_SUCCESS
, 9, { 12, 34, 56, 78 },
1381 TRUE
, STATUS_INVALID_PARAMETER
, 9, { -1 } },
1382 { "1.223756", STATUS_SUCCESS
, 8, { 1, 3, 106, 12 },
1383 TRUE
, STATUS_INVALID_PARAMETER
, 8, { -1 } },
1384 { "3.4.756", STATUS_SUCCESS
, 7, { 3, 4, 2, 244 },
1385 TRUE
, STATUS_INVALID_PARAMETER
, 7, { -1 } },
1386 { "3.4.756.1", STATUS_INVALID_PARAMETER
, 9, { -1 } },
1387 { "3.4.65536", STATUS_INVALID_PARAMETER
, 9, { -1 } },
1388 { "3.4.5.6.7", STATUS_INVALID_PARAMETER
, 7, { -1 } },
1389 { "3.4.5.+6", STATUS_INVALID_PARAMETER
, 6, { -1 } },
1390 { " 3.4.5.6", STATUS_INVALID_PARAMETER
, 0, { -1 } },
1391 { "\t3.4.5.6", STATUS_INVALID_PARAMETER
, 0, { -1 } },
1392 { "3.4.5.6 ", STATUS_SUCCESS
, 7, { 3, 4, 5, 6 } },
1393 { "3. 4.5.6", STATUS_INVALID_PARAMETER
, 2, { -1 } },
1394 { ".", STATUS_INVALID_PARAMETER
, 1, { -1 } },
1395 { "..", STATUS_INVALID_PARAMETER
, 1, { -1 } },
1396 { "1.", STATUS_INVALID_PARAMETER
, 2, { -1 } },
1397 { "1..", STATUS_INVALID_PARAMETER
, 3, { -1 } },
1398 { ".1", STATUS_INVALID_PARAMETER
, 1, { -1 } },
1399 { ".1.", STATUS_INVALID_PARAMETER
, 1, { -1 } },
1400 { ".1.2.3", STATUS_INVALID_PARAMETER
, 1, { -1 } },
1401 { "0.1.2.3", STATUS_SUCCESS
, 7, { 0, 1, 2, 3 } },
1402 { "0.1.2.3.", STATUS_INVALID_PARAMETER
, 7, { -1 } },
1403 { "[0.1.2.3]", STATUS_INVALID_PARAMETER
, 0, { -1 } },
1404 { "::1", STATUS_INVALID_PARAMETER
, 0, { -1 } },
1405 { ":1", STATUS_INVALID_PARAMETER
, 0, { -1 } },
1407 const int testcount
= sizeof(tests
) / sizeof(tests
[0]);
1410 if (!pRtlIpv4StringToAddressA
)
1412 skip("RtlIpv4StringToAddress not available\n");
1418 /* leaving either parameter NULL crashes on Windows */
1419 res
= pRtlIpv4StringToAddressA(NULL
, FALSE
, &terminator
, &ip
);
1420 res
= pRtlIpv4StringToAddressA("1.1.1.1", FALSE
, NULL
, &ip
);
1421 res
= pRtlIpv4StringToAddressA("1.1.1.1", FALSE
, &terminator
, NULL
);
1422 /* same for the wide char version */
1424 res = pRtlIpv4StringToAddressW(NULL, FALSE, &terminatorW, &ip);
1425 res = pRtlIpv4StringToAddressW(L"1.1.1.1", FALSE, NULL, &ip);
1426 res = pRtlIpv4StringToAddressW(L"1.1.1.1", FALSE, &terminatorW, NULL);
1430 for (i
= 0; i
< testcount
; i
++)
1433 terminator
= &dummy
;
1434 ip
.S_un
.S_addr
= 0xabababab;
1435 res
= pRtlIpv4StringToAddressA(tests
[i
].address
, FALSE
, &terminator
, &ip
);
1436 ok(res
== tests
[i
].res
,
1437 "[%s] res = 0x%08x, expected 0x%08x\n",
1438 tests
[i
].address
, res
, tests
[i
].res
);
1439 ok(terminator
== tests
[i
].address
+ tests
[i
].terminator_offset
,
1440 "[%s] terminator = %p, expected %p\n",
1441 tests
[i
].address
, terminator
, tests
[i
].address
+ tests
[i
].terminator_offset
);
1442 if (tests
[i
].ip
[0] == -1)
1443 expected_ip
.S_un
.S_addr
= 0xabababab;
1446 expected_ip
.S_un
.S_un_b
.s_b1
= tests
[i
].ip
[0];
1447 expected_ip
.S_un
.S_un_b
.s_b2
= tests
[i
].ip
[1];
1448 expected_ip
.S_un
.S_un_b
.s_b3
= tests
[i
].ip
[2];
1449 expected_ip
.S_un
.S_un_b
.s_b4
= tests
[i
].ip
[3];
1451 ok(ip
.S_un
.S_addr
== expected_ip
.S_un
.S_addr
,
1452 "[%s] ip = %08x, expected %08x\n",
1453 tests
[i
].address
, ip
.S_un
.S_addr
, expected_ip
.S_un
.S_addr
);
1455 if (!tests
[i
].strict_is_different
)
1457 tests
[i
].res_strict
= tests
[i
].res
;
1458 tests
[i
].terminator_offset_strict
= tests
[i
].terminator_offset
;
1459 tests
[i
].ip_strict
[0] = tests
[i
].ip
[0];
1460 tests
[i
].ip_strict
[1] = tests
[i
].ip
[1];
1461 tests
[i
].ip_strict
[2] = tests
[i
].ip
[2];
1462 tests
[i
].ip_strict
[3] = tests
[i
].ip
[3];
1465 terminator
= &dummy
;
1466 ip
.S_un
.S_addr
= 0xabababab;
1467 res
= pRtlIpv4StringToAddressA(tests
[i
].address
, TRUE
, &terminator
, &ip
);
1468 ok(res
== tests
[i
].res_strict
,
1469 "[%s] res = 0x%08x, expected 0x%08x\n",
1470 tests
[i
].address
, res
, tests
[i
].res_strict
);
1471 ok(terminator
== tests
[i
].address
+ tests
[i
].terminator_offset_strict
,
1472 "[%s] terminator = %p, expected %p\n",
1473 tests
[i
].address
, terminator
, tests
[i
].address
+ tests
[i
].terminator_offset_strict
);
1474 if (tests
[i
].ip_strict
[0] == -1)
1475 expected_ip
.S_un
.S_addr
= 0xabababab;
1478 expected_ip
.S_un
.S_un_b
.s_b1
= tests
[i
].ip_strict
[0];
1479 expected_ip
.S_un
.S_un_b
.s_b2
= tests
[i
].ip_strict
[1];
1480 expected_ip
.S_un
.S_un_b
.s_b3
= tests
[i
].ip_strict
[2];
1481 expected_ip
.S_un
.S_un_b
.s_b4
= tests
[i
].ip_strict
[3];
1483 ok(ip
.S_un
.S_addr
== expected_ip
.S_un
.S_addr
,
1484 "[%s] ip = %08x, expected %08x\n",
1485 tests
[i
].address
, ip
.S_un
.S_addr
, expected_ip
.S_un
.S_addr
);
1493 test_RtlCompareMemory();
1494 test_RtlCompareMemoryUlong();
1495 test_RtlMoveMemory();
1496 test_RtlFillMemory();
1497 test_RtlFillMemoryUlong();
1498 test_RtlZeroMemory();
1499 test_RtlUlonglongByteSwap();
1502 test_RtlAreAllAccessesGranted();
1503 test_RtlAreAnyAccessesGranted();
1504 test_RtlComputeCrc32();
1505 test_HandleTables();
1506 test_RtlAllocateAndInitializeSid();
1507 test_RtlDeleteTimer();
1508 test_RtlThreadErrorMode();
1509 test_LdrProcessRelocationBlock();
1510 test_RtlIpv4AddressToString();
1511 test_RtlIpv4AddressToStringEx();
1512 test_RtlIpv4StringToAddress();