Release 1.6-rc2.
[wine/testsucceed.git] / dlls / ntdll / tests / rtl.c
blob38909a31d1f2aa6e07b9c2b4a2bd6542cf92abff
1 /* Unit test suite for Rtl* API functions
3 * Copyright 2003 Thomas Mertes
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
19 * NOTES
20 * We use function pointers here as there is no import library for NTDLL on
21 * windows.
24 #include <stdlib.h>
26 #include "ntdll_test.h"
27 #include "inaddr.h"
29 #ifndef __WINE_WINTERNL_H
31 typedef struct _RTL_HANDLE
33 struct _RTL_HANDLE * Next;
34 } RTL_HANDLE;
36 typedef struct _RTL_HANDLE_TABLE
38 ULONG MaxHandleCount;
39 ULONG HandleSize;
40 ULONG Unused[2];
41 PVOID NextFree;
42 PVOID FirstHandle;
43 PVOID ReservedMemory;
44 PVOID MaxHandle;
45 } RTL_HANDLE_TABLE;
47 #endif
49 /* avoid #include <winsock2.h> */
50 #undef htons
51 #ifdef WORDS_BIGENDIAN
52 #define htons(s) ((USHORT)(s))
53 #else /* WORDS_BIGENDIAN */
54 static inline USHORT __my_ushort_swap(USHORT s)
56 return (s >> 8) | (s << 8);
58 #define htons(s) __my_ushort_swap(s)
59 #endif /* WORDS_BIGENDIAN */
63 /* Function ptrs for ntdll calls */
64 static HMODULE hntdll = 0;
65 static SIZE_T (WINAPI *pRtlCompareMemory)(LPCVOID,LPCVOID,SIZE_T);
66 static SIZE_T (WINAPI *pRtlCompareMemoryUlong)(PULONG, SIZE_T, ULONG);
67 static NTSTATUS (WINAPI *pRtlDeleteTimer)(HANDLE, HANDLE, HANDLE);
68 static VOID (WINAPI *pRtlMoveMemory)(LPVOID,LPCVOID,SIZE_T);
69 static VOID (WINAPI *pRtlFillMemory)(LPVOID,SIZE_T,BYTE);
70 static VOID (WINAPI *pRtlFillMemoryUlong)(LPVOID,SIZE_T,ULONG);
71 static VOID (WINAPI *pRtlZeroMemory)(LPVOID,SIZE_T);
72 static ULONGLONG (WINAPIV *pRtlUlonglongByteSwap)(ULONGLONG source);
73 static ULONG (WINAPI *pRtlUniform)(PULONG);
74 static ULONG (WINAPI *pRtlRandom)(PULONG);
75 static BOOLEAN (WINAPI *pRtlAreAllAccessesGranted)(ACCESS_MASK, ACCESS_MASK);
76 static BOOLEAN (WINAPI *pRtlAreAnyAccessesGranted)(ACCESS_MASK, ACCESS_MASK);
77 static DWORD (WINAPI *pRtlComputeCrc32)(DWORD,const BYTE*,INT);
78 static void (WINAPI * pRtlInitializeHandleTable)(ULONG, ULONG, RTL_HANDLE_TABLE *);
79 static BOOLEAN (WINAPI * pRtlIsValidIndexHandle)(const RTL_HANDLE_TABLE *, ULONG, RTL_HANDLE **);
80 static NTSTATUS (WINAPI * pRtlDestroyHandleTable)(RTL_HANDLE_TABLE *);
81 static RTL_HANDLE * (WINAPI * pRtlAllocateHandle)(RTL_HANDLE_TABLE *, ULONG *);
82 static BOOLEAN (WINAPI * pRtlFreeHandle)(RTL_HANDLE_TABLE *, RTL_HANDLE *);
83 static NTSTATUS (WINAPI *pRtlAllocateAndInitializeSid)(PSID_IDENTIFIER_AUTHORITY,BYTE,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,PSID*);
84 static NTSTATUS (WINAPI *pRtlFreeSid)(PSID);
85 static struct _TEB * (WINAPI *pNtCurrentTeb)(void);
86 static DWORD (WINAPI *pRtlGetThreadErrorMode)(void);
87 static NTSTATUS (WINAPI *pRtlSetThreadErrorMode)(DWORD, LPDWORD);
88 static IMAGE_BASE_RELOCATION *(WINAPI *pLdrProcessRelocationBlock)(void*,UINT,USHORT*,INT_PTR);
89 static CHAR * (WINAPI *pRtlIpv4AddressToStringA)(const IN_ADDR *, LPSTR);
90 static NTSTATUS (WINAPI *pRtlIpv4AddressToStringExA)(const IN_ADDR *, USHORT, LPSTR, PULONG);
91 static NTSTATUS (WINAPI *pRtlIpv4StringToAddressA)(PCSTR, BOOLEAN, PCSTR *, IN_ADDR *);
93 static HMODULE hkernel32 = 0;
94 static BOOL (WINAPI *pIsWow64Process)(HANDLE, PBOOL);
97 #define LEN 16
98 static const char* src_src = "This is a test!"; /* 16 bytes long, incl NUL */
99 static ULONG src_aligned_block[4];
100 static ULONG dest_aligned_block[32];
101 static const char *src = (const char*)src_aligned_block;
102 static char* dest = (char*)dest_aligned_block;
104 static void InitFunctionPtrs(void)
106 hntdll = LoadLibraryA("ntdll.dll");
107 ok(hntdll != 0, "LoadLibrary failed\n");
108 if (hntdll) {
109 pRtlCompareMemory = (void *)GetProcAddress(hntdll, "RtlCompareMemory");
110 pRtlCompareMemoryUlong = (void *)GetProcAddress(hntdll, "RtlCompareMemoryUlong");
111 pRtlDeleteTimer = (void *)GetProcAddress(hntdll, "RtlDeleteTimer");
112 pRtlMoveMemory = (void *)GetProcAddress(hntdll, "RtlMoveMemory");
113 pRtlFillMemory = (void *)GetProcAddress(hntdll, "RtlFillMemory");
114 pRtlFillMemoryUlong = (void *)GetProcAddress(hntdll, "RtlFillMemoryUlong");
115 pRtlZeroMemory = (void *)GetProcAddress(hntdll, "RtlZeroMemory");
116 pRtlUlonglongByteSwap = (void *)GetProcAddress(hntdll, "RtlUlonglongByteSwap");
117 pRtlUniform = (void *)GetProcAddress(hntdll, "RtlUniform");
118 pRtlRandom = (void *)GetProcAddress(hntdll, "RtlRandom");
119 pRtlAreAllAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAllAccessesGranted");
120 pRtlAreAnyAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAnyAccessesGranted");
121 pRtlComputeCrc32 = (void *)GetProcAddress(hntdll, "RtlComputeCrc32");
122 pRtlInitializeHandleTable = (void *)GetProcAddress(hntdll, "RtlInitializeHandleTable");
123 pRtlIsValidIndexHandle = (void *)GetProcAddress(hntdll, "RtlIsValidIndexHandle");
124 pRtlDestroyHandleTable = (void *)GetProcAddress(hntdll, "RtlDestroyHandleTable");
125 pRtlAllocateHandle = (void *)GetProcAddress(hntdll, "RtlAllocateHandle");
126 pRtlFreeHandle = (void *)GetProcAddress(hntdll, "RtlFreeHandle");
127 pRtlAllocateAndInitializeSid = (void *)GetProcAddress(hntdll, "RtlAllocateAndInitializeSid");
128 pRtlFreeSid = (void *)GetProcAddress(hntdll, "RtlFreeSid");
129 pNtCurrentTeb = (void *)GetProcAddress(hntdll, "NtCurrentTeb");
130 pRtlGetThreadErrorMode = (void *)GetProcAddress(hntdll, "RtlGetThreadErrorMode");
131 pRtlSetThreadErrorMode = (void *)GetProcAddress(hntdll, "RtlSetThreadErrorMode");
132 pLdrProcessRelocationBlock = (void *)GetProcAddress(hntdll, "LdrProcessRelocationBlock");
133 pRtlIpv4AddressToStringA = (void *)GetProcAddress(hntdll, "RtlIpv4AddressToStringA");
134 pRtlIpv4AddressToStringExA = (void *)GetProcAddress(hntdll, "RtlIpv4AddressToStringExA");
135 pRtlIpv4StringToAddressA = (void *)GetProcAddress(hntdll, "RtlIpv4StringToAddressA");
137 hkernel32 = LoadLibraryA("kernel32.dll");
138 ok(hkernel32 != 0, "LoadLibrary failed\n");
139 if (hkernel32) {
140 pIsWow64Process = (void *)GetProcAddress(hkernel32, "IsWow64Process");
142 strcpy((char*)src_aligned_block, src_src);
143 ok(strlen(src) == 15, "Source must be 16 bytes long!\n");
146 #define COMP(str1,str2,cmplen,len) size = pRtlCompareMemory(str1, str2, cmplen); \
147 ok(size == len, "Expected %ld, got %ld\n", size, (SIZE_T)len)
149 static void test_RtlCompareMemory(void)
151 SIZE_T size;
153 if (!pRtlCompareMemory)
155 win_skip("RtlCompareMemory is not available\n");
156 return;
159 strcpy(dest, src);
161 COMP(src,src,0,0);
162 COMP(src,src,LEN,LEN);
163 dest[0] = 'x';
164 COMP(src,dest,LEN,0);
167 static void test_RtlCompareMemoryUlong(void)
169 ULONG a[10];
170 ULONG result;
172 if (!pRtlCompareMemoryUlong)
174 win_skip("RtlCompareMemoryUlong is not available\n");
175 return;
178 a[0]= 0x0123;
179 a[1]= 0x4567;
180 a[2]= 0x89ab;
181 a[3]= 0xcdef;
182 result = pRtlCompareMemoryUlong(a, 0, 0x0123);
183 ok(result == 0, "RtlCompareMemoryUlong(%p, 0, 0x0123) returns %u, expected 0\n", a, result);
184 result = pRtlCompareMemoryUlong(a, 3, 0x0123);
185 ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %u, expected 0\n", a, result);
186 result = pRtlCompareMemoryUlong(a, 4, 0x0123);
187 ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %u, expected 4\n", a, result);
188 result = pRtlCompareMemoryUlong(a, 5, 0x0123);
189 ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %u, expected 4\n", a, result);
190 result = pRtlCompareMemoryUlong(a, 7, 0x0123);
191 ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %u, expected 4\n", a, result);
192 result = pRtlCompareMemoryUlong(a, 8, 0x0123);
193 ok(result == 4, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %u, expected 4\n", a, result);
194 result = pRtlCompareMemoryUlong(a, 9, 0x0123);
195 ok(result == 4, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %u, expected 4\n", a, result);
196 result = pRtlCompareMemoryUlong(a, 4, 0x0127);
197 ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x0127) returns %u, expected 0\n", a, result);
198 result = pRtlCompareMemoryUlong(a, 4, 0x7123);
199 ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x7123) returns %u, expected 0\n", a, result);
200 result = pRtlCompareMemoryUlong(a, 16, 0x4567);
201 ok(result == 0, "RtlCompareMemoryUlong(%p, 16, 0x4567) returns %u, expected 0\n", a, result);
203 a[1]= 0x0123;
204 result = pRtlCompareMemoryUlong(a, 3, 0x0123);
205 ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %u, expected 0\n", a, result);
206 result = pRtlCompareMemoryUlong(a, 4, 0x0123);
207 ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %u, expected 4\n", a, result);
208 result = pRtlCompareMemoryUlong(a, 5, 0x0123);
209 ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %u, expected 4\n", a, result);
210 result = pRtlCompareMemoryUlong(a, 7, 0x0123);
211 ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %u, expected 4\n", a, result);
212 result = pRtlCompareMemoryUlong(a, 8, 0x0123);
213 ok(result == 8, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %u, expected 8\n", a, result);
214 result = pRtlCompareMemoryUlong(a, 9, 0x0123);
215 ok(result == 8, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %u, expected 8\n", a, result);
218 #define COPY(len) memset(dest,0,sizeof(dest_aligned_block)); pRtlMoveMemory(dest, src, len)
219 #define CMP(str) ok(strcmp(dest,str) == 0, "Expected '%s', got '%s'\n", str, dest)
221 static void test_RtlMoveMemory(void)
223 if (!pRtlMoveMemory)
225 win_skip("RtlMoveMemory is not available\n");
226 return;
229 /* Length should be in bytes and not rounded. Use strcmp to ensure we
230 * didn't write past the end (it checks for the final NUL left by memset)
232 COPY(0); CMP("");
233 COPY(1); CMP("T");
234 COPY(2); CMP("Th");
235 COPY(3); CMP("Thi");
236 COPY(4); CMP("This");
237 COPY(5); CMP("This ");
238 COPY(6); CMP("This i");
239 COPY(7); CMP("This is");
240 COPY(8); CMP("This is ");
241 COPY(9); CMP("This is a");
243 /* Overlapping */
244 strcpy(dest, src); pRtlMoveMemory(dest, dest + 1, strlen(src) - 1);
245 CMP("his is a test!!");
246 strcpy(dest, src); pRtlMoveMemory(dest + 1, dest, strlen(src));
247 CMP("TThis is a test!");
250 #define FILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemory(dest,len,'x')
252 static void test_RtlFillMemory(void)
254 if (!pRtlFillMemory)
256 win_skip("RtlFillMemory is not available\n");
257 return;
260 /* Length should be in bytes and not rounded. Use strcmp to ensure we
261 * didn't write past the end (the remainder of the string should match)
263 FILL(0); CMP("This is a test!");
264 FILL(1); CMP("xhis is a test!");
265 FILL(2); CMP("xxis is a test!");
266 FILL(3); CMP("xxxs is a test!");
267 FILL(4); CMP("xxxx is a test!");
268 FILL(5); CMP("xxxxxis a test!");
269 FILL(6); CMP("xxxxxxs a test!");
270 FILL(7); CMP("xxxxxxx a test!");
271 FILL(8); CMP("xxxxxxxxa test!");
272 FILL(9); CMP("xxxxxxxxx test!");
275 #define LFILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemoryUlong(dest,len,val)
277 static void test_RtlFillMemoryUlong(void)
279 ULONG val = ('x' << 24) | ('x' << 16) | ('x' << 8) | 'x';
280 if (!pRtlFillMemoryUlong)
282 win_skip("RtlFillMemoryUlong is not available\n");
283 return;
286 /* Length should be in bytes and not rounded. Use strcmp to ensure we
287 * didn't write past the end (the remainder of the string should match)
289 LFILL(0); CMP("This is a test!");
290 LFILL(1); CMP("This is a test!");
291 LFILL(2); CMP("This is a test!");
292 LFILL(3); CMP("This is a test!");
293 LFILL(4); CMP("xxxx is a test!");
294 LFILL(5); CMP("xxxx is a test!");
295 LFILL(6); CMP("xxxx is a test!");
296 LFILL(7); CMP("xxxx is a test!");
297 LFILL(8); CMP("xxxxxxxxa test!");
298 LFILL(9); CMP("xxxxxxxxa test!");
301 #define ZERO(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlZeroMemory(dest,len)
302 #define MCMP(str) ok(memcmp(dest,str,LEN) == 0, "Memcmp failed\n")
304 static void test_RtlZeroMemory(void)
306 if (!pRtlZeroMemory)
308 win_skip("RtlZeroMemory is not available\n");
309 return;
312 /* Length should be in bytes and not rounded. */
313 ZERO(0); MCMP("This is a test!");
314 ZERO(1); MCMP("\0his is a test!");
315 ZERO(2); MCMP("\0\0is is a test!");
316 ZERO(3); MCMP("\0\0\0s is a test!");
317 ZERO(4); MCMP("\0\0\0\0 is a test!");
318 ZERO(5); MCMP("\0\0\0\0\0is a test!");
319 ZERO(6); MCMP("\0\0\0\0\0\0s a test!");
320 ZERO(7); MCMP("\0\0\0\0\0\0\0 a test!");
321 ZERO(8); MCMP("\0\0\0\0\0\0\0\0a test!");
322 ZERO(9); MCMP("\0\0\0\0\0\0\0\0\0 test!");
325 static void test_RtlUlonglongByteSwap(void)
327 ULONGLONG result;
329 if ( !pRtlUlonglongByteSwap )
331 win_skip("RtlUlonglongByteSwap is not available\n");
332 return;
335 if ( pRtlUlonglongByteSwap( 0 ) != 0 )
337 win_skip("Broken RtlUlonglongByteSwap in win2k\n");
338 return;
341 result = pRtlUlonglongByteSwap( ((ULONGLONG)0x76543210 << 32) | 0x87654321 );
342 ok( (((ULONGLONG)0x21436587 << 32) | 0x10325476) == result,
343 "RtlUlonglongByteSwap(0x7654321087654321) returns 0x%x%08x, expected 0x2143658710325476\n",
344 (DWORD)(result >> 32), (DWORD)result);
348 static void test_RtlUniform(void)
350 ULONGLONG num;
351 ULONG seed;
352 ULONG seed_bak;
353 ULONG expected;
354 ULONG result;
356 if (!pRtlUniform)
358 win_skip("RtlUniform is not available\n");
359 return;
363 * According to the documentation RtlUniform is using D.H. Lehmer's 1948
364 * algorithm. This algorithm is:
366 * seed = (seed * const_1 + const_2) % const_3;
368 * According to the documentation the random number is distributed over
369 * [0..MAXLONG]. Therefore const_3 is MAXLONG + 1:
371 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
373 * Because MAXLONG is 0x7fffffff (and MAXLONG + 1 is 0x80000000) the
374 * algorithm can be expressed without division as:
376 * seed = (seed * const_1 + const_2) & MAXLONG;
378 * To find out const_2 we just call RtlUniform with seed set to 0:
380 seed = 0;
381 expected = 0x7fffffc3;
382 result = pRtlUniform(&seed);
383 ok(result == expected,
384 "RtlUniform(&seed (seed == 0)) returns %x, expected %x\n",
385 result, expected);
387 * The algorithm is now:
389 * seed = (seed * const_1 + 0x7fffffc3) & MAXLONG;
391 * To find out const_1 we can use:
393 * const_1 = RtlUniform(1) - 0x7fffffc3;
395 * If that does not work a search loop can try all possible values of
396 * const_1 and compare to the result to RtlUniform(1).
397 * This way we find out that const_1 is 0xffffffed.
399 * For seed = 1 the const_2 is 0x7fffffc4:
401 seed = 1;
402 expected = seed * 0xffffffed + 0x7fffffc3 + 1;
403 result = pRtlUniform(&seed);
404 ok(result == expected,
405 "RtlUniform(&seed (seed == 1)) returns %x, expected %x\n",
406 result, expected);
408 * For seed = 2 the const_2 is 0x7fffffc3:
410 seed = 2;
411 expected = seed * 0xffffffed + 0x7fffffc3;
412 result = pRtlUniform(&seed);
415 * Windows Vista uses different algorithms, so skip the rest of the tests
416 * until that is figured out. Trace output for the failures is about 10.5 MB!
419 if (result == 0x7fffff9f) {
420 skip("Most likely running on Windows Vista which uses a different algorithm\n");
421 return;
424 ok(result == expected,
425 "RtlUniform(&seed (seed == 2)) returns %x, expected %x\n",
426 result, expected);
429 * More tests show that if seed is odd the result must be incremented by 1:
431 seed = 3;
432 expected = seed * 0xffffffed + 0x7fffffc3 + (seed & 1);
433 result = pRtlUniform(&seed);
434 ok(result == expected,
435 "RtlUniform(&seed (seed == 3)) returns %x, expected %x\n",
436 result, expected);
438 seed = 0x6bca1aa;
439 expected = seed * 0xffffffed + 0x7fffffc3;
440 result = pRtlUniform(&seed);
441 ok(result == expected,
442 "RtlUniform(&seed (seed == 0x6bca1aa)) returns %x, expected %x\n",
443 result, expected);
445 seed = 0x6bca1ab;
446 expected = seed * 0xffffffed + 0x7fffffc3 + 1;
447 result = pRtlUniform(&seed);
448 ok(result == expected,
449 "RtlUniform(&seed (seed == 0x6bca1ab)) returns %x, expected %x\n",
450 result, expected);
452 * When seed is 0x6bca1ac there is an exception:
454 seed = 0x6bca1ac;
455 expected = seed * 0xffffffed + 0x7fffffc3 + 2;
456 result = pRtlUniform(&seed);
457 ok(result == expected,
458 "RtlUniform(&seed (seed == 0x6bca1ac)) returns %x, expected %x\n",
459 result, expected);
461 * Note that up to here const_3 is not used
462 * (the highest bit of the result is not set).
464 * Starting with 0x6bca1ad: If seed is even the result must be incremented by 1:
466 seed = 0x6bca1ad;
467 expected = (seed * 0xffffffed + 0x7fffffc3) & MAXLONG;
468 result = pRtlUniform(&seed);
469 ok(result == expected,
470 "RtlUniform(&seed (seed == 0x6bca1ad)) returns %x, expected %x\n",
471 result, expected);
473 seed = 0x6bca1ae;
474 expected = (seed * 0xffffffed + 0x7fffffc3 + 1) & MAXLONG;
475 result = pRtlUniform(&seed);
476 ok(result == expected,
477 "RtlUniform(&seed (seed == 0x6bca1ae)) returns %x, expected %x\n",
478 result, expected);
480 * There are several ranges where for odd or even seed the result must be
481 * incremented by 1. You can see this ranges in the following test.
483 * For a full test use one of the following loop heads:
485 * for (num = 0; num <= 0xffffffff; num++) {
486 * seed = num;
487 * ...
489 * seed = 0;
490 * for (num = 0; num <= 0xffffffff; num++) {
491 * ...
493 seed = 0;
494 for (num = 0; num <= 100000; num++) {
496 expected = seed * 0xffffffed + 0x7fffffc3;
497 if (seed < 0x6bca1ac) {
498 expected = expected + (seed & 1);
499 } else if (seed == 0x6bca1ac) {
500 expected = (expected + 2) & MAXLONG;
501 } else if (seed < 0xd79435c) {
502 expected = (expected + (~seed & 1)) & MAXLONG;
503 } else if (seed < 0x1435e50b) {
504 expected = expected + (seed & 1);
505 } else if (seed < 0x1af286ba) {
506 expected = (expected + (~seed & 1)) & MAXLONG;
507 } else if (seed < 0x21af2869) {
508 expected = expected + (seed & 1);
509 } else if (seed < 0x286bca18) {
510 expected = (expected + (~seed & 1)) & MAXLONG;
511 } else if (seed < 0x2f286bc7) {
512 expected = expected + (seed & 1);
513 } else if (seed < 0x35e50d77) {
514 expected = (expected + (~seed & 1)) & MAXLONG;
515 } else if (seed < 0x3ca1af26) {
516 expected = expected + (seed & 1);
517 } else if (seed < 0x435e50d5) {
518 expected = (expected + (~seed & 1)) & MAXLONG;
519 } else if (seed < 0x4a1af284) {
520 expected = expected + (seed & 1);
521 } else if (seed < 0x50d79433) {
522 expected = (expected + (~seed & 1)) & MAXLONG;
523 } else if (seed < 0x579435e2) {
524 expected = expected + (seed & 1);
525 } else if (seed < 0x5e50d792) {
526 expected = (expected + (~seed & 1)) & MAXLONG;
527 } else if (seed < 0x650d7941) {
528 expected = expected + (seed & 1);
529 } else if (seed < 0x6bca1af0) {
530 expected = (expected + (~seed & 1)) & MAXLONG;
531 } else if (seed < 0x7286bc9f) {
532 expected = expected + (seed & 1);
533 } else if (seed < 0x79435e4e) {
534 expected = (expected + (~seed & 1)) & MAXLONG;
535 } else if (seed < 0x7ffffffd) {
536 expected = expected + (seed & 1);
537 } else if (seed < 0x86bca1ac) {
538 expected = (expected + (~seed & 1)) & MAXLONG;
539 } else if (seed == 0x86bca1ac) {
540 expected = (expected + 1) & MAXLONG;
541 } else if (seed < 0x8d79435c) {
542 expected = expected + (seed & 1);
543 } else if (seed < 0x9435e50b) {
544 expected = (expected + (~seed & 1)) & MAXLONG;
545 } else if (seed < 0x9af286ba) {
546 expected = expected + (seed & 1);
547 } else if (seed < 0xa1af2869) {
548 expected = (expected + (~seed & 1)) & MAXLONG;
549 } else if (seed < 0xa86bca18) {
550 expected = expected + (seed & 1);
551 } else if (seed < 0xaf286bc7) {
552 expected = (expected + (~seed & 1)) & MAXLONG;
553 } else if (seed == 0xaf286bc7) {
554 expected = (expected + 2) & MAXLONG;
555 } else if (seed < 0xb5e50d77) {
556 expected = expected + (seed & 1);
557 } else if (seed < 0xbca1af26) {
558 expected = (expected + (~seed & 1)) & MAXLONG;
559 } else if (seed < 0xc35e50d5) {
560 expected = expected + (seed & 1);
561 } else if (seed < 0xca1af284) {
562 expected = (expected + (~seed & 1)) & MAXLONG;
563 } else if (seed < 0xd0d79433) {
564 expected = expected + (seed & 1);
565 } else if (seed < 0xd79435e2) {
566 expected = (expected + (~seed & 1)) & MAXLONG;
567 } else if (seed < 0xde50d792) {
568 expected = expected + (seed & 1);
569 } else if (seed < 0xe50d7941) {
570 expected = (expected + (~seed & 1)) & MAXLONG;
571 } else if (seed < 0xebca1af0) {
572 expected = expected + (seed & 1);
573 } else if (seed < 0xf286bc9f) {
574 expected = (expected + (~seed & 1)) & MAXLONG;
575 } else if (seed < 0xf9435e4e) {
576 expected = expected + (seed & 1);
577 } else if (seed < 0xfffffffd) {
578 expected = (expected + (~seed & 1)) & MAXLONG;
579 } else {
580 expected = expected + (seed & 1);
581 } /* if */
582 seed_bak = seed;
583 result = pRtlUniform(&seed);
584 ok(result == expected,
585 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
586 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
587 ok(seed == expected,
588 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
589 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
590 } /* for */
592 * Further investigation shows: In the different regions the highest bit
593 * is set or cleared when even or odd seeds need an increment by 1.
594 * This leads to a simplified algorithm:
596 * seed = seed * 0xffffffed + 0x7fffffc3;
597 * if (seed == 0xffffffff || seed == 0x7ffffffe) {
598 * seed = (seed + 2) & MAXLONG;
599 * } else if (seed == 0x7fffffff) {
600 * seed = 0;
601 * } else if ((seed & 0x80000000) == 0) {
602 * seed = seed + (~seed & 1);
603 * } else {
604 * seed = (seed + (seed & 1)) & MAXLONG;
607 * This is also the algorithm used for RtlUniform of wine (see dlls/ntdll/rtl.c).
609 * Now comes the funny part:
610 * It took me one weekend, to find the complicated algorithm and one day more,
611 * to find the simplified algorithm. Several weeks later I found out: The value
612 * MAXLONG (=0x7fffffff) is never returned, neither with the native function
613 * nor with the simplified algorithm. In reality the native function and our
614 * function return a random number distributed over [0..MAXLONG-1]. Note
615 * that this is different from what native documentation states [0..MAXLONG].
616 * Expressed with D.H. Lehmer's 1948 algorithm it looks like:
618 * seed = (seed * const_1 + const_2) % MAXLONG;
620 * Further investigations show that the real algorithm is:
622 * seed = (seed * 0x7fffffed + 0x7fffffc3) % MAXLONG;
624 * This is checked with the test below:
626 seed = 0;
627 for (num = 0; num <= 100000; num++) {
628 expected = (seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
629 seed_bak = seed;
630 result = pRtlUniform(&seed);
631 ok(result == expected,
632 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
633 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
634 ok(seed == expected,
635 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
636 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
637 } /* for */
639 * More tests show that RtlUniform does not return 0x7ffffffd for seed values
640 * in the range [0..MAXLONG-1]. Additionally 2 is returned twice. This shows
641 * that there is more than one cycle of generated randon numbers ...
646 static ULONG my_RtlRandom(PULONG seed)
648 static ULONG saved_value[128] =
649 { /* 0 */ 0x4c8bc0aa, 0x4c022957, 0x2232827a, 0x2f1e7626, 0x7f8bdafb, 0x5c37d02a, 0x0ab48f72, 0x2f0c4ffa,
650 /* 8 */ 0x290e1954, 0x6b635f23, 0x5d3885c0, 0x74b49ff8, 0x5155fa54, 0x6214ad3f, 0x111e9c29, 0x242a3a09,
651 /* 16 */ 0x75932ae1, 0x40ac432e, 0x54f7ba7a, 0x585ccbd5, 0x6df5c727, 0x0374dad1, 0x7112b3f1, 0x735fc311,
652 /* 24 */ 0x404331a9, 0x74d97781, 0x64495118, 0x323e04be, 0x5974b425, 0x4862e393, 0x62389c1d, 0x28a68b82,
653 /* 32 */ 0x0f95da37, 0x7a50bbc6, 0x09b0091c, 0x22cdb7b4, 0x4faaed26, 0x66417ccd, 0x189e4bfa, 0x1ce4e8dd,
654 /* 40 */ 0x5274c742, 0x3bdcf4dc, 0x2d94e907, 0x32eac016, 0x26d33ca3, 0x60415a8a, 0x31f57880, 0x68c8aa52,
655 /* 48 */ 0x23eb16da, 0x6204f4a1, 0x373927c1, 0x0d24eb7c, 0x06dd7379, 0x2b3be507, 0x0f9c55b1, 0x2c7925eb,
656 /* 56 */ 0x36d67c9a, 0x42f831d9, 0x5e3961cb, 0x65d637a8, 0x24bb3820, 0x4d08e33d, 0x2188754f, 0x147e409e,
657 /* 64 */ 0x6a9620a0, 0x62e26657, 0x7bd8ce81, 0x11da0abb, 0x5f9e7b50, 0x23e444b6, 0x25920c78, 0x5fc894f0,
658 /* 72 */ 0x5e338cbb, 0x404237fd, 0x1d60f80f, 0x320a1743, 0x76013d2b, 0x070294ee, 0x695e243b, 0x56b177fd,
659 /* 80 */ 0x752492e1, 0x6decd52f, 0x125f5219, 0x139d2e78, 0x1898d11e, 0x2f7ee785, 0x4db405d8, 0x1a028a35,
660 /* 88 */ 0x63f6f323, 0x1f6d0078, 0x307cfd67, 0x3f32a78a, 0x6980796c, 0x462b3d83, 0x34b639f2, 0x53fce379,
661 /* 96 */ 0x74ba50f4, 0x1abc2c4b, 0x5eeaeb8d, 0x335a7a0d, 0x3973dd20, 0x0462d66b, 0x159813ff, 0x1e4643fd,
662 /* 104 */ 0x06bc5c62, 0x3115e3fc, 0x09101613, 0x47af2515, 0x4f11ec54, 0x78b99911, 0x3db8dd44, 0x1ec10b9b,
663 /* 112 */ 0x5b5506ca, 0x773ce092, 0x567be81a, 0x5475b975, 0x7a2cde1a, 0x494536f5, 0x34737bb4, 0x76d9750b,
664 /* 120 */ 0x2a1f6232, 0x2e49644d, 0x7dddcbe7, 0x500cebdb, 0x619dab9e, 0x48c626fe, 0x1cda3193, 0x52dabe9d };
665 ULONG rand;
666 int pos;
667 ULONG result;
669 rand = (*seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
670 *seed = (rand * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
671 pos = *seed & 0x7f;
672 result = saved_value[pos];
673 saved_value[pos] = rand;
674 return(result);
678 static void test_RtlRandom(void)
680 ULONGLONG num;
681 ULONG seed;
682 ULONG seed_bak;
683 ULONG seed_expected;
684 ULONG result;
685 ULONG result_expected;
687 if (!pRtlRandom)
689 win_skip("RtlRandom is not available\n");
690 return;
694 * Unlike RtlUniform, RtlRandom is not documented. We guess that for
695 * RtlRandom D.H. Lehmer's 1948 algorithm is used like stated in
696 * the documentation of the RtlUniform function. This algorithm is:
698 * seed = (seed * const_1 + const_2) % const_3;
700 * According to the RtlUniform documentation the random number is
701 * distributed over [0..MAXLONG], but in reality it is distributed
702 * over [0..MAXLONG-1]. Therefore const_3 might be MAXLONG + 1 or
703 * MAXLONG:
705 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
707 * or
709 * seed = (seed * const_1 + const_2) % MAXLONG;
711 * To find out const_2 we just call RtlRandom with seed set to 0:
713 seed = 0;
714 result_expected = 0x320a1743;
715 seed_expected =0x44b;
716 result = pRtlRandom(&seed);
719 * Windows Vista uses different algorithms, so skip the rest of the tests
720 * until that is figured out. Trace output for the failures is about 10.5 MB!
723 if (seed == 0x3fc) {
724 skip("Most likely running on Windows Vista which uses a different algorithm\n");
725 return;
728 ok(result == result_expected,
729 "pRtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
730 result, result_expected);
731 ok(seed == seed_expected,
732 "pRtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
733 seed, seed_expected);
735 * Seed is not equal to result as with RtlUniform. To see more we
736 * call RtlRandom again with seed set to 0:
738 seed = 0;
739 result_expected = 0x7fffffc3;
740 seed_expected =0x44b;
741 result = pRtlRandom(&seed);
742 ok(result == result_expected,
743 "RtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
744 result, result_expected);
745 ok(seed == seed_expected,
746 "RtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
747 seed, seed_expected);
749 * Seed is set to the same value as before but the result is different.
750 * To see more we call RtlRandom again with seed set to 0:
752 seed = 0;
753 result_expected = 0x7fffffc3;
754 seed_expected =0x44b;
755 result = pRtlRandom(&seed);
756 ok(result == result_expected,
757 "RtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
758 result, result_expected);
759 ok(seed == seed_expected,
760 "RtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
761 seed, seed_expected);
763 * Seed is again set to the same value as before. This time we also
764 * have the same result as before. Interestingly the value of the
765 * result is 0x7fffffc3 which is the same value used in RtlUniform
766 * as const_2. If we do
768 * seed = 0;
769 * result = RtlUniform(&seed);
771 * we get the same result (0x7fffffc3) as with
773 * seed = 0;
774 * RtlRandom(&seed);
775 * seed = 0;
776 * result = RtlRandom(&seed);
778 * And there is another interesting thing. If we do
780 * seed = 0;
781 * RtlUniform(&seed);
782 * RtlUniform(&seed);
784 * seed is set to the value 0x44b which ist the same value that
786 * seed = 0;
787 * RtlRandom(&seed);
789 * assigns to seed. Putting these two findings together leads to
790 * the conclusion that RtlRandom saves the value in some variable,
791 * like in the following algorithm:
793 * result = saved_value;
794 * saved_value = RtlUniform(&seed);
795 * RtlUniform(&seed);
796 * return(result);
798 * Now we do further tests with seed set to 1:
800 seed = 1;
801 result_expected = 0x7a50bbc6;
802 seed_expected =0x5a1;
803 result = pRtlRandom(&seed);
804 ok(result == result_expected,
805 "RtlRandom(&seed (seed == 1)) returns %x, expected %x\n",
806 result, result_expected);
807 ok(seed == seed_expected,
808 "RtlRandom(&seed (seed == 1)) sets seed to %x, expected %x\n",
809 seed, seed_expected);
811 * If there is just one saved_value the result now would be
812 * 0x7fffffc3. From this test we can see that there is more than
813 * one saved_value, like with this algorithm:
815 * result = saved_value[pos];
816 * saved_value[pos] = RtlUniform(&seed);
817 * RtlUniform(&seed);
818 * return(result);
820 * But how is the value of pos determined? The calls to RtlUniform
821 * create a sequence of random numbers. Every second random number
822 * is put into the saved_value array and is used in some later call
823 * of RtlRandom as result. The only reasonable source to determine
824 * pos are the random numbers generated by RtlUniform which are not
825 * put into the saved_value array. This are the values of seed
826 * between the two calls of RtlUniform as in this algorithm:
828 * rand = RtlUniform(&seed);
829 * RtlUniform(&seed);
830 * pos = position(seed);
831 * result = saved_value[pos];
832 * saved_value[pos] = rand;
833 * return(result);
835 * What remains to be determined is: The size of the saved_value array,
836 * the initial values of the saved_value array and the function
837 * position(seed). These tests are not shown here.
838 * The result of these tests is: The size of the saved_value array
839 * is 128, the initial values can be seen in the my_RtlRandom
840 * function and the position(seed) function is (seed & 0x7f).
842 * For a full test of RtlRandom use one of the following loop heads:
844 * for (num = 0; num <= 0xffffffff; num++) {
845 * seed = num;
846 * ...
848 * seed = 0;
849 * for (num = 0; num <= 0xffffffff; num++) {
850 * ...
852 seed = 0;
853 for (num = 0; num <= 100000; num++) {
854 seed_bak = seed;
855 seed_expected = seed;
856 result_expected = my_RtlRandom(&seed_expected);
857 /* The following corrections are necessary because the */
858 /* previous tests changed the saved_value array */
859 if (num == 0) {
860 result_expected = 0x7fffffc3;
861 } else if (num == 81) {
862 result_expected = 0x7fffffb1;
863 } /* if */
864 result = pRtlRandom(&seed);
865 ok(result == result_expected,
866 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
867 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, result_expected);
868 ok(seed == seed_expected,
869 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
870 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, seed_expected);
871 } /* for */
875 typedef struct {
876 ACCESS_MASK GrantedAccess;
877 ACCESS_MASK DesiredAccess;
878 BOOLEAN result;
879 } all_accesses_t;
881 static const all_accesses_t all_accesses[] = {
882 {0xFEDCBA76, 0xFEDCBA76, 1},
883 {0x00000000, 0xFEDCBA76, 0},
884 {0xFEDCBA76, 0x00000000, 1},
885 {0x00000000, 0x00000000, 1},
886 {0xFEDCBA76, 0xFEDCBA70, 1},
887 {0xFEDCBA70, 0xFEDCBA76, 0},
888 {0xFEDCBA76, 0xFEDC8A76, 1},
889 {0xFEDC8A76, 0xFEDCBA76, 0},
890 {0xFEDCBA76, 0xC8C4B242, 1},
891 {0xC8C4B242, 0xFEDCBA76, 0},
893 #define NB_ALL_ACCESSES (sizeof(all_accesses)/sizeof(*all_accesses))
896 static void test_RtlAreAllAccessesGranted(void)
898 unsigned int test_num;
899 BOOLEAN result;
901 if (!pRtlAreAllAccessesGranted)
903 win_skip("RtlAreAllAccessesGranted is not available\n");
904 return;
907 for (test_num = 0; test_num < NB_ALL_ACCESSES; test_num++) {
908 result = pRtlAreAllAccessesGranted(all_accesses[test_num].GrantedAccess,
909 all_accesses[test_num].DesiredAccess);
910 ok(all_accesses[test_num].result == result,
911 "(test %d): RtlAreAllAccessesGranted(%08x, %08x) returns %d, expected %d\n",
912 test_num, all_accesses[test_num].GrantedAccess,
913 all_accesses[test_num].DesiredAccess,
914 result, all_accesses[test_num].result);
915 } /* for */
919 typedef struct {
920 ACCESS_MASK GrantedAccess;
921 ACCESS_MASK DesiredAccess;
922 BOOLEAN result;
923 } any_accesses_t;
925 static const any_accesses_t any_accesses[] = {
926 {0xFEDCBA76, 0xFEDCBA76, 1},
927 {0x00000000, 0xFEDCBA76, 0},
928 {0xFEDCBA76, 0x00000000, 0},
929 {0x00000000, 0x00000000, 0},
930 {0xFEDCBA76, 0x01234589, 0},
931 {0x00040000, 0xFEDCBA76, 1},
932 {0x00040000, 0xFED8BA76, 0},
933 {0xFEDCBA76, 0x00040000, 1},
934 {0xFED8BA76, 0x00040000, 0},
936 #define NB_ANY_ACCESSES (sizeof(any_accesses)/sizeof(*any_accesses))
939 static void test_RtlAreAnyAccessesGranted(void)
941 unsigned int test_num;
942 BOOLEAN result;
944 if (!pRtlAreAnyAccessesGranted)
946 win_skip("RtlAreAnyAccessesGranted is not available\n");
947 return;
950 for (test_num = 0; test_num < NB_ANY_ACCESSES; test_num++) {
951 result = pRtlAreAnyAccessesGranted(any_accesses[test_num].GrantedAccess,
952 any_accesses[test_num].DesiredAccess);
953 ok(any_accesses[test_num].result == result,
954 "(test %d): RtlAreAnyAccessesGranted(%08x, %08x) returns %d, expected %d\n",
955 test_num, any_accesses[test_num].GrantedAccess,
956 any_accesses[test_num].DesiredAccess,
957 result, any_accesses[test_num].result);
958 } /* for */
961 static void test_RtlComputeCrc32(void)
963 DWORD crc = 0;
965 if (!pRtlComputeCrc32)
967 win_skip("RtlComputeCrc32 is not available\n");
968 return;
971 crc = pRtlComputeCrc32(crc, (const BYTE *)src, LEN);
972 ok(crc == 0x40861dc2,"Expected 0x40861dc2, got %8x\n", crc);
976 typedef struct MY_HANDLE
978 RTL_HANDLE RtlHandle;
979 void * MyValue;
980 } MY_HANDLE;
982 static inline void RtlpMakeHandleAllocated(RTL_HANDLE * Handle)
984 ULONG_PTR *AllocatedBit = (ULONG_PTR *)(&Handle->Next);
985 *AllocatedBit = *AllocatedBit | 1;
988 static void test_HandleTables(void)
990 BOOLEAN result;
991 NTSTATUS status;
992 ULONG Index;
993 MY_HANDLE * MyHandle;
994 RTL_HANDLE_TABLE HandleTable;
996 if (!pRtlInitializeHandleTable)
998 win_skip("RtlInitializeHandleTable is not available\n");
999 return;
1002 pRtlInitializeHandleTable(0x3FFF, sizeof(MY_HANDLE), &HandleTable);
1003 MyHandle = (MY_HANDLE *)pRtlAllocateHandle(&HandleTable, &Index);
1004 ok(MyHandle != NULL, "RtlAllocateHandle failed\n");
1005 RtlpMakeHandleAllocated(&MyHandle->RtlHandle);
1006 MyHandle = NULL;
1007 result = pRtlIsValidIndexHandle(&HandleTable, Index, (RTL_HANDLE **)&MyHandle);
1008 ok(result, "Handle %p wasn't valid\n", MyHandle);
1009 result = pRtlFreeHandle(&HandleTable, &MyHandle->RtlHandle);
1010 ok(result, "Couldn't free handle %p\n", MyHandle);
1011 status = pRtlDestroyHandleTable(&HandleTable);
1012 ok(status == STATUS_SUCCESS, "RtlDestroyHandleTable failed with error 0x%08x\n", status);
1015 static void test_RtlAllocateAndInitializeSid(void)
1017 NTSTATUS ret;
1018 SID_IDENTIFIER_AUTHORITY sia = {{ 1, 2, 3, 4, 5, 6 }};
1019 PSID psid;
1021 if (!pRtlAllocateAndInitializeSid)
1023 win_skip("RtlAllocateAndInitializeSid is not available\n");
1024 return;
1027 ret = pRtlAllocateAndInitializeSid(&sia, 0, 1, 2, 3, 4, 5, 6, 7, 8, &psid);
1028 ok(!ret, "RtlAllocateAndInitializeSid error %08x\n", ret);
1029 ret = pRtlFreeSid(psid);
1030 ok(!ret, "RtlFreeSid error %08x\n", ret);
1032 /* these tests crash on XP */
1033 if (0)
1035 pRtlAllocateAndInitializeSid(NULL, 0, 1, 2, 3, 4, 5, 6, 7, 8, &psid);
1036 pRtlAllocateAndInitializeSid(&sia, 0, 1, 2, 3, 4, 5, 6, 7, 8, NULL);
1039 ret = pRtlAllocateAndInitializeSid(&sia, 9, 1, 2, 3, 4, 5, 6, 7, 8, &psid);
1040 ok(ret == STATUS_INVALID_SID, "wrong error %08x\n", ret);
1043 static void test_RtlDeleteTimer(void)
1045 NTSTATUS ret;
1047 if (!pRtlDeleteTimer)
1049 win_skip("RtlDeleteTimer is not available\n");
1050 return;
1053 ret = pRtlDeleteTimer(NULL, NULL, NULL);
1054 ok(ret == STATUS_INVALID_PARAMETER_1 ||
1055 ret == STATUS_INVALID_PARAMETER, /* W2K */
1056 "expected STATUS_INVALID_PARAMETER_1 or STATUS_INVALID_PARAMETER, got %x\n", ret);
1059 static void test_RtlThreadErrorMode(void)
1061 DWORD oldmode;
1062 BOOL is_wow64;
1063 DWORD mode;
1064 NTSTATUS status;
1066 if (!pRtlGetThreadErrorMode || !pRtlSetThreadErrorMode)
1068 win_skip("RtlGetThreadErrorMode and/or RtlSetThreadErrorMode not available\n");
1069 return;
1072 if (!pIsWow64Process || !pIsWow64Process(GetCurrentProcess(), &is_wow64))
1073 is_wow64 = FALSE;
1075 oldmode = pRtlGetThreadErrorMode();
1077 status = pRtlSetThreadErrorMode(0x70, &mode);
1078 ok(status == STATUS_SUCCESS ||
1079 status == STATUS_WAIT_1, /* Vista */
1080 "RtlSetThreadErrorMode failed with error 0x%08x\n", status);
1081 ok(mode == oldmode,
1082 "RtlSetThreadErrorMode returned mode 0x%x, expected 0x%x\n",
1083 mode, oldmode);
1084 ok(pRtlGetThreadErrorMode() == 0x70,
1085 "RtlGetThreadErrorMode returned 0x%x, expected 0x%x\n", mode, 0x70);
1086 if (!is_wow64 && pNtCurrentTeb)
1087 ok(pNtCurrentTeb()->HardErrorDisabled == 0x70,
1088 "The TEB contains 0x%x, expected 0x%x\n",
1089 pNtCurrentTeb()->HardErrorDisabled, 0x70);
1091 status = pRtlSetThreadErrorMode(0, &mode);
1092 ok(status == STATUS_SUCCESS ||
1093 status == STATUS_WAIT_1, /* Vista */
1094 "RtlSetThreadErrorMode failed with error 0x%08x\n", status);
1095 ok(mode == 0x70,
1096 "RtlSetThreadErrorMode returned mode 0x%x, expected 0x%x\n",
1097 mode, 0x70);
1098 ok(pRtlGetThreadErrorMode() == 0,
1099 "RtlGetThreadErrorMode returned 0x%x, expected 0x%x\n", mode, 0);
1100 if (!is_wow64 && pNtCurrentTeb)
1101 ok(pNtCurrentTeb()->HardErrorDisabled == 0,
1102 "The TEB contains 0x%x, expected 0x%x\n",
1103 pNtCurrentTeb()->HardErrorDisabled, 0);
1105 for (mode = 1; mode; mode <<= 1)
1107 status = pRtlSetThreadErrorMode(mode, NULL);
1108 if (mode & 0x70)
1109 ok(status == STATUS_SUCCESS ||
1110 status == STATUS_WAIT_1, /* Vista */
1111 "RtlSetThreadErrorMode(%x,NULL) failed with error 0x%08x\n",
1112 mode, status);
1113 else
1114 ok(status == STATUS_INVALID_PARAMETER_1,
1115 "RtlSetThreadErrorMode(%x,NULL) returns 0x%08x, "
1116 "expected STATUS_INVALID_PARAMETER_1\n",
1117 mode, status);
1120 pRtlSetThreadErrorMode(oldmode, NULL);
1123 static void test_LdrProcessRelocationBlock(void)
1125 IMAGE_BASE_RELOCATION *ret;
1126 USHORT reloc;
1127 DWORD addr32;
1128 SHORT addr16;
1130 if(!pLdrProcessRelocationBlock) {
1131 win_skip("LdrProcessRelocationBlock not available\n");
1132 return;
1135 addr32 = 0x50005;
1136 reloc = IMAGE_REL_BASED_HIGHLOW<<12;
1137 ret = pLdrProcessRelocationBlock(&addr32, 1, &reloc, 0x500050);
1138 ok((USHORT*)ret == &reloc+1, "ret = %p, expected %p\n", ret, &reloc+1);
1139 ok(addr32 == 0x550055, "addr32 = %x, expected 0x550055\n", addr32);
1141 addr16 = 0x505;
1142 reloc = IMAGE_REL_BASED_HIGH<<12;
1143 ret = pLdrProcessRelocationBlock(&addr16, 1, &reloc, 0x500060);
1144 ok((USHORT*)ret == &reloc+1, "ret = %p, expected %p\n", ret, &reloc+1);
1145 ok(addr16 == 0x555, "addr16 = %x, expected 0x555\n", addr16);
1147 addr16 = 0x505;
1148 reloc = IMAGE_REL_BASED_LOW<<12;
1149 ret = pLdrProcessRelocationBlock(&addr16, 1, &reloc, 0x500060);
1150 ok((USHORT*)ret == &reloc+1, "ret = %p, expected %p\n", ret, &reloc+1);
1151 ok(addr16 == 0x565, "addr16 = %x, expected 0x565\n", addr16);
1154 static void test_RtlIpv4AddressToString(void)
1156 CHAR buffer[20];
1157 CHAR *res;
1158 IN_ADDR ip;
1159 DWORD_PTR len;
1161 if (!pRtlIpv4AddressToStringA)
1163 win_skip("RtlIpv4AddressToStringA not available\n");
1164 return;
1167 ip.S_un.S_un_b.s_b1 = 1;
1168 ip.S_un.S_un_b.s_b2 = 2;
1169 ip.S_un.S_un_b.s_b3 = 3;
1170 ip.S_un.S_un_b.s_b4 = 4;
1172 memset(buffer, '#', sizeof(buffer) - 1);
1173 buffer[sizeof(buffer) -1] = 0;
1174 res = pRtlIpv4AddressToStringA(&ip, buffer);
1175 len = strlen(buffer);
1176 ok(res == (buffer + len), "got %p with '%s' (expected %p)\n", res, buffer, buffer + len);
1178 res = pRtlIpv4AddressToStringA(&ip, NULL);
1179 ok( (res == (char *)~0) ||
1180 broken(res == (char *)len), /* XP and w2003 */
1181 "got %p (expected ~0)\n", res);
1183 if (0) {
1184 /* this crashes in windows */
1185 memset(buffer, '#', sizeof(buffer) - 1);
1186 buffer[sizeof(buffer) -1] = 0;
1187 res = pRtlIpv4AddressToStringA(NULL, buffer);
1188 trace("got %p with '%s'\n", res, buffer);
1191 if (0) {
1192 /* this crashes in windows */
1193 res = pRtlIpv4AddressToStringA(NULL, NULL);
1194 trace("got %p\n", res);
1198 static void test_RtlIpv4AddressToStringEx(void)
1200 CHAR ip_1234[] = "1.2.3.4";
1201 CHAR ip_1234_80[] = "1.2.3.4:80";
1202 LPSTR expect;
1203 CHAR buffer[30];
1204 NTSTATUS res;
1205 IN_ADDR ip;
1206 ULONG size;
1207 DWORD used;
1208 USHORT port;
1210 if (!pRtlIpv4AddressToStringExA)
1212 win_skip("RtlIpv4AddressToStringExA not available\n");
1213 return;
1216 ip.S_un.S_un_b.s_b1 = 1;
1217 ip.S_un.S_un_b.s_b2 = 2;
1218 ip.S_un.S_un_b.s_b3 = 3;
1219 ip.S_un.S_un_b.s_b4 = 4;
1221 port = htons(80);
1222 expect = ip_1234_80;
1224 size = sizeof(buffer);
1225 memset(buffer, '#', sizeof(buffer) - 1);
1226 buffer[sizeof(buffer) -1] = 0;
1227 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1228 used = strlen(buffer);
1229 ok( (res == STATUS_SUCCESS) &&
1230 (size == strlen(expect) + 1) && !strcmp(buffer, expect),
1231 "got 0x%x and size %d with '%s'\n", res, size, buffer);
1233 size = used + 1;
1234 memset(buffer, '#', sizeof(buffer) - 1);
1235 buffer[sizeof(buffer) -1] = 0;
1236 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1237 ok( (res == STATUS_SUCCESS) &&
1238 (size == strlen(expect) + 1) && !strcmp(buffer, expect),
1239 "got 0x%x and size %d with '%s'\n", res, size, buffer);
1241 size = used;
1242 memset(buffer, '#', sizeof(buffer) - 1);
1243 buffer[sizeof(buffer) -1] = 0;
1244 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1245 ok( (res == STATUS_INVALID_PARAMETER) && (size == used + 1),
1246 "got 0x%x and %d with '%s' (expected STATUS_INVALID_PARAMETER and %d)\n",
1247 res, size, buffer, used + 1);
1249 size = used - 1;
1250 memset(buffer, '#', sizeof(buffer) - 1);
1251 buffer[sizeof(buffer) -1] = 0;
1252 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1253 ok( (res == STATUS_INVALID_PARAMETER) && (size == used + 1),
1254 "got 0x%x and %d with '%s' (expected STATUS_INVALID_PARAMETER and %d)\n",
1255 res, size, buffer, used + 1);
1258 /* to get only the ip, use 0 as port */
1259 port = 0;
1260 expect = ip_1234;
1262 size = sizeof(buffer);
1263 memset(buffer, '#', sizeof(buffer) - 1);
1264 buffer[sizeof(buffer) -1] = 0;
1265 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1266 used = strlen(buffer);
1267 ok( (res == STATUS_SUCCESS) &&
1268 (size == strlen(expect) + 1) && !strcmp(buffer, expect),
1269 "got 0x%x and size %d with '%s'\n", res, size, buffer);
1271 size = used + 1;
1272 memset(buffer, '#', sizeof(buffer) - 1);
1273 buffer[sizeof(buffer) -1] = 0;
1274 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1275 ok( (res == STATUS_SUCCESS) &&
1276 (size == strlen(expect) + 1) && !strcmp(buffer, expect),
1277 "got 0x%x and size %d with '%s'\n", res, size, buffer);
1279 size = used;
1280 memset(buffer, '#', sizeof(buffer) - 1);
1281 buffer[sizeof(buffer) -1] = 0;
1282 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1283 ok( (res == STATUS_INVALID_PARAMETER) && (size == used + 1),
1284 "got 0x%x and %d with '%s' (expected STATUS_INVALID_PARAMETER and %d)\n",
1285 res, size, buffer, used + 1);
1287 size = used - 1;
1288 memset(buffer, '#', sizeof(buffer) - 1);
1289 buffer[sizeof(buffer) -1] = 0;
1290 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1291 ok( (res == STATUS_INVALID_PARAMETER) && (size == used + 1),
1292 "got 0x%x and %d with '%s' (expected STATUS_INVALID_PARAMETER and %d)\n",
1293 res, size, buffer, used + 1);
1296 /* parameters are checked */
1297 memset(buffer, '#', sizeof(buffer) - 1);
1298 buffer[sizeof(buffer) -1] = 0;
1299 res = pRtlIpv4AddressToStringExA(&ip, 0, buffer, NULL);
1300 ok(res == STATUS_INVALID_PARAMETER,
1301 "got 0x%x with '%s' (expected STATUS_INVALID_PARAMETER)\n", res, buffer);
1303 size = sizeof(buffer);
1304 res = pRtlIpv4AddressToStringExA(&ip, 0, NULL, &size);
1305 ok( res == STATUS_INVALID_PARAMETER,
1306 "got 0x%x and size %d (expected STATUS_INVALID_PARAMETER)\n", res, size);
1308 size = sizeof(buffer);
1309 memset(buffer, '#', sizeof(buffer) - 1);
1310 buffer[sizeof(buffer) -1] = 0;
1311 res = pRtlIpv4AddressToStringExA(NULL, 0, buffer, &size);
1312 ok( res == STATUS_INVALID_PARAMETER,
1313 "got 0x%x and size %d with '%s' (expected STATUS_INVALID_PARAMETER)\n",
1314 res, size, buffer);
1317 static void test_RtlIpv4StringToAddress(void)
1319 NTSTATUS res;
1320 IN_ADDR ip, expected_ip;
1321 PCSTR terminator;
1322 CHAR dummy;
1323 struct
1325 PCSTR address;
1326 NTSTATUS res;
1327 int terminator_offset;
1328 int ip[4];
1329 BOOL strict_is_different;
1330 NTSTATUS res_strict;
1331 int terminator_offset_strict;
1332 int ip_strict[4];
1333 } tests[] =
1335 { "", STATUS_INVALID_PARAMETER, 0, { -1 } },
1336 { " ", STATUS_INVALID_PARAMETER, 0, { -1 } },
1337 { "1.1.1.1", STATUS_SUCCESS, 7, { 1, 1, 1, 1 } },
1338 { "0.0.0.0", STATUS_SUCCESS, 7, { 0, 0, 0, 0 } },
1339 { "255.255.255.255", STATUS_SUCCESS, 15, { 255, 255, 255, 255 } },
1340 { "255.255.255.255:123",
1341 STATUS_SUCCESS, 15, { 255, 255, 255, 255 } },
1342 { "255.255.255.256", STATUS_INVALID_PARAMETER, 15, { -1 } },
1343 { "255.255.255.4294967295",
1344 STATUS_INVALID_PARAMETER, 22, { -1 } },
1345 { "255.255.255.4294967296",
1346 STATUS_INVALID_PARAMETER, 21, { -1 } },
1347 { "255.255.255.4294967297",
1348 STATUS_INVALID_PARAMETER, 21, { -1 } },
1349 { "a", STATUS_INVALID_PARAMETER, 0, { -1 } },
1350 { "1.1.1.0xaA", STATUS_SUCCESS, 10, { 1, 1, 1, 170 },
1351 TRUE, STATUS_INVALID_PARAMETER, 8, { -1 } },
1352 { "1.1.1.0XaA", STATUS_SUCCESS, 10, { 1, 1, 1, 170 },
1353 TRUE, STATUS_INVALID_PARAMETER, 8, { -1 } },
1354 { "1.1.1.0x", STATUS_INVALID_PARAMETER, 8, { -1 } },
1355 { "1.1.1.0xff", STATUS_SUCCESS, 10, { 1, 1, 1, 255 },
1356 TRUE, STATUS_INVALID_PARAMETER, 8, { -1 } },
1357 { "1.1.1.0x100", STATUS_INVALID_PARAMETER, 11, { -1 },
1358 TRUE, STATUS_INVALID_PARAMETER, 8, { -1 } },
1359 { "1.1.1.0xffffffff",STATUS_INVALID_PARAMETER, 16, { -1 },
1360 TRUE, STATUS_INVALID_PARAMETER, 8, { -1 } },
1361 { "1.1.1.0x100000000",
1362 STATUS_INVALID_PARAMETER, 16, { -1, 0, 0, 0 },
1363 TRUE, STATUS_INVALID_PARAMETER, 8, { -1 } },
1364 { "1.1.1.010", STATUS_SUCCESS, 9, { 1, 1, 1, 8 },
1365 TRUE, STATUS_INVALID_PARAMETER, 7, { -1 } },
1366 { "1.1.1.00", STATUS_SUCCESS, 8, { 1, 1, 1, 0 },
1367 TRUE, STATUS_INVALID_PARAMETER, 7, { -1 } },
1368 { "1.1.1.007", STATUS_SUCCESS, 9, { 1, 1, 1, 7 },
1369 TRUE, STATUS_INVALID_PARAMETER, 7, { -1 } },
1370 { "1.1.1.08", STATUS_INVALID_PARAMETER, 7, { -1 } },
1371 { "1.1.1.008", STATUS_SUCCESS, 8, { 1, 1, 1, 0 },
1372 TRUE, STATUS_INVALID_PARAMETER, 7, { -1 } },
1373 { "1.1.1.0a", STATUS_SUCCESS, 7, { 1, 1, 1, 0 } },
1374 { "1.1.1.0o10", STATUS_SUCCESS, 7, { 1, 1, 1, 0 } },
1375 { "1.1.1.0b10", STATUS_SUCCESS, 7, { 1, 1, 1, 0 } },
1376 { "1.1.1.-2", STATUS_INVALID_PARAMETER, 6, { -1 } },
1377 { "1", STATUS_SUCCESS, 1, { 0, 0, 0, 1 },
1378 TRUE, STATUS_INVALID_PARAMETER, 1, { -1 } },
1379 { "-1", STATUS_INVALID_PARAMETER, 0, { -1 } },
1380 { "203569230", STATUS_SUCCESS, 9, { 12, 34, 56, 78 },
1381 TRUE, STATUS_INVALID_PARAMETER, 9, { -1 } },
1382 { "1.223756", STATUS_SUCCESS, 8, { 1, 3, 106, 12 },
1383 TRUE, STATUS_INVALID_PARAMETER, 8, { -1 } },
1384 { "3.4.756", STATUS_SUCCESS, 7, { 3, 4, 2, 244 },
1385 TRUE, STATUS_INVALID_PARAMETER, 7, { -1 } },
1386 { "3.4.756.1", STATUS_INVALID_PARAMETER, 9, { -1 } },
1387 { "3.4.65536", STATUS_INVALID_PARAMETER, 9, { -1 } },
1388 { "3.4.5.6.7", STATUS_INVALID_PARAMETER, 7, { -1 } },
1389 { "3.4.5.+6", STATUS_INVALID_PARAMETER, 6, { -1 } },
1390 { " 3.4.5.6", STATUS_INVALID_PARAMETER, 0, { -1 } },
1391 { "\t3.4.5.6", STATUS_INVALID_PARAMETER, 0, { -1 } },
1392 { "3.4.5.6 ", STATUS_SUCCESS, 7, { 3, 4, 5, 6 } },
1393 { "3. 4.5.6", STATUS_INVALID_PARAMETER, 2, { -1 } },
1394 { ".", STATUS_INVALID_PARAMETER, 1, { -1 } },
1395 { "..", STATUS_INVALID_PARAMETER, 1, { -1 } },
1396 { "1.", STATUS_INVALID_PARAMETER, 2, { -1 } },
1397 { "1..", STATUS_INVALID_PARAMETER, 3, { -1 } },
1398 { ".1", STATUS_INVALID_PARAMETER, 1, { -1 } },
1399 { ".1.", STATUS_INVALID_PARAMETER, 1, { -1 } },
1400 { ".1.2.3", STATUS_INVALID_PARAMETER, 1, { -1 } },
1401 { "0.1.2.3", STATUS_SUCCESS, 7, { 0, 1, 2, 3 } },
1402 { "0.1.2.3.", STATUS_INVALID_PARAMETER, 7, { -1 } },
1403 { "[0.1.2.3]", STATUS_INVALID_PARAMETER, 0, { -1 } },
1404 { "::1", STATUS_INVALID_PARAMETER, 0, { -1 } },
1405 { ":1", STATUS_INVALID_PARAMETER, 0, { -1 } },
1407 const int testcount = sizeof(tests) / sizeof(tests[0]);
1408 int i;
1410 if (!pRtlIpv4StringToAddressA)
1412 skip("RtlIpv4StringToAddress not available\n");
1413 return;
1416 if (0)
1418 /* leaving either parameter NULL crashes on Windows */
1419 res = pRtlIpv4StringToAddressA(NULL, FALSE, &terminator, &ip);
1420 res = pRtlIpv4StringToAddressA("1.1.1.1", FALSE, NULL, &ip);
1421 res = pRtlIpv4StringToAddressA("1.1.1.1", FALSE, &terminator, NULL);
1422 /* same for the wide char version */
1424 res = pRtlIpv4StringToAddressW(NULL, FALSE, &terminatorW, &ip);
1425 res = pRtlIpv4StringToAddressW(L"1.1.1.1", FALSE, NULL, &ip);
1426 res = pRtlIpv4StringToAddressW(L"1.1.1.1", FALSE, &terminatorW, NULL);
1430 for (i = 0; i < testcount; i++)
1432 /* non-strict */
1433 terminator = &dummy;
1434 ip.S_un.S_addr = 0xabababab;
1435 res = pRtlIpv4StringToAddressA(tests[i].address, FALSE, &terminator, &ip);
1436 ok(res == tests[i].res,
1437 "[%s] res = 0x%08x, expected 0x%08x\n",
1438 tests[i].address, res, tests[i].res);
1439 ok(terminator == tests[i].address + tests[i].terminator_offset,
1440 "[%s] terminator = %p, expected %p\n",
1441 tests[i].address, terminator, tests[i].address + tests[i].terminator_offset);
1442 if (tests[i].ip[0] == -1)
1443 expected_ip.S_un.S_addr = 0xabababab;
1444 else
1446 expected_ip.S_un.S_un_b.s_b1 = tests[i].ip[0];
1447 expected_ip.S_un.S_un_b.s_b2 = tests[i].ip[1];
1448 expected_ip.S_un.S_un_b.s_b3 = tests[i].ip[2];
1449 expected_ip.S_un.S_un_b.s_b4 = tests[i].ip[3];
1451 ok(ip.S_un.S_addr == expected_ip.S_un.S_addr,
1452 "[%s] ip = %08x, expected %08x\n",
1453 tests[i].address, ip.S_un.S_addr, expected_ip.S_un.S_addr);
1455 if (!tests[i].strict_is_different)
1457 tests[i].res_strict = tests[i].res;
1458 tests[i].terminator_offset_strict = tests[i].terminator_offset;
1459 tests[i].ip_strict[0] = tests[i].ip[0];
1460 tests[i].ip_strict[1] = tests[i].ip[1];
1461 tests[i].ip_strict[2] = tests[i].ip[2];
1462 tests[i].ip_strict[3] = tests[i].ip[3];
1464 /* strict */
1465 terminator = &dummy;
1466 ip.S_un.S_addr = 0xabababab;
1467 res = pRtlIpv4StringToAddressA(tests[i].address, TRUE, &terminator, &ip);
1468 ok(res == tests[i].res_strict,
1469 "[%s] res = 0x%08x, expected 0x%08x\n",
1470 tests[i].address, res, tests[i].res_strict);
1471 ok(terminator == tests[i].address + tests[i].terminator_offset_strict,
1472 "[%s] terminator = %p, expected %p\n",
1473 tests[i].address, terminator, tests[i].address + tests[i].terminator_offset_strict);
1474 if (tests[i].ip_strict[0] == -1)
1475 expected_ip.S_un.S_addr = 0xabababab;
1476 else
1478 expected_ip.S_un.S_un_b.s_b1 = tests[i].ip_strict[0];
1479 expected_ip.S_un.S_un_b.s_b2 = tests[i].ip_strict[1];
1480 expected_ip.S_un.S_un_b.s_b3 = tests[i].ip_strict[2];
1481 expected_ip.S_un.S_un_b.s_b4 = tests[i].ip_strict[3];
1483 ok(ip.S_un.S_addr == expected_ip.S_un.S_addr,
1484 "[%s] ip = %08x, expected %08x\n",
1485 tests[i].address, ip.S_un.S_addr, expected_ip.S_un.S_addr);
1489 START_TEST(rtl)
1491 InitFunctionPtrs();
1493 test_RtlCompareMemory();
1494 test_RtlCompareMemoryUlong();
1495 test_RtlMoveMemory();
1496 test_RtlFillMemory();
1497 test_RtlFillMemoryUlong();
1498 test_RtlZeroMemory();
1499 test_RtlUlonglongByteSwap();
1500 test_RtlUniform();
1501 test_RtlRandom();
1502 test_RtlAreAllAccessesGranted();
1503 test_RtlAreAnyAccessesGranted();
1504 test_RtlComputeCrc32();
1505 test_HandleTables();
1506 test_RtlAllocateAndInitializeSid();
1507 test_RtlDeleteTimer();
1508 test_RtlThreadErrorMode();
1509 test_LdrProcessRelocationBlock();
1510 test_RtlIpv4AddressToString();
1511 test_RtlIpv4AddressToStringEx();
1512 test_RtlIpv4StringToAddress();