wined3d: Pass a wined3d_device_context to wined3d_cs_emit_blt_sub_resource().
[wine/zf.git] / dlls / oleaut32 / vartype.c
blob06bc70e0a89ffee3ca7ba8c9ac9325124ec5e017
1 /*
2 * Low level variant functions
4 * Copyright 2003 Jon Griffiths
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
21 #define COBJMACROS
22 #define NONAMELESSUNION
23 #define NONAMELESSSTRUCT
25 #include "wine/debug.h"
26 #include "winbase.h"
27 #include "winuser.h"
28 #include "winnt.h"
29 #include "variant.h"
30 #include "resource.h"
32 #include "locale.h"
34 WINE_DEFAULT_DEBUG_CHANNEL(variant);
36 extern HMODULE hProxyDll DECLSPEC_HIDDEN;
38 #define CY_MULTIPLIER 10000 /* 4 dp of precision */
39 #define CY_MULTIPLIER_F 10000.0
40 #define CY_HALF (CY_MULTIPLIER/2) /* 0.5 */
41 #define CY_HALF_F (CY_MULTIPLIER_F/2.0)
43 /* Copy data from one variant to another. */
44 static inline void VARIANT_CopyData(const VARIANT *srcVar, VARTYPE vt, void *pOut)
46 switch (vt)
48 case VT_I1:
49 case VT_UI1: memcpy(pOut, &V_UI1(srcVar), sizeof(BYTE)); break;
50 case VT_BOOL:
51 case VT_I2:
52 case VT_UI2: memcpy(pOut, &V_UI2(srcVar), sizeof(SHORT)); break;
53 case VT_R4:
54 case VT_INT:
55 case VT_I4:
56 case VT_UINT:
57 case VT_UI4: memcpy(pOut, &V_UI4(srcVar), sizeof (LONG)); break;
58 case VT_R8:
59 case VT_DATE:
60 case VT_CY:
61 case VT_I8:
62 case VT_UI8: memcpy(pOut, &V_UI8(srcVar), sizeof (LONG64)); break;
63 case VT_INT_PTR: memcpy(pOut, &V_INT_PTR(srcVar), sizeof (INT_PTR)); break;
64 case VT_DECIMAL: memcpy(pOut, &V_DECIMAL(srcVar), sizeof (DECIMAL)); break;
65 case VT_BSTR: memcpy(pOut, &V_BSTR(srcVar), sizeof(BSTR)); break;
66 default:
67 FIXME("VT_ type %d unhandled, please report!\n", vt);
71 /* Macro to inline conversion from a float or double to any integer type,
72 * rounding according to the 'dutch' convention.
74 #define VARIANT_DutchRound(typ, value, res) do { \
75 double whole = value < 0 ? ceil(value) : floor(value); \
76 double fract = value - whole; \
77 if (fract > 0.5) res = (typ)whole + (typ)1; \
78 else if (fract == 0.5) { typ is_odd = (typ)whole & 1; res = whole + is_odd; } \
79 else if (fract >= 0.0) res = (typ)whole; \
80 else if (fract == -0.5) { typ is_odd = (typ)whole & 1; res = whole - is_odd; } \
81 else if (fract > -0.5) res = (typ)whole; \
82 else res = (typ)whole - (typ)1; \
83 } while(0)
86 /* Coerce VT_BSTR to a numeric type */
87 static HRESULT VARIANT_NumberFromBstr(OLECHAR* pStrIn, LCID lcid, ULONG ulFlags,
88 void* pOut, VARTYPE vt)
90 VARIANTARG dstVar;
91 HRESULT hRet;
92 NUMPARSE np;
93 BYTE rgb[1024];
95 /* Use VarParseNumFromStr/VarNumFromParseNum as MSDN indicates */
96 np.cDig = ARRAY_SIZE(rgb);
97 np.dwInFlags = NUMPRS_STD;
99 hRet = VarParseNumFromStr(pStrIn, lcid, ulFlags, &np, rgb);
101 if (SUCCEEDED(hRet))
103 /* 1 << vt gives us the VTBIT constant for the destination number type */
104 hRet = VarNumFromParseNum(&np, rgb, 1 << vt, &dstVar);
105 if (SUCCEEDED(hRet))
106 VARIANT_CopyData(&dstVar, vt, pOut);
108 return hRet;
111 /* Coerce VT_DISPATCH to another type */
112 static HRESULT VARIANT_FromDisp(IDispatch* pdispIn, LCID lcid, void* pOut,
113 VARTYPE vt, DWORD dwFlags)
115 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
116 VARIANTARG srcVar, dstVar;
117 HRESULT hRet;
119 if (!pdispIn)
120 return DISP_E_BADVARTYPE;
122 /* Get the default 'value' property from the IDispatch */
123 VariantInit(&srcVar);
124 hRet = IDispatch_Invoke(pdispIn, DISPID_VALUE, &IID_NULL, lcid, DISPATCH_PROPERTYGET,
125 &emptyParams, &srcVar, NULL, NULL);
127 if (SUCCEEDED(hRet))
129 /* Convert the property to the requested type */
130 VariantInit(&dstVar);
131 hRet = VariantChangeTypeEx(&dstVar, &srcVar, lcid, dwFlags, vt);
132 VariantClear(&srcVar);
134 if (SUCCEEDED(hRet))
135 VARIANT_CopyData(&dstVar, vt, pOut);
137 else
138 hRet = DISP_E_TYPEMISMATCH;
139 return hRet;
142 /* Inline return type */
143 #define RETTYP static inline HRESULT
146 /* Simple compiler cast from one type to another */
147 #define SIMPLE(dest, src, func) RETTYP _##func(src in, dest* out) { \
148 *out = in; return S_OK; }
150 /* Compiler cast where input cannot be negative */
151 #define NEGTST(dest, src, func) RETTYP _##func(src in, dest* out) { \
152 if (in < 0) return DISP_E_OVERFLOW; *out = in; return S_OK; }
154 /* Compiler cast where input cannot be > some number */
155 #define POSTST(dest, src, func, tst) RETTYP _##func(src in, dest* out) { \
156 if (in > (dest)tst) return DISP_E_OVERFLOW; *out = in; return S_OK; }
158 /* Compiler cast where input cannot be < some number or >= some other number */
159 #define BOTHTST(dest, src, func, lo, hi) RETTYP _##func(src in, dest* out) { \
160 if (in < (dest)lo || in > hi) return DISP_E_OVERFLOW; *out = in; return S_OK; }
162 /* I1 */
163 POSTST(signed char, BYTE, VarI1FromUI1, I1_MAX)
164 BOTHTST(signed char, SHORT, VarI1FromI2, I1_MIN, I1_MAX)
165 BOTHTST(signed char, LONG, VarI1FromI4, I1_MIN, I1_MAX)
166 SIMPLE(signed char, VARIANT_BOOL, VarI1FromBool)
167 POSTST(signed char, USHORT, VarI1FromUI2, I1_MAX)
168 POSTST(signed char, ULONG, VarI1FromUI4, I1_MAX)
169 BOTHTST(signed char, LONG64, VarI1FromI8, I1_MIN, I1_MAX)
170 POSTST(signed char, ULONG64, VarI1FromUI8, I1_MAX)
172 /* UI1 */
173 BOTHTST(BYTE, SHORT, VarUI1FromI2, UI1_MIN, UI1_MAX)
174 SIMPLE(BYTE, VARIANT_BOOL, VarUI1FromBool)
175 NEGTST(BYTE, signed char, VarUI1FromI1)
176 POSTST(BYTE, USHORT, VarUI1FromUI2, UI1_MAX)
177 BOTHTST(BYTE, LONG, VarUI1FromI4, UI1_MIN, UI1_MAX)
178 POSTST(BYTE, ULONG, VarUI1FromUI4, UI1_MAX)
179 BOTHTST(BYTE, LONG64, VarUI1FromI8, UI1_MIN, UI1_MAX)
180 POSTST(BYTE, ULONG64, VarUI1FromUI8, UI1_MAX)
182 /* I2 */
183 SIMPLE(SHORT, BYTE, VarI2FromUI1)
184 BOTHTST(SHORT, LONG, VarI2FromI4, I2_MIN, I2_MAX)
185 SIMPLE(SHORT, VARIANT_BOOL, VarI2FromBool)
186 SIMPLE(SHORT, signed char, VarI2FromI1)
187 POSTST(SHORT, USHORT, VarI2FromUI2, I2_MAX)
188 POSTST(SHORT, ULONG, VarI2FromUI4, I2_MAX)
189 BOTHTST(SHORT, LONG64, VarI2FromI8, I2_MIN, I2_MAX)
190 POSTST(SHORT, ULONG64, VarI2FromUI8, I2_MAX)
192 /* UI2 */
193 SIMPLE(USHORT, BYTE, VarUI2FromUI1)
194 NEGTST(USHORT, SHORT, VarUI2FromI2)
195 BOTHTST(USHORT, LONG, VarUI2FromI4, UI2_MIN, UI2_MAX)
196 SIMPLE(USHORT, VARIANT_BOOL, VarUI2FromBool)
197 NEGTST(USHORT, signed char, VarUI2FromI1)
198 POSTST(USHORT, ULONG, VarUI2FromUI4, UI2_MAX)
199 BOTHTST(USHORT, LONG64, VarUI2FromI8, UI2_MIN, UI2_MAX)
200 POSTST(USHORT, ULONG64, VarUI2FromUI8, UI2_MAX)
202 /* I4 */
203 SIMPLE(LONG, BYTE, VarI4FromUI1)
204 SIMPLE(LONG, SHORT, VarI4FromI2)
205 SIMPLE(LONG, VARIANT_BOOL, VarI4FromBool)
206 SIMPLE(LONG, signed char, VarI4FromI1)
207 SIMPLE(LONG, USHORT, VarI4FromUI2)
208 POSTST(LONG, ULONG, VarI4FromUI4, I4_MAX)
209 BOTHTST(LONG, LONG64, VarI4FromI8, I4_MIN, I4_MAX)
210 POSTST(LONG, ULONG64, VarI4FromUI8, I4_MAX)
212 /* UI4 */
213 SIMPLE(ULONG, BYTE, VarUI4FromUI1)
214 NEGTST(ULONG, SHORT, VarUI4FromI2)
215 NEGTST(ULONG, LONG, VarUI4FromI4)
216 SIMPLE(ULONG, VARIANT_BOOL, VarUI4FromBool)
217 NEGTST(ULONG, signed char, VarUI4FromI1)
218 SIMPLE(ULONG, USHORT, VarUI4FromUI2)
219 BOTHTST(ULONG, LONG64, VarUI4FromI8, UI4_MIN, UI4_MAX)
220 POSTST(ULONG, ULONG64, VarUI4FromUI8, UI4_MAX)
222 /* I8 */
223 SIMPLE(LONG64, BYTE, VarI8FromUI1)
224 SIMPLE(LONG64, SHORT, VarI8FromI2)
225 SIMPLE(LONG64, signed char, VarI8FromI1)
226 SIMPLE(LONG64, USHORT, VarI8FromUI2)
227 SIMPLE(LONG64, ULONG, VarI8FromUI4)
228 POSTST(LONG64, ULONG64, VarI8FromUI8, I8_MAX)
230 /* UI8 */
231 SIMPLE(ULONG64, BYTE, VarUI8FromUI1)
232 NEGTST(ULONG64, SHORT, VarUI8FromI2)
233 NEGTST(ULONG64, signed char, VarUI8FromI1)
234 SIMPLE(ULONG64, USHORT, VarUI8FromUI2)
235 SIMPLE(ULONG64, ULONG, VarUI8FromUI4)
236 NEGTST(ULONG64, LONG64, VarUI8FromI8)
238 /* R4 (float) */
239 SIMPLE(float, BYTE, VarR4FromUI1)
240 SIMPLE(float, SHORT, VarR4FromI2)
241 SIMPLE(float, signed char, VarR4FromI1)
242 SIMPLE(float, USHORT, VarR4FromUI2)
243 SIMPLE(float, LONG, VarR4FromI4)
244 SIMPLE(float, ULONG, VarR4FromUI4)
245 SIMPLE(float, LONG64, VarR4FromI8)
246 SIMPLE(float, ULONG64, VarR4FromUI8)
248 /* R8 (double) */
249 SIMPLE(double, BYTE, VarR8FromUI1)
250 SIMPLE(double, SHORT, VarR8FromI2)
251 SIMPLE(double, float, VarR8FromR4)
252 RETTYP _VarR8FromCy(CY i, double* o) { *o = (double)i.int64 / CY_MULTIPLIER_F; return S_OK; }
253 SIMPLE(double, DATE, VarR8FromDate)
254 SIMPLE(double, signed char, VarR8FromI1)
255 SIMPLE(double, USHORT, VarR8FromUI2)
256 SIMPLE(double, LONG, VarR8FromI4)
257 SIMPLE(double, ULONG, VarR8FromUI4)
258 SIMPLE(double, LONG64, VarR8FromI8)
259 SIMPLE(double, ULONG64, VarR8FromUI8)
262 /* I1
265 /************************************************************************
266 * VarI1FromUI1 (OLEAUT32.244)
268 * Convert a VT_UI1 to a VT_I1.
270 * PARAMS
271 * bIn [I] Source
272 * pcOut [O] Destination
274 * RETURNS
275 * Success: S_OK.
276 * Failure: E_INVALIDARG, if the source value is invalid
277 * DISP_E_OVERFLOW, if the value will not fit in the destination
279 HRESULT WINAPI VarI1FromUI1(BYTE bIn, signed char* pcOut)
281 return _VarI1FromUI1(bIn, pcOut);
284 /************************************************************************
285 * VarI1FromI2 (OLEAUT32.245)
287 * Convert a VT_I2 to a VT_I1.
289 * PARAMS
290 * sIn [I] Source
291 * pcOut [O] Destination
293 * RETURNS
294 * Success: S_OK.
295 * Failure: E_INVALIDARG, if the source value is invalid
296 * DISP_E_OVERFLOW, if the value will not fit in the destination
298 HRESULT WINAPI VarI1FromI2(SHORT sIn, signed char* pcOut)
300 return _VarI1FromI2(sIn, pcOut);
303 /************************************************************************
304 * VarI1FromI4 (OLEAUT32.246)
306 * Convert a VT_I4 to a VT_I1.
308 * PARAMS
309 * iIn [I] Source
310 * pcOut [O] Destination
312 * RETURNS
313 * Success: S_OK.
314 * Failure: E_INVALIDARG, if the source value is invalid
315 * DISP_E_OVERFLOW, if the value will not fit in the destination
317 HRESULT WINAPI VarI1FromI4(LONG iIn, signed char* pcOut)
319 return _VarI1FromI4(iIn, pcOut);
322 /************************************************************************
323 * VarI1FromR4 (OLEAUT32.247)
325 * Convert a VT_R4 to a VT_I1.
327 * PARAMS
328 * fltIn [I] Source
329 * pcOut [O] Destination
331 * RETURNS
332 * Success: S_OK.
333 * Failure: E_INVALIDARG, if the source value is invalid
334 * DISP_E_OVERFLOW, if the value will not fit in the destination
336 HRESULT WINAPI VarI1FromR4(FLOAT fltIn, signed char* pcOut)
338 return VarI1FromR8(fltIn, pcOut);
341 /************************************************************************
342 * VarI1FromR8 (OLEAUT32.248)
344 * Convert a VT_R8 to a VT_I1.
346 * PARAMS
347 * dblIn [I] Source
348 * pcOut [O] Destination
350 * RETURNS
351 * Success: S_OK.
352 * Failure: E_INVALIDARG, if the source value is invalid
353 * DISP_E_OVERFLOW, if the value will not fit in the destination
355 * NOTES
356 * See VarI8FromR8() for details concerning rounding.
358 HRESULT WINAPI VarI1FromR8(double dblIn, signed char* pcOut)
360 if (dblIn < I1_MIN - 0.5 || dblIn >= I1_MAX + 0.5)
361 return DISP_E_OVERFLOW;
362 VARIANT_DutchRound(CHAR, dblIn, *pcOut);
363 return S_OK;
366 /************************************************************************
367 * VarI1FromDate (OLEAUT32.249)
369 * Convert a VT_DATE to a VT_I1.
371 * PARAMS
372 * dateIn [I] Source
373 * pcOut [O] Destination
375 * RETURNS
376 * Success: S_OK.
377 * Failure: E_INVALIDARG, if the source value is invalid
378 * DISP_E_OVERFLOW, if the value will not fit in the destination
380 HRESULT WINAPI VarI1FromDate(DATE dateIn, signed char* pcOut)
382 return VarI1FromR8(dateIn, pcOut);
385 /************************************************************************
386 * VarI1FromCy (OLEAUT32.250)
388 * Convert a VT_CY to a VT_I1.
390 * PARAMS
391 * cyIn [I] Source
392 * pcOut [O] Destination
394 * RETURNS
395 * Success: S_OK.
396 * Failure: E_INVALIDARG, if the source value is invalid
397 * DISP_E_OVERFLOW, if the value will not fit in the destination
399 HRESULT WINAPI VarI1FromCy(CY cyIn, signed char* pcOut)
401 LONG i = I1_MAX + 1;
403 VarI4FromCy(cyIn, &i);
404 return _VarI1FromI4(i, pcOut);
407 /************************************************************************
408 * VarI1FromStr (OLEAUT32.251)
410 * Convert a VT_BSTR to a VT_I1.
412 * PARAMS
413 * strIn [I] Source
414 * lcid [I] LCID for the conversion
415 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
416 * pcOut [O] Destination
418 * RETURNS
419 * Success: S_OK.
420 * Failure: E_INVALIDARG, if the source value is invalid
421 * DISP_E_OVERFLOW, if the value will not fit in the destination
422 * DISP_E_TYPEMISMATCH, if the type cannot be converted
424 HRESULT WINAPI VarI1FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, signed char* pcOut)
426 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pcOut, VT_I1);
429 /************************************************************************
430 * VarI1FromDisp (OLEAUT32.252)
432 * Convert a VT_DISPATCH to a VT_I1.
434 * PARAMS
435 * pdispIn [I] Source
436 * lcid [I] LCID for conversion
437 * pcOut [O] Destination
439 * RETURNS
440 * Success: S_OK.
441 * Failure: E_INVALIDARG, if the source value is invalid
442 * DISP_E_OVERFLOW, if the value will not fit in the destination
443 * DISP_E_TYPEMISMATCH, if the type cannot be converted
445 HRESULT WINAPI VarI1FromDisp(IDispatch* pdispIn, LCID lcid, signed char* pcOut)
447 return VARIANT_FromDisp(pdispIn, lcid, pcOut, VT_I1, 0);
450 /************************************************************************
451 * VarI1FromBool (OLEAUT32.253)
453 * Convert a VT_BOOL to a VT_I1.
455 * PARAMS
456 * boolIn [I] Source
457 * pcOut [O] Destination
459 * RETURNS
460 * S_OK.
462 HRESULT WINAPI VarI1FromBool(VARIANT_BOOL boolIn, signed char* pcOut)
464 return _VarI1FromBool(boolIn, pcOut);
467 /************************************************************************
468 * VarI1FromUI2 (OLEAUT32.254)
470 * Convert a VT_UI2 to a VT_I1.
472 * PARAMS
473 * usIn [I] Source
474 * pcOut [O] Destination
476 * RETURNS
477 * Success: S_OK.
478 * Failure: E_INVALIDARG, if the source value is invalid
479 * DISP_E_OVERFLOW, if the value will not fit in the destination
481 HRESULT WINAPI VarI1FromUI2(USHORT usIn, signed char* pcOut)
483 return _VarI1FromUI2(usIn, pcOut);
486 /************************************************************************
487 * VarI1FromUI4 (OLEAUT32.255)
489 * Convert a VT_UI4 to a VT_I1.
491 * PARAMS
492 * ulIn [I] Source
493 * pcOut [O] Destination
495 * RETURNS
496 * Success: S_OK.
497 * Failure: E_INVALIDARG, if the source value is invalid
498 * DISP_E_OVERFLOW, if the value will not fit in the destination
499 * DISP_E_TYPEMISMATCH, if the type cannot be converted
501 HRESULT WINAPI VarI1FromUI4(ULONG ulIn, signed char* pcOut)
503 return _VarI1FromUI4(ulIn, pcOut);
506 /************************************************************************
507 * VarI1FromDec (OLEAUT32.256)
509 * Convert a VT_DECIMAL to a VT_I1.
511 * PARAMS
512 * pDecIn [I] Source
513 * pcOut [O] Destination
515 * RETURNS
516 * Success: S_OK.
517 * Failure: E_INVALIDARG, if the source value is invalid
518 * DISP_E_OVERFLOW, if the value will not fit in the destination
520 HRESULT WINAPI VarI1FromDec(const DECIMAL *pdecIn, signed char* pcOut)
522 LONG64 i64;
523 HRESULT hRet;
525 hRet = VarI8FromDec(pdecIn, &i64);
527 if (SUCCEEDED(hRet))
528 hRet = _VarI1FromI8(i64, pcOut);
529 return hRet;
532 /************************************************************************
533 * VarI1FromI8 (OLEAUT32.376)
535 * Convert a VT_I8 to a VT_I1.
537 * PARAMS
538 * llIn [I] Source
539 * pcOut [O] Destination
541 * RETURNS
542 * Success: S_OK.
543 * Failure: E_INVALIDARG, if the source value is invalid
544 * DISP_E_OVERFLOW, if the value will not fit in the destination
546 HRESULT WINAPI VarI1FromI8(LONG64 llIn, signed char* pcOut)
548 return _VarI1FromI8(llIn, pcOut);
551 /************************************************************************
552 * VarI1FromUI8 (OLEAUT32.377)
554 * Convert a VT_UI8 to a VT_I1.
556 * PARAMS
557 * ullIn [I] Source
558 * pcOut [O] Destination
560 * RETURNS
561 * Success: S_OK.
562 * Failure: E_INVALIDARG, if the source value is invalid
563 * DISP_E_OVERFLOW, if the value will not fit in the destination
565 HRESULT WINAPI VarI1FromUI8(ULONG64 ullIn, signed char* pcOut)
567 return _VarI1FromUI8(ullIn, pcOut);
570 /* UI1
573 /************************************************************************
574 * VarUI1FromI2 (OLEAUT32.130)
576 * Convert a VT_I2 to a VT_UI1.
578 * PARAMS
579 * sIn [I] Source
580 * pbOut [O] Destination
582 * RETURNS
583 * Success: S_OK.
584 * Failure: E_INVALIDARG, if the source value is invalid
585 * DISP_E_OVERFLOW, if the value will not fit in the destination
587 HRESULT WINAPI VarUI1FromI2(SHORT sIn, BYTE* pbOut)
589 return _VarUI1FromI2(sIn, pbOut);
592 /************************************************************************
593 * VarUI1FromI4 (OLEAUT32.131)
595 * Convert a VT_I4 to a VT_UI1.
597 * PARAMS
598 * iIn [I] Source
599 * pbOut [O] Destination
601 * RETURNS
602 * Success: S_OK.
603 * Failure: E_INVALIDARG, if the source value is invalid
604 * DISP_E_OVERFLOW, if the value will not fit in the destination
606 HRESULT WINAPI VarUI1FromI4(LONG iIn, BYTE* pbOut)
608 return _VarUI1FromI4(iIn, pbOut);
611 /************************************************************************
612 * VarUI1FromR4 (OLEAUT32.132)
614 * Convert a VT_R4 to a VT_UI1.
616 * PARAMS
617 * fltIn [I] Source
618 * pbOut [O] Destination
620 * RETURNS
621 * Success: S_OK.
622 * Failure: E_INVALIDARG, if the source value is invalid
623 * DISP_E_OVERFLOW, if the value will not fit in the destination
624 * DISP_E_TYPEMISMATCH, if the type cannot be converted
626 HRESULT WINAPI VarUI1FromR4(FLOAT fltIn, BYTE* pbOut)
628 return VarUI1FromR8(fltIn, pbOut);
631 /************************************************************************
632 * VarUI1FromR8 (OLEAUT32.133)
634 * Convert a VT_R8 to a VT_UI1.
636 * PARAMS
637 * dblIn [I] Source
638 * pbOut [O] Destination
640 * RETURNS
641 * Success: S_OK.
642 * Failure: E_INVALIDARG, if the source value is invalid
643 * DISP_E_OVERFLOW, if the value will not fit in the destination
645 * NOTES
646 * See VarI8FromR8() for details concerning rounding.
648 HRESULT WINAPI VarUI1FromR8(double dblIn, BYTE* pbOut)
650 if (dblIn < -0.5 || dblIn >= UI1_MAX + 0.5)
651 return DISP_E_OVERFLOW;
652 VARIANT_DutchRound(BYTE, dblIn, *pbOut);
653 return S_OK;
656 /************************************************************************
657 * VarUI1FromCy (OLEAUT32.134)
659 * Convert a VT_CY to a VT_UI1.
661 * PARAMS
662 * cyIn [I] Source
663 * pbOut [O] Destination
665 * RETURNS
666 * Success: S_OK.
667 * Failure: E_INVALIDARG, if the source value is invalid
668 * DISP_E_OVERFLOW, if the value will not fit in the destination
670 * NOTES
671 * Negative values >= -5000 will be converted to 0.
673 HRESULT WINAPI VarUI1FromCy(CY cyIn, BYTE* pbOut)
675 ULONG i = UI1_MAX + 1;
677 VarUI4FromCy(cyIn, &i);
678 return _VarUI1FromUI4(i, pbOut);
681 /************************************************************************
682 * VarUI1FromDate (OLEAUT32.135)
684 * Convert a VT_DATE to a VT_UI1.
686 * PARAMS
687 * dateIn [I] Source
688 * pbOut [O] Destination
690 * RETURNS
691 * Success: S_OK.
692 * Failure: E_INVALIDARG, if the source value is invalid
693 * DISP_E_OVERFLOW, if the value will not fit in the destination
695 HRESULT WINAPI VarUI1FromDate(DATE dateIn, BYTE* pbOut)
697 return VarUI1FromR8(dateIn, pbOut);
700 /************************************************************************
701 * VarUI1FromStr (OLEAUT32.136)
703 * Convert a VT_BSTR to a VT_UI1.
705 * PARAMS
706 * strIn [I] Source
707 * lcid [I] LCID for the conversion
708 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
709 * pbOut [O] Destination
711 * RETURNS
712 * Success: S_OK.
713 * Failure: E_INVALIDARG, if the source value is invalid
714 * DISP_E_OVERFLOW, if the value will not fit in the destination
715 * DISP_E_TYPEMISMATCH, if the type cannot be converted
717 HRESULT WINAPI VarUI1FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, BYTE* pbOut)
719 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pbOut, VT_UI1);
722 /************************************************************************
723 * VarUI1FromDisp (OLEAUT32.137)
725 * Convert a VT_DISPATCH to a VT_UI1.
727 * PARAMS
728 * pdispIn [I] Source
729 * lcid [I] LCID for conversion
730 * pbOut [O] Destination
732 * RETURNS
733 * Success: S_OK.
734 * Failure: E_INVALIDARG, if the source value is invalid
735 * DISP_E_OVERFLOW, if the value will not fit in the destination
736 * DISP_E_TYPEMISMATCH, if the type cannot be converted
738 HRESULT WINAPI VarUI1FromDisp(IDispatch* pdispIn, LCID lcid, BYTE* pbOut)
740 return VARIANT_FromDisp(pdispIn, lcid, pbOut, VT_UI1, 0);
743 /************************************************************************
744 * VarUI1FromBool (OLEAUT32.138)
746 * Convert a VT_BOOL to a VT_UI1.
748 * PARAMS
749 * boolIn [I] Source
750 * pbOut [O] Destination
752 * RETURNS
753 * S_OK.
755 HRESULT WINAPI VarUI1FromBool(VARIANT_BOOL boolIn, BYTE* pbOut)
757 return _VarUI1FromBool(boolIn, pbOut);
760 /************************************************************************
761 * VarUI1FromI1 (OLEAUT32.237)
763 * Convert a VT_I1 to a VT_UI1.
765 * PARAMS
766 * cIn [I] Source
767 * pbOut [O] Destination
769 * RETURNS
770 * Success: S_OK.
771 * Failure: E_INVALIDARG, if the source value is invalid
772 * DISP_E_OVERFLOW, if the value will not fit in the destination
774 HRESULT WINAPI VarUI1FromI1(signed char cIn, BYTE* pbOut)
776 return _VarUI1FromI1(cIn, pbOut);
779 /************************************************************************
780 * VarUI1FromUI2 (OLEAUT32.238)
782 * Convert a VT_UI2 to a VT_UI1.
784 * PARAMS
785 * usIn [I] Source
786 * pbOut [O] Destination
788 * RETURNS
789 * Success: S_OK.
790 * Failure: E_INVALIDARG, if the source value is invalid
791 * DISP_E_OVERFLOW, if the value will not fit in the destination
793 HRESULT WINAPI VarUI1FromUI2(USHORT usIn, BYTE* pbOut)
795 return _VarUI1FromUI2(usIn, pbOut);
798 /************************************************************************
799 * VarUI1FromUI4 (OLEAUT32.239)
801 * Convert a VT_UI4 to a VT_UI1.
803 * PARAMS
804 * ulIn [I] Source
805 * pbOut [O] Destination
807 * RETURNS
808 * Success: S_OK.
809 * Failure: E_INVALIDARG, if the source value is invalid
810 * DISP_E_OVERFLOW, if the value will not fit in the destination
812 HRESULT WINAPI VarUI1FromUI4(ULONG ulIn, BYTE* pbOut)
814 return _VarUI1FromUI4(ulIn, pbOut);
817 /************************************************************************
818 * VarUI1FromDec (OLEAUT32.240)
820 * Convert a VT_DECIMAL to a VT_UI1.
822 * PARAMS
823 * pDecIn [I] Source
824 * pbOut [O] Destination
826 * RETURNS
827 * Success: S_OK.
828 * Failure: E_INVALIDARG, if the source value is invalid
829 * DISP_E_OVERFLOW, if the value will not fit in the destination
831 HRESULT WINAPI VarUI1FromDec(const DECIMAL *pdecIn, BYTE* pbOut)
833 LONG64 i64;
834 HRESULT hRet;
836 hRet = VarI8FromDec(pdecIn, &i64);
838 if (SUCCEEDED(hRet))
839 hRet = _VarUI1FromI8(i64, pbOut);
840 return hRet;
843 /************************************************************************
844 * VarUI1FromI8 (OLEAUT32.372)
846 * Convert a VT_I8 to a VT_UI1.
848 * PARAMS
849 * llIn [I] Source
850 * pbOut [O] Destination
852 * RETURNS
853 * Success: S_OK.
854 * Failure: E_INVALIDARG, if the source value is invalid
855 * DISP_E_OVERFLOW, if the value will not fit in the destination
857 HRESULT WINAPI VarUI1FromI8(LONG64 llIn, BYTE* pbOut)
859 return _VarUI1FromI8(llIn, pbOut);
862 /************************************************************************
863 * VarUI1FromUI8 (OLEAUT32.373)
865 * Convert a VT_UI8 to a VT_UI1.
867 * PARAMS
868 * ullIn [I] Source
869 * pbOut [O] Destination
871 * RETURNS
872 * Success: S_OK.
873 * Failure: E_INVALIDARG, if the source value is invalid
874 * DISP_E_OVERFLOW, if the value will not fit in the destination
876 HRESULT WINAPI VarUI1FromUI8(ULONG64 ullIn, BYTE* pbOut)
878 return _VarUI1FromUI8(ullIn, pbOut);
882 /* I2
885 /************************************************************************
886 * VarI2FromUI1 (OLEAUT32.48)
888 * Convert a VT_UI2 to a VT_I2.
890 * PARAMS
891 * bIn [I] Source
892 * psOut [O] Destination
894 * RETURNS
895 * S_OK.
897 HRESULT WINAPI VarI2FromUI1(BYTE bIn, SHORT* psOut)
899 return _VarI2FromUI1(bIn, psOut);
902 /************************************************************************
903 * VarI2FromI4 (OLEAUT32.49)
905 * Convert a VT_I4 to a VT_I2.
907 * PARAMS
908 * iIn [I] Source
909 * psOut [O] Destination
911 * RETURNS
912 * Success: S_OK.
913 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
915 HRESULT WINAPI VarI2FromI4(LONG iIn, SHORT* psOut)
917 return _VarI2FromI4(iIn, psOut);
920 /************************************************************************
921 * VarI2FromR4 (OLEAUT32.50)
923 * Convert a VT_R4 to a VT_I2.
925 * PARAMS
926 * fltIn [I] Source
927 * psOut [O] Destination
929 * RETURNS
930 * Success: S_OK.
931 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
933 HRESULT WINAPI VarI2FromR4(FLOAT fltIn, SHORT* psOut)
935 return VarI2FromR8(fltIn, psOut);
938 /************************************************************************
939 * VarI2FromR8 (OLEAUT32.51)
941 * Convert a VT_R8 to a VT_I2.
943 * PARAMS
944 * dblIn [I] Source
945 * psOut [O] Destination
947 * RETURNS
948 * Success: S_OK.
949 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
951 * NOTES
952 * See VarI8FromR8() for details concerning rounding.
954 HRESULT WINAPI VarI2FromR8(double dblIn, SHORT* psOut)
956 if (dblIn < I2_MIN - 0.5 || dblIn >= I2_MAX + 0.5)
957 return DISP_E_OVERFLOW;
958 VARIANT_DutchRound(SHORT, dblIn, *psOut);
959 return S_OK;
962 /************************************************************************
963 * VarI2FromCy (OLEAUT32.52)
965 * Convert a VT_CY to a VT_I2.
967 * PARAMS
968 * cyIn [I] Source
969 * psOut [O] Destination
971 * RETURNS
972 * Success: S_OK.
973 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
975 HRESULT WINAPI VarI2FromCy(CY cyIn, SHORT* psOut)
977 LONG i = I2_MAX + 1;
979 VarI4FromCy(cyIn, &i);
980 return _VarI2FromI4(i, psOut);
983 /************************************************************************
984 * VarI2FromDate (OLEAUT32.53)
986 * Convert a VT_DATE to a VT_I2.
988 * PARAMS
989 * dateIn [I] Source
990 * psOut [O] Destination
992 * RETURNS
993 * Success: S_OK.
994 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
996 HRESULT WINAPI VarI2FromDate(DATE dateIn, SHORT* psOut)
998 return VarI2FromR8(dateIn, psOut);
1001 /************************************************************************
1002 * VarI2FromStr (OLEAUT32.54)
1004 * Convert a VT_BSTR to a VT_I2.
1006 * PARAMS
1007 * strIn [I] Source
1008 * lcid [I] LCID for the conversion
1009 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1010 * psOut [O] Destination
1012 * RETURNS
1013 * Success: S_OK.
1014 * Failure: E_INVALIDARG, if any parameter is invalid
1015 * DISP_E_OVERFLOW, if the value will not fit in the destination
1016 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1018 HRESULT WINAPI VarI2FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, SHORT* psOut)
1020 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, psOut, VT_I2);
1023 /************************************************************************
1024 * VarI2FromDisp (OLEAUT32.55)
1026 * Convert a VT_DISPATCH to a VT_I2.
1028 * PARAMS
1029 * pdispIn [I] Source
1030 * lcid [I] LCID for conversion
1031 * psOut [O] Destination
1033 * RETURNS
1034 * Success: S_OK.
1035 * Failure: E_INVALIDARG, if pdispIn is invalid,
1036 * DISP_E_OVERFLOW, if the value will not fit in the destination,
1037 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1039 HRESULT WINAPI VarI2FromDisp(IDispatch* pdispIn, LCID lcid, SHORT* psOut)
1041 return VARIANT_FromDisp(pdispIn, lcid, psOut, VT_I2, 0);
1044 /************************************************************************
1045 * VarI2FromBool (OLEAUT32.56)
1047 * Convert a VT_BOOL to a VT_I2.
1049 * PARAMS
1050 * boolIn [I] Source
1051 * psOut [O] Destination
1053 * RETURNS
1054 * S_OK.
1056 HRESULT WINAPI VarI2FromBool(VARIANT_BOOL boolIn, SHORT* psOut)
1058 return _VarI2FromBool(boolIn, psOut);
1061 /************************************************************************
1062 * VarI2FromI1 (OLEAUT32.205)
1064 * Convert a VT_I1 to a VT_I2.
1066 * PARAMS
1067 * cIn [I] Source
1068 * psOut [O] Destination
1070 * RETURNS
1071 * S_OK.
1073 HRESULT WINAPI VarI2FromI1(signed char cIn, SHORT* psOut)
1075 return _VarI2FromI1(cIn, psOut);
1078 /************************************************************************
1079 * VarI2FromUI2 (OLEAUT32.206)
1081 * Convert a VT_UI2 to a VT_I2.
1083 * PARAMS
1084 * usIn [I] Source
1085 * psOut [O] Destination
1087 * RETURNS
1088 * Success: S_OK.
1089 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1091 HRESULT WINAPI VarI2FromUI2(USHORT usIn, SHORT* psOut)
1093 return _VarI2FromUI2(usIn, psOut);
1096 /************************************************************************
1097 * VarI2FromUI4 (OLEAUT32.207)
1099 * Convert a VT_UI4 to a VT_I2.
1101 * PARAMS
1102 * ulIn [I] Source
1103 * psOut [O] Destination
1105 * RETURNS
1106 * Success: S_OK.
1107 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1109 HRESULT WINAPI VarI2FromUI4(ULONG ulIn, SHORT* psOut)
1111 return _VarI2FromUI4(ulIn, psOut);
1114 /************************************************************************
1115 * VarI2FromDec (OLEAUT32.208)
1117 * Convert a VT_DECIMAL to a VT_I2.
1119 * PARAMS
1120 * pDecIn [I] Source
1121 * psOut [O] Destination
1123 * RETURNS
1124 * Success: S_OK.
1125 * Failure: E_INVALIDARG, if the source value is invalid
1126 * DISP_E_OVERFLOW, if the value will not fit in the destination
1128 HRESULT WINAPI VarI2FromDec(const DECIMAL *pdecIn, SHORT* psOut)
1130 LONG64 i64;
1131 HRESULT hRet;
1133 hRet = VarI8FromDec(pdecIn, &i64);
1135 if (SUCCEEDED(hRet))
1136 hRet = _VarI2FromI8(i64, psOut);
1137 return hRet;
1140 /************************************************************************
1141 * VarI2FromI8 (OLEAUT32.346)
1143 * Convert a VT_I8 to a VT_I2.
1145 * PARAMS
1146 * llIn [I] Source
1147 * psOut [O] Destination
1149 * RETURNS
1150 * Success: S_OK.
1151 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1153 HRESULT WINAPI VarI2FromI8(LONG64 llIn, SHORT* psOut)
1155 return _VarI2FromI8(llIn, psOut);
1158 /************************************************************************
1159 * VarI2FromUI8 (OLEAUT32.347)
1161 * Convert a VT_UI8 to a VT_I2.
1163 * PARAMS
1164 * ullIn [I] Source
1165 * psOut [O] Destination
1167 * RETURNS
1168 * Success: S_OK.
1169 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1171 HRESULT WINAPI VarI2FromUI8(ULONG64 ullIn, SHORT* psOut)
1173 return _VarI2FromUI8(ullIn, psOut);
1176 /* UI2
1179 /************************************************************************
1180 * VarUI2FromUI1 (OLEAUT32.257)
1182 * Convert a VT_UI1 to a VT_UI2.
1184 * PARAMS
1185 * bIn [I] Source
1186 * pusOut [O] Destination
1188 * RETURNS
1189 * S_OK.
1191 HRESULT WINAPI VarUI2FromUI1(BYTE bIn, USHORT* pusOut)
1193 return _VarUI2FromUI1(bIn, pusOut);
1196 /************************************************************************
1197 * VarUI2FromI2 (OLEAUT32.258)
1199 * Convert a VT_I2 to a VT_UI2.
1201 * PARAMS
1202 * sIn [I] Source
1203 * pusOut [O] Destination
1205 * RETURNS
1206 * Success: S_OK.
1207 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1209 HRESULT WINAPI VarUI2FromI2(SHORT sIn, USHORT* pusOut)
1211 return _VarUI2FromI2(sIn, pusOut);
1214 /************************************************************************
1215 * VarUI2FromI4 (OLEAUT32.259)
1217 * Convert a VT_I4 to a VT_UI2.
1219 * PARAMS
1220 * iIn [I] Source
1221 * pusOut [O] Destination
1223 * RETURNS
1224 * Success: S_OK.
1225 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1227 HRESULT WINAPI VarUI2FromI4(LONG iIn, USHORT* pusOut)
1229 return _VarUI2FromI4(iIn, pusOut);
1232 /************************************************************************
1233 * VarUI2FromR4 (OLEAUT32.260)
1235 * Convert a VT_R4 to a VT_UI2.
1237 * PARAMS
1238 * fltIn [I] Source
1239 * pusOut [O] Destination
1241 * RETURNS
1242 * Success: S_OK.
1243 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1245 HRESULT WINAPI VarUI2FromR4(FLOAT fltIn, USHORT* pusOut)
1247 return VarUI2FromR8(fltIn, pusOut);
1250 /************************************************************************
1251 * VarUI2FromR8 (OLEAUT32.261)
1253 * Convert a VT_R8 to a VT_UI2.
1255 * PARAMS
1256 * dblIn [I] Source
1257 * pusOut [O] Destination
1259 * RETURNS
1260 * Success: S_OK.
1261 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1263 * NOTES
1264 * See VarI8FromR8() for details concerning rounding.
1266 HRESULT WINAPI VarUI2FromR8(double dblIn, USHORT* pusOut)
1268 if (dblIn < -0.5 || dblIn >= UI2_MAX + 0.5)
1269 return DISP_E_OVERFLOW;
1270 VARIANT_DutchRound(USHORT, dblIn, *pusOut);
1271 return S_OK;
1274 /************************************************************************
1275 * VarUI2FromDate (OLEAUT32.262)
1277 * Convert a VT_DATE to a VT_UI2.
1279 * PARAMS
1280 * dateIn [I] Source
1281 * pusOut [O] Destination
1283 * RETURNS
1284 * Success: S_OK.
1285 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1287 HRESULT WINAPI VarUI2FromDate(DATE dateIn, USHORT* pusOut)
1289 return VarUI2FromR8(dateIn, pusOut);
1292 /************************************************************************
1293 * VarUI2FromCy (OLEAUT32.263)
1295 * Convert a VT_CY to a VT_UI2.
1297 * PARAMS
1298 * cyIn [I] Source
1299 * pusOut [O] Destination
1301 * RETURNS
1302 * Success: S_OK.
1303 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1305 * NOTES
1306 * Negative values >= -5000 will be converted to 0.
1308 HRESULT WINAPI VarUI2FromCy(CY cyIn, USHORT* pusOut)
1310 ULONG i = UI2_MAX + 1;
1312 VarUI4FromCy(cyIn, &i);
1313 return _VarUI2FromUI4(i, pusOut);
1316 /************************************************************************
1317 * VarUI2FromStr (OLEAUT32.264)
1319 * Convert a VT_BSTR to a VT_UI2.
1321 * PARAMS
1322 * strIn [I] Source
1323 * lcid [I] LCID for the conversion
1324 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1325 * pusOut [O] Destination
1327 * RETURNS
1328 * Success: S_OK.
1329 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1330 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1332 HRESULT WINAPI VarUI2FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, USHORT* pusOut)
1334 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pusOut, VT_UI2);
1337 /************************************************************************
1338 * VarUI2FromDisp (OLEAUT32.265)
1340 * Convert a VT_DISPATCH to a VT_UI2.
1342 * PARAMS
1343 * pdispIn [I] Source
1344 * lcid [I] LCID for conversion
1345 * pusOut [O] Destination
1347 * RETURNS
1348 * Success: S_OK.
1349 * Failure: E_INVALIDARG, if the source value is invalid
1350 * DISP_E_OVERFLOW, if the value will not fit in the destination
1351 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1353 HRESULT WINAPI VarUI2FromDisp(IDispatch* pdispIn, LCID lcid, USHORT* pusOut)
1355 return VARIANT_FromDisp(pdispIn, lcid, pusOut, VT_UI2, 0);
1358 /************************************************************************
1359 * VarUI2FromBool (OLEAUT32.266)
1361 * Convert a VT_BOOL to a VT_UI2.
1363 * PARAMS
1364 * boolIn [I] Source
1365 * pusOut [O] Destination
1367 * RETURNS
1368 * S_OK.
1370 HRESULT WINAPI VarUI2FromBool(VARIANT_BOOL boolIn, USHORT* pusOut)
1372 return _VarUI2FromBool(boolIn, pusOut);
1375 /************************************************************************
1376 * VarUI2FromI1 (OLEAUT32.267)
1378 * Convert a VT_I1 to a VT_UI2.
1380 * PARAMS
1381 * cIn [I] Source
1382 * pusOut [O] Destination
1384 * RETURNS
1385 * Success: S_OK.
1386 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1388 HRESULT WINAPI VarUI2FromI1(signed char cIn, USHORT* pusOut)
1390 return _VarUI2FromI1(cIn, pusOut);
1393 /************************************************************************
1394 * VarUI2FromUI4 (OLEAUT32.268)
1396 * Convert a VT_UI4 to a VT_UI2.
1398 * PARAMS
1399 * ulIn [I] Source
1400 * pusOut [O] Destination
1402 * RETURNS
1403 * Success: S_OK.
1404 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1406 HRESULT WINAPI VarUI2FromUI4(ULONG ulIn, USHORT* pusOut)
1408 return _VarUI2FromUI4(ulIn, pusOut);
1411 /************************************************************************
1412 * VarUI2FromDec (OLEAUT32.269)
1414 * Convert a VT_DECIMAL to a VT_UI2.
1416 * PARAMS
1417 * pDecIn [I] Source
1418 * pusOut [O] Destination
1420 * RETURNS
1421 * Success: S_OK.
1422 * Failure: E_INVALIDARG, if the source value is invalid
1423 * DISP_E_OVERFLOW, if the value will not fit in the destination
1425 HRESULT WINAPI VarUI2FromDec(const DECIMAL *pdecIn, USHORT* pusOut)
1427 LONG64 i64;
1428 HRESULT hRet;
1430 hRet = VarI8FromDec(pdecIn, &i64);
1432 if (SUCCEEDED(hRet))
1433 hRet = _VarUI2FromI8(i64, pusOut);
1434 return hRet;
1437 /************************************************************************
1438 * VarUI2FromI8 (OLEAUT32.378)
1440 * Convert a VT_I8 to a VT_UI2.
1442 * PARAMS
1443 * llIn [I] Source
1444 * pusOut [O] Destination
1446 * RETURNS
1447 * Success: S_OK.
1448 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1450 HRESULT WINAPI VarUI2FromI8(LONG64 llIn, USHORT* pusOut)
1452 return _VarUI2FromI8(llIn, pusOut);
1455 /************************************************************************
1456 * VarUI2FromUI8 (OLEAUT32.379)
1458 * Convert a VT_UI8 to a VT_UI2.
1460 * PARAMS
1461 * ullIn [I] Source
1462 * pusOut [O] Destination
1464 * RETURNS
1465 * Success: S_OK.
1466 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1468 HRESULT WINAPI VarUI2FromUI8(ULONG64 ullIn, USHORT* pusOut)
1470 return _VarUI2FromUI8(ullIn, pusOut);
1473 /* I4
1476 /************************************************************************
1477 * VarI4FromUI1 (OLEAUT32.58)
1479 * Convert a VT_UI1 to a VT_I4.
1481 * PARAMS
1482 * bIn [I] Source
1483 * piOut [O] Destination
1485 * RETURNS
1486 * S_OK.
1488 HRESULT WINAPI VarI4FromUI1(BYTE bIn, LONG *piOut)
1490 return _VarI4FromUI1(bIn, piOut);
1493 /************************************************************************
1494 * VarI4FromI2 (OLEAUT32.59)
1496 * Convert a VT_I2 to a VT_I4.
1498 * PARAMS
1499 * sIn [I] Source
1500 * piOut [O] Destination
1502 * RETURNS
1503 * Success: S_OK.
1504 * Failure: E_INVALIDARG, if the source value is invalid
1505 * DISP_E_OVERFLOW, if the value will not fit in the destination
1507 HRESULT WINAPI VarI4FromI2(SHORT sIn, LONG *piOut)
1509 return _VarI4FromI2(sIn, piOut);
1512 /************************************************************************
1513 * VarI4FromR4 (OLEAUT32.60)
1515 * Convert a VT_R4 to a VT_I4.
1517 * PARAMS
1518 * fltIn [I] Source
1519 * piOut [O] Destination
1521 * RETURNS
1522 * Success: S_OK.
1523 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1525 HRESULT WINAPI VarI4FromR4(FLOAT fltIn, LONG *piOut)
1527 return VarI4FromR8(fltIn, piOut);
1530 /************************************************************************
1531 * VarI4FromR8 (OLEAUT32.61)
1533 * Convert a VT_R8 to a VT_I4.
1535 * PARAMS
1536 * dblIn [I] Source
1537 * piOut [O] Destination
1539 * RETURNS
1540 * Success: S_OK.
1541 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1543 * NOTES
1544 * See VarI8FromR8() for details concerning rounding.
1546 HRESULT WINAPI VarI4FromR8(double dblIn, LONG *piOut)
1548 if (dblIn < I4_MIN - 0.5 || dblIn >= I4_MAX + 0.5)
1549 return DISP_E_OVERFLOW;
1550 VARIANT_DutchRound(LONG, dblIn, *piOut);
1551 return S_OK;
1554 /************************************************************************
1555 * VarI4FromCy (OLEAUT32.62)
1557 * Convert a VT_CY to a VT_I4.
1559 * PARAMS
1560 * cyIn [I] Source
1561 * piOut [O] Destination
1563 * RETURNS
1564 * Success: S_OK.
1565 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1567 HRESULT WINAPI VarI4FromCy(CY cyIn, LONG *piOut)
1569 double d = cyIn.int64 / CY_MULTIPLIER_F;
1570 return VarI4FromR8(d, piOut);
1573 /************************************************************************
1574 * VarI4FromDate (OLEAUT32.63)
1576 * Convert a VT_DATE to a VT_I4.
1578 * PARAMS
1579 * dateIn [I] Source
1580 * piOut [O] Destination
1582 * RETURNS
1583 * Success: S_OK.
1584 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1586 HRESULT WINAPI VarI4FromDate(DATE dateIn, LONG *piOut)
1588 return VarI4FromR8(dateIn, piOut);
1591 /************************************************************************
1592 * VarI4FromStr (OLEAUT32.64)
1594 * Convert a VT_BSTR to a VT_I4.
1596 * PARAMS
1597 * strIn [I] Source
1598 * lcid [I] LCID for the conversion
1599 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1600 * piOut [O] Destination
1602 * RETURNS
1603 * Success: S_OK.
1604 * Failure: E_INVALIDARG, if any parameter is invalid
1605 * DISP_E_OVERFLOW, if the value will not fit in the destination
1606 * DISP_E_TYPEMISMATCH, if strIn cannot be converted
1608 HRESULT WINAPI VarI4FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, LONG *piOut)
1610 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, piOut, VT_I4);
1613 /************************************************************************
1614 * VarI4FromDisp (OLEAUT32.65)
1616 * Convert a VT_DISPATCH to a VT_I4.
1618 * PARAMS
1619 * pdispIn [I] Source
1620 * lcid [I] LCID for conversion
1621 * piOut [O] Destination
1623 * RETURNS
1624 * Success: S_OK.
1625 * Failure: E_INVALIDARG, if the source value is invalid
1626 * DISP_E_OVERFLOW, if the value will not fit in the destination
1627 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1629 HRESULT WINAPI VarI4FromDisp(IDispatch* pdispIn, LCID lcid, LONG *piOut)
1631 return VARIANT_FromDisp(pdispIn, lcid, piOut, VT_I4, 0);
1634 /************************************************************************
1635 * VarI4FromBool (OLEAUT32.66)
1637 * Convert a VT_BOOL to a VT_I4.
1639 * PARAMS
1640 * boolIn [I] Source
1641 * piOut [O] Destination
1643 * RETURNS
1644 * S_OK.
1646 HRESULT WINAPI VarI4FromBool(VARIANT_BOOL boolIn, LONG *piOut)
1648 return _VarI4FromBool(boolIn, piOut);
1651 /************************************************************************
1652 * VarI4FromI1 (OLEAUT32.209)
1654 * Convert a VT_I1 to a VT_I4.
1656 * PARAMS
1657 * cIn [I] Source
1658 * piOut [O] Destination
1660 * RETURNS
1661 * S_OK.
1663 HRESULT WINAPI VarI4FromI1(signed char cIn, LONG *piOut)
1665 return _VarI4FromI1(cIn, piOut);
1668 /************************************************************************
1669 * VarI4FromUI2 (OLEAUT32.210)
1671 * Convert a VT_UI2 to a VT_I4.
1673 * PARAMS
1674 * usIn [I] Source
1675 * piOut [O] Destination
1677 * RETURNS
1678 * S_OK.
1680 HRESULT WINAPI VarI4FromUI2(USHORT usIn, LONG *piOut)
1682 return _VarI4FromUI2(usIn, piOut);
1685 /************************************************************************
1686 * VarI4FromUI4 (OLEAUT32.211)
1688 * Convert a VT_UI4 to a VT_I4.
1690 * PARAMS
1691 * ulIn [I] Source
1692 * piOut [O] Destination
1694 * RETURNS
1695 * Success: S_OK.
1696 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1698 HRESULT WINAPI VarI4FromUI4(ULONG ulIn, LONG *piOut)
1700 return _VarI4FromUI4(ulIn, piOut);
1703 /************************************************************************
1704 * VarI4FromDec (OLEAUT32.212)
1706 * Convert a VT_DECIMAL to a VT_I4.
1708 * PARAMS
1709 * pDecIn [I] Source
1710 * piOut [O] Destination
1712 * RETURNS
1713 * Success: S_OK.
1714 * Failure: E_INVALIDARG, if pdecIn is invalid
1715 * DISP_E_OVERFLOW, if the value will not fit in the destination
1717 HRESULT WINAPI VarI4FromDec(const DECIMAL *pdecIn, LONG *piOut)
1719 LONG64 i64;
1720 HRESULT hRet;
1722 hRet = VarI8FromDec(pdecIn, &i64);
1724 if (SUCCEEDED(hRet))
1725 hRet = _VarI4FromI8(i64, piOut);
1726 return hRet;
1729 /************************************************************************
1730 * VarI4FromI8 (OLEAUT32.348)
1732 * Convert a VT_I8 to a VT_I4.
1734 * PARAMS
1735 * llIn [I] Source
1736 * piOut [O] Destination
1738 * RETURNS
1739 * Success: S_OK.
1740 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1742 HRESULT WINAPI VarI4FromI8(LONG64 llIn, LONG *piOut)
1744 return _VarI4FromI8(llIn, piOut);
1747 /************************************************************************
1748 * VarI4FromUI8 (OLEAUT32.349)
1750 * Convert a VT_UI8 to a VT_I4.
1752 * PARAMS
1753 * ullIn [I] Source
1754 * piOut [O] Destination
1756 * RETURNS
1757 * Success: S_OK.
1758 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1760 HRESULT WINAPI VarI4FromUI8(ULONG64 ullIn, LONG *piOut)
1762 return _VarI4FromUI8(ullIn, piOut);
1765 /* UI4
1768 /************************************************************************
1769 * VarUI4FromUI1 (OLEAUT32.270)
1771 * Convert a VT_UI1 to a VT_UI4.
1773 * PARAMS
1774 * bIn [I] Source
1775 * pulOut [O] Destination
1777 * RETURNS
1778 * S_OK.
1780 HRESULT WINAPI VarUI4FromUI1(BYTE bIn, ULONG *pulOut)
1782 return _VarUI4FromUI1(bIn, pulOut);
1785 /************************************************************************
1786 * VarUI4FromI2 (OLEAUT32.271)
1788 * Convert a VT_I2 to a VT_UI4.
1790 * PARAMS
1791 * sIn [I] Source
1792 * pulOut [O] Destination
1794 * RETURNS
1795 * Success: S_OK.
1796 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1798 HRESULT WINAPI VarUI4FromI2(SHORT sIn, ULONG *pulOut)
1800 return _VarUI4FromI2(sIn, pulOut);
1803 /************************************************************************
1804 * VarUI4FromI4 (OLEAUT32.272)
1806 * Convert a VT_I4 to a VT_UI4.
1808 * PARAMS
1809 * iIn [I] Source
1810 * pulOut [O] Destination
1812 * RETURNS
1813 * Success: S_OK.
1814 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1816 HRESULT WINAPI VarUI4FromI4(LONG iIn, ULONG *pulOut)
1818 return _VarUI4FromI4(iIn, pulOut);
1821 /************************************************************************
1822 * VarUI4FromR4 (OLEAUT32.273)
1824 * Convert a VT_R4 to a VT_UI4.
1826 * PARAMS
1827 * fltIn [I] Source
1828 * pulOut [O] Destination
1830 * RETURNS
1831 * Success: S_OK.
1832 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1834 HRESULT WINAPI VarUI4FromR4(FLOAT fltIn, ULONG *pulOut)
1836 return VarUI4FromR8(fltIn, pulOut);
1839 /************************************************************************
1840 * VarUI4FromR8 (OLEAUT32.274)
1842 * Convert a VT_R8 to a VT_UI4.
1844 * PARAMS
1845 * dblIn [I] Source
1846 * pulOut [O] Destination
1848 * RETURNS
1849 * Success: S_OK.
1850 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1852 * NOTES
1853 * See VarI8FromR8() for details concerning rounding.
1855 HRESULT WINAPI VarUI4FromR8(double dblIn, ULONG *pulOut)
1857 if (dblIn < -0.5 || dblIn >= UI4_MAX + 0.5)
1858 return DISP_E_OVERFLOW;
1859 VARIANT_DutchRound(ULONG, dblIn, *pulOut);
1860 return S_OK;
1863 /************************************************************************
1864 * VarUI4FromDate (OLEAUT32.275)
1866 * Convert a VT_DATE to a VT_UI4.
1868 * PARAMS
1869 * dateIn [I] Source
1870 * pulOut [O] Destination
1872 * RETURNS
1873 * Success: S_OK.
1874 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1876 HRESULT WINAPI VarUI4FromDate(DATE dateIn, ULONG *pulOut)
1878 return VarUI4FromR8(dateIn, pulOut);
1881 /************************************************************************
1882 * VarUI4FromCy (OLEAUT32.276)
1884 * Convert a VT_CY to a VT_UI4.
1886 * PARAMS
1887 * cyIn [I] Source
1888 * pulOut [O] Destination
1890 * RETURNS
1891 * Success: S_OK.
1892 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1894 HRESULT WINAPI VarUI4FromCy(CY cyIn, ULONG *pulOut)
1896 double d = cyIn.int64 / CY_MULTIPLIER_F;
1897 return VarUI4FromR8(d, pulOut);
1900 /************************************************************************
1901 * VarUI4FromStr (OLEAUT32.277)
1903 * Convert a VT_BSTR to a VT_UI4.
1905 * PARAMS
1906 * strIn [I] Source
1907 * lcid [I] LCID for the conversion
1908 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1909 * pulOut [O] Destination
1911 * RETURNS
1912 * Success: S_OK.
1913 * Failure: E_INVALIDARG, if any parameter is invalid
1914 * DISP_E_OVERFLOW, if the value will not fit in the destination
1915 * DISP_E_TYPEMISMATCH, if strIn cannot be converted
1917 HRESULT WINAPI VarUI4FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, ULONG *pulOut)
1919 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pulOut, VT_UI4);
1922 /************************************************************************
1923 * VarUI4FromDisp (OLEAUT32.278)
1925 * Convert a VT_DISPATCH to a VT_UI4.
1927 * PARAMS
1928 * pdispIn [I] Source
1929 * lcid [I] LCID for conversion
1930 * pulOut [O] Destination
1932 * RETURNS
1933 * Success: S_OK.
1934 * Failure: E_INVALIDARG, if the source value is invalid
1935 * DISP_E_OVERFLOW, if the value will not fit in the destination
1936 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1938 HRESULT WINAPI VarUI4FromDisp(IDispatch* pdispIn, LCID lcid, ULONG *pulOut)
1940 return VARIANT_FromDisp(pdispIn, lcid, pulOut, VT_UI4, 0);
1943 /************************************************************************
1944 * VarUI4FromBool (OLEAUT32.279)
1946 * Convert a VT_BOOL to a VT_UI4.
1948 * PARAMS
1949 * boolIn [I] Source
1950 * pulOut [O] Destination
1952 * RETURNS
1953 * S_OK.
1955 HRESULT WINAPI VarUI4FromBool(VARIANT_BOOL boolIn, ULONG *pulOut)
1957 return _VarUI4FromBool(boolIn, pulOut);
1960 /************************************************************************
1961 * VarUI4FromI1 (OLEAUT32.280)
1963 * Convert a VT_I1 to a VT_UI4.
1965 * PARAMS
1966 * cIn [I] Source
1967 * pulOut [O] Destination
1969 * RETURNS
1970 * Success: S_OK.
1971 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1973 HRESULT WINAPI VarUI4FromI1(signed char cIn, ULONG *pulOut)
1975 return _VarUI4FromI1(cIn, pulOut);
1978 /************************************************************************
1979 * VarUI4FromUI2 (OLEAUT32.281)
1981 * Convert a VT_UI2 to a VT_UI4.
1983 * PARAMS
1984 * usIn [I] Source
1985 * pulOut [O] Destination
1987 * RETURNS
1988 * S_OK.
1990 HRESULT WINAPI VarUI4FromUI2(USHORT usIn, ULONG *pulOut)
1992 return _VarUI4FromUI2(usIn, pulOut);
1995 /************************************************************************
1996 * VarUI4FromDec (OLEAUT32.282)
1998 * Convert a VT_DECIMAL to a VT_UI4.
2000 * PARAMS
2001 * pDecIn [I] Source
2002 * pulOut [O] Destination
2004 * RETURNS
2005 * Success: S_OK.
2006 * Failure: E_INVALIDARG, if pdecIn is invalid
2007 * DISP_E_OVERFLOW, if the value will not fit in the destination
2009 HRESULT WINAPI VarUI4FromDec(const DECIMAL *pdecIn, ULONG *pulOut)
2011 LONG64 i64;
2012 HRESULT hRet;
2014 hRet = VarI8FromDec(pdecIn, &i64);
2016 if (SUCCEEDED(hRet))
2017 hRet = _VarUI4FromI8(i64, pulOut);
2018 return hRet;
2021 /************************************************************************
2022 * VarUI4FromI8 (OLEAUT32.425)
2024 * Convert a VT_I8 to a VT_UI4.
2026 * PARAMS
2027 * llIn [I] Source
2028 * pulOut [O] Destination
2030 * RETURNS
2031 * Success: S_OK.
2032 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2034 HRESULT WINAPI VarUI4FromI8(LONG64 llIn, ULONG *pulOut)
2036 return _VarUI4FromI8(llIn, pulOut);
2039 /************************************************************************
2040 * VarUI4FromUI8 (OLEAUT32.426)
2042 * Convert a VT_UI8 to a VT_UI4.
2044 * PARAMS
2045 * ullIn [I] Source
2046 * pulOut [O] Destination
2048 * RETURNS
2049 * Success: S_OK.
2050 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2052 HRESULT WINAPI VarUI4FromUI8(ULONG64 ullIn, ULONG *pulOut)
2054 return _VarUI4FromUI8(ullIn, pulOut);
2057 /* I8
2060 /************************************************************************
2061 * VarI8FromUI1 (OLEAUT32.333)
2063 * Convert a VT_UI1 to a VT_I8.
2065 * PARAMS
2066 * bIn [I] Source
2067 * pi64Out [O] Destination
2069 * RETURNS
2070 * S_OK.
2072 HRESULT WINAPI VarI8FromUI1(BYTE bIn, LONG64* pi64Out)
2074 return _VarI8FromUI1(bIn, pi64Out);
2078 /************************************************************************
2079 * VarI8FromI2 (OLEAUT32.334)
2081 * Convert a VT_I2 to a VT_I8.
2083 * PARAMS
2084 * sIn [I] Source
2085 * pi64Out [O] Destination
2087 * RETURNS
2088 * S_OK.
2090 HRESULT WINAPI VarI8FromI2(SHORT sIn, LONG64* pi64Out)
2092 return _VarI8FromI2(sIn, pi64Out);
2095 /************************************************************************
2096 * VarI8FromR4 (OLEAUT32.335)
2098 * Convert a VT_R4 to a VT_I8.
2100 * PARAMS
2101 * fltIn [I] Source
2102 * pi64Out [O] Destination
2104 * RETURNS
2105 * Success: S_OK.
2106 * Failure: E_INVALIDARG, if the source value is invalid
2107 * DISP_E_OVERFLOW, if the value will not fit in the destination
2109 HRESULT WINAPI VarI8FromR4(FLOAT fltIn, LONG64* pi64Out)
2111 return VarI8FromR8(fltIn, pi64Out);
2114 /************************************************************************
2115 * VarI8FromR8 (OLEAUT32.336)
2117 * Convert a VT_R8 to a VT_I8.
2119 * PARAMS
2120 * dblIn [I] Source
2121 * pi64Out [O] Destination
2123 * RETURNS
2124 * Success: S_OK.
2125 * Failure: E_INVALIDARG, if the source value is invalid
2126 * DISP_E_OVERFLOW, if the value will not fit in the destination
2128 * NOTES
2129 * Only values that fit into 63 bits are accepted. Due to rounding issues,
2130 * very high or low values will not be accurately converted.
2132 * Numbers are rounded using Dutch rounding, as follows:
2134 *| Fractional Part Sign Direction Example
2135 *| --------------- ---- --------- -------
2136 *| < 0.5 + Down 0.4 -> 0.0
2137 *| < 0.5 - Up -0.4 -> 0.0
2138 *| > 0.5 + Up 0.6 -> 1.0
2139 *| < 0.5 - Up -0.6 -> -1.0
2140 *| = 0.5 + Up/Down Down if even, Up if odd
2141 *| = 0.5 - Up/Down Up if even, Down if odd
2143 * This system is often used in supermarkets.
2145 HRESULT WINAPI VarI8FromR8(double dblIn, LONG64* pi64Out)
2147 if ( dblIn < -4611686018427387904.0 || dblIn >= 4611686018427387904.0)
2148 return DISP_E_OVERFLOW;
2149 VARIANT_DutchRound(LONG64, dblIn, *pi64Out);
2150 return S_OK;
2153 /************************************************************************
2154 * VarI8FromCy (OLEAUT32.337)
2156 * Convert a VT_CY to a VT_I8.
2158 * PARAMS
2159 * cyIn [I] Source
2160 * pi64Out [O] Destination
2162 * RETURNS
2163 * S_OK.
2165 * NOTES
2166 * All negative numbers are rounded down by 1, including those that are
2167 * evenly divisible by 10000 (this is a Win32 bug that Wine mimics).
2168 * Positive numbers are rounded using Dutch rounding: See VarI8FromR8()
2169 * for details.
2171 HRESULT WINAPI VarI8FromCy(CY cyIn, LONG64* pi64Out)
2173 *pi64Out = cyIn.int64 / CY_MULTIPLIER;
2175 if (cyIn.int64 < 0)
2176 (*pi64Out)--; /* Mimic Win32 bug */
2177 else
2179 cyIn.int64 -= *pi64Out * CY_MULTIPLIER; /* cyIn.s.Lo now holds fractional remainder */
2181 if (cyIn.s.Lo > CY_HALF || (cyIn.s.Lo == CY_HALF && (*pi64Out & 0x1)))
2182 (*pi64Out)++;
2184 return S_OK;
2187 /************************************************************************
2188 * VarI8FromDate (OLEAUT32.338)
2190 * Convert a VT_DATE to a VT_I8.
2192 * PARAMS
2193 * dateIn [I] Source
2194 * pi64Out [O] Destination
2196 * RETURNS
2197 * Success: S_OK.
2198 * Failure: E_INVALIDARG, if the source value is invalid
2199 * DISP_E_OVERFLOW, if the value will not fit in the destination
2200 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2202 HRESULT WINAPI VarI8FromDate(DATE dateIn, LONG64* pi64Out)
2204 return VarI8FromR8(dateIn, pi64Out);
2207 /************************************************************************
2208 * VarI8FromStr (OLEAUT32.339)
2210 * Convert a VT_BSTR to a VT_I8.
2212 * PARAMS
2213 * strIn [I] Source
2214 * lcid [I] LCID for the conversion
2215 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2216 * pi64Out [O] Destination
2218 * RETURNS
2219 * Success: S_OK.
2220 * Failure: E_INVALIDARG, if the source value is invalid
2221 * DISP_E_OVERFLOW, if the value will not fit in the destination
2222 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2224 HRESULT WINAPI VarI8FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, LONG64* pi64Out)
2226 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pi64Out, VT_I8);
2229 /************************************************************************
2230 * VarI8FromDisp (OLEAUT32.340)
2232 * Convert a VT_DISPATCH to a VT_I8.
2234 * PARAMS
2235 * pdispIn [I] Source
2236 * lcid [I] LCID for conversion
2237 * pi64Out [O] Destination
2239 * RETURNS
2240 * Success: S_OK.
2241 * Failure: E_INVALIDARG, if the source value is invalid
2242 * DISP_E_OVERFLOW, if the value will not fit in the destination
2243 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2245 HRESULT WINAPI VarI8FromDisp(IDispatch* pdispIn, LCID lcid, LONG64* pi64Out)
2247 return VARIANT_FromDisp(pdispIn, lcid, pi64Out, VT_I8, 0);
2250 /************************************************************************
2251 * VarI8FromBool (OLEAUT32.341)
2253 * Convert a VT_BOOL to a VT_I8.
2255 * PARAMS
2256 * boolIn [I] Source
2257 * pi64Out [O] Destination
2259 * RETURNS
2260 * S_OK.
2262 HRESULT WINAPI VarI8FromBool(VARIANT_BOOL boolIn, LONG64* pi64Out)
2264 return VarI8FromI2(boolIn, pi64Out);
2267 /************************************************************************
2268 * VarI8FromI1 (OLEAUT32.342)
2270 * Convert a VT_I1 to a VT_I8.
2272 * PARAMS
2273 * cIn [I] Source
2274 * pi64Out [O] Destination
2276 * RETURNS
2277 * S_OK.
2279 HRESULT WINAPI VarI8FromI1(signed char cIn, LONG64* pi64Out)
2281 return _VarI8FromI1(cIn, pi64Out);
2284 /************************************************************************
2285 * VarI8FromUI2 (OLEAUT32.343)
2287 * Convert a VT_UI2 to a VT_I8.
2289 * PARAMS
2290 * usIn [I] Source
2291 * pi64Out [O] Destination
2293 * RETURNS
2294 * S_OK.
2296 HRESULT WINAPI VarI8FromUI2(USHORT usIn, LONG64* pi64Out)
2298 return _VarI8FromUI2(usIn, pi64Out);
2301 /************************************************************************
2302 * VarI8FromUI4 (OLEAUT32.344)
2304 * Convert a VT_UI4 to a VT_I8.
2306 * PARAMS
2307 * ulIn [I] Source
2308 * pi64Out [O] Destination
2310 * RETURNS
2311 * S_OK.
2313 HRESULT WINAPI VarI8FromUI4(ULONG ulIn, LONG64* pi64Out)
2315 return _VarI8FromUI4(ulIn, pi64Out);
2318 /************************************************************************
2319 * VarI8FromDec (OLEAUT32.345)
2321 * Convert a VT_DECIMAL to a VT_I8.
2323 * PARAMS
2324 * pDecIn [I] Source
2325 * pi64Out [O] Destination
2327 * RETURNS
2328 * Success: S_OK.
2329 * Failure: E_INVALIDARG, if the source value is invalid
2330 * DISP_E_OVERFLOW, if the value will not fit in the destination
2332 HRESULT WINAPI VarI8FromDec(const DECIMAL *pdecIn, LONG64* pi64Out)
2334 if (!DEC_SCALE(pdecIn))
2336 /* This decimal is just a 96 bit integer */
2337 if (DEC_SIGN(pdecIn) & ~DECIMAL_NEG)
2338 return E_INVALIDARG;
2340 if (DEC_HI32(pdecIn) || DEC_MID32(pdecIn) & 0x80000000)
2341 return DISP_E_OVERFLOW;
2343 if (DEC_SIGN(pdecIn))
2344 *pi64Out = -DEC_LO64(pdecIn);
2345 else
2346 *pi64Out = DEC_LO64(pdecIn);
2347 return S_OK;
2349 else
2351 /* Decimal contains a floating point number */
2352 HRESULT hRet;
2353 double dbl;
2355 hRet = VarR8FromDec(pdecIn, &dbl);
2356 if (SUCCEEDED(hRet))
2357 hRet = VarI8FromR8(dbl, pi64Out);
2358 return hRet;
2362 /************************************************************************
2363 * VarI8FromUI8 (OLEAUT32.427)
2365 * Convert a VT_UI8 to a VT_I8.
2367 * PARAMS
2368 * ullIn [I] Source
2369 * pi64Out [O] Destination
2371 * RETURNS
2372 * Success: S_OK.
2373 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2375 HRESULT WINAPI VarI8FromUI8(ULONG64 ullIn, LONG64* pi64Out)
2377 return _VarI8FromUI8(ullIn, pi64Out);
2380 /* UI8
2383 /************************************************************************
2384 * VarUI8FromI8 (OLEAUT32.428)
2386 * Convert a VT_I8 to a VT_UI8.
2388 * PARAMS
2389 * ulIn [I] Source
2390 * pui64Out [O] Destination
2392 * RETURNS
2393 * Success: S_OK.
2394 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2396 HRESULT WINAPI VarUI8FromI8(LONG64 llIn, ULONG64* pui64Out)
2398 return _VarUI8FromI8(llIn, pui64Out);
2401 /************************************************************************
2402 * VarUI8FromUI1 (OLEAUT32.429)
2404 * Convert a VT_UI1 to a VT_UI8.
2406 * PARAMS
2407 * bIn [I] Source
2408 * pui64Out [O] Destination
2410 * RETURNS
2411 * S_OK.
2413 HRESULT WINAPI VarUI8FromUI1(BYTE bIn, ULONG64* pui64Out)
2415 return _VarUI8FromUI1(bIn, pui64Out);
2418 /************************************************************************
2419 * VarUI8FromI2 (OLEAUT32.430)
2421 * Convert a VT_I2 to a VT_UI8.
2423 * PARAMS
2424 * sIn [I] Source
2425 * pui64Out [O] Destination
2427 * RETURNS
2428 * S_OK.
2430 HRESULT WINAPI VarUI8FromI2(SHORT sIn, ULONG64* pui64Out)
2432 return _VarUI8FromI2(sIn, pui64Out);
2435 /************************************************************************
2436 * VarUI8FromR4 (OLEAUT32.431)
2438 * Convert a VT_R4 to a VT_UI8.
2440 * PARAMS
2441 * fltIn [I] Source
2442 * pui64Out [O] Destination
2444 * RETURNS
2445 * Success: S_OK.
2446 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2448 HRESULT WINAPI VarUI8FromR4(FLOAT fltIn, ULONG64* pui64Out)
2450 return VarUI8FromR8(fltIn, pui64Out);
2453 /************************************************************************
2454 * VarUI8FromR8 (OLEAUT32.432)
2456 * Convert a VT_R8 to a VT_UI8.
2458 * PARAMS
2459 * dblIn [I] Source
2460 * pui64Out [O] Destination
2462 * RETURNS
2463 * Success: S_OK.
2464 * Failure: E_INVALIDARG, if the source value is invalid
2465 * DISP_E_OVERFLOW, if the value will not fit in the destination
2467 * NOTES
2468 * See VarI8FromR8() for details concerning rounding.
2470 HRESULT WINAPI VarUI8FromR8(double dblIn, ULONG64* pui64Out)
2472 if (dblIn < -0.5 || dblIn > 1.844674407370955e19)
2473 return DISP_E_OVERFLOW;
2474 VARIANT_DutchRound(ULONG64, dblIn, *pui64Out);
2475 return S_OK;
2478 /************************************************************************
2479 * VarUI8FromCy (OLEAUT32.433)
2481 * Convert a VT_CY to a VT_UI8.
2483 * PARAMS
2484 * cyIn [I] Source
2485 * pui64Out [O] Destination
2487 * RETURNS
2488 * Success: S_OK.
2489 * Failure: E_INVALIDARG, if the source value is invalid
2490 * DISP_E_OVERFLOW, if the value will not fit in the destination
2492 * NOTES
2493 * Negative values >= -5000 will be converted to 0.
2495 HRESULT WINAPI VarUI8FromCy(CY cyIn, ULONG64* pui64Out)
2497 if (cyIn.int64 < 0)
2499 if (cyIn.int64 < -CY_HALF)
2500 return DISP_E_OVERFLOW;
2501 *pui64Out = 0;
2503 else
2505 *pui64Out = cyIn.int64 / CY_MULTIPLIER;
2507 cyIn.int64 -= *pui64Out * CY_MULTIPLIER; /* cyIn.s.Lo now holds fractional remainder */
2509 if (cyIn.s.Lo > CY_HALF || (cyIn.s.Lo == CY_HALF && (*pui64Out & 0x1)))
2510 (*pui64Out)++;
2512 return S_OK;
2515 /************************************************************************
2516 * VarUI8FromDate (OLEAUT32.434)
2518 * Convert a VT_DATE to a VT_UI8.
2520 * PARAMS
2521 * dateIn [I] Source
2522 * pui64Out [O] Destination
2524 * RETURNS
2525 * Success: S_OK.
2526 * Failure: E_INVALIDARG, if the source value is invalid
2527 * DISP_E_OVERFLOW, if the value will not fit in the destination
2528 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2530 HRESULT WINAPI VarUI8FromDate(DATE dateIn, ULONG64* pui64Out)
2532 return VarUI8FromR8(dateIn, pui64Out);
2535 /************************************************************************
2536 * VarUI8FromStr (OLEAUT32.435)
2538 * Convert a VT_BSTR to a VT_UI8.
2540 * PARAMS
2541 * strIn [I] Source
2542 * lcid [I] LCID for the conversion
2543 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2544 * pui64Out [O] Destination
2546 * RETURNS
2547 * Success: S_OK.
2548 * Failure: E_INVALIDARG, if the source value is invalid
2549 * DISP_E_OVERFLOW, if the value will not fit in the destination
2550 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2552 HRESULT WINAPI VarUI8FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, ULONG64* pui64Out)
2554 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pui64Out, VT_UI8);
2557 /************************************************************************
2558 * VarUI8FromDisp (OLEAUT32.436)
2560 * Convert a VT_DISPATCH to a VT_UI8.
2562 * PARAMS
2563 * pdispIn [I] Source
2564 * lcid [I] LCID for conversion
2565 * pui64Out [O] Destination
2567 * RETURNS
2568 * Success: S_OK.
2569 * Failure: E_INVALIDARG, if the source value is invalid
2570 * DISP_E_OVERFLOW, if the value will not fit in the destination
2571 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2573 HRESULT WINAPI VarUI8FromDisp(IDispatch* pdispIn, LCID lcid, ULONG64* pui64Out)
2575 return VARIANT_FromDisp(pdispIn, lcid, pui64Out, VT_UI8, 0);
2578 /************************************************************************
2579 * VarUI8FromBool (OLEAUT32.437)
2581 * Convert a VT_BOOL to a VT_UI8.
2583 * PARAMS
2584 * boolIn [I] Source
2585 * pui64Out [O] Destination
2587 * RETURNS
2588 * Success: S_OK.
2589 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2591 HRESULT WINAPI VarUI8FromBool(VARIANT_BOOL boolIn, ULONG64* pui64Out)
2593 return VarI8FromI2(boolIn, (LONG64 *)pui64Out);
2595 /************************************************************************
2596 * VarUI8FromI1 (OLEAUT32.438)
2598 * Convert a VT_I1 to a VT_UI8.
2600 * PARAMS
2601 * cIn [I] Source
2602 * pui64Out [O] Destination
2604 * RETURNS
2605 * Success: S_OK.
2606 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2608 HRESULT WINAPI VarUI8FromI1(signed char cIn, ULONG64* pui64Out)
2610 return _VarUI8FromI1(cIn, pui64Out);
2613 /************************************************************************
2614 * VarUI8FromUI2 (OLEAUT32.439)
2616 * Convert a VT_UI2 to a VT_UI8.
2618 * PARAMS
2619 * usIn [I] Source
2620 * pui64Out [O] Destination
2622 * RETURNS
2623 * S_OK.
2625 HRESULT WINAPI VarUI8FromUI2(USHORT usIn, ULONG64* pui64Out)
2627 return _VarUI8FromUI2(usIn, pui64Out);
2630 /************************************************************************
2631 * VarUI8FromUI4 (OLEAUT32.440)
2633 * Convert a VT_UI4 to a VT_UI8.
2635 * PARAMS
2636 * ulIn [I] Source
2637 * pui64Out [O] Destination
2639 * RETURNS
2640 * S_OK.
2642 HRESULT WINAPI VarUI8FromUI4(ULONG ulIn, ULONG64* pui64Out)
2644 return _VarUI8FromUI4(ulIn, pui64Out);
2647 /************************************************************************
2648 * VarUI8FromDec (OLEAUT32.441)
2650 * Convert a VT_DECIMAL to a VT_UI8.
2652 * PARAMS
2653 * pDecIn [I] Source
2654 * pui64Out [O] Destination
2656 * RETURNS
2657 * Success: S_OK.
2658 * Failure: E_INVALIDARG, if the source value is invalid
2659 * DISP_E_OVERFLOW, if the value will not fit in the destination
2661 * NOTES
2662 * Under native Win32, if the source value has a scale of 0, its sign is
2663 * ignored, i.e. this function takes the absolute value rather than fail
2664 * with DISP_E_OVERFLOW. This bug has been fixed in Wine's implementation
2665 * (use VarAbs() on pDecIn first if you really want this behaviour).
2667 HRESULT WINAPI VarUI8FromDec(const DECIMAL *pdecIn, ULONG64* pui64Out)
2669 if (!DEC_SCALE(pdecIn))
2671 /* This decimal is just a 96 bit integer */
2672 if (DEC_SIGN(pdecIn) & ~DECIMAL_NEG)
2673 return E_INVALIDARG;
2675 if (DEC_HI32(pdecIn))
2676 return DISP_E_OVERFLOW;
2678 if (DEC_SIGN(pdecIn))
2680 WARN("Sign would be ignored under Win32!\n");
2681 return DISP_E_OVERFLOW;
2684 *pui64Out = DEC_LO64(pdecIn);
2685 return S_OK;
2687 else
2689 /* Decimal contains a floating point number */
2690 HRESULT hRet;
2691 double dbl;
2693 hRet = VarR8FromDec(pdecIn, &dbl);
2694 if (SUCCEEDED(hRet))
2695 hRet = VarUI8FromR8(dbl, pui64Out);
2696 return hRet;
2700 /* R4
2703 /************************************************************************
2704 * VarR4FromUI1 (OLEAUT32.68)
2706 * Convert a VT_UI1 to a VT_R4.
2708 * PARAMS
2709 * bIn [I] Source
2710 * pFltOut [O] Destination
2712 * RETURNS
2713 * S_OK.
2715 HRESULT WINAPI VarR4FromUI1(BYTE bIn, float *pFltOut)
2717 return _VarR4FromUI1(bIn, pFltOut);
2720 /************************************************************************
2721 * VarR4FromI2 (OLEAUT32.69)
2723 * Convert a VT_I2 to a VT_R4.
2725 * PARAMS
2726 * sIn [I] Source
2727 * pFltOut [O] Destination
2729 * RETURNS
2730 * S_OK.
2732 HRESULT WINAPI VarR4FromI2(SHORT sIn, float *pFltOut)
2734 return _VarR4FromI2(sIn, pFltOut);
2737 /************************************************************************
2738 * VarR4FromI4 (OLEAUT32.70)
2740 * Convert a VT_I4 to a VT_R4.
2742 * PARAMS
2743 * sIn [I] Source
2744 * pFltOut [O] Destination
2746 * RETURNS
2747 * S_OK.
2749 HRESULT WINAPI VarR4FromI4(LONG lIn, float *pFltOut)
2751 return _VarR4FromI4(lIn, pFltOut);
2754 /************************************************************************
2755 * VarR4FromR8 (OLEAUT32.71)
2757 * Convert a VT_R8 to a VT_R4.
2759 * PARAMS
2760 * dblIn [I] Source
2761 * pFltOut [O] Destination
2763 * RETURNS
2764 * Success: S_OK.
2765 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination.
2767 HRESULT WINAPI VarR4FromR8(double dblIn, float *pFltOut)
2769 double d = dblIn < 0.0 ? -dblIn : dblIn;
2770 if (d > R4_MAX) return DISP_E_OVERFLOW;
2771 *pFltOut = dblIn;
2772 return S_OK;
2775 /************************************************************************
2776 * VarR4FromCy (OLEAUT32.72)
2778 * Convert a VT_CY to a VT_R4.
2780 * PARAMS
2781 * cyIn [I] Source
2782 * pFltOut [O] Destination
2784 * RETURNS
2785 * S_OK.
2787 HRESULT WINAPI VarR4FromCy(CY cyIn, float *pFltOut)
2789 *pFltOut = (double)cyIn.int64 / CY_MULTIPLIER_F;
2790 return S_OK;
2793 /************************************************************************
2794 * VarR4FromDate (OLEAUT32.73)
2796 * Convert a VT_DATE to a VT_R4.
2798 * PARAMS
2799 * dateIn [I] Source
2800 * pFltOut [O] Destination
2802 * RETURNS
2803 * Success: S_OK.
2804 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination.
2806 HRESULT WINAPI VarR4FromDate(DATE dateIn, float *pFltOut)
2808 return VarR4FromR8(dateIn, pFltOut);
2811 /************************************************************************
2812 * VarR4FromStr (OLEAUT32.74)
2814 * Convert a VT_BSTR to a VT_R4.
2816 * PARAMS
2817 * strIn [I] Source
2818 * lcid [I] LCID for the conversion
2819 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2820 * pFltOut [O] Destination
2822 * RETURNS
2823 * Success: S_OK.
2824 * Failure: E_INVALIDARG, if strIn or pFltOut is invalid.
2825 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2827 HRESULT WINAPI VarR4FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, float *pFltOut)
2829 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pFltOut, VT_R4);
2832 /************************************************************************
2833 * VarR4FromDisp (OLEAUT32.75)
2835 * Convert a VT_DISPATCH to a VT_R4.
2837 * PARAMS
2838 * pdispIn [I] Source
2839 * lcid [I] LCID for conversion
2840 * pFltOut [O] Destination
2842 * RETURNS
2843 * Success: S_OK.
2844 * Failure: E_INVALIDARG, if the source value is invalid
2845 * DISP_E_OVERFLOW, if the value will not fit in the destination
2846 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2848 HRESULT WINAPI VarR4FromDisp(IDispatch* pdispIn, LCID lcid, float *pFltOut)
2850 return VARIANT_FromDisp(pdispIn, lcid, pFltOut, VT_R4, 0);
2853 /************************************************************************
2854 * VarR4FromBool (OLEAUT32.76)
2856 * Convert a VT_BOOL to a VT_R4.
2858 * PARAMS
2859 * boolIn [I] Source
2860 * pFltOut [O] Destination
2862 * RETURNS
2863 * S_OK.
2865 HRESULT WINAPI VarR4FromBool(VARIANT_BOOL boolIn, float *pFltOut)
2867 return VarR4FromI2(boolIn, pFltOut);
2870 /************************************************************************
2871 * VarR4FromI1 (OLEAUT32.213)
2873 * Convert a VT_I1 to a VT_R4.
2875 * PARAMS
2876 * cIn [I] Source
2877 * pFltOut [O] Destination
2879 * RETURNS
2880 * Success: S_OK.
2881 * Failure: E_INVALIDARG, if the source value is invalid
2882 * DISP_E_OVERFLOW, if the value will not fit in the destination
2883 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2885 HRESULT WINAPI VarR4FromI1(signed char cIn, float *pFltOut)
2887 return _VarR4FromI1(cIn, pFltOut);
2890 /************************************************************************
2891 * VarR4FromUI2 (OLEAUT32.214)
2893 * Convert a VT_UI2 to a VT_R4.
2895 * PARAMS
2896 * usIn [I] Source
2897 * pFltOut [O] Destination
2899 * RETURNS
2900 * Success: S_OK.
2901 * Failure: E_INVALIDARG, if the source value is invalid
2902 * DISP_E_OVERFLOW, if the value will not fit in the destination
2903 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2905 HRESULT WINAPI VarR4FromUI2(USHORT usIn, float *pFltOut)
2907 return _VarR4FromUI2(usIn, pFltOut);
2910 /************************************************************************
2911 * VarR4FromUI4 (OLEAUT32.215)
2913 * Convert a VT_UI4 to a VT_R4.
2915 * PARAMS
2916 * ulIn [I] Source
2917 * pFltOut [O] Destination
2919 * RETURNS
2920 * Success: S_OK.
2921 * Failure: E_INVALIDARG, if the source value is invalid
2922 * DISP_E_OVERFLOW, if the value will not fit in the destination
2923 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2925 HRESULT WINAPI VarR4FromUI4(ULONG ulIn, float *pFltOut)
2927 return _VarR4FromUI4(ulIn, pFltOut);
2930 /************************************************************************
2931 * VarR4FromDec (OLEAUT32.216)
2933 * Convert a VT_DECIMAL to a VT_R4.
2935 * PARAMS
2936 * pDecIn [I] Source
2937 * pFltOut [O] Destination
2939 * RETURNS
2940 * Success: S_OK.
2941 * Failure: E_INVALIDARG, if the source value is invalid.
2943 HRESULT WINAPI VarR4FromDec(const DECIMAL* pDecIn, float *pFltOut)
2945 BYTE scale = DEC_SCALE(pDecIn);
2946 double divisor = 1.0;
2947 double highPart;
2949 if (scale > DEC_MAX_SCALE || DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
2950 return E_INVALIDARG;
2952 while (scale--)
2953 divisor *= 10.0;
2955 if (DEC_SIGN(pDecIn))
2956 divisor = -divisor;
2958 if (DEC_HI32(pDecIn))
2960 highPart = (double)DEC_HI32(pDecIn) / divisor;
2961 highPart *= 4294967296.0F;
2962 highPart *= 4294967296.0F;
2964 else
2965 highPart = 0.0;
2967 *pFltOut = (double)DEC_LO64(pDecIn) / divisor + highPart;
2968 return S_OK;
2971 /************************************************************************
2972 * VarR4FromI8 (OLEAUT32.360)
2974 * Convert a VT_I8 to a VT_R4.
2976 * PARAMS
2977 * ullIn [I] Source
2978 * pFltOut [O] Destination
2980 * RETURNS
2981 * S_OK.
2983 HRESULT WINAPI VarR4FromI8(LONG64 llIn, float *pFltOut)
2985 return _VarR4FromI8(llIn, pFltOut);
2988 /************************************************************************
2989 * VarR4FromUI8 (OLEAUT32.361)
2991 * Convert a VT_UI8 to a VT_R4.
2993 * PARAMS
2994 * ullIn [I] Source
2995 * pFltOut [O] Destination
2997 * RETURNS
2998 * S_OK.
3000 HRESULT WINAPI VarR4FromUI8(ULONG64 ullIn, float *pFltOut)
3002 return _VarR4FromUI8(ullIn, pFltOut);
3005 /************************************************************************
3006 * VarR4CmpR8 (OLEAUT32.316)
3008 * Compare a VT_R4 to a VT_R8.
3010 * PARAMS
3011 * fltLeft [I] Source
3012 * dblRight [I] Value to compare
3014 * RETURNS
3015 * VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that fltLeft is less than,
3016 * equal to or greater than dblRight respectively.
3018 HRESULT WINAPI VarR4CmpR8(float fltLeft, double dblRight)
3020 if (fltLeft < dblRight)
3021 return VARCMP_LT;
3022 else if (fltLeft > dblRight)
3023 return VARCMP_GT;
3024 return VARCMP_EQ;
3027 /* R8
3030 /************************************************************************
3031 * VarR8FromUI1 (OLEAUT32.78)
3033 * Convert a VT_UI1 to a VT_R8.
3035 * PARAMS
3036 * bIn [I] Source
3037 * pDblOut [O] Destination
3039 * RETURNS
3040 * S_OK.
3042 HRESULT WINAPI VarR8FromUI1(BYTE bIn, double *pDblOut)
3044 return _VarR8FromUI1(bIn, pDblOut);
3047 /************************************************************************
3048 * VarR8FromI2 (OLEAUT32.79)
3050 * Convert a VT_I2 to a VT_R8.
3052 * PARAMS
3053 * sIn [I] Source
3054 * pDblOut [O] Destination
3056 * RETURNS
3057 * S_OK.
3059 HRESULT WINAPI VarR8FromI2(SHORT sIn, double *pDblOut)
3061 return _VarR8FromI2(sIn, pDblOut);
3064 /************************************************************************
3065 * VarR8FromI4 (OLEAUT32.80)
3067 * Convert a VT_I4 to a VT_R8.
3069 * PARAMS
3070 * sIn [I] Source
3071 * pDblOut [O] Destination
3073 * RETURNS
3074 * S_OK.
3076 HRESULT WINAPI VarR8FromI4(LONG lIn, double *pDblOut)
3078 return _VarR8FromI4(lIn, pDblOut);
3081 /************************************************************************
3082 * VarR8FromR4 (OLEAUT32.81)
3084 * Convert a VT_R4 to a VT_R8.
3086 * PARAMS
3087 * fltIn [I] Source
3088 * pDblOut [O] Destination
3090 * RETURNS
3091 * S_OK.
3093 HRESULT WINAPI VarR8FromR4(FLOAT fltIn, double *pDblOut)
3095 return _VarR8FromR4(fltIn, pDblOut);
3098 /************************************************************************
3099 * VarR8FromCy (OLEAUT32.82)
3101 * Convert a VT_CY to a VT_R8.
3103 * PARAMS
3104 * cyIn [I] Source
3105 * pDblOut [O] Destination
3107 * RETURNS
3108 * S_OK.
3110 HRESULT WINAPI VarR8FromCy(CY cyIn, double *pDblOut)
3112 return _VarR8FromCy(cyIn, pDblOut);
3115 /************************************************************************
3116 * VarR8FromDate (OLEAUT32.83)
3118 * Convert a VT_DATE to a VT_R8.
3120 * PARAMS
3121 * dateIn [I] Source
3122 * pDblOut [O] Destination
3124 * RETURNS
3125 * S_OK.
3127 HRESULT WINAPI VarR8FromDate(DATE dateIn, double *pDblOut)
3129 return _VarR8FromDate(dateIn, pDblOut);
3132 /************************************************************************
3133 * VarR8FromStr (OLEAUT32.84)
3135 * Convert a VT_BSTR to a VT_R8.
3137 * PARAMS
3138 * strIn [I] Source
3139 * lcid [I] LCID for the conversion
3140 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
3141 * pDblOut [O] Destination
3143 * RETURNS
3144 * Success: S_OK.
3145 * Failure: E_INVALIDARG, if strIn or pDblOut is invalid.
3146 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3148 HRESULT WINAPI VarR8FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, double *pDblOut)
3150 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pDblOut, VT_R8);
3153 /************************************************************************
3154 * VarR8FromDisp (OLEAUT32.85)
3156 * Convert a VT_DISPATCH to a VT_R8.
3158 * PARAMS
3159 * pdispIn [I] Source
3160 * lcid [I] LCID for conversion
3161 * pDblOut [O] Destination
3163 * RETURNS
3164 * Success: S_OK.
3165 * Failure: E_INVALIDARG, if the source value is invalid
3166 * DISP_E_OVERFLOW, if the value will not fit in the destination
3167 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3169 HRESULT WINAPI VarR8FromDisp(IDispatch* pdispIn, LCID lcid, double *pDblOut)
3171 return VARIANT_FromDisp(pdispIn, lcid, pDblOut, VT_R8, 0);
3174 /************************************************************************
3175 * VarR8FromBool (OLEAUT32.86)
3177 * Convert a VT_BOOL to a VT_R8.
3179 * PARAMS
3180 * boolIn [I] Source
3181 * pDblOut [O] Destination
3183 * RETURNS
3184 * S_OK.
3186 HRESULT WINAPI VarR8FromBool(VARIANT_BOOL boolIn, double *pDblOut)
3188 return VarR8FromI2(boolIn, pDblOut);
3191 /************************************************************************
3192 * VarR8FromI1 (OLEAUT32.217)
3194 * Convert a VT_I1 to a VT_R8.
3196 * PARAMS
3197 * cIn [I] Source
3198 * pDblOut [O] Destination
3200 * RETURNS
3201 * Success: S_OK.
3202 * Failure: E_INVALIDARG, if the source value is invalid
3203 * DISP_E_OVERFLOW, if the value will not fit in the destination
3204 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3206 HRESULT WINAPI VarR8FromI1(signed char cIn, double *pDblOut)
3208 return _VarR8FromI1(cIn, pDblOut);
3211 /************************************************************************
3212 * VarR8FromUI2 (OLEAUT32.218)
3214 * Convert a VT_UI2 to a VT_R8.
3216 * PARAMS
3217 * usIn [I] Source
3218 * pDblOut [O] Destination
3220 * RETURNS
3221 * Success: S_OK.
3222 * Failure: E_INVALIDARG, if the source value is invalid
3223 * DISP_E_OVERFLOW, if the value will not fit in the destination
3224 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3226 HRESULT WINAPI VarR8FromUI2(USHORT usIn, double *pDblOut)
3228 return _VarR8FromUI2(usIn, pDblOut);
3231 /************************************************************************
3232 * VarR8FromUI4 (OLEAUT32.219)
3234 * Convert a VT_UI4 to a VT_R8.
3236 * PARAMS
3237 * ulIn [I] Source
3238 * pDblOut [O] Destination
3240 * RETURNS
3241 * Success: S_OK.
3242 * Failure: E_INVALIDARG, if the source value is invalid
3243 * DISP_E_OVERFLOW, if the value will not fit in the destination
3244 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3246 HRESULT WINAPI VarR8FromUI4(ULONG ulIn, double *pDblOut)
3248 return _VarR8FromUI4(ulIn, pDblOut);
3251 /************************************************************************
3252 * VarR8FromDec (OLEAUT32.220)
3254 * Convert a VT_DECIMAL to a VT_R8.
3256 * PARAMS
3257 * pDecIn [I] Source
3258 * pDblOut [O] Destination
3260 * RETURNS
3261 * Success: S_OK.
3262 * Failure: E_INVALIDARG, if the source value is invalid.
3264 HRESULT WINAPI VarR8FromDec(const DECIMAL* pDecIn, double *pDblOut)
3266 BYTE scale = DEC_SCALE(pDecIn);
3267 double divisor = 1.0, highPart;
3269 if (scale > DEC_MAX_SCALE || DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
3270 return E_INVALIDARG;
3272 while (scale--)
3273 divisor *= 10;
3275 if (DEC_SIGN(pDecIn))
3276 divisor = -divisor;
3278 if (DEC_HI32(pDecIn))
3280 highPart = (double)DEC_HI32(pDecIn) / divisor;
3281 highPart *= 4294967296.0F;
3282 highPart *= 4294967296.0F;
3284 else
3285 highPart = 0.0;
3287 *pDblOut = (double)DEC_LO64(pDecIn) / divisor + highPart;
3288 return S_OK;
3291 /************************************************************************
3292 * VarR8FromI8 (OLEAUT32.362)
3294 * Convert a VT_I8 to a VT_R8.
3296 * PARAMS
3297 * ullIn [I] Source
3298 * pDblOut [O] Destination
3300 * RETURNS
3301 * S_OK.
3303 HRESULT WINAPI VarR8FromI8(LONG64 llIn, double *pDblOut)
3305 return _VarR8FromI8(llIn, pDblOut);
3308 /************************************************************************
3309 * VarR8FromUI8 (OLEAUT32.363)
3311 * Convert a VT_UI8 to a VT_R8.
3313 * PARAMS
3314 * ullIn [I] Source
3315 * pDblOut [O] Destination
3317 * RETURNS
3318 * S_OK.
3320 HRESULT WINAPI VarR8FromUI8(ULONG64 ullIn, double *pDblOut)
3322 return _VarR8FromUI8(ullIn, pDblOut);
3325 /************************************************************************
3326 * VarR8Pow (OLEAUT32.315)
3328 * Raise a VT_R8 to a power.
3330 * PARAMS
3331 * dblLeft [I] Source
3332 * dblPow [I] Power to raise dblLeft by
3333 * pDblOut [O] Destination
3335 * RETURNS
3336 * S_OK. pDblOut contains dblLeft to the power of dblRight.
3338 HRESULT WINAPI VarR8Pow(double dblLeft, double dblPow, double *pDblOut)
3340 *pDblOut = pow(dblLeft, dblPow);
3341 return S_OK;
3344 /************************************************************************
3345 * VarR8Round (OLEAUT32.317)
3347 * Round a VT_R8 to a given number of decimal points.
3349 * PARAMS
3350 * dblIn [I] Source
3351 * nDig [I] Number of decimal points to round to
3352 * pDblOut [O] Destination for rounded number
3354 * RETURNS
3355 * Success: S_OK. pDblOut is rounded to nDig digits.
3356 * Failure: E_INVALIDARG, if cDecimals is less than 0.
3358 * NOTES
3359 * The native version of this function rounds using the internal
3360 * binary representation of the number. Wine uses the dutch rounding
3361 * convention, so therefore small differences can occur in the value returned.
3362 * MSDN says that you should use your own rounding function if you want
3363 * rounding to be predictable in your application.
3365 HRESULT WINAPI VarR8Round(double dblIn, int nDig, double *pDblOut)
3367 double scale, whole, fract;
3369 if (nDig < 0)
3370 return E_INVALIDARG;
3372 scale = pow(10.0, nDig);
3374 dblIn *= scale;
3375 whole = dblIn < 0 ? ceil(dblIn) : floor(dblIn);
3376 fract = dblIn - whole;
3378 if (fract > 0.5)
3379 dblIn = whole + 1.0;
3380 else if (fract == 0.5)
3381 dblIn = whole + fmod(whole, 2.0);
3382 else if (fract >= 0.0)
3383 dblIn = whole;
3384 else if (fract == -0.5)
3385 dblIn = whole - fmod(whole, 2.0);
3386 else if (fract > -0.5)
3387 dblIn = whole;
3388 else
3389 dblIn = whole - 1.0;
3391 *pDblOut = dblIn / scale;
3392 return S_OK;
3395 /* CY
3398 /* Powers of 10 from 0..4 D.P. */
3399 static const int CY_Divisors[5] = { CY_MULTIPLIER/10000, CY_MULTIPLIER/1000,
3400 CY_MULTIPLIER/100, CY_MULTIPLIER/10, CY_MULTIPLIER };
3402 /************************************************************************
3403 * VarCyFromUI1 (OLEAUT32.98)
3405 * Convert a VT_UI1 to a VT_CY.
3407 * PARAMS
3408 * bIn [I] Source
3409 * pCyOut [O] Destination
3411 * RETURNS
3412 * Success: S_OK.
3413 * Failure: E_INVALIDARG, if the source value is invalid
3414 * DISP_E_OVERFLOW, if the value will not fit in the destination
3415 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3417 HRESULT WINAPI VarCyFromUI1(BYTE bIn, CY* pCyOut)
3419 pCyOut->int64 = (ULONG64)bIn * CY_MULTIPLIER;
3420 return S_OK;
3423 /************************************************************************
3424 * VarCyFromI2 (OLEAUT32.99)
3426 * Convert a VT_I2 to a VT_CY.
3428 * PARAMS
3429 * sIn [I] Source
3430 * pCyOut [O] Destination
3432 * RETURNS
3433 * Success: S_OK.
3434 * Failure: E_INVALIDARG, if the source value is invalid
3435 * DISP_E_OVERFLOW, if the value will not fit in the destination
3436 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3438 HRESULT WINAPI VarCyFromI2(SHORT sIn, CY* pCyOut)
3440 pCyOut->int64 = (LONG64)sIn * CY_MULTIPLIER;
3441 return S_OK;
3444 /************************************************************************
3445 * VarCyFromI4 (OLEAUT32.100)
3447 * Convert a VT_I4 to a VT_CY.
3449 * PARAMS
3450 * sIn [I] Source
3451 * pCyOut [O] Destination
3453 * RETURNS
3454 * Success: S_OK.
3455 * Failure: E_INVALIDARG, if the source value is invalid
3456 * DISP_E_OVERFLOW, if the value will not fit in the destination
3457 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3459 HRESULT WINAPI VarCyFromI4(LONG lIn, CY* pCyOut)
3461 pCyOut->int64 = (LONG64)lIn * CY_MULTIPLIER;
3462 return S_OK;
3465 /************************************************************************
3466 * VarCyFromR4 (OLEAUT32.101)
3468 * Convert a VT_R4 to a VT_CY.
3470 * PARAMS
3471 * fltIn [I] Source
3472 * pCyOut [O] Destination
3474 * RETURNS
3475 * Success: S_OK.
3476 * Failure: E_INVALIDARG, if the source value is invalid
3477 * DISP_E_OVERFLOW, if the value will not fit in the destination
3478 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3480 HRESULT WINAPI VarCyFromR4(FLOAT fltIn, CY* pCyOut)
3482 return VarCyFromR8(fltIn, pCyOut);
3485 /************************************************************************
3486 * VarCyFromR8 (OLEAUT32.102)
3488 * Convert a VT_R8 to a VT_CY.
3490 * PARAMS
3491 * dblIn [I] Source
3492 * pCyOut [O] Destination
3494 * RETURNS
3495 * Success: S_OK.
3496 * Failure: E_INVALIDARG, if the source value is invalid
3497 * DISP_E_OVERFLOW, if the value will not fit in the destination
3498 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3500 HRESULT WINAPI VarCyFromR8(double dblIn, CY* pCyOut)
3502 #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
3503 /* This code gives identical results to Win32 on Intel.
3504 * Here we use fp exceptions to catch overflows when storing the value.
3506 static const unsigned short r8_fpcontrol = 0x137f;
3507 static const double r8_multiplier = CY_MULTIPLIER_F;
3508 unsigned short old_fpcontrol, result_fpstatus;
3510 /* Clear exceptions, save the old fp state and load the new state */
3511 __asm__ __volatile__( "fnclex" );
3512 __asm__ __volatile__( "fstcw %0" : "=m" (old_fpcontrol) : );
3513 __asm__ __volatile__( "fldcw %0" : : "m" (r8_fpcontrol) );
3514 /* Perform the conversion. */
3515 __asm__ __volatile__( "fldl %0" : : "m" (dblIn) );
3516 __asm__ __volatile__( "fmull %0" : : "m" (r8_multiplier) );
3517 __asm__ __volatile__( "fistpll %0" : : "m" (*pCyOut) );
3518 /* Save the resulting fp state, load the old state and clear exceptions */
3519 __asm__ __volatile__( "fstsw %0" : "=m" (result_fpstatus) : );
3520 __asm__ __volatile__( "fnclex" );
3521 __asm__ __volatile__( "fldcw %0" : : "m" (old_fpcontrol) );
3523 if (result_fpstatus & 0x9) /* Overflow | Invalid */
3524 return DISP_E_OVERFLOW;
3525 #else
3526 /* This version produces slightly different results for boundary cases */
3527 if (dblIn < -922337203685477.5807 || dblIn >= 922337203685477.5807)
3528 return DISP_E_OVERFLOW;
3529 dblIn *= CY_MULTIPLIER_F;
3530 VARIANT_DutchRound(LONG64, dblIn, pCyOut->int64);
3531 #endif
3532 return S_OK;
3535 /************************************************************************
3536 * VarCyFromDate (OLEAUT32.103)
3538 * Convert a VT_DATE to a VT_CY.
3540 * PARAMS
3541 * dateIn [I] Source
3542 * pCyOut [O] Destination
3544 * RETURNS
3545 * Success: S_OK.
3546 * Failure: E_INVALIDARG, if the source value is invalid
3547 * DISP_E_OVERFLOW, if the value will not fit in the destination
3548 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3550 HRESULT WINAPI VarCyFromDate(DATE dateIn, CY* pCyOut)
3552 return VarCyFromR8(dateIn, pCyOut);
3555 /************************************************************************
3556 * VarCyFromStr (OLEAUT32.104)
3558 * Convert a VT_BSTR to a VT_CY.
3560 * PARAMS
3561 * strIn [I] Source
3562 * lcid [I] LCID for the conversion
3563 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
3564 * pCyOut [O] Destination
3566 * RETURNS
3567 * Success: S_OK.
3568 * Failure: E_INVALIDARG, if the source value is invalid
3569 * DISP_E_OVERFLOW, if the value will not fit in the destination
3570 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3572 HRESULT WINAPI VarCyFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, CY* pCyOut)
3574 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pCyOut, VT_CY);
3577 /************************************************************************
3578 * VarCyFromDisp (OLEAUT32.105)
3580 * Convert a VT_DISPATCH to a VT_CY.
3582 * PARAMS
3583 * pdispIn [I] Source
3584 * lcid [I] LCID for conversion
3585 * pCyOut [O] Destination
3587 * RETURNS
3588 * Success: S_OK.
3589 * Failure: E_INVALIDARG, if the source value is invalid
3590 * DISP_E_OVERFLOW, if the value will not fit in the destination
3591 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3593 HRESULT WINAPI VarCyFromDisp(IDispatch* pdispIn, LCID lcid, CY* pCyOut)
3595 return VARIANT_FromDisp(pdispIn, lcid, pCyOut, VT_CY, 0);
3598 /************************************************************************
3599 * VarCyFromBool (OLEAUT32.106)
3601 * Convert a VT_BOOL to a VT_CY.
3603 * PARAMS
3604 * boolIn [I] Source
3605 * pCyOut [O] Destination
3607 * RETURNS
3608 * Success: S_OK.
3609 * Failure: E_INVALIDARG, if the source value is invalid
3610 * DISP_E_OVERFLOW, if the value will not fit in the destination
3611 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3613 * NOTES
3614 * While the sign of the boolean is stored in the currency, the value is
3615 * converted to either 0 or 1.
3617 HRESULT WINAPI VarCyFromBool(VARIANT_BOOL boolIn, CY* pCyOut)
3619 pCyOut->int64 = (LONG64)boolIn * CY_MULTIPLIER;
3620 return S_OK;
3623 /************************************************************************
3624 * VarCyFromI1 (OLEAUT32.225)
3626 * Convert a VT_I1 to a VT_CY.
3628 * PARAMS
3629 * cIn [I] Source
3630 * pCyOut [O] Destination
3632 * RETURNS
3633 * Success: S_OK.
3634 * Failure: E_INVALIDARG, if the source value is invalid
3635 * DISP_E_OVERFLOW, if the value will not fit in the destination
3636 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3638 HRESULT WINAPI VarCyFromI1(signed char cIn, CY* pCyOut)
3640 pCyOut->int64 = (LONG64)cIn * CY_MULTIPLIER;
3641 return S_OK;
3644 /************************************************************************
3645 * VarCyFromUI2 (OLEAUT32.226)
3647 * Convert a VT_UI2 to a VT_CY.
3649 * PARAMS
3650 * usIn [I] Source
3651 * pCyOut [O] Destination
3653 * RETURNS
3654 * Success: S_OK.
3655 * Failure: E_INVALIDARG, if the source value is invalid
3656 * DISP_E_OVERFLOW, if the value will not fit in the destination
3657 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3659 HRESULT WINAPI VarCyFromUI2(USHORT usIn, CY* pCyOut)
3661 pCyOut->int64 = (ULONG64)usIn * CY_MULTIPLIER;
3662 return S_OK;
3665 /************************************************************************
3666 * VarCyFromUI4 (OLEAUT32.227)
3668 * Convert a VT_UI4 to a VT_CY.
3670 * PARAMS
3671 * ulIn [I] Source
3672 * pCyOut [O] Destination
3674 * RETURNS
3675 * Success: S_OK.
3676 * Failure: E_INVALIDARG, if the source value is invalid
3677 * DISP_E_OVERFLOW, if the value will not fit in the destination
3678 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3680 HRESULT WINAPI VarCyFromUI4(ULONG ulIn, CY* pCyOut)
3682 pCyOut->int64 = (ULONG64)ulIn * CY_MULTIPLIER;
3683 return S_OK;
3686 /************************************************************************
3687 * VarCyFromDec (OLEAUT32.228)
3689 * Convert a VT_DECIMAL to a VT_CY.
3691 * PARAMS
3692 * pdecIn [I] Source
3693 * pCyOut [O] Destination
3695 * RETURNS
3696 * Success: S_OK.
3697 * Failure: E_INVALIDARG, if the source value is invalid
3698 * DISP_E_OVERFLOW, if the value will not fit in the destination
3699 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3701 HRESULT WINAPI VarCyFromDec(const DECIMAL* pdecIn, CY* pCyOut)
3703 DECIMAL rounded;
3704 HRESULT hRet;
3706 hRet = VarDecRound(pdecIn, 4, &rounded);
3708 if (SUCCEEDED(hRet))
3710 double d;
3712 if (DEC_HI32(&rounded))
3713 return DISP_E_OVERFLOW;
3715 /* Note: Without the casts this promotes to int64 which loses precision */
3716 d = (double)DEC_LO64(&rounded) / (double)CY_Divisors[DEC_SCALE(&rounded)];
3717 if (DEC_SIGN(&rounded))
3718 d = -d;
3719 return VarCyFromR8(d, pCyOut);
3721 return hRet;
3724 /************************************************************************
3725 * VarCyFromI8 (OLEAUT32.366)
3727 * Convert a VT_I8 to a VT_CY.
3729 * PARAMS
3730 * ullIn [I] Source
3731 * pCyOut [O] Destination
3733 * RETURNS
3734 * Success: S_OK.
3735 * Failure: E_INVALIDARG, if the source value is invalid
3736 * DISP_E_OVERFLOW, if the value will not fit in the destination
3737 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3739 HRESULT WINAPI VarCyFromI8(LONG64 llIn, CY* pCyOut)
3741 if (llIn <= (I8_MIN/CY_MULTIPLIER) || llIn >= (I8_MAX/CY_MULTIPLIER)) return DISP_E_OVERFLOW;
3742 pCyOut->int64 = llIn * CY_MULTIPLIER;
3743 return S_OK;
3746 /************************************************************************
3747 * VarCyFromUI8 (OLEAUT32.375)
3749 * Convert a VT_UI8 to a VT_CY.
3751 * PARAMS
3752 * ullIn [I] Source
3753 * pCyOut [O] Destination
3755 * RETURNS
3756 * Success: S_OK.
3757 * Failure: E_INVALIDARG, if the source value is invalid
3758 * DISP_E_OVERFLOW, if the value will not fit in the destination
3759 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3761 HRESULT WINAPI VarCyFromUI8(ULONG64 ullIn, CY* pCyOut)
3763 if (ullIn > (I8_MAX/CY_MULTIPLIER)) return DISP_E_OVERFLOW;
3764 pCyOut->int64 = ullIn * CY_MULTIPLIER;
3765 return S_OK;
3768 /************************************************************************
3769 * VarCyAdd (OLEAUT32.299)
3771 * Add one CY to another.
3773 * PARAMS
3774 * cyLeft [I] Source
3775 * cyRight [I] Value to add
3776 * pCyOut [O] Destination
3778 * RETURNS
3779 * Success: S_OK.
3780 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3782 HRESULT WINAPI VarCyAdd(CY cyLeft, CY cyRight, CY* pCyOut)
3784 double l,r;
3785 _VarR8FromCy(cyLeft, &l);
3786 _VarR8FromCy(cyRight, &r);
3787 l = l + r;
3788 return VarCyFromR8(l, pCyOut);
3791 /************************************************************************
3792 * VarCyMul (OLEAUT32.303)
3794 * Multiply one CY by another.
3796 * PARAMS
3797 * cyLeft [I] Source
3798 * cyRight [I] Value to multiply by
3799 * pCyOut [O] Destination
3801 * RETURNS
3802 * Success: S_OK.
3803 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3805 HRESULT WINAPI VarCyMul(CY cyLeft, CY cyRight, CY* pCyOut)
3807 double l,r;
3808 _VarR8FromCy(cyLeft, &l);
3809 _VarR8FromCy(cyRight, &r);
3810 l = l * r;
3811 return VarCyFromR8(l, pCyOut);
3814 /************************************************************************
3815 * VarCyMulI4 (OLEAUT32.304)
3817 * Multiply one CY by a VT_I4.
3819 * PARAMS
3820 * cyLeft [I] Source
3821 * lRight [I] Value to multiply by
3822 * pCyOut [O] Destination
3824 * RETURNS
3825 * Success: S_OK.
3826 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3828 HRESULT WINAPI VarCyMulI4(CY cyLeft, LONG lRight, CY* pCyOut)
3830 double d;
3832 _VarR8FromCy(cyLeft, &d);
3833 d = d * lRight;
3834 return VarCyFromR8(d, pCyOut);
3837 /************************************************************************
3838 * VarCySub (OLEAUT32.305)
3840 * Subtract one CY from another.
3842 * PARAMS
3843 * cyLeft [I] Source
3844 * cyRight [I] Value to subtract
3845 * pCyOut [O] Destination
3847 * RETURNS
3848 * Success: S_OK.
3849 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3851 HRESULT WINAPI VarCySub(CY cyLeft, CY cyRight, CY* pCyOut)
3853 double l,r;
3854 _VarR8FromCy(cyLeft, &l);
3855 _VarR8FromCy(cyRight, &r);
3856 l = l - r;
3857 return VarCyFromR8(l, pCyOut);
3860 /************************************************************************
3861 * VarCyAbs (OLEAUT32.306)
3863 * Convert a VT_CY into its absolute value.
3865 * PARAMS
3866 * cyIn [I] Source
3867 * pCyOut [O] Destination
3869 * RETURNS
3870 * Success: S_OK. pCyOut contains the absolute value.
3871 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3873 HRESULT WINAPI VarCyAbs(CY cyIn, CY* pCyOut)
3875 if (cyIn.s.Hi == 0x80000000 && !cyIn.s.Lo)
3876 return DISP_E_OVERFLOW;
3878 pCyOut->int64 = cyIn.int64 < 0 ? -cyIn.int64 : cyIn.int64;
3879 return S_OK;
3882 /************************************************************************
3883 * VarCyFix (OLEAUT32.307)
3885 * Return the integer part of a VT_CY.
3887 * PARAMS
3888 * cyIn [I] Source
3889 * pCyOut [O] Destination
3891 * RETURNS
3892 * Success: S_OK.
3893 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3895 * NOTES
3896 * - The difference between this function and VarCyInt() is that VarCyInt() rounds
3897 * negative numbers away from 0, while this function rounds them towards zero.
3899 HRESULT WINAPI VarCyFix(CY cyIn, CY* pCyOut)
3901 pCyOut->int64 = cyIn.int64 / CY_MULTIPLIER;
3902 pCyOut->int64 *= CY_MULTIPLIER;
3903 return S_OK;
3906 /************************************************************************
3907 * VarCyInt (OLEAUT32.308)
3909 * Return the integer part of a VT_CY.
3911 * PARAMS
3912 * cyIn [I] Source
3913 * pCyOut [O] Destination
3915 * RETURNS
3916 * Success: S_OK.
3917 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3919 * NOTES
3920 * - The difference between this function and VarCyFix() is that VarCyFix() rounds
3921 * negative numbers towards 0, while this function rounds them away from zero.
3923 HRESULT WINAPI VarCyInt(CY cyIn, CY* pCyOut)
3925 pCyOut->int64 = cyIn.int64 / CY_MULTIPLIER;
3926 pCyOut->int64 *= CY_MULTIPLIER;
3928 if (cyIn.int64 < 0 && cyIn.int64 % CY_MULTIPLIER != 0)
3930 pCyOut->int64 -= CY_MULTIPLIER;
3932 return S_OK;
3935 /************************************************************************
3936 * VarCyNeg (OLEAUT32.309)
3938 * Change the sign of a VT_CY.
3940 * PARAMS
3941 * cyIn [I] Source
3942 * pCyOut [O] Destination
3944 * RETURNS
3945 * Success: S_OK.
3946 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3948 HRESULT WINAPI VarCyNeg(CY cyIn, CY* pCyOut)
3950 if (cyIn.s.Hi == 0x80000000 && !cyIn.s.Lo)
3951 return DISP_E_OVERFLOW;
3953 pCyOut->int64 = -cyIn.int64;
3954 return S_OK;
3957 /************************************************************************
3958 * VarCyRound (OLEAUT32.310)
3960 * Change the precision of a VT_CY.
3962 * PARAMS
3963 * cyIn [I] Source
3964 * cDecimals [I] New number of decimals to keep
3965 * pCyOut [O] Destination
3967 * RETURNS
3968 * Success: S_OK.
3969 * Failure: E_INVALIDARG, if cDecimals is less than 0.
3971 HRESULT WINAPI VarCyRound(CY cyIn, int cDecimals, CY* pCyOut)
3973 if (cDecimals < 0)
3974 return E_INVALIDARG;
3976 if (cDecimals > 3)
3978 /* Rounding to more precision than we have */
3979 *pCyOut = cyIn;
3980 return S_OK;
3982 else
3984 double d, div = CY_Divisors[cDecimals];
3986 _VarR8FromCy(cyIn, &d);
3987 d = d * div;
3988 VARIANT_DutchRound(LONGLONG, d, pCyOut->int64);
3989 d = (double)pCyOut->int64 / div * CY_MULTIPLIER_F;
3990 VARIANT_DutchRound(LONGLONG, d, pCyOut->int64);
3991 return S_OK;
3995 /************************************************************************
3996 * VarCyCmp (OLEAUT32.311)
3998 * Compare two VT_CY values.
4000 * PARAMS
4001 * cyLeft [I] Source
4002 * cyRight [I] Value to compare
4004 * RETURNS
4005 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that the value to
4006 * compare is less, equal or greater than source respectively.
4007 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
4009 HRESULT WINAPI VarCyCmp(CY cyLeft, CY cyRight)
4011 HRESULT hRet;
4012 CY result;
4014 /* Subtract right from left, and compare the result to 0 */
4015 hRet = VarCySub(cyLeft, cyRight, &result);
4017 if (SUCCEEDED(hRet))
4019 if (result.int64 < 0)
4020 hRet = (HRESULT)VARCMP_LT;
4021 else if (result.int64 > 0)
4022 hRet = (HRESULT)VARCMP_GT;
4023 else
4024 hRet = (HRESULT)VARCMP_EQ;
4026 return hRet;
4029 /************************************************************************
4030 * VarCyCmpR8 (OLEAUT32.312)
4032 * Compare a VT_CY to a double
4034 * PARAMS
4035 * cyLeft [I] Currency Source
4036 * dblRight [I] double to compare to cyLeft
4038 * RETURNS
4039 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that dblRight is
4040 * less than, equal to or greater than cyLeft respectively.
4041 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
4043 HRESULT WINAPI VarCyCmpR8(CY cyLeft, double dblRight)
4045 HRESULT hRet;
4046 CY cyRight;
4048 hRet = VarCyFromR8(dblRight, &cyRight);
4050 if (SUCCEEDED(hRet))
4051 hRet = VarCyCmp(cyLeft, cyRight);
4053 return hRet;
4056 /************************************************************************
4057 * VarCyMulI8 (OLEAUT32.329)
4059 * Multiply a VT_CY by a VT_I8.
4061 * PARAMS
4062 * cyLeft [I] Source
4063 * llRight [I] Value to multiply by
4064 * pCyOut [O] Destination
4066 * RETURNS
4067 * Success: S_OK.
4068 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4070 HRESULT WINAPI VarCyMulI8(CY cyLeft, LONG64 llRight, CY* pCyOut)
4072 double d;
4074 _VarR8FromCy(cyLeft, &d);
4075 d = d * (double)llRight;
4076 return VarCyFromR8(d, pCyOut);
4079 /* DECIMAL
4082 /************************************************************************
4083 * VarDecFromUI1 (OLEAUT32.190)
4085 * Convert a VT_UI1 to a DECIMAL.
4087 * PARAMS
4088 * bIn [I] Source
4089 * pDecOut [O] Destination
4091 * RETURNS
4092 * S_OK.
4094 HRESULT WINAPI VarDecFromUI1(BYTE bIn, DECIMAL* pDecOut)
4096 return VarDecFromUI4(bIn, pDecOut);
4099 /************************************************************************
4100 * VarDecFromI2 (OLEAUT32.191)
4102 * Convert a VT_I2 to a DECIMAL.
4104 * PARAMS
4105 * sIn [I] Source
4106 * pDecOut [O] Destination
4108 * RETURNS
4109 * S_OK.
4111 HRESULT WINAPI VarDecFromI2(SHORT sIn, DECIMAL* pDecOut)
4113 return VarDecFromI4(sIn, pDecOut);
4116 /************************************************************************
4117 * VarDecFromI4 (OLEAUT32.192)
4119 * Convert a VT_I4 to a DECIMAL.
4121 * PARAMS
4122 * sIn [I] Source
4123 * pDecOut [O] Destination
4125 * RETURNS
4126 * S_OK.
4128 HRESULT WINAPI VarDecFromI4(LONG lIn, DECIMAL* pDecOut)
4130 DEC_HI32(pDecOut) = 0;
4131 DEC_MID32(pDecOut) = 0;
4133 if (lIn < 0)
4135 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,0);
4136 DEC_LO32(pDecOut) = -lIn;
4138 else
4140 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4141 DEC_LO32(pDecOut) = lIn;
4143 return S_OK;
4146 /* internal representation of the value stored in a DECIMAL. The bytes are
4147 stored from LSB at index 0 to MSB at index 11
4149 typedef struct DECIMAL_internal
4151 DWORD bitsnum[3]; /* 96 significant bits, unsigned */
4152 unsigned char scale; /* number scaled * 10 ^ -(scale) */
4153 unsigned int sign : 1; /* 0 - positive, 1 - negative */
4154 } VARIANT_DI;
4156 static HRESULT VARIANT_DI_FromR4(float source, VARIANT_DI * dest);
4157 static HRESULT VARIANT_DI_FromR8(double source, VARIANT_DI * dest);
4158 static void VARIANT_DIFromDec(const DECIMAL * from, VARIANT_DI * to);
4159 static void VARIANT_DecFromDI(const VARIANT_DI * from, DECIMAL * to);
4160 static unsigned char VARIANT_int_divbychar(DWORD * p, unsigned int n, unsigned char divisor);
4161 static BOOL VARIANT_int_iszero(const DWORD * p, unsigned int n);
4163 /************************************************************************
4164 * VarDecFromR4 (OLEAUT32.193)
4166 * Convert a VT_R4 to a DECIMAL.
4168 * PARAMS
4169 * fltIn [I] Source
4170 * pDecOut [O] Destination
4172 * RETURNS
4173 * S_OK.
4175 HRESULT WINAPI VarDecFromR4(FLOAT fltIn, DECIMAL* pDecOut)
4177 VARIANT_DI di;
4178 HRESULT hres;
4180 hres = VARIANT_DI_FromR4(fltIn, &di);
4181 if (hres == S_OK) VARIANT_DecFromDI(&di, pDecOut);
4182 return hres;
4185 /************************************************************************
4186 * VarDecFromR8 (OLEAUT32.194)
4188 * Convert a VT_R8 to a DECIMAL.
4190 * PARAMS
4191 * dblIn [I] Source
4192 * pDecOut [O] Destination
4194 * RETURNS
4195 * S_OK.
4197 HRESULT WINAPI VarDecFromR8(double dblIn, DECIMAL* pDecOut)
4199 VARIANT_DI di;
4200 HRESULT hres;
4202 hres = VARIANT_DI_FromR8(dblIn, &di);
4203 if (hres == S_OK) VARIANT_DecFromDI(&di, pDecOut);
4204 return hres;
4207 /************************************************************************
4208 * VarDecFromDate (OLEAUT32.195)
4210 * Convert a VT_DATE to a DECIMAL.
4212 * PARAMS
4213 * dateIn [I] Source
4214 * pDecOut [O] Destination
4216 * RETURNS
4217 * S_OK.
4219 HRESULT WINAPI VarDecFromDate(DATE dateIn, DECIMAL* pDecOut)
4221 return VarDecFromR8(dateIn, pDecOut);
4224 /************************************************************************
4225 * VarDecFromCy (OLEAUT32.196)
4227 * Convert a VT_CY to a DECIMAL.
4229 * PARAMS
4230 * cyIn [I] Source
4231 * pDecOut [O] Destination
4233 * RETURNS
4234 * S_OK.
4236 HRESULT WINAPI VarDecFromCy(CY cyIn, DECIMAL* pDecOut)
4238 DEC_HI32(pDecOut) = 0;
4240 /* Note: This assumes 2s complement integer representation */
4241 if (cyIn.s.Hi & 0x80000000)
4243 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,4);
4244 DEC_LO64(pDecOut) = -cyIn.int64;
4246 else
4248 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,4);
4249 DEC_MID32(pDecOut) = cyIn.s.Hi;
4250 DEC_LO32(pDecOut) = cyIn.s.Lo;
4252 return S_OK;
4255 /************************************************************************
4256 * VarDecFromStr (OLEAUT32.197)
4258 * Convert a VT_BSTR to a DECIMAL.
4260 * PARAMS
4261 * strIn [I] Source
4262 * lcid [I] LCID for the conversion
4263 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
4264 * pDecOut [O] Destination
4266 * RETURNS
4267 * Success: S_OK.
4268 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4270 HRESULT WINAPI VarDecFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, DECIMAL* pDecOut)
4272 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pDecOut, VT_DECIMAL);
4275 /************************************************************************
4276 * VarDecFromDisp (OLEAUT32.198)
4278 * Convert a VT_DISPATCH to a DECIMAL.
4280 * PARAMS
4281 * pdispIn [I] Source
4282 * lcid [I] LCID for conversion
4283 * pDecOut [O] Destination
4285 * RETURNS
4286 * Success: S_OK.
4287 * Failure: DISP_E_TYPEMISMATCH, if the type cannot be converted
4289 HRESULT WINAPI VarDecFromDisp(IDispatch* pdispIn, LCID lcid, DECIMAL* pDecOut)
4291 return VARIANT_FromDisp(pdispIn, lcid, pDecOut, VT_DECIMAL, 0);
4294 /************************************************************************
4295 * VarDecFromBool (OLEAUT32.199)
4297 * Convert a VT_BOOL to a DECIMAL.
4299 * PARAMS
4300 * bIn [I] Source
4301 * pDecOut [O] Destination
4303 * RETURNS
4304 * S_OK.
4306 * NOTES
4307 * The value is converted to either 0 (if bIn is FALSE) or -1 (TRUE).
4309 HRESULT WINAPI VarDecFromBool(VARIANT_BOOL bIn, DECIMAL* pDecOut)
4311 DEC_HI32(pDecOut) = 0;
4312 DEC_MID32(pDecOut) = 0;
4313 if (bIn)
4315 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,0);
4316 DEC_LO32(pDecOut) = 1;
4318 else
4320 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4321 DEC_LO32(pDecOut) = 0;
4323 return S_OK;
4326 /************************************************************************
4327 * VarDecFromI1 (OLEAUT32.241)
4329 * Convert a VT_I1 to a DECIMAL.
4331 * PARAMS
4332 * cIn [I] Source
4333 * pDecOut [O] Destination
4335 * RETURNS
4336 * S_OK.
4338 HRESULT WINAPI VarDecFromI1(signed char cIn, DECIMAL* pDecOut)
4340 return VarDecFromI4(cIn, pDecOut);
4343 /************************************************************************
4344 * VarDecFromUI2 (OLEAUT32.242)
4346 * Convert a VT_UI2 to a DECIMAL.
4348 * PARAMS
4349 * usIn [I] Source
4350 * pDecOut [O] Destination
4352 * RETURNS
4353 * S_OK.
4355 HRESULT WINAPI VarDecFromUI2(USHORT usIn, DECIMAL* pDecOut)
4357 return VarDecFromUI4(usIn, pDecOut);
4360 /************************************************************************
4361 * VarDecFromUI4 (OLEAUT32.243)
4363 * Convert a VT_UI4 to a DECIMAL.
4365 * PARAMS
4366 * ulIn [I] Source
4367 * pDecOut [O] Destination
4369 * RETURNS
4370 * S_OK.
4372 HRESULT WINAPI VarDecFromUI4(ULONG ulIn, DECIMAL* pDecOut)
4374 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4375 DEC_HI32(pDecOut) = 0;
4376 DEC_MID32(pDecOut) = 0;
4377 DEC_LO32(pDecOut) = ulIn;
4378 return S_OK;
4381 /************************************************************************
4382 * VarDecFromI8 (OLEAUT32.374)
4384 * Convert a VT_I8 to a DECIMAL.
4386 * PARAMS
4387 * llIn [I] Source
4388 * pDecOut [O] Destination
4390 * RETURNS
4391 * S_OK.
4393 HRESULT WINAPI VarDecFromI8(LONG64 llIn, DECIMAL* pDecOut)
4395 PULARGE_INTEGER pLi = (PULARGE_INTEGER)&llIn;
4397 DEC_HI32(pDecOut) = 0;
4399 /* Note: This assumes 2s complement integer representation */
4400 if (pLi->u.HighPart & 0x80000000)
4402 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,0);
4403 DEC_LO64(pDecOut) = -pLi->QuadPart;
4405 else
4407 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4408 DEC_MID32(pDecOut) = pLi->u.HighPart;
4409 DEC_LO32(pDecOut) = pLi->u.LowPart;
4411 return S_OK;
4414 /************************************************************************
4415 * VarDecFromUI8 (OLEAUT32.375)
4417 * Convert a VT_UI8 to a DECIMAL.
4419 * PARAMS
4420 * ullIn [I] Source
4421 * pDecOut [O] Destination
4423 * RETURNS
4424 * S_OK.
4426 HRESULT WINAPI VarDecFromUI8(ULONG64 ullIn, DECIMAL* pDecOut)
4428 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4429 DEC_HI32(pDecOut) = 0;
4430 DEC_LO64(pDecOut) = ullIn;
4431 return S_OK;
4434 /* Make two DECIMALS the same scale; used by math functions below */
4435 static HRESULT VARIANT_DecScale(const DECIMAL** ppDecLeft,
4436 const DECIMAL** ppDecRight,
4437 DECIMAL pDecOut[2])
4439 static DECIMAL scaleFactor;
4440 unsigned char remainder;
4441 DECIMAL decTemp;
4442 VARIANT_DI di;
4443 int scaleAmount, i;
4445 if (DEC_SIGN(*ppDecLeft) & ~DECIMAL_NEG || DEC_SIGN(*ppDecRight) & ~DECIMAL_NEG)
4446 return E_INVALIDARG;
4448 DEC_LO32(&scaleFactor) = 10;
4450 i = scaleAmount = DEC_SCALE(*ppDecLeft) - DEC_SCALE(*ppDecRight);
4452 if (!scaleAmount)
4453 return S_OK; /* Same scale */
4455 if (scaleAmount > 0)
4457 decTemp = *(*ppDecRight); /* Left is bigger - scale the right hand side */
4458 *ppDecRight = &pDecOut[0];
4460 else
4462 decTemp = *(*ppDecLeft); /* Right is bigger - scale the left hand side */
4463 *ppDecLeft = &pDecOut[0];
4464 i = -scaleAmount;
4467 /* Multiply up the value to be scaled by the correct amount (if possible) */
4468 while (i > 0 && SUCCEEDED(VarDecMul(&decTemp, &scaleFactor, &pDecOut[0])))
4470 decTemp = pDecOut[0];
4471 i--;
4474 if (!i)
4476 DEC_SCALE(&pDecOut[0]) += (scaleAmount > 0) ? scaleAmount : (-scaleAmount);
4477 return S_OK; /* Same scale */
4480 /* Scaling further not possible, reduce accuracy of other argument */
4481 pDecOut[0] = decTemp;
4482 if (scaleAmount > 0)
4484 DEC_SCALE(&pDecOut[0]) += scaleAmount - i;
4485 VARIANT_DIFromDec(*ppDecLeft, &di);
4486 *ppDecLeft = &pDecOut[1];
4488 else
4490 DEC_SCALE(&pDecOut[0]) += (-scaleAmount) - i;
4491 VARIANT_DIFromDec(*ppDecRight, &di);
4492 *ppDecRight = &pDecOut[1];
4495 di.scale -= i;
4496 remainder = 0;
4497 while (i-- > 0 && !VARIANT_int_iszero(di.bitsnum, ARRAY_SIZE(di.bitsnum)))
4499 remainder = VARIANT_int_divbychar(di.bitsnum, ARRAY_SIZE(di.bitsnum), 10);
4500 if (remainder > 0) WARN("losing significant digits (remainder %u)...\n", remainder);
4503 /* round up the result - native oleaut32 does this */
4504 if (remainder >= 5) {
4505 for (remainder = 1, i = 0; i < ARRAY_SIZE(di.bitsnum) && remainder; i++) {
4506 ULONGLONG digit = di.bitsnum[i] + 1;
4507 remainder = (digit > 0xFFFFFFFF) ? 1 : 0;
4508 di.bitsnum[i] = digit & 0xFFFFFFFF;
4512 VARIANT_DecFromDI(&di, &pDecOut[1]);
4513 return S_OK;
4516 /* Add two unsigned 32 bit values with overflow */
4517 static ULONG VARIANT_Add(ULONG ulLeft, ULONG ulRight, ULONG* pulHigh)
4519 ULARGE_INTEGER ul64;
4521 ul64.QuadPart = (ULONG64)ulLeft + (ULONG64)ulRight + (ULONG64)*pulHigh;
4522 *pulHigh = ul64.u.HighPart;
4523 return ul64.u.LowPart;
4526 /* Subtract two unsigned 32 bit values with underflow */
4527 static ULONG VARIANT_Sub(ULONG ulLeft, ULONG ulRight, ULONG* pulHigh)
4529 BOOL invert = FALSE;
4530 ULARGE_INTEGER ul64;
4532 ul64.QuadPart = (LONG64)ulLeft - (ULONG64)ulRight;
4533 if (ulLeft < ulRight)
4534 invert = TRUE;
4536 if (ul64.QuadPart > (ULONG64)*pulHigh)
4537 ul64.QuadPart -= (ULONG64)*pulHigh;
4538 else
4540 ul64.QuadPart -= (ULONG64)*pulHigh;
4541 invert = TRUE;
4543 if (invert)
4544 ul64.u.HighPart = -ul64.u.HighPart ;
4546 *pulHigh = ul64.u.HighPart;
4547 return ul64.u.LowPart;
4550 /* Multiply two unsigned 32 bit values with overflow */
4551 static ULONG VARIANT_Mul(ULONG ulLeft, ULONG ulRight, ULONG* pulHigh)
4553 ULARGE_INTEGER ul64;
4555 ul64.QuadPart = (ULONG64)ulLeft * (ULONG64)ulRight + (ULONG64)*pulHigh;
4556 *pulHigh = ul64.u.HighPart;
4557 return ul64.u.LowPart;
4560 /* Compare two decimals that have the same scale */
4561 static inline int VARIANT_DecCmp(const DECIMAL *pDecLeft, const DECIMAL *pDecRight)
4563 if ( DEC_HI32(pDecLeft) < DEC_HI32(pDecRight) ||
4564 (DEC_HI32(pDecLeft) <= DEC_HI32(pDecRight) && DEC_LO64(pDecLeft) < DEC_LO64(pDecRight)))
4565 return -1;
4566 else if (DEC_HI32(pDecLeft) == DEC_HI32(pDecRight) && DEC_LO64(pDecLeft) == DEC_LO64(pDecRight))
4567 return 0;
4568 return 1;
4571 /************************************************************************
4572 * VarDecAdd (OLEAUT32.177)
4574 * Add one DECIMAL to another.
4576 * PARAMS
4577 * pDecLeft [I] Source
4578 * pDecRight [I] Value to add
4579 * pDecOut [O] Destination
4581 * RETURNS
4582 * Success: S_OK.
4583 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4585 HRESULT WINAPI VarDecAdd(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
4587 HRESULT hRet;
4588 DECIMAL scaled[2];
4590 hRet = VARIANT_DecScale(&pDecLeft, &pDecRight, scaled);
4592 if (SUCCEEDED(hRet))
4594 /* Our decimals now have the same scale, we can add them as 96 bit integers */
4595 ULONG overflow = 0;
4596 BYTE sign = DECIMAL_POS;
4597 int cmp;
4599 /* Correct for the sign of the result */
4600 if (DEC_SIGN(pDecLeft) && DEC_SIGN(pDecRight))
4602 /* -x + -y : Negative */
4603 sign = DECIMAL_NEG;
4604 goto VarDecAdd_AsPositive;
4606 else if (DEC_SIGN(pDecLeft) && !DEC_SIGN(pDecRight))
4608 cmp = VARIANT_DecCmp(pDecLeft, pDecRight);
4610 /* -x + y : Negative if x > y */
4611 if (cmp > 0)
4613 sign = DECIMAL_NEG;
4614 VarDecAdd_AsNegative:
4615 DEC_LO32(pDecOut) = VARIANT_Sub(DEC_LO32(pDecLeft), DEC_LO32(pDecRight), &overflow);
4616 DEC_MID32(pDecOut) = VARIANT_Sub(DEC_MID32(pDecLeft), DEC_MID32(pDecRight), &overflow);
4617 DEC_HI32(pDecOut) = VARIANT_Sub(DEC_HI32(pDecLeft), DEC_HI32(pDecRight), &overflow);
4619 else
4621 VarDecAdd_AsInvertedNegative:
4622 DEC_LO32(pDecOut) = VARIANT_Sub(DEC_LO32(pDecRight), DEC_LO32(pDecLeft), &overflow);
4623 DEC_MID32(pDecOut) = VARIANT_Sub(DEC_MID32(pDecRight), DEC_MID32(pDecLeft), &overflow);
4624 DEC_HI32(pDecOut) = VARIANT_Sub(DEC_HI32(pDecRight), DEC_HI32(pDecLeft), &overflow);
4627 else if (!DEC_SIGN(pDecLeft) && DEC_SIGN(pDecRight))
4629 cmp = VARIANT_DecCmp(pDecLeft, pDecRight);
4631 /* x + -y : Negative if x <= y */
4632 if (cmp <= 0)
4634 sign = DECIMAL_NEG;
4635 goto VarDecAdd_AsInvertedNegative;
4637 goto VarDecAdd_AsNegative;
4639 else
4641 /* x + y : Positive */
4642 VarDecAdd_AsPositive:
4643 DEC_LO32(pDecOut) = VARIANT_Add(DEC_LO32(pDecLeft), DEC_LO32(pDecRight), &overflow);
4644 DEC_MID32(pDecOut) = VARIANT_Add(DEC_MID32(pDecLeft), DEC_MID32(pDecRight), &overflow);
4645 DEC_HI32(pDecOut) = VARIANT_Add(DEC_HI32(pDecLeft), DEC_HI32(pDecRight), &overflow);
4648 if (overflow)
4649 return DISP_E_OVERFLOW; /* overflowed */
4651 DEC_SCALE(pDecOut) = DEC_SCALE(pDecLeft);
4652 DEC_SIGN(pDecOut) = sign;
4654 return hRet;
4657 /* translate from external DECIMAL format into an internal representation */
4658 static void VARIANT_DIFromDec(const DECIMAL * from, VARIANT_DI * to)
4660 to->scale = DEC_SCALE(from);
4661 to->sign = DEC_SIGN(from) ? 1 : 0;
4663 to->bitsnum[0] = DEC_LO32(from);
4664 to->bitsnum[1] = DEC_MID32(from);
4665 to->bitsnum[2] = DEC_HI32(from);
4668 static void VARIANT_DecFromDI(const VARIANT_DI * from, DECIMAL * to)
4670 if (from->sign) {
4671 DEC_SIGNSCALE(to) = SIGNSCALE(DECIMAL_NEG, from->scale);
4672 } else {
4673 DEC_SIGNSCALE(to) = SIGNSCALE(DECIMAL_POS, from->scale);
4676 DEC_LO32(to) = from->bitsnum[0];
4677 DEC_MID32(to) = from->bitsnum[1];
4678 DEC_HI32(to) = from->bitsnum[2];
4681 /* clear an internal representation of a DECIMAL */
4682 static void VARIANT_DI_clear(VARIANT_DI * i)
4684 memset(i, 0, sizeof(VARIANT_DI));
4687 /* divide the (unsigned) number stored in p (LSB) by a byte value (<= 0xff). Any nonzero
4688 size is supported. The value in p is replaced by the quotient of the division, and
4689 the remainder is returned as a result. This routine is most often used with a divisor
4690 of 10 in order to scale up numbers, and in the DECIMAL->string conversion.
4692 static unsigned char VARIANT_int_divbychar(DWORD * p, unsigned int n, unsigned char divisor)
4694 if (divisor == 0) {
4695 /* division by 0 */
4696 return 0xFF;
4697 } else if (divisor == 1) {
4698 /* dividend remains unchanged */
4699 return 0;
4700 } else {
4701 unsigned char remainder = 0;
4702 ULONGLONG iTempDividend;
4703 signed int i;
4705 for (i = n - 1; i >= 0 && !p[i]; i--); /* skip leading zeros */
4706 for (; i >= 0; i--) {
4707 iTempDividend = ((ULONGLONG)remainder << 32) + p[i];
4708 remainder = iTempDividend % divisor;
4709 p[i] = iTempDividend / divisor;
4712 return remainder;
4716 /* check to test if encoded number is a zero. Returns 1 if zero, 0 for nonzero */
4717 static BOOL VARIANT_int_iszero(const DWORD * p, unsigned int n)
4719 for (; n > 0; n--) if (*p++ != 0) return FALSE;
4720 return TRUE;
4723 /* multiply two DECIMALS, without changing either one, and place result in third
4724 parameter. Result is normalized when scale is > 0. Attempts to remove significant
4725 digits when scale > 0 in order to fit an overflowing result. Final overflow
4726 flag is returned.
4728 static int VARIANT_DI_mul(const VARIANT_DI * a, const VARIANT_DI * b, VARIANT_DI * result)
4730 BOOL r_overflow = FALSE;
4731 DWORD running[6];
4732 signed int mulstart;
4734 VARIANT_DI_clear(result);
4735 result->sign = (a->sign ^ b->sign) ? 1 : 0;
4737 /* Multiply 128-bit operands into a (max) 256-bit result. The scale
4738 of the result is formed by adding the scales of the operands.
4740 result->scale = a->scale + b->scale;
4741 memset(running, 0, sizeof(running));
4743 /* count number of leading zero-bytes in operand A */
4744 for (mulstart = ARRAY_SIZE(a->bitsnum) - 1; mulstart >= 0 && !a->bitsnum[mulstart]; mulstart--);
4745 if (mulstart < 0) {
4746 /* result is 0, because operand A is 0 */
4747 result->scale = 0;
4748 result->sign = 0;
4749 } else {
4750 unsigned char remainder = 0;
4751 int iA;
4753 /* perform actual multiplication */
4754 for (iA = 0; iA <= mulstart; iA++) {
4755 ULONG iOverflowMul;
4756 int iB;
4758 for (iOverflowMul = 0, iB = 0; iB < ARRAY_SIZE(b->bitsnum); iB++) {
4759 ULONG iRV;
4760 int iR;
4762 iRV = VARIANT_Mul(b->bitsnum[iB], a->bitsnum[iA], &iOverflowMul);
4763 iR = iA + iB;
4764 do {
4765 running[iR] = VARIANT_Add(running[iR], 0, &iRV);
4766 iR++;
4767 } while (iRV);
4771 /* Too bad - native oleaut does not do this, so we should not either */
4772 #if 0
4773 /* While the result is divisible by 10, and the scale > 0, divide by 10.
4774 This operation should not lose significant digits, and gives an
4775 opportunity to reduce the possibility of overflows in future
4776 operations issued by the application.
4778 while (result->scale > 0) {
4779 memcpy(quotient, running, sizeof(quotient));
4780 remainder = VARIANT_int_divbychar(quotient, sizeof(quotient) / sizeof(DWORD), 10);
4781 if (remainder > 0) break;
4782 memcpy(running, quotient, sizeof(quotient));
4783 result->scale--;
4785 #endif
4786 /* While the 256-bit result overflows, and the scale > 0, divide by 10.
4787 This operation *will* lose significant digits of the result because
4788 all the factors of 10 were consumed by the previous operation.
4790 while (result->scale > 0 && !VARIANT_int_iszero(running + ARRAY_SIZE(result->bitsnum),
4791 ARRAY_SIZE(running) - ARRAY_SIZE(result->bitsnum))) {
4793 remainder = VARIANT_int_divbychar(running, ARRAY_SIZE(running), 10);
4794 if (remainder > 0) WARN("losing significant digits (remainder %u)...\n", remainder);
4795 result->scale--;
4798 /* round up the result - native oleaut32 does this */
4799 if (remainder >= 5) {
4800 unsigned int i;
4801 for (remainder = 1, i = 0; i < ARRAY_SIZE(running) && remainder; i++) {
4802 ULONGLONG digit = running[i] + 1;
4803 remainder = (digit > 0xFFFFFFFF) ? 1 : 0;
4804 running[i] = digit & 0xFFFFFFFF;
4808 /* Signal overflow if scale == 0 and 256-bit result still overflows,
4809 and copy result bits into result structure
4811 r_overflow = !VARIANT_int_iszero(running + ARRAY_SIZE(result->bitsnum),
4812 ARRAY_SIZE(running) - ARRAY_SIZE(result->bitsnum));
4813 memcpy(result->bitsnum, running, sizeof(result->bitsnum));
4815 return r_overflow;
4818 /* cast DECIMAL into string. Any scale should be handled properly. en_US locale is
4819 hardcoded (period for decimal separator, dash as negative sign). Returns TRUE for
4820 success, FALSE if insufficient space in output buffer.
4822 static BOOL VARIANT_DI_tostringW(const VARIANT_DI * a, WCHAR * s, unsigned int n)
4824 BOOL overflow = FALSE;
4825 DWORD quotient[3];
4826 unsigned char remainder;
4827 unsigned int i;
4829 /* place negative sign */
4830 if (!VARIANT_int_iszero(a->bitsnum, ARRAY_SIZE(a->bitsnum)) && a->sign) {
4831 if (n > 0) {
4832 *s++ = '-';
4833 n--;
4835 else overflow = TRUE;
4838 /* prepare initial 0 */
4839 if (!overflow) {
4840 if (n >= 2) {
4841 s[0] = '0';
4842 s[1] = '\0';
4843 } else overflow = TRUE;
4846 i = 0;
4847 memcpy(quotient, a->bitsnum, sizeof(a->bitsnum));
4848 while (!overflow && !VARIANT_int_iszero(quotient, ARRAY_SIZE(quotient))) {
4849 remainder = VARIANT_int_divbychar(quotient, ARRAY_SIZE(quotient), 10);
4850 if (i + 2 > n) {
4851 overflow = TRUE;
4852 } else {
4853 s[i++] = '0' + remainder;
4854 s[i] = '\0';
4858 if (!overflow && !VARIANT_int_iszero(a->bitsnum, ARRAY_SIZE(a->bitsnum))) {
4860 /* reverse order of digits */
4861 WCHAR * x = s; WCHAR * y = s + i - 1;
4862 while (x < y) {
4863 *x ^= *y;
4864 *y ^= *x;
4865 *x++ ^= *y--;
4868 /* check for decimal point. "i" now has string length */
4869 if (i <= a->scale) {
4870 unsigned int numzeroes = a->scale + 1 - i;
4871 if (i + 1 + numzeroes >= n) {
4872 overflow = TRUE;
4873 } else {
4874 memmove(s + numzeroes, s, (i + 1) * sizeof(WCHAR));
4875 i += numzeroes;
4876 while (numzeroes > 0) {
4877 s[--numzeroes] = '0';
4882 /* place decimal point */
4883 if (a->scale > 0) {
4884 unsigned int periodpos = i - a->scale;
4885 if (i + 2 >= n) {
4886 overflow = TRUE;
4887 } else {
4888 memmove(s + periodpos + 1, s + periodpos, (i + 1 - periodpos) * sizeof(WCHAR));
4889 s[periodpos] = '.'; i++;
4891 /* remove extra zeros at the end, if any */
4892 while (s[i - 1] == '0') s[--i] = '\0';
4893 if (s[i - 1] == '.') s[--i] = '\0';
4898 return !overflow;
4901 /* shift the bits of a DWORD array to the left. p[0] is assumed LSB */
4902 static void VARIANT_int_shiftleft(DWORD * p, unsigned int n, unsigned int shift)
4904 DWORD shifted;
4905 unsigned int i;
4907 /* shift whole DWORDs to the left */
4908 while (shift >= 32)
4910 memmove(p + 1, p, (n - 1) * sizeof(DWORD));
4911 *p = 0; shift -= 32;
4914 /* shift remainder (1..31 bits) */
4915 shifted = 0;
4916 if (shift > 0) for (i = 0; i < n; i++)
4918 DWORD b;
4919 b = p[i] >> (32 - shift);
4920 p[i] = (p[i] << shift) | shifted;
4921 shifted = b;
4925 /* add the (unsigned) numbers stored in two DWORD arrays with LSB at index 0.
4926 Value at v is incremented by the value at p. Any size is supported, provided
4927 that v is not shorter than p. Any unapplied carry is returned as a result.
4929 static unsigned char VARIANT_int_add(DWORD * v, unsigned int nv, const DWORD * p,
4930 unsigned int np)
4932 unsigned char carry = 0;
4934 if (nv >= np) {
4935 ULONGLONG sum;
4936 unsigned int i;
4938 for (i = 0; i < np; i++) {
4939 sum = (ULONGLONG)v[i]
4940 + (ULONGLONG)p[i]
4941 + (ULONGLONG)carry;
4942 v[i] = sum & 0xffffffff;
4943 carry = sum >> 32;
4945 for (; i < nv && carry; i++) {
4946 sum = (ULONGLONG)v[i]
4947 + (ULONGLONG)carry;
4948 v[i] = sum & 0xffffffff;
4949 carry = sum >> 32;
4952 return carry;
4955 /* perform integral division with operand p as dividend. Parameter n indicates
4956 number of available DWORDs in divisor p, but available space in p must be
4957 actually at least 2 * n DWORDs, because the remainder of the integral
4958 division is built in the next n DWORDs past the start of the quotient. This
4959 routine replaces the dividend in p with the quotient, and appends n
4960 additional DWORDs for the remainder.
4962 Thanks to Lee & Mark Atkinson for their book _Using_C_ (my very first book on
4963 C/C++ :-) where the "longhand binary division" algorithm was exposed for the
4964 source code to the VLI (Very Large Integer) division operator. This algorithm
4965 was then heavily modified by me (Alex Villacis Lasso) in order to handle
4966 variably-scaled integers such as the MS DECIMAL representation.
4968 static void VARIANT_int_div(DWORD * p, unsigned int n, const DWORD * divisor,
4969 unsigned int dn)
4971 unsigned int i;
4972 DWORD tempsub[8];
4973 DWORD * negdivisor = tempsub + n;
4975 /* build 2s-complement of divisor */
4976 for (i = 0; i < n; i++) negdivisor[i] = (i < dn) ? ~divisor[i] : 0xFFFFFFFF;
4977 p[n] = 1;
4978 VARIANT_int_add(negdivisor, n, p + n, 1);
4979 memset(p + n, 0, n * sizeof(DWORD));
4981 /* skip all leading zero DWORDs in quotient */
4982 for (i = 0; i < n && !p[n - 1]; i++) VARIANT_int_shiftleft(p, n, 32);
4983 /* i is now number of DWORDs left to process */
4984 for (i <<= 5; i < (n << 5); i++) {
4985 VARIANT_int_shiftleft(p, n << 1, 1); /* shl quotient+remainder */
4987 /* trial subtraction */
4988 memcpy(tempsub, p + n, n * sizeof(DWORD));
4989 VARIANT_int_add(tempsub, n, negdivisor, n);
4991 /* check whether result of subtraction was negative */
4992 if ((tempsub[n - 1] & 0x80000000) == 0) {
4993 memcpy(p + n, tempsub, n * sizeof(DWORD));
4994 p[0] |= 1;
4999 /* perform integral multiplication by a byte operand. Used for scaling by 10 */
5000 static unsigned char VARIANT_int_mulbychar(DWORD * p, unsigned int n, unsigned char m)
5002 unsigned int i;
5003 ULONG iOverflowMul;
5005 for (iOverflowMul = 0, i = 0; i < n; i++)
5006 p[i] = VARIANT_Mul(p[i], m, &iOverflowMul);
5007 return (unsigned char)iOverflowMul;
5010 /* increment value in A by the value indicated in B, with scale adjusting.
5011 Modifies parameters by adjusting scales. Returns 0 if addition was
5012 successful, nonzero if a parameter underflowed before it could be
5013 successfully used in the addition.
5015 static int VARIANT_int_addlossy(
5016 DWORD * a, int * ascale, unsigned int an,
5017 DWORD * b, int * bscale, unsigned int bn)
5019 int underflow = 0;
5021 if (VARIANT_int_iszero(a, an)) {
5022 /* if A is zero, copy B into A, after removing digits */
5023 while (bn > an && !VARIANT_int_iszero(b + an, bn - an)) {
5024 VARIANT_int_divbychar(b, bn, 10);
5025 (*bscale)--;
5027 memcpy(a, b, an * sizeof(DWORD));
5028 *ascale = *bscale;
5029 } else if (!VARIANT_int_iszero(b, bn)) {
5030 unsigned int tn = an + 1;
5031 DWORD t[5];
5033 if (bn + 1 > tn) tn = bn + 1;
5034 if (*ascale != *bscale) {
5035 /* first (optimistic) try - try to scale down the one with the bigger
5036 scale, while this number is divisible by 10 */
5037 DWORD * digitchosen;
5038 unsigned int nchosen;
5039 int * scalechosen;
5040 int targetscale;
5042 if (*ascale < *bscale) {
5043 targetscale = *ascale;
5044 scalechosen = bscale;
5045 digitchosen = b;
5046 nchosen = bn;
5047 } else {
5048 targetscale = *bscale;
5049 scalechosen = ascale;
5050 digitchosen = a;
5051 nchosen = an;
5053 memset(t, 0, tn * sizeof(DWORD));
5054 memcpy(t, digitchosen, nchosen * sizeof(DWORD));
5056 /* divide by 10 until target scale is reached */
5057 while (*scalechosen > targetscale) {
5058 unsigned char remainder = VARIANT_int_divbychar(t, tn, 10);
5059 if (!remainder) {
5060 (*scalechosen)--;
5061 memcpy(digitchosen, t, nchosen * sizeof(DWORD));
5062 } else break;
5066 if (*ascale != *bscale) {
5067 DWORD * digitchosen;
5068 unsigned int nchosen;
5069 int * scalechosen;
5070 int targetscale;
5072 /* try to scale up the one with the smaller scale */
5073 if (*ascale > *bscale) {
5074 targetscale = *ascale;
5075 scalechosen = bscale;
5076 digitchosen = b;
5077 nchosen = bn;
5078 } else {
5079 targetscale = *bscale;
5080 scalechosen = ascale;
5081 digitchosen = a;
5082 nchosen = an;
5084 memset(t, 0, tn * sizeof(DWORD));
5085 memcpy(t, digitchosen, nchosen * sizeof(DWORD));
5087 /* multiply by 10 until target scale is reached, or
5088 significant bytes overflow the number
5090 while (*scalechosen < targetscale && t[nchosen] == 0) {
5091 VARIANT_int_mulbychar(t, tn, 10);
5092 if (t[nchosen] == 0) {
5093 /* still does not overflow */
5094 (*scalechosen)++;
5095 memcpy(digitchosen, t, nchosen * sizeof(DWORD));
5100 if (*ascale != *bscale) {
5101 /* still different? try to scale down the one with the bigger scale
5102 (this *will* lose significant digits) */
5103 DWORD * digitchosen;
5104 unsigned int nchosen;
5105 int * scalechosen;
5106 int targetscale;
5108 if (*ascale < *bscale) {
5109 targetscale = *ascale;
5110 scalechosen = bscale;
5111 digitchosen = b;
5112 nchosen = bn;
5113 } else {
5114 targetscale = *bscale;
5115 scalechosen = ascale;
5116 digitchosen = a;
5117 nchosen = an;
5119 memset(t, 0, tn * sizeof(DWORD));
5120 memcpy(t, digitchosen, nchosen * sizeof(DWORD));
5122 /* divide by 10 until target scale is reached */
5123 while (*scalechosen > targetscale) {
5124 VARIANT_int_divbychar(t, tn, 10);
5125 (*scalechosen)--;
5126 memcpy(digitchosen, t, nchosen * sizeof(DWORD));
5130 /* check whether any of the operands still has significant digits
5131 (underflow case 1)
5133 if (VARIANT_int_iszero(a, an) || VARIANT_int_iszero(b, bn)) {
5134 underflow = 1;
5135 } else {
5136 /* at this step, both numbers have the same scale and can be added
5137 as integers. However, the result might not fit in A, so further
5138 scaling down might be necessary.
5140 while (!underflow) {
5141 memset(t, 0, tn * sizeof(DWORD));
5142 memcpy(t, a, an * sizeof(DWORD));
5144 VARIANT_int_add(t, tn, b, bn);
5145 if (VARIANT_int_iszero(t + an, tn - an)) {
5146 /* addition was successful */
5147 memcpy(a, t, an * sizeof(DWORD));
5148 break;
5149 } else {
5150 /* addition overflowed - remove significant digits
5151 from both operands and try again */
5152 VARIANT_int_divbychar(a, an, 10); (*ascale)--;
5153 VARIANT_int_divbychar(b, bn, 10); (*bscale)--;
5154 /* check whether any operand keeps significant digits after
5155 scaledown (underflow case 2)
5157 underflow = (VARIANT_int_iszero(a, an) || VARIANT_int_iszero(b, bn));
5162 return underflow;
5165 /* perform complete DECIMAL division in the internal representation. Returns
5166 0 if the division was completed (even if quotient is set to 0), or nonzero
5167 in case of quotient overflow.
5169 static HRESULT VARIANT_DI_div(const VARIANT_DI * dividend, const VARIANT_DI * divisor,
5170 VARIANT_DI * quotient, BOOL round_remainder)
5172 HRESULT r_overflow = S_OK;
5174 if (VARIANT_int_iszero(divisor->bitsnum, ARRAY_SIZE(divisor->bitsnum))) {
5175 /* division by 0 */
5176 r_overflow = DISP_E_DIVBYZERO;
5177 } else if (VARIANT_int_iszero(dividend->bitsnum, ARRAY_SIZE(dividend->bitsnum))) {
5178 VARIANT_DI_clear(quotient);
5179 } else {
5180 int quotientscale, remainderscale, tempquotientscale;
5181 DWORD remainderplusquotient[8];
5182 int underflow;
5184 quotientscale = remainderscale = (int)dividend->scale - (int)divisor->scale;
5185 tempquotientscale = quotientscale;
5186 VARIANT_DI_clear(quotient);
5187 quotient->sign = (dividend->sign ^ divisor->sign) ? 1 : 0;
5189 /* The following strategy is used for division
5190 1) if there was a nonzero remainder from previous iteration, use it as
5191 dividend for this iteration, else (for first iteration) use intended
5192 dividend
5193 2) perform integer division in temporary buffer, develop quotient in
5194 low-order part, remainder in high-order part
5195 3) add quotient from step 2 to final result, with possible loss of
5196 significant digits
5197 4) multiply integer part of remainder by 10, while incrementing the
5198 scale of the remainder. This operation preserves the intended value
5199 of the remainder.
5200 5) loop to step 1 until one of the following is true:
5201 a) remainder is zero (exact division achieved)
5202 b) addition in step 3 fails to modify bits in quotient (remainder underflow)
5204 memset(remainderplusquotient, 0, sizeof(remainderplusquotient));
5205 memcpy(remainderplusquotient, dividend->bitsnum, sizeof(dividend->bitsnum));
5206 do {
5207 VARIANT_int_div(remainderplusquotient, 4, divisor->bitsnum, ARRAY_SIZE(divisor->bitsnum));
5208 underflow = VARIANT_int_addlossy( quotient->bitsnum, &quotientscale,
5209 ARRAY_SIZE(quotient->bitsnum), remainderplusquotient, &tempquotientscale, 4);
5210 if (round_remainder) {
5211 if(remainderplusquotient[4] >= 5){
5212 unsigned int i;
5213 unsigned char remainder = 1;
5214 for (i = 0; i < ARRAY_SIZE(quotient->bitsnum) && remainder; i++) {
5215 ULONGLONG digit = quotient->bitsnum[i] + 1;
5216 remainder = (digit > 0xFFFFFFFF) ? 1 : 0;
5217 quotient->bitsnum[i] = digit & 0xFFFFFFFF;
5220 memset(remainderplusquotient, 0, sizeof(remainderplusquotient));
5221 } else {
5222 VARIANT_int_mulbychar(remainderplusquotient + 4, 4, 10);
5223 memcpy(remainderplusquotient, remainderplusquotient + 4, 4 * sizeof(DWORD));
5225 tempquotientscale = ++remainderscale;
5226 } while (!underflow && !VARIANT_int_iszero(remainderplusquotient + 4, 4));
5228 /* quotient scale might now be negative (extremely big number). If, so, try
5229 to multiply quotient by 10 (without overflowing), while adjusting the scale,
5230 until scale is 0. If this cannot be done, it is a real overflow.
5232 while (r_overflow == S_OK && quotientscale < 0) {
5233 memset(remainderplusquotient, 0, sizeof(remainderplusquotient));
5234 memcpy(remainderplusquotient, quotient->bitsnum, sizeof(quotient->bitsnum));
5235 VARIANT_int_mulbychar(remainderplusquotient, ARRAY_SIZE(remainderplusquotient), 10);
5236 if (VARIANT_int_iszero(remainderplusquotient + ARRAY_SIZE(quotient->bitsnum),
5237 ARRAY_SIZE(remainderplusquotient) - ARRAY_SIZE(quotient->bitsnum))) {
5238 quotientscale++;
5239 memcpy(quotient->bitsnum, remainderplusquotient, sizeof(quotient->bitsnum));
5240 } else r_overflow = DISP_E_OVERFLOW;
5242 if (r_overflow == S_OK) {
5243 if (quotientscale <= 255) quotient->scale = quotientscale;
5244 else VARIANT_DI_clear(quotient);
5247 return r_overflow;
5250 /* This procedure receives a VARIANT_DI with a defined mantissa and sign, but
5251 with an undefined scale, which will be assigned to (if possible). It also
5252 receives an exponent of 2. This procedure will then manipulate the mantissa
5253 and calculate a corresponding scale, so that the exponent2 value is assimilated
5254 into the VARIANT_DI and is therefore no longer necessary. Returns S_OK if
5255 successful, or DISP_E_OVERFLOW if the represented value is too big to fit into
5256 a DECIMAL. */
5257 static HRESULT VARIANT_DI_normalize(VARIANT_DI * val, int exponent2, BOOL isDouble)
5259 HRESULT hres = S_OK;
5260 int exponent5, exponent10;
5262 /* A factor of 2^exponent2 is equivalent to (10^exponent2)/(5^exponent2), and
5263 thus equal to (5^-exponent2)*(10^exponent2). After all manipulations,
5264 exponent10 might be used to set the VARIANT_DI scale directly. However,
5265 the value of 5^-exponent5 must be assimilated into the VARIANT_DI. */
5266 exponent5 = -exponent2;
5267 exponent10 = exponent2;
5269 /* Handle exponent5 > 0 */
5270 while (exponent5 > 0) {
5271 char bPrevCarryBit;
5272 char bCurrCarryBit;
5274 /* In order to multiply the value represented by the VARIANT_DI by 5, it
5275 is best to multiply by 10/2. Therefore, exponent10 is incremented, and
5276 somehow the mantissa should be divided by 2. */
5277 if ((val->bitsnum[0] & 1) == 0) {
5278 /* The mantissa is divisible by 2. Therefore the division can be done
5279 without losing significant digits. */
5280 exponent10++; exponent5--;
5282 /* Shift right */
5283 bPrevCarryBit = val->bitsnum[2] & 1;
5284 val->bitsnum[2] >>= 1;
5285 bCurrCarryBit = val->bitsnum[1] & 1;
5286 val->bitsnum[1] = (val->bitsnum[1] >> 1) | (bPrevCarryBit ? 0x80000000 : 0);
5287 val->bitsnum[0] = (val->bitsnum[0] >> 1) | (bCurrCarryBit ? 0x80000000 : 0);
5288 } else {
5289 /* The mantissa is NOT divisible by 2. Therefore the mantissa should
5290 be multiplied by 5, unless the multiplication overflows. */
5291 DWORD temp_bitsnum[3];
5293 exponent5--;
5295 memcpy(temp_bitsnum, val->bitsnum, 3 * sizeof(DWORD));
5296 if (0 == VARIANT_int_mulbychar(temp_bitsnum, 3, 5)) {
5297 /* Multiplication succeeded without overflow, so copy result back
5298 into VARIANT_DI */
5299 memcpy(val->bitsnum, temp_bitsnum, 3 * sizeof(DWORD));
5301 /* Mask out 3 extraneous bits introduced by the multiply */
5302 } else {
5303 /* Multiplication by 5 overflows. The mantissa should be divided
5304 by 2, and therefore will lose significant digits. */
5305 exponent10++;
5307 /* Shift right */
5308 bPrevCarryBit = val->bitsnum[2] & 1;
5309 val->bitsnum[2] >>= 1;
5310 bCurrCarryBit = val->bitsnum[1] & 1;
5311 val->bitsnum[1] = (val->bitsnum[1] >> 1) | (bPrevCarryBit ? 0x80000000 : 0);
5312 val->bitsnum[0] = (val->bitsnum[0] >> 1) | (bCurrCarryBit ? 0x80000000 : 0);
5317 /* Handle exponent5 < 0 */
5318 while (exponent5 < 0) {
5319 /* In order to divide the value represented by the VARIANT_DI by 5, it
5320 is best to multiply by 2/10. Therefore, exponent10 is decremented,
5321 and the mantissa should be multiplied by 2 */
5322 if ((val->bitsnum[2] & 0x80000000) == 0) {
5323 /* The mantissa can withstand a shift-left without overflowing */
5324 exponent10--; exponent5++;
5325 VARIANT_int_shiftleft(val->bitsnum, 3, 1);
5326 } else {
5327 /* The mantissa would overflow if shifted. Therefore it should be
5328 directly divided by 5. This will lose significant digits, unless
5329 by chance the mantissa happens to be divisible by 5 */
5330 exponent5++;
5331 VARIANT_int_divbychar(val->bitsnum, 3, 5);
5335 /* At this point, the mantissa has assimilated the exponent5, but the
5336 exponent10 might not be suitable for assignment. The exponent10 must be
5337 in the range [-DEC_MAX_SCALE..0], so the mantissa must be scaled up or
5338 down appropriately. */
5339 while (hres == S_OK && exponent10 > 0) {
5340 /* In order to bring exponent10 down to 0, the mantissa should be
5341 multiplied by 10 to compensate. If the exponent10 is too big, this
5342 will cause the mantissa to overflow. */
5343 if (0 == VARIANT_int_mulbychar(val->bitsnum, 3, 10)) {
5344 exponent10--;
5345 } else {
5346 hres = DISP_E_OVERFLOW;
5349 while (exponent10 < -DEC_MAX_SCALE) {
5350 int rem10;
5351 /* In order to bring exponent up to -DEC_MAX_SCALE, the mantissa should
5352 be divided by 10 to compensate. If the exponent10 is too small, this
5353 will cause the mantissa to underflow and become 0 */
5354 rem10 = VARIANT_int_divbychar(val->bitsnum, 3, 10);
5355 exponent10++;
5356 if (VARIANT_int_iszero(val->bitsnum, 3)) {
5357 /* Underflow, unable to keep dividing */
5358 exponent10 = 0;
5359 } else if (rem10 >= 5) {
5360 DWORD x = 1;
5361 VARIANT_int_add(val->bitsnum, 3, &x, 1);
5364 /* This step is required in order to remove excess bits of precision from the
5365 end of the bit representation, down to the precision guaranteed by the
5366 floating point number. */
5367 if (isDouble) {
5368 while (exponent10 < 0 && (val->bitsnum[2] != 0 || (val->bitsnum[1] & 0xFFE00000) != 0)) {
5369 int rem10;
5371 rem10 = VARIANT_int_divbychar(val->bitsnum, 3, 10);
5372 exponent10++;
5373 if (rem10 >= 5) {
5374 DWORD x = 1;
5375 VARIANT_int_add(val->bitsnum, 3, &x, 1);
5378 } else {
5379 while (exponent10 < 0 && (val->bitsnum[2] != 0 || val->bitsnum[1] != 0 ||
5380 (val->bitsnum[2] == 0 && val->bitsnum[1] == 0 && (val->bitsnum[0] & 0xFF000000) != 0))) {
5381 int rem10;
5383 rem10 = VARIANT_int_divbychar(val->bitsnum, 3, 10);
5384 exponent10++;
5385 if (rem10 >= 5) {
5386 DWORD x = 1;
5387 VARIANT_int_add(val->bitsnum, 3, &x, 1);
5391 /* Remove multiples of 10 from the representation */
5392 while (exponent10 < 0) {
5393 DWORD temp_bitsnum[3];
5395 memcpy(temp_bitsnum, val->bitsnum, 3 * sizeof(DWORD));
5396 if (0 == VARIANT_int_divbychar(temp_bitsnum, 3, 10)) {
5397 exponent10++;
5398 memcpy(val->bitsnum, temp_bitsnum, 3 * sizeof(DWORD));
5399 } else break;
5402 /* Scale assignment */
5403 if (hres == S_OK) val->scale = -exponent10;
5405 return hres;
5408 typedef union
5410 struct
5412 unsigned int m : 23;
5413 unsigned int exp_bias : 8;
5414 unsigned int sign : 1;
5415 } i;
5416 float f;
5417 } R4_FIELDS;
5419 /* Convert a 32-bit floating point number into a DECIMAL, without using an
5420 intermediate string step. */
5421 static HRESULT VARIANT_DI_FromR4(float source, VARIANT_DI * dest)
5423 HRESULT hres = S_OK;
5424 R4_FIELDS fx;
5426 fx.f = source;
5428 /* Detect special cases */
5429 if (fx.i.m == 0 && fx.i.exp_bias == 0) {
5430 /* Floating-point zero */
5431 VARIANT_DI_clear(dest);
5432 } else if (fx.i.m == 0 && fx.i.exp_bias == 0xFF) {
5433 /* Floating-point infinity */
5434 hres = DISP_E_OVERFLOW;
5435 } else if (fx.i.exp_bias == 0xFF) {
5436 /* Floating-point NaN */
5437 hres = DISP_E_BADVARTYPE;
5438 } else {
5439 int exponent2;
5440 VARIANT_DI_clear(dest);
5442 exponent2 = fx.i.exp_bias - 127; /* Get unbiased exponent */
5443 dest->sign = fx.i.sign; /* Sign is simply copied */
5445 /* Copy significant bits to VARIANT_DI mantissa */
5446 dest->bitsnum[0] = fx.i.m;
5447 dest->bitsnum[0] &= 0x007FFFFF;
5448 if (fx.i.exp_bias == 0) {
5449 /* Denormalized number - correct exponent */
5450 exponent2++;
5451 } else {
5452 /* Add hidden bit to mantissa */
5453 dest->bitsnum[0] |= 0x00800000;
5456 /* The act of copying a FP mantissa as integer bits is equivalent to
5457 shifting left the mantissa 23 bits. The exponent2 is reduced to
5458 compensate. */
5459 exponent2 -= 23;
5461 hres = VARIANT_DI_normalize(dest, exponent2, FALSE);
5464 return hres;
5467 typedef union
5469 struct
5471 unsigned int m_lo : 32; /* 52 bits of precision */
5472 unsigned int m_hi : 20;
5473 unsigned int exp_bias : 11; /* bias == 1023 */
5474 unsigned int sign : 1;
5475 } i;
5476 double d;
5477 } R8_FIELDS;
5479 /* Convert a 64-bit floating point number into a DECIMAL, without using an
5480 intermediate string step. */
5481 static HRESULT VARIANT_DI_FromR8(double source, VARIANT_DI * dest)
5483 HRESULT hres = S_OK;
5484 R8_FIELDS fx;
5486 fx.d = source;
5488 /* Detect special cases */
5489 if (fx.i.m_lo == 0 && fx.i.m_hi == 0 && fx.i.exp_bias == 0) {
5490 /* Floating-point zero */
5491 VARIANT_DI_clear(dest);
5492 } else if (fx.i.m_lo == 0 && fx.i.m_hi == 0 && fx.i.exp_bias == 0x7FF) {
5493 /* Floating-point infinity */
5494 hres = DISP_E_OVERFLOW;
5495 } else if (fx.i.exp_bias == 0x7FF) {
5496 /* Floating-point NaN */
5497 hres = DISP_E_BADVARTYPE;
5498 } else {
5499 int exponent2;
5500 VARIANT_DI_clear(dest);
5502 exponent2 = fx.i.exp_bias - 1023; /* Get unbiased exponent */
5503 dest->sign = fx.i.sign; /* Sign is simply copied */
5505 /* Copy significant bits to VARIANT_DI mantissa */
5506 dest->bitsnum[0] = fx.i.m_lo;
5507 dest->bitsnum[1] = fx.i.m_hi;
5508 dest->bitsnum[1] &= 0x000FFFFF;
5509 if (fx.i.exp_bias == 0) {
5510 /* Denormalized number - correct exponent */
5511 exponent2++;
5512 } else {
5513 /* Add hidden bit to mantissa */
5514 dest->bitsnum[1] |= 0x00100000;
5517 /* The act of copying a FP mantissa as integer bits is equivalent to
5518 shifting left the mantissa 52 bits. The exponent2 is reduced to
5519 compensate. */
5520 exponent2 -= 52;
5522 hres = VARIANT_DI_normalize(dest, exponent2, TRUE);
5525 return hres;
5528 static HRESULT VARIANT_do_division(const DECIMAL *pDecLeft, const DECIMAL *pDecRight, DECIMAL *pDecOut,
5529 BOOL round)
5531 HRESULT hRet = S_OK;
5532 VARIANT_DI di_left, di_right, di_result;
5533 HRESULT divresult;
5535 VARIANT_DIFromDec(pDecLeft, &di_left);
5536 VARIANT_DIFromDec(pDecRight, &di_right);
5537 divresult = VARIANT_DI_div(&di_left, &di_right, &di_result, round);
5538 if (divresult != S_OK)
5540 /* division actually overflowed */
5541 hRet = divresult;
5543 else
5545 hRet = S_OK;
5547 if (di_result.scale > DEC_MAX_SCALE)
5549 unsigned char remainder = 0;
5551 /* division underflowed. In order to comply with the MSDN
5552 specifications for DECIMAL ranges, some significant digits
5553 must be removed
5555 WARN("result scale is %u, scaling (with loss of significant digits)...\n",
5556 di_result.scale);
5557 while (di_result.scale > DEC_MAX_SCALE &&
5558 !VARIANT_int_iszero(di_result.bitsnum, ARRAY_SIZE(di_result.bitsnum)))
5560 remainder = VARIANT_int_divbychar(di_result.bitsnum, ARRAY_SIZE(di_result.bitsnum), 10);
5561 di_result.scale--;
5563 if (di_result.scale > DEC_MAX_SCALE)
5565 WARN("result underflowed, setting to 0\n");
5566 di_result.scale = 0;
5567 di_result.sign = 0;
5569 else if (remainder >= 5) /* round up result - native oleaut32 does this */
5571 unsigned int i;
5572 for (remainder = 1, i = 0; i < ARRAY_SIZE(di_result.bitsnum) && remainder; i++) {
5573 ULONGLONG digit = di_result.bitsnum[i] + 1;
5574 remainder = (digit > 0xFFFFFFFF) ? 1 : 0;
5575 di_result.bitsnum[i] = digit & 0xFFFFFFFF;
5579 VARIANT_DecFromDI(&di_result, pDecOut);
5581 return hRet;
5584 /************************************************************************
5585 * VarDecDiv (OLEAUT32.178)
5587 * Divide one DECIMAL by another.
5589 * PARAMS
5590 * pDecLeft [I] Source
5591 * pDecRight [I] Value to divide by
5592 * pDecOut [O] Destination
5594 * RETURNS
5595 * Success: S_OK.
5596 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5598 HRESULT WINAPI VarDecDiv(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
5600 if (!pDecLeft || !pDecRight || !pDecOut) return E_INVALIDARG;
5602 return VARIANT_do_division(pDecLeft, pDecRight, pDecOut, FALSE);
5605 /************************************************************************
5606 * VarDecMul (OLEAUT32.179)
5608 * Multiply one DECIMAL by another.
5610 * PARAMS
5611 * pDecLeft [I] Source
5612 * pDecRight [I] Value to multiply by
5613 * pDecOut [O] Destination
5615 * RETURNS
5616 * Success: S_OK.
5617 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5619 HRESULT WINAPI VarDecMul(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
5621 HRESULT hRet = S_OK;
5622 VARIANT_DI di_left, di_right, di_result;
5623 int mulresult;
5625 VARIANT_DIFromDec(pDecLeft, &di_left);
5626 VARIANT_DIFromDec(pDecRight, &di_right);
5627 mulresult = VARIANT_DI_mul(&di_left, &di_right, &di_result);
5628 if (mulresult)
5630 /* multiplication actually overflowed */
5631 hRet = DISP_E_OVERFLOW;
5633 else
5635 if (di_result.scale > DEC_MAX_SCALE)
5637 /* multiplication underflowed. In order to comply with the MSDN
5638 specifications for DECIMAL ranges, some significant digits
5639 must be removed
5641 WARN("result scale is %u, scaling (with loss of significant digits)...\n",
5642 di_result.scale);
5643 while (di_result.scale > DEC_MAX_SCALE &&
5644 !VARIANT_int_iszero(di_result.bitsnum, ARRAY_SIZE(di_result.bitsnum)))
5646 VARIANT_int_divbychar(di_result.bitsnum, ARRAY_SIZE(di_result.bitsnum), 10);
5647 di_result.scale--;
5649 if (di_result.scale > DEC_MAX_SCALE)
5651 WARN("result underflowed, setting to 0\n");
5652 di_result.scale = 0;
5653 di_result.sign = 0;
5656 VARIANT_DecFromDI(&di_result, pDecOut);
5658 return hRet;
5661 /************************************************************************
5662 * VarDecSub (OLEAUT32.181)
5664 * Subtract one DECIMAL from another.
5666 * PARAMS
5667 * pDecLeft [I] Source
5668 * pDecRight [I] DECIMAL to subtract from pDecLeft
5669 * pDecOut [O] Destination
5671 * RETURNS
5672 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5674 HRESULT WINAPI VarDecSub(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
5676 DECIMAL decRight;
5678 /* Implement as addition of the negative */
5679 VarDecNeg(pDecRight, &decRight);
5680 return VarDecAdd(pDecLeft, &decRight, pDecOut);
5683 /************************************************************************
5684 * VarDecAbs (OLEAUT32.182)
5686 * Convert a DECIMAL into its absolute value.
5688 * PARAMS
5689 * pDecIn [I] Source
5690 * pDecOut [O] Destination
5692 * RETURNS
5693 * S_OK. This function does not fail.
5695 HRESULT WINAPI VarDecAbs(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5697 *pDecOut = *pDecIn;
5698 DEC_SIGN(pDecOut) &= ~DECIMAL_NEG;
5699 return S_OK;
5702 /************************************************************************
5703 * VarDecFix (OLEAUT32.187)
5705 * Return the integer portion of a DECIMAL.
5707 * PARAMS
5708 * pDecIn [I] Source
5709 * pDecOut [O] Destination
5711 * RETURNS
5712 * Success: S_OK.
5713 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5715 * NOTES
5716 * - The difference between this function and VarDecInt() is that VarDecInt() rounds
5717 * negative numbers away from 0, while this function rounds them towards zero.
5719 HRESULT WINAPI VarDecFix(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5721 double dbl;
5722 HRESULT hr;
5724 if (DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
5725 return E_INVALIDARG;
5727 if (!DEC_SCALE(pDecIn))
5729 *pDecOut = *pDecIn; /* Already an integer */
5730 return S_OK;
5733 hr = VarR8FromDec(pDecIn, &dbl);
5734 if (SUCCEEDED(hr)) {
5735 LONGLONG rounded = dbl;
5737 hr = VarDecFromI8(rounded, pDecOut);
5739 return hr;
5742 /************************************************************************
5743 * VarDecInt (OLEAUT32.188)
5745 * Return the integer portion of a DECIMAL.
5747 * PARAMS
5748 * pDecIn [I] Source
5749 * pDecOut [O] Destination
5751 * RETURNS
5752 * Success: S_OK.
5753 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5755 * NOTES
5756 * - The difference between this function and VarDecFix() is that VarDecFix() rounds
5757 * negative numbers towards 0, while this function rounds them away from zero.
5759 HRESULT WINAPI VarDecInt(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5761 double dbl;
5762 HRESULT hr;
5764 if (DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
5765 return E_INVALIDARG;
5767 if (!(DEC_SIGN(pDecIn) & DECIMAL_NEG) || !DEC_SCALE(pDecIn))
5768 return VarDecFix(pDecIn, pDecOut); /* The same, if +ve or no fractionals */
5770 hr = VarR8FromDec(pDecIn, &dbl);
5771 if (SUCCEEDED(hr)) {
5772 LONGLONG rounded = dbl >= 0.0 ? dbl + 0.5 : dbl - 0.5;
5774 hr = VarDecFromI8(rounded, pDecOut);
5776 return hr;
5779 /************************************************************************
5780 * VarDecNeg (OLEAUT32.189)
5782 * Change the sign of a DECIMAL.
5784 * PARAMS
5785 * pDecIn [I] Source
5786 * pDecOut [O] Destination
5788 * RETURNS
5789 * S_OK. This function does not fail.
5791 HRESULT WINAPI VarDecNeg(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5793 *pDecOut = *pDecIn;
5794 DEC_SIGN(pDecOut) ^= DECIMAL_NEG;
5795 return S_OK;
5798 /************************************************************************
5799 * VarDecRound (OLEAUT32.203)
5801 * Change the precision of a DECIMAL.
5803 * PARAMS
5804 * pDecIn [I] Source
5805 * cDecimals [I] New number of decimals to keep
5806 * pDecOut [O] Destination
5808 * RETURNS
5809 * Success: S_OK. pDecOut contains the rounded value.
5810 * Failure: E_INVALIDARG if any argument is invalid.
5812 HRESULT WINAPI VarDecRound(const DECIMAL* pDecIn, int cDecimals, DECIMAL* pDecOut)
5814 DECIMAL divisor, tmp;
5815 HRESULT hr;
5816 unsigned int i;
5818 if (cDecimals < 0 || (DEC_SIGN(pDecIn) & ~DECIMAL_NEG) || DEC_SCALE(pDecIn) > DEC_MAX_SCALE)
5819 return E_INVALIDARG;
5821 if (cDecimals >= DEC_SCALE(pDecIn))
5823 *pDecOut = *pDecIn; /* More precision than we have */
5824 return S_OK;
5827 /* truncate significant digits and rescale */
5828 memset(&divisor, 0, sizeof(divisor));
5829 DEC_LO64(&divisor) = 1;
5831 memset(&tmp, 0, sizeof(tmp));
5832 DEC_LO64(&tmp) = 10;
5833 for (i = 0; i < DEC_SCALE(pDecIn) - cDecimals; ++i)
5835 hr = VarDecMul(&divisor, &tmp, &divisor);
5836 if (FAILED(hr))
5837 return hr;
5840 hr = VARIANT_do_division(pDecIn, &divisor, pDecOut, TRUE);
5841 if (FAILED(hr))
5842 return hr;
5844 DEC_SCALE(pDecOut) = cDecimals;
5846 return S_OK;
5849 /************************************************************************
5850 * VarDecCmp (OLEAUT32.204)
5852 * Compare two DECIMAL values.
5854 * PARAMS
5855 * pDecLeft [I] Source
5856 * pDecRight [I] Value to compare
5858 * RETURNS
5859 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that pDecLeft
5860 * is less than, equal to or greater than pDecRight respectively.
5861 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
5863 HRESULT WINAPI VarDecCmp(const DECIMAL* pDecLeft, const DECIMAL* pDecRight)
5865 HRESULT hRet;
5866 DECIMAL result;
5868 if (!pDecLeft || !pDecRight)
5869 return VARCMP_NULL;
5871 if ((!(DEC_SIGN(pDecLeft) & DECIMAL_NEG)) && (DEC_SIGN(pDecRight) & DECIMAL_NEG) &&
5872 (DEC_HI32(pDecLeft) | DEC_MID32(pDecLeft) | DEC_LO32(pDecLeft)))
5873 return VARCMP_GT;
5874 else if ((DEC_SIGN(pDecLeft) & DECIMAL_NEG) && (!(DEC_SIGN(pDecRight) & DECIMAL_NEG)) &&
5875 (DEC_HI32(pDecLeft) | DEC_MID32(pDecLeft) | DEC_LO32(pDecLeft)))
5876 return VARCMP_LT;
5878 /* Subtract right from left, and compare the result to 0 */
5879 hRet = VarDecSub(pDecLeft, pDecRight, &result);
5881 if (SUCCEEDED(hRet))
5883 int non_zero = DEC_HI32(&result) | DEC_MID32(&result) | DEC_LO32(&result);
5885 if ((DEC_SIGN(&result) & DECIMAL_NEG) && non_zero)
5886 hRet = (HRESULT)VARCMP_LT;
5887 else if (non_zero)
5888 hRet = (HRESULT)VARCMP_GT;
5889 else
5890 hRet = (HRESULT)VARCMP_EQ;
5892 return hRet;
5895 /************************************************************************
5896 * VarDecCmpR8 (OLEAUT32.298)
5898 * Compare a DECIMAL to a double
5900 * PARAMS
5901 * pDecLeft [I] DECIMAL Source
5902 * dblRight [I] double to compare to pDecLeft
5904 * RETURNS
5905 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that dblRight
5906 * is less than, equal to or greater than pDecLeft respectively.
5907 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
5909 HRESULT WINAPI VarDecCmpR8(const DECIMAL* pDecLeft, double dblRight)
5911 HRESULT hRet;
5912 DECIMAL decRight;
5914 hRet = VarDecFromR8(dblRight, &decRight);
5916 if (SUCCEEDED(hRet))
5917 hRet = VarDecCmp(pDecLeft, &decRight);
5919 return hRet;
5922 /* BOOL
5925 /************************************************************************
5926 * VarBoolFromUI1 (OLEAUT32.118)
5928 * Convert a VT_UI1 to a VT_BOOL.
5930 * PARAMS
5931 * bIn [I] Source
5932 * pBoolOut [O] Destination
5934 * RETURNS
5935 * S_OK.
5937 HRESULT WINAPI VarBoolFromUI1(BYTE bIn, VARIANT_BOOL *pBoolOut)
5939 *pBoolOut = bIn ? VARIANT_TRUE : VARIANT_FALSE;
5940 return S_OK;
5943 /************************************************************************
5944 * VarBoolFromI2 (OLEAUT32.119)
5946 * Convert a VT_I2 to a VT_BOOL.
5948 * PARAMS
5949 * sIn [I] Source
5950 * pBoolOut [O] Destination
5952 * RETURNS
5953 * S_OK.
5955 HRESULT WINAPI VarBoolFromI2(SHORT sIn, VARIANT_BOOL *pBoolOut)
5957 *pBoolOut = sIn ? VARIANT_TRUE : VARIANT_FALSE;
5958 return S_OK;
5961 /************************************************************************
5962 * VarBoolFromI4 (OLEAUT32.120)
5964 * Convert a VT_I4 to a VT_BOOL.
5966 * PARAMS
5967 * sIn [I] Source
5968 * pBoolOut [O] Destination
5970 * RETURNS
5971 * S_OK.
5973 HRESULT WINAPI VarBoolFromI4(LONG lIn, VARIANT_BOOL *pBoolOut)
5975 *pBoolOut = lIn ? VARIANT_TRUE : VARIANT_FALSE;
5976 return S_OK;
5979 /************************************************************************
5980 * VarBoolFromR4 (OLEAUT32.121)
5982 * Convert a VT_R4 to a VT_BOOL.
5984 * PARAMS
5985 * fltIn [I] Source
5986 * pBoolOut [O] Destination
5988 * RETURNS
5989 * S_OK.
5991 HRESULT WINAPI VarBoolFromR4(FLOAT fltIn, VARIANT_BOOL *pBoolOut)
5993 *pBoolOut = fltIn ? VARIANT_TRUE : VARIANT_FALSE;
5994 return S_OK;
5997 /************************************************************************
5998 * VarBoolFromR8 (OLEAUT32.122)
6000 * Convert a VT_R8 to a VT_BOOL.
6002 * PARAMS
6003 * dblIn [I] Source
6004 * pBoolOut [O] Destination
6006 * RETURNS
6007 * S_OK.
6009 HRESULT WINAPI VarBoolFromR8(double dblIn, VARIANT_BOOL *pBoolOut)
6011 *pBoolOut = dblIn ? VARIANT_TRUE : VARIANT_FALSE;
6012 return S_OK;
6015 /************************************************************************
6016 * VarBoolFromDate (OLEAUT32.123)
6018 * Convert a VT_DATE to a VT_BOOL.
6020 * PARAMS
6021 * dateIn [I] Source
6022 * pBoolOut [O] Destination
6024 * RETURNS
6025 * S_OK.
6027 HRESULT WINAPI VarBoolFromDate(DATE dateIn, VARIANT_BOOL *pBoolOut)
6029 *pBoolOut = dateIn ? VARIANT_TRUE : VARIANT_FALSE;
6030 return S_OK;
6033 /************************************************************************
6034 * VarBoolFromCy (OLEAUT32.124)
6036 * Convert a VT_CY to a VT_BOOL.
6038 * PARAMS
6039 * cyIn [I] Source
6040 * pBoolOut [O] Destination
6042 * RETURNS
6043 * S_OK.
6045 HRESULT WINAPI VarBoolFromCy(CY cyIn, VARIANT_BOOL *pBoolOut)
6047 *pBoolOut = cyIn.int64 ? VARIANT_TRUE : VARIANT_FALSE;
6048 return S_OK;
6051 /************************************************************************
6052 * VARIANT_GetLocalisedText [internal]
6054 * Get a localized string from the resources
6057 static BOOL VARIANT_GetLocalisedText(LANGID langId, DWORD dwId, WCHAR *lpszDest)
6059 HRSRC hrsrc;
6061 hrsrc = FindResourceExW( hProxyDll, (LPWSTR)RT_STRING,
6062 MAKEINTRESOURCEW((dwId >> 4) + 1), langId );
6063 if (hrsrc)
6065 HGLOBAL hmem = LoadResource( hProxyDll, hrsrc );
6067 if (hmem)
6069 const WCHAR *p;
6070 unsigned int i;
6072 p = LockResource( hmem );
6073 for (i = 0; i < (dwId & 0x0f); i++) p += *p + 1;
6075 memcpy( lpszDest, p + 1, *p * sizeof(WCHAR) );
6076 lpszDest[*p] = '\0';
6077 TRACE("got %s for LANGID %08x\n", debugstr_w(lpszDest), langId);
6078 return TRUE;
6081 return FALSE;
6084 /************************************************************************
6085 * VarBoolFromStr (OLEAUT32.125)
6087 * Convert a VT_BSTR to a VT_BOOL.
6089 * PARAMS
6090 * strIn [I] Source
6091 * lcid [I] LCID for the conversion
6092 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6093 * pBoolOut [O] Destination
6095 * RETURNS
6096 * Success: S_OK.
6097 * Failure: E_INVALIDARG, if pBoolOut is invalid.
6098 * DISP_E_TYPEMISMATCH, if the type cannot be converted
6100 * NOTES
6101 * - strIn will be recognised if it contains "#TRUE#" or "#FALSE#". Additionally,
6102 * it may contain (in any case mapping) the text "true" or "false".
6103 * - If dwFlags includes VAR_LOCALBOOL, then the text may also match the
6104 * localised text of "True" or "False" in the language specified by lcid.
6105 * - If none of these matches occur, the string is treated as a numeric string
6106 * and the boolean pBoolOut will be set according to whether the number is zero
6107 * or not. The dwFlags parameter is passed to VarR8FromStr() for this conversion.
6108 * - If the text is not numeric and does not match any of the above, then
6109 * DISP_E_TYPEMISMATCH is returned.
6111 HRESULT WINAPI VarBoolFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, VARIANT_BOOL *pBoolOut)
6113 WCHAR szBuff[64];
6114 LANGID langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6115 HRESULT hRes = S_OK;
6117 if (!strIn || !pBoolOut)
6118 return DISP_E_TYPEMISMATCH;
6120 /* Check if we should be comparing against localised text */
6121 if (dwFlags & VAR_LOCALBOOL)
6123 /* Convert our LCID into a usable value */
6124 lcid = ConvertDefaultLocale(lcid);
6126 langId = LANGIDFROMLCID(lcid);
6128 if (PRIMARYLANGID(langId) == LANG_NEUTRAL)
6129 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6131 /* Note: Native oleaut32 always copies strIn and maps halfwidth characters.
6132 * I don't think this is needed unless any of the localised text strings
6133 * contain characters that can be so mapped. In the event that this is
6134 * true for a given language (possibly some Asian languages), then strIn
6135 * should be mapped here _only_ if langId is an Id for which this can occur.
6139 /* Note that if we are not comparing against localised strings, langId
6140 * will have its default value of LANG_ENGLISH. This allows us to mimic
6141 * the native behaviour of always checking against English strings even
6142 * after we've checked for localised ones.
6144 VarBoolFromStr_CheckLocalised:
6145 if (VARIANT_GetLocalisedText(langId, IDS_TRUE, szBuff))
6147 /* Compare against localised strings, ignoring case */
6148 if (!wcsicmp(strIn, szBuff))
6150 *pBoolOut = VARIANT_TRUE; /* Matched localised 'true' text */
6151 return hRes;
6153 VARIANT_GetLocalisedText(langId, IDS_FALSE, szBuff);
6154 if (!wcsicmp(strIn, szBuff))
6156 *pBoolOut = VARIANT_FALSE; /* Matched localised 'false' text */
6157 return hRes;
6161 if (langId != MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT))
6163 /* We have checked the localised text, now check English */
6164 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6165 goto VarBoolFromStr_CheckLocalised;
6168 /* All checks against localised text have failed, try #TRUE#/#FALSE# */
6169 if (!wcscmp(strIn, L"#FALSE#"))
6170 *pBoolOut = VARIANT_FALSE;
6171 else if (!wcscmp(strIn, L"#TRUE#"))
6172 *pBoolOut = VARIANT_TRUE;
6173 else
6175 double d;
6177 /* If this string is a number, convert it as one */
6178 hRes = VarR8FromStr(strIn, lcid, dwFlags, &d);
6179 if (SUCCEEDED(hRes)) *pBoolOut = d ? VARIANT_TRUE : VARIANT_FALSE;
6181 return hRes;
6184 /************************************************************************
6185 * VarBoolFromDisp (OLEAUT32.126)
6187 * Convert a VT_DISPATCH to a VT_BOOL.
6189 * PARAMS
6190 * pdispIn [I] Source
6191 * lcid [I] LCID for conversion
6192 * pBoolOut [O] Destination
6194 * RETURNS
6195 * Success: S_OK.
6196 * Failure: E_INVALIDARG, if the source value is invalid
6197 * DISP_E_OVERFLOW, if the value will not fit in the destination
6198 * DISP_E_TYPEMISMATCH, if the type cannot be converted
6200 HRESULT WINAPI VarBoolFromDisp(IDispatch* pdispIn, LCID lcid, VARIANT_BOOL *pBoolOut)
6202 return VARIANT_FromDisp(pdispIn, lcid, pBoolOut, VT_BOOL, 0);
6205 /************************************************************************
6206 * VarBoolFromI1 (OLEAUT32.233)
6208 * Convert a VT_I1 to a VT_BOOL.
6210 * PARAMS
6211 * cIn [I] Source
6212 * pBoolOut [O] Destination
6214 * RETURNS
6215 * S_OK.
6217 HRESULT WINAPI VarBoolFromI1(signed char cIn, VARIANT_BOOL *pBoolOut)
6219 *pBoolOut = cIn ? VARIANT_TRUE : VARIANT_FALSE;
6220 return S_OK;
6223 /************************************************************************
6224 * VarBoolFromUI2 (OLEAUT32.234)
6226 * Convert a VT_UI2 to a VT_BOOL.
6228 * PARAMS
6229 * usIn [I] Source
6230 * pBoolOut [O] Destination
6232 * RETURNS
6233 * S_OK.
6235 HRESULT WINAPI VarBoolFromUI2(USHORT usIn, VARIANT_BOOL *pBoolOut)
6237 *pBoolOut = usIn ? VARIANT_TRUE : VARIANT_FALSE;
6238 return S_OK;
6241 /************************************************************************
6242 * VarBoolFromUI4 (OLEAUT32.235)
6244 * Convert a VT_UI4 to a VT_BOOL.
6246 * PARAMS
6247 * ulIn [I] Source
6248 * pBoolOut [O] Destination
6250 * RETURNS
6251 * S_OK.
6253 HRESULT WINAPI VarBoolFromUI4(ULONG ulIn, VARIANT_BOOL *pBoolOut)
6255 *pBoolOut = ulIn ? VARIANT_TRUE : VARIANT_FALSE;
6256 return S_OK;
6259 /************************************************************************
6260 * VarBoolFromDec (OLEAUT32.236)
6262 * Convert a VT_DECIMAL to a VT_BOOL.
6264 * PARAMS
6265 * pDecIn [I] Source
6266 * pBoolOut [O] Destination
6268 * RETURNS
6269 * Success: S_OK.
6270 * Failure: E_INVALIDARG, if pDecIn is invalid.
6272 HRESULT WINAPI VarBoolFromDec(const DECIMAL* pDecIn, VARIANT_BOOL *pBoolOut)
6274 if (DEC_SCALE(pDecIn) > DEC_MAX_SCALE || (DEC_SIGN(pDecIn) & ~DECIMAL_NEG))
6275 return E_INVALIDARG;
6277 if (DEC_HI32(pDecIn) || DEC_MID32(pDecIn) || DEC_LO32(pDecIn))
6278 *pBoolOut = VARIANT_TRUE;
6279 else
6280 *pBoolOut = VARIANT_FALSE;
6281 return S_OK;
6284 /************************************************************************
6285 * VarBoolFromI8 (OLEAUT32.370)
6287 * Convert a VT_I8 to a VT_BOOL.
6289 * PARAMS
6290 * ullIn [I] Source
6291 * pBoolOut [O] Destination
6293 * RETURNS
6294 * S_OK.
6296 HRESULT WINAPI VarBoolFromI8(LONG64 llIn, VARIANT_BOOL *pBoolOut)
6298 *pBoolOut = llIn ? VARIANT_TRUE : VARIANT_FALSE;
6299 return S_OK;
6302 /************************************************************************
6303 * VarBoolFromUI8 (OLEAUT32.371)
6305 * Convert a VT_UI8 to a VT_BOOL.
6307 * PARAMS
6308 * ullIn [I] Source
6309 * pBoolOut [O] Destination
6311 * RETURNS
6312 * S_OK.
6314 HRESULT WINAPI VarBoolFromUI8(ULONG64 ullIn, VARIANT_BOOL *pBoolOut)
6316 *pBoolOut = ullIn ? VARIANT_TRUE : VARIANT_FALSE;
6317 return S_OK;
6320 /* BSTR
6323 /* Write a number from a UI8 and sign */
6324 static WCHAR *VARIANT_WriteNumber(ULONG64 ulVal, WCHAR* szOut)
6328 WCHAR ulNextDigit = ulVal % 10;
6330 *szOut-- = '0' + ulNextDigit;
6331 ulVal = (ulVal - ulNextDigit) / 10;
6332 } while (ulVal);
6334 szOut++;
6335 return szOut;
6338 /* Create a (possibly localised) BSTR from a UI8 and sign */
6339 static BSTR VARIANT_MakeBstr(LCID lcid, DWORD dwFlags, WCHAR *szOut)
6341 WCHAR szConverted[256];
6343 if (dwFlags & VAR_NEGATIVE)
6344 *--szOut = '-';
6346 if (dwFlags & LOCALE_USE_NLS)
6348 /* Format the number for the locale */
6349 szConverted[0] = '\0';
6350 GetNumberFormatW(lcid, dwFlags & LOCALE_NOUSEROVERRIDE,
6351 szOut, NULL, szConverted, ARRAY_SIZE(szConverted));
6352 szOut = szConverted;
6354 return SysAllocStringByteLen((LPCSTR)szOut, lstrlenW(szOut) * sizeof(WCHAR));
6357 /* Create a (possibly localised) BSTR from a UI8 and sign */
6358 static HRESULT VARIANT_BstrFromUInt(ULONG64 ulVal, LCID lcid, DWORD dwFlags, BSTR *pbstrOut)
6360 WCHAR szBuff[64], *szOut = szBuff + ARRAY_SIZE(szBuff) - 1;
6362 if (!pbstrOut)
6363 return E_INVALIDARG;
6365 /* Create the basic number string */
6366 *szOut-- = '\0';
6367 szOut = VARIANT_WriteNumber(ulVal, szOut);
6369 *pbstrOut = VARIANT_MakeBstr(lcid, dwFlags, szOut);
6370 TRACE("returning %s\n", debugstr_w(*pbstrOut));
6371 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6374 /******************************************************************************
6375 * VarBstrFromUI1 (OLEAUT32.108)
6377 * Convert a VT_UI1 to a VT_BSTR.
6379 * PARAMS
6380 * bIn [I] Source
6381 * lcid [I] LCID for the conversion
6382 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6383 * pbstrOut [O] Destination
6385 * RETURNS
6386 * Success: S_OK.
6387 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6388 * E_OUTOFMEMORY, if memory allocation fails.
6390 HRESULT WINAPI VarBstrFromUI1(BYTE bIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6392 return VARIANT_BstrFromUInt(bIn, lcid, dwFlags, pbstrOut);
6395 /******************************************************************************
6396 * VarBstrFromI2 (OLEAUT32.109)
6398 * Convert a VT_I2 to a VT_BSTR.
6400 * PARAMS
6401 * sIn [I] Source
6402 * lcid [I] LCID for the conversion
6403 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6404 * pbstrOut [O] Destination
6406 * RETURNS
6407 * Success: S_OK.
6408 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6409 * E_OUTOFMEMORY, if memory allocation fails.
6411 HRESULT WINAPI VarBstrFromI2(short sIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6413 ULONG64 ul64 = sIn;
6415 if (sIn < 0)
6417 ul64 = -sIn;
6418 dwFlags |= VAR_NEGATIVE;
6420 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
6423 /******************************************************************************
6424 * VarBstrFromI4 (OLEAUT32.110)
6426 * Convert a VT_I4 to a VT_BSTR.
6428 * PARAMS
6429 * lIn [I] Source
6430 * lcid [I] LCID for the conversion
6431 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6432 * pbstrOut [O] Destination
6434 * RETURNS
6435 * Success: S_OK.
6436 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6437 * E_OUTOFMEMORY, if memory allocation fails.
6439 HRESULT WINAPI VarBstrFromI4(LONG lIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6441 ULONG64 ul64 = lIn;
6443 if (lIn < 0)
6445 ul64 = -(LONG64)lIn;
6446 dwFlags |= VAR_NEGATIVE;
6448 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
6451 static BSTR VARIANT_BstrReplaceDecimal(const WCHAR * buff, LCID lcid, ULONG dwFlags)
6453 BSTR bstrOut;
6454 WCHAR lpDecimalSep[16];
6456 /* Native oleaut32 uses the locale-specific decimal separator even in the
6457 absence of the LOCALE_USE_NLS flag. For example, the Spanish/Latin
6458 American locales will see "one thousand and one tenth" as "1000,1"
6459 instead of "1000.1" (notice the comma). The following code checks for
6460 the need to replace the decimal separator, and if so, will prepare an
6461 appropriate NUMBERFMTW structure to do the job via GetNumberFormatW().
6463 GetLocaleInfoW(lcid, LOCALE_SDECIMAL | (dwFlags & LOCALE_NOUSEROVERRIDE),
6464 lpDecimalSep, ARRAY_SIZE(lpDecimalSep));
6465 if (lpDecimalSep[0] == '.' && lpDecimalSep[1] == '\0')
6467 /* locale is compatible with English - return original string */
6468 bstrOut = SysAllocString(buff);
6470 else
6472 WCHAR *p;
6473 WCHAR numbuff[256];
6474 WCHAR empty[] = L"";
6475 NUMBERFMTW minFormat;
6477 minFormat.NumDigits = 0;
6478 minFormat.LeadingZero = 0;
6479 minFormat.Grouping = 0;
6480 minFormat.lpDecimalSep = lpDecimalSep;
6481 minFormat.lpThousandSep = empty;
6482 minFormat.NegativeOrder = 1; /* NLS_NEG_LEFT */
6484 /* count number of decimal digits in string */
6485 p = wcschr( buff, '.' );
6486 if (p) minFormat.NumDigits = lstrlenW(p + 1);
6488 numbuff[0] = '\0';
6489 if (!GetNumberFormatW(lcid, 0, buff, &minFormat, numbuff, ARRAY_SIZE(numbuff)))
6491 WARN("GetNumberFormatW() failed, returning raw number string instead\n");
6492 bstrOut = SysAllocString(buff);
6494 else
6496 TRACE("created minimal NLS string %s\n", debugstr_w(numbuff));
6497 bstrOut = SysAllocString(numbuff);
6500 return bstrOut;
6503 static HRESULT VARIANT_BstrFromReal(DOUBLE dblIn, LCID lcid, ULONG dwFlags,
6504 BSTR* pbstrOut, LPCWSTR lpszFormat)
6506 _locale_t locale;
6507 WCHAR buff[256];
6509 if (!pbstrOut)
6510 return E_INVALIDARG;
6512 if (!(locale = _create_locale(LC_ALL, "C"))) return E_OUTOFMEMORY;
6513 _swprintf_l(buff, ARRAY_SIZE(buff), lpszFormat, locale, dblIn);
6514 _free_locale(locale);
6516 /* Negative zeroes are disallowed (some applications depend on this).
6517 If buff starts with a minus, and then nothing follows but zeroes
6518 and/or a period, it is a negative zero and is replaced with a
6519 canonical zero. This duplicates native oleaut32 behavior.
6521 if (buff[0] == '-')
6523 if (lstrlenW(buff + 1) == wcsspn(buff + 1, L"0."))
6524 { buff[0] = '0'; buff[1] = '\0'; }
6527 TRACE("created string %s\n", debugstr_w(buff));
6528 if (dwFlags & LOCALE_USE_NLS)
6530 WCHAR numbuff[256];
6532 /* Format the number for the locale */
6533 numbuff[0] = '\0';
6534 GetNumberFormatW(lcid, dwFlags & LOCALE_NOUSEROVERRIDE,
6535 buff, NULL, numbuff, ARRAY_SIZE(numbuff));
6536 TRACE("created NLS string %s\n", debugstr_w(numbuff));
6537 *pbstrOut = SysAllocString(numbuff);
6539 else
6541 *pbstrOut = VARIANT_BstrReplaceDecimal(buff, lcid, dwFlags);
6543 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6546 /******************************************************************************
6547 * VarBstrFromR4 (OLEAUT32.111)
6549 * Convert a VT_R4 to a VT_BSTR.
6551 * PARAMS
6552 * fltIn [I] Source
6553 * lcid [I] LCID for the conversion
6554 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6555 * pbstrOut [O] Destination
6557 * RETURNS
6558 * Success: S_OK.
6559 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6560 * E_OUTOFMEMORY, if memory allocation fails.
6562 HRESULT WINAPI VarBstrFromR4(FLOAT fltIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6564 return VARIANT_BstrFromReal(fltIn, lcid, dwFlags, pbstrOut, L"%.7G");
6567 /******************************************************************************
6568 * VarBstrFromR8 (OLEAUT32.112)
6570 * Convert a VT_R8 to a VT_BSTR.
6572 * PARAMS
6573 * dblIn [I] Source
6574 * lcid [I] LCID for the conversion
6575 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6576 * pbstrOut [O] Destination
6578 * RETURNS
6579 * Success: S_OK.
6580 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6581 * E_OUTOFMEMORY, if memory allocation fails.
6583 HRESULT WINAPI VarBstrFromR8(double dblIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6585 return VARIANT_BstrFromReal(dblIn, lcid, dwFlags, pbstrOut, L"%.15G");
6588 /******************************************************************************
6589 * VarBstrFromCy [OLEAUT32.113]
6591 * Convert a VT_CY to a VT_BSTR.
6593 * PARAMS
6594 * cyIn [I] Source
6595 * lcid [I] LCID for the conversion
6596 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6597 * pbstrOut [O] Destination
6599 * RETURNS
6600 * Success: S_OK.
6601 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6602 * E_OUTOFMEMORY, if memory allocation fails.
6604 HRESULT WINAPI VarBstrFromCy(CY cyIn, LCID lcid, ULONG dwFlags, BSTR *pbstrOut)
6606 WCHAR buff[256];
6607 VARIANT_DI decVal;
6609 if (!pbstrOut)
6610 return E_INVALIDARG;
6612 decVal.scale = 4;
6613 decVal.sign = 0;
6614 decVal.bitsnum[0] = cyIn.s.Lo;
6615 decVal.bitsnum[1] = cyIn.s.Hi;
6616 if (cyIn.s.Hi & 0x80000000UL) {
6617 DWORD one = 1;
6619 /* Negative number! */
6620 decVal.sign = 1;
6621 decVal.bitsnum[0] = ~decVal.bitsnum[0];
6622 decVal.bitsnum[1] = ~decVal.bitsnum[1];
6623 VARIANT_int_add(decVal.bitsnum, 3, &one, 1);
6625 decVal.bitsnum[2] = 0;
6626 VARIANT_DI_tostringW(&decVal, buff, ARRAY_SIZE(buff));
6628 if (dwFlags & LOCALE_USE_NLS)
6630 WCHAR cybuff[256];
6632 /* Format the currency for the locale */
6633 cybuff[0] = '\0';
6634 GetCurrencyFormatW(lcid, dwFlags & LOCALE_NOUSEROVERRIDE,
6635 buff, NULL, cybuff, ARRAY_SIZE(cybuff));
6636 *pbstrOut = SysAllocString(cybuff);
6638 else
6639 *pbstrOut = VARIANT_BstrReplaceDecimal(buff,lcid,dwFlags);
6641 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6644 static inline int output_int_len(int o, int min_len, WCHAR *date, int date_len)
6646 int len, tmp;
6648 if(min_len >= date_len)
6649 return -1;
6651 for(len=0, tmp=o; tmp; tmp/=10) len++;
6652 if(!len) len++;
6653 if(len >= date_len)
6654 return -1;
6656 for(tmp=min_len-len; tmp>0; tmp--)
6657 *date++ = '0';
6658 for(tmp=len; tmp>0; tmp--, o/=10)
6659 date[tmp-1] = '0' + o%10;
6660 return min_len>len ? min_len : len;
6663 /* format date string, similar to GetDateFormatW function but works on bigger range of dates */
6664 BOOL get_date_format(LCID lcid, DWORD flags, const SYSTEMTIME *st,
6665 const WCHAR *fmt, WCHAR *date, int date_len)
6667 static const LCTYPE dayname[] = {
6668 LOCALE_SDAYNAME7, LOCALE_SDAYNAME1, LOCALE_SDAYNAME2, LOCALE_SDAYNAME3,
6669 LOCALE_SDAYNAME4, LOCALE_SDAYNAME5, LOCALE_SDAYNAME6
6671 static const LCTYPE sdayname[] = {
6672 LOCALE_SABBREVDAYNAME7, LOCALE_SABBREVDAYNAME1, LOCALE_SABBREVDAYNAME2,
6673 LOCALE_SABBREVDAYNAME3, LOCALE_SABBREVDAYNAME4, LOCALE_SABBREVDAYNAME5,
6674 LOCALE_SABBREVDAYNAME6
6676 static const LCTYPE monthname[] = {
6677 LOCALE_SMONTHNAME1, LOCALE_SMONTHNAME2, LOCALE_SMONTHNAME3, LOCALE_SMONTHNAME4,
6678 LOCALE_SMONTHNAME5, LOCALE_SMONTHNAME6, LOCALE_SMONTHNAME7, LOCALE_SMONTHNAME8,
6679 LOCALE_SMONTHNAME9, LOCALE_SMONTHNAME10, LOCALE_SMONTHNAME11, LOCALE_SMONTHNAME12
6681 static const LCTYPE smonthname[] = {
6682 LOCALE_SABBREVMONTHNAME1, LOCALE_SABBREVMONTHNAME2, LOCALE_SABBREVMONTHNAME3,
6683 LOCALE_SABBREVMONTHNAME4, LOCALE_SABBREVMONTHNAME5, LOCALE_SABBREVMONTHNAME6,
6684 LOCALE_SABBREVMONTHNAME7, LOCALE_SABBREVMONTHNAME8, LOCALE_SABBREVMONTHNAME9,
6685 LOCALE_SABBREVMONTHNAME10, LOCALE_SABBREVMONTHNAME11, LOCALE_SABBREVMONTHNAME12
6688 if(flags & ~(LOCALE_NOUSEROVERRIDE|VAR_DATEVALUEONLY))
6689 FIXME("ignoring flags %x\n", flags);
6690 flags &= LOCALE_NOUSEROVERRIDE;
6692 while(*fmt && date_len) {
6693 int count = 1;
6695 switch(*fmt) {
6696 case 'd':
6697 case 'M':
6698 case 'y':
6699 case 'g':
6700 while(*fmt == *(fmt+count))
6701 count++;
6702 fmt += count-1;
6705 switch(*fmt) {
6706 case 'd':
6707 if(count >= 4)
6708 count = GetLocaleInfoW(lcid, dayname[st->wDayOfWeek] | flags, date, date_len)-1;
6709 else if(count == 3)
6710 count = GetLocaleInfoW(lcid, sdayname[st->wDayOfWeek] | flags, date, date_len)-1;
6711 else
6712 count = output_int_len(st->wDay, count, date, date_len);
6713 break;
6714 case 'M':
6715 if(count >= 4)
6716 count = GetLocaleInfoW(lcid, monthname[st->wMonth-1] | flags, date, date_len)-1;
6717 else if(count == 3)
6718 count = GetLocaleInfoW(lcid, smonthname[st->wMonth-1] | flags, date, date_len)-1;
6719 else
6720 count = output_int_len(st->wMonth, count, date, date_len);
6721 break;
6722 case 'y':
6723 if(count >= 3)
6724 count = output_int_len(st->wYear, 0, date, date_len);
6725 else
6726 count = output_int_len(st->wYear%100, count, date, date_len);
6727 break;
6728 case 'g':
6729 if(count == 2) {
6730 FIXME("Should be using GetCalendarInfo(CAL_SERASTRING), defaulting to 'AD'\n");
6732 *date++ = 'A';
6733 date_len--;
6734 if(date_len)
6735 *date = 'D';
6736 else
6737 count = -1;
6738 break;
6740 /* fall through */
6741 default:
6742 *date = *fmt;
6745 if(count < 0)
6746 break;
6747 fmt++;
6748 date += count;
6749 date_len -= count;
6752 if(!date_len)
6753 return FALSE;
6754 *date++ = 0;
6755 return TRUE;
6758 /******************************************************************************
6759 * VarBstrFromDate [OLEAUT32.114]
6761 * Convert a VT_DATE to a VT_BSTR.
6763 * PARAMS
6764 * dateIn [I] Source
6765 * lcid [I] LCID for the conversion
6766 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6767 * pbstrOut [O] Destination
6769 * RETURNS
6770 * Success: S_OK.
6771 * Failure: E_INVALIDARG, if pbstrOut or dateIn is invalid.
6772 * E_OUTOFMEMORY, if memory allocation fails.
6774 HRESULT WINAPI VarBstrFromDate(DATE dateIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6776 SYSTEMTIME st;
6777 DWORD dwFormatFlags = dwFlags & LOCALE_NOUSEROVERRIDE;
6778 WCHAR date[128], fmt_buff[80], *time;
6780 TRACE("(%g,0x%08x,0x%08x,%p)\n", dateIn, lcid, dwFlags, pbstrOut);
6782 if (!pbstrOut || !VariantTimeToSystemTime(dateIn, &st))
6783 return E_INVALIDARG;
6785 *pbstrOut = NULL;
6787 if (dwFlags & VAR_CALENDAR_THAI)
6788 st.wYear += 553; /* Use the Thai buddhist calendar year */
6789 else if (dwFlags & (VAR_CALENDAR_HIJRI|VAR_CALENDAR_GREGORIAN))
6790 FIXME("VAR_CALENDAR_HIJRI/VAR_CALENDAR_GREGORIAN not handled\n");
6792 if (dwFlags & LOCALE_USE_NLS)
6793 dwFlags &= ~(VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY);
6794 else
6796 double whole = dateIn < 0 ? ceil(dateIn) : floor(dateIn);
6797 double partial = dateIn - whole;
6799 if (whole == 0.0)
6800 dwFlags |= VAR_TIMEVALUEONLY;
6801 else if (partial > -1e-12 && partial < 1e-12)
6802 dwFlags |= VAR_DATEVALUEONLY;
6805 if (dwFlags & VAR_TIMEVALUEONLY)
6806 date[0] = '\0';
6807 else
6808 if (!GetLocaleInfoW(lcid, LOCALE_SSHORTDATE, fmt_buff, ARRAY_SIZE(fmt_buff)) ||
6809 !get_date_format(lcid, dwFlags, &st, fmt_buff, date, ARRAY_SIZE(date)))
6810 return E_INVALIDARG;
6812 if (!(dwFlags & VAR_DATEVALUEONLY))
6814 time = date + lstrlenW(date);
6815 if (time != date)
6816 *time++ = ' ';
6817 if (!GetTimeFormatW(lcid, dwFormatFlags, &st, NULL, time, ARRAY_SIZE(date)-(time-date)))
6818 return E_INVALIDARG;
6821 *pbstrOut = SysAllocString(date);
6822 if (*pbstrOut)
6823 TRACE("returning %s\n", debugstr_w(*pbstrOut));
6824 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6827 /******************************************************************************
6828 * VarBstrFromBool (OLEAUT32.116)
6830 * Convert a VT_BOOL to a VT_BSTR.
6832 * PARAMS
6833 * boolIn [I] Source
6834 * lcid [I] LCID for the conversion
6835 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6836 * pbstrOut [O] Destination
6838 * RETURNS
6839 * Success: S_OK.
6840 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6841 * E_OUTOFMEMORY, if memory allocation fails.
6843 * NOTES
6844 * If dwFlags includes VARIANT_LOCALBOOL, this function converts to the
6845 * localised text of "True" or "False". To convert a bool into a
6846 * numeric string of "0" or "-1", use VariantChangeTypeTypeEx().
6848 HRESULT WINAPI VarBstrFromBool(VARIANT_BOOL boolIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6850 WCHAR szBuff[64];
6851 DWORD dwResId = IDS_TRUE;
6852 LANGID langId;
6854 TRACE("%d,0x%08x,0x%08x,%p\n", boolIn, lcid, dwFlags, pbstrOut);
6856 if (!pbstrOut)
6857 return E_INVALIDARG;
6859 /* VAR_BOOLONOFF and VAR_BOOLYESNO are internal flags used
6860 * for variant formatting */
6861 switch (dwFlags & (VAR_LOCALBOOL|VAR_BOOLONOFF|VAR_BOOLYESNO))
6863 case VAR_BOOLONOFF:
6864 dwResId = IDS_ON;
6865 break;
6866 case VAR_BOOLYESNO:
6867 dwResId = IDS_YES;
6868 break;
6869 case VAR_LOCALBOOL:
6870 break;
6871 default:
6872 lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT),SORT_DEFAULT);
6875 lcid = ConvertDefaultLocale(lcid);
6876 langId = LANGIDFROMLCID(lcid);
6877 if (PRIMARYLANGID(langId) == LANG_NEUTRAL)
6878 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6880 if (boolIn == VARIANT_FALSE)
6881 dwResId++; /* Use negative form */
6883 VarBstrFromBool_GetLocalised:
6884 if (VARIANT_GetLocalisedText(langId, dwResId, szBuff))
6886 *pbstrOut = SysAllocString(szBuff);
6887 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6890 if (langId != MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT))
6892 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6893 goto VarBstrFromBool_GetLocalised;
6896 /* Should never get here */
6897 WARN("Failed to load bool text!\n");
6898 return E_OUTOFMEMORY;
6901 /******************************************************************************
6902 * VarBstrFromI1 (OLEAUT32.229)
6904 * Convert a VT_I1 to a VT_BSTR.
6906 * PARAMS
6907 * cIn [I] Source
6908 * lcid [I] LCID for the conversion
6909 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6910 * pbstrOut [O] Destination
6912 * RETURNS
6913 * Success: S_OK.
6914 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6915 * E_OUTOFMEMORY, if memory allocation fails.
6917 HRESULT WINAPI VarBstrFromI1(signed char cIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6919 ULONG64 ul64 = cIn;
6921 if (cIn < 0)
6923 ul64 = -cIn;
6924 dwFlags |= VAR_NEGATIVE;
6926 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
6929 /******************************************************************************
6930 * VarBstrFromUI2 (OLEAUT32.230)
6932 * Convert a VT_UI2 to a VT_BSTR.
6934 * PARAMS
6935 * usIn [I] Source
6936 * lcid [I] LCID for the conversion
6937 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6938 * pbstrOut [O] Destination
6940 * RETURNS
6941 * Success: S_OK.
6942 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6943 * E_OUTOFMEMORY, if memory allocation fails.
6945 HRESULT WINAPI VarBstrFromUI2(USHORT usIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6947 return VARIANT_BstrFromUInt(usIn, lcid, dwFlags, pbstrOut);
6950 /******************************************************************************
6951 * VarBstrFromUI4 (OLEAUT32.231)
6953 * Convert a VT_UI4 to a VT_BSTR.
6955 * PARAMS
6956 * ulIn [I] Source
6957 * lcid [I] LCID for the conversion
6958 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6959 * pbstrOut [O] Destination
6961 * RETURNS
6962 * Success: S_OK.
6963 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6964 * E_OUTOFMEMORY, if memory allocation fails.
6966 HRESULT WINAPI VarBstrFromUI4(ULONG ulIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6968 return VARIANT_BstrFromUInt(ulIn, lcid, dwFlags, pbstrOut);
6971 /******************************************************************************
6972 * VarBstrFromDec (OLEAUT32.232)
6974 * Convert a VT_DECIMAL to a VT_BSTR.
6976 * PARAMS
6977 * pDecIn [I] Source
6978 * lcid [I] LCID for the conversion
6979 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6980 * pbstrOut [O] Destination
6982 * RETURNS
6983 * Success: S_OK.
6984 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6985 * E_OUTOFMEMORY, if memory allocation fails.
6987 HRESULT WINAPI VarBstrFromDec(const DECIMAL* pDecIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6989 WCHAR buff[256];
6990 VARIANT_DI temp;
6992 if (!pbstrOut)
6993 return E_INVALIDARG;
6995 VARIANT_DIFromDec(pDecIn, &temp);
6996 VARIANT_DI_tostringW(&temp, buff, 256);
6998 if (dwFlags & LOCALE_USE_NLS)
7000 WCHAR numbuff[256];
7002 /* Format the number for the locale */
7003 numbuff[0] = '\0';
7004 GetNumberFormatW(lcid, dwFlags & LOCALE_NOUSEROVERRIDE,
7005 buff, NULL, numbuff, ARRAY_SIZE(numbuff));
7006 TRACE("created NLS string %s\n", debugstr_w(numbuff));
7007 *pbstrOut = SysAllocString(numbuff);
7009 else
7011 *pbstrOut = VARIANT_BstrReplaceDecimal(buff, lcid, dwFlags);
7014 TRACE("returning %s\n", debugstr_w(*pbstrOut));
7015 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
7018 /************************************************************************
7019 * VarBstrFromI8 (OLEAUT32.370)
7021 * Convert a VT_I8 to a VT_BSTR.
7023 * PARAMS
7024 * llIn [I] Source
7025 * lcid [I] LCID for the conversion
7026 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
7027 * pbstrOut [O] Destination
7029 * RETURNS
7030 * Success: S_OK.
7031 * Failure: E_INVALIDARG, if pbstrOut is invalid.
7032 * E_OUTOFMEMORY, if memory allocation fails.
7034 HRESULT WINAPI VarBstrFromI8(LONG64 llIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
7036 ULONG64 ul64 = llIn;
7038 if (llIn < 0)
7040 ul64 = -llIn;
7041 dwFlags |= VAR_NEGATIVE;
7043 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
7046 /************************************************************************
7047 * VarBstrFromUI8 (OLEAUT32.371)
7049 * Convert a VT_UI8 to a VT_BSTR.
7051 * PARAMS
7052 * ullIn [I] Source
7053 * lcid [I] LCID for the conversion
7054 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
7055 * pbstrOut [O] Destination
7057 * RETURNS
7058 * Success: S_OK.
7059 * Failure: E_INVALIDARG, if pbstrOut is invalid.
7060 * E_OUTOFMEMORY, if memory allocation fails.
7062 HRESULT WINAPI VarBstrFromUI8(ULONG64 ullIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
7064 return VARIANT_BstrFromUInt(ullIn, lcid, dwFlags, pbstrOut);
7067 /************************************************************************
7068 * VarBstrFromDisp (OLEAUT32.115)
7070 * Convert a VT_DISPATCH to a BSTR.
7072 * PARAMS
7073 * pdispIn [I] Source
7074 * lcid [I] LCID for conversion
7075 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
7076 * pbstrOut [O] Destination
7078 * RETURNS
7079 * Success: S_OK.
7080 * Failure: E_INVALIDARG, if the source value is invalid
7081 * DISP_E_TYPEMISMATCH, if the type cannot be converted
7083 HRESULT WINAPI VarBstrFromDisp(IDispatch* pdispIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
7085 return VARIANT_FromDisp(pdispIn, lcid, pbstrOut, VT_BSTR, dwFlags);
7088 /**********************************************************************
7089 * VarBstrCat (OLEAUT32.313)
7091 * Concatenate two BSTR values.
7093 * PARAMS
7094 * pbstrLeft [I] Source
7095 * pbstrRight [I] Value to concatenate
7096 * pbstrOut [O] Destination
7098 * RETURNS
7099 * Success: S_OK.
7100 * Failure: E_INVALIDARG, if pbstrOut is invalid.
7101 * E_OUTOFMEMORY, if memory allocation fails.
7103 HRESULT WINAPI VarBstrCat(BSTR pbstrLeft, BSTR pbstrRight, BSTR *pbstrOut)
7105 unsigned int lenLeft, lenRight;
7107 TRACE("%s,%s,%p\n",
7108 debugstr_wn(pbstrLeft, SysStringLen(pbstrLeft)),
7109 debugstr_wn(pbstrRight, SysStringLen(pbstrRight)), pbstrOut);
7111 if (!pbstrOut)
7112 return E_INVALIDARG;
7114 /* use byte length here to properly handle ansi-allocated BSTRs */
7115 lenLeft = pbstrLeft ? SysStringByteLen(pbstrLeft) : 0;
7116 lenRight = pbstrRight ? SysStringByteLen(pbstrRight) : 0;
7118 *pbstrOut = SysAllocStringByteLen(NULL, lenLeft + lenRight);
7119 if (!*pbstrOut)
7120 return E_OUTOFMEMORY;
7122 (*pbstrOut)[0] = '\0';
7124 if (pbstrLeft)
7125 memcpy(*pbstrOut, pbstrLeft, lenLeft);
7127 if (pbstrRight)
7128 memcpy((CHAR*)*pbstrOut + lenLeft, pbstrRight, lenRight);
7130 TRACE("%s\n", debugstr_wn(*pbstrOut, SysStringLen(*pbstrOut)));
7131 return S_OK;
7134 /**********************************************************************
7135 * VarBstrCmp (OLEAUT32.314)
7137 * Compare two BSTR values.
7139 * PARAMS
7140 * pbstrLeft [I] Source
7141 * pbstrRight [I] Value to compare
7142 * lcid [I] LCID for the comparison
7143 * dwFlags [I] Flags to pass directly to CompareStringW().
7145 * RETURNS
7146 * VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that pbstrLeft is less
7147 * than, equal to or greater than pbstrRight respectively.
7149 * NOTES
7150 * VARCMP_NULL is NOT returned if either string is NULL unlike MSDN
7151 * states. A NULL BSTR pointer is equivalent to an empty string.
7152 * If LCID is equal to 0, a byte by byte comparison is performed.
7154 HRESULT WINAPI VarBstrCmp(BSTR pbstrLeft, BSTR pbstrRight, LCID lcid, DWORD dwFlags)
7156 HRESULT hres;
7157 int ret;
7159 TRACE("%s,%s,%d,%08x\n",
7160 debugstr_wn(pbstrLeft, SysStringLen(pbstrLeft)),
7161 debugstr_wn(pbstrRight, SysStringLen(pbstrRight)), lcid, dwFlags);
7163 if (!pbstrLeft || !*pbstrLeft)
7165 if (pbstrRight && *pbstrRight)
7166 return VARCMP_LT;
7168 else if (!pbstrRight || !*pbstrRight)
7169 return VARCMP_GT;
7171 if (lcid == 0)
7173 unsigned int lenLeft = SysStringByteLen(pbstrLeft);
7174 unsigned int lenRight = SysStringByteLen(pbstrRight);
7175 ret = memcmp(pbstrLeft, pbstrRight, min(lenLeft, lenRight));
7176 if (ret < 0)
7177 return VARCMP_LT;
7178 if (ret > 0)
7179 return VARCMP_GT;
7180 if (lenLeft < lenRight)
7181 return VARCMP_LT;
7182 if (lenLeft > lenRight)
7183 return VARCMP_GT;
7184 return VARCMP_EQ;
7186 else
7188 unsigned int lenLeft = SysStringLen(pbstrLeft);
7189 unsigned int lenRight = SysStringLen(pbstrRight);
7191 if (lenLeft == 0 || lenRight == 0)
7193 if (lenLeft == 0 && lenRight == 0) return VARCMP_EQ;
7194 return lenLeft < lenRight ? VARCMP_LT : VARCMP_GT;
7197 hres = CompareStringW(lcid, dwFlags, pbstrLeft, lenLeft,
7198 pbstrRight, lenRight) - CSTR_LESS_THAN;
7199 TRACE("%d\n", hres);
7200 return hres;
7205 * DATE
7208 /******************************************************************************
7209 * VarDateFromUI1 (OLEAUT32.88)
7211 * Convert a VT_UI1 to a VT_DATE.
7213 * PARAMS
7214 * bIn [I] Source
7215 * pdateOut [O] Destination
7217 * RETURNS
7218 * S_OK.
7220 HRESULT WINAPI VarDateFromUI1(BYTE bIn, DATE* pdateOut)
7222 return VarR8FromUI1(bIn, pdateOut);
7225 /******************************************************************************
7226 * VarDateFromI2 (OLEAUT32.89)
7228 * Convert a VT_I2 to a VT_DATE.
7230 * PARAMS
7231 * sIn [I] Source
7232 * pdateOut [O] Destination
7234 * RETURNS
7235 * S_OK.
7237 HRESULT WINAPI VarDateFromI2(short sIn, DATE* pdateOut)
7239 return VarR8FromI2(sIn, pdateOut);
7242 /******************************************************************************
7243 * VarDateFromI4 (OLEAUT32.90)
7245 * Convert a VT_I4 to a VT_DATE.
7247 * PARAMS
7248 * lIn [I] Source
7249 * pdateOut [O] Destination
7251 * RETURNS
7252 * S_OK.
7254 HRESULT WINAPI VarDateFromI4(LONG lIn, DATE* pdateOut)
7256 return VarDateFromR8(lIn, pdateOut);
7259 /******************************************************************************
7260 * VarDateFromR4 (OLEAUT32.91)
7262 * Convert a VT_R4 to a VT_DATE.
7264 * PARAMS
7265 * fltIn [I] Source
7266 * pdateOut [O] Destination
7268 * RETURNS
7269 * S_OK.
7271 HRESULT WINAPI VarDateFromR4(FLOAT fltIn, DATE* pdateOut)
7273 return VarR8FromR4(fltIn, pdateOut);
7276 /******************************************************************************
7277 * VarDateFromR8 (OLEAUT32.92)
7279 * Convert a VT_R8 to a VT_DATE.
7281 * PARAMS
7282 * dblIn [I] Source
7283 * pdateOut [O] Destination
7285 * RETURNS
7286 * S_OK.
7288 HRESULT WINAPI VarDateFromR8(double dblIn, DATE* pdateOut)
7290 if (dblIn <= (DATE_MIN - 1.0) || dblIn >= (DATE_MAX + 1.0)) return DISP_E_OVERFLOW;
7291 *pdateOut = (DATE)dblIn;
7292 return S_OK;
7295 /**********************************************************************
7296 * VarDateFromDisp (OLEAUT32.95)
7298 * Convert a VT_DISPATCH to a VT_DATE.
7300 * PARAMS
7301 * pdispIn [I] Source
7302 * lcid [I] LCID for conversion
7303 * pdateOut [O] Destination
7305 * RETURNS
7306 * Success: S_OK.
7307 * Failure: E_INVALIDARG, if the source value is invalid
7308 * DISP_E_OVERFLOW, if the value will not fit in the destination
7309 * DISP_E_TYPEMISMATCH, if the type cannot be converted
7311 HRESULT WINAPI VarDateFromDisp(IDispatch* pdispIn, LCID lcid, DATE* pdateOut)
7313 return VARIANT_FromDisp(pdispIn, lcid, pdateOut, VT_DATE, 0);
7316 /******************************************************************************
7317 * VarDateFromBool (OLEAUT32.96)
7319 * Convert a VT_BOOL to a VT_DATE.
7321 * PARAMS
7322 * boolIn [I] Source
7323 * pdateOut [O] Destination
7325 * RETURNS
7326 * S_OK.
7328 HRESULT WINAPI VarDateFromBool(VARIANT_BOOL boolIn, DATE* pdateOut)
7330 return VarR8FromBool(boolIn, pdateOut);
7333 /**********************************************************************
7334 * VarDateFromCy (OLEAUT32.93)
7336 * Convert a VT_CY to a VT_DATE.
7338 * PARAMS
7339 * lIn [I] Source
7340 * pdateOut [O] Destination
7342 * RETURNS
7343 * S_OK.
7345 HRESULT WINAPI VarDateFromCy(CY cyIn, DATE* pdateOut)
7347 return VarR8FromCy(cyIn, pdateOut);
7350 /* Date string parsing */
7351 #define DP_TIMESEP 0x01 /* Time separator ( _must_ remain 0x1, used as a bitmask) */
7352 #define DP_DATESEP 0x02 /* Date separator */
7353 #define DP_MONTH 0x04 /* Month name */
7354 #define DP_AM 0x08 /* AM */
7355 #define DP_PM 0x10 /* PM */
7357 typedef struct tagDATEPARSE
7359 DWORD dwCount; /* Number of fields found so far (maximum 6) */
7360 DWORD dwParseFlags; /* Global parse flags (DP_ Flags above) */
7361 DWORD dwFlags[6]; /* Flags for each field */
7362 DWORD dwValues[6]; /* Value of each field */
7363 } DATEPARSE;
7365 #define TIMEFLAG(i) ((dp.dwFlags[i] & DP_TIMESEP) << i)
7367 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
7369 /* Determine if a day is valid in a given month of a given year */
7370 static BOOL VARIANT_IsValidMonthDay(DWORD day, DWORD month, DWORD year)
7372 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
7374 if (day && month && month < 13)
7376 if (day <= days[month] || (month == 2 && day == 29 && IsLeapYear(year)))
7377 return TRUE;
7379 return FALSE;
7382 /* Possible orders for 3 numbers making up a date */
7383 #define ORDER_MDY 0x01
7384 #define ORDER_YMD 0x02
7385 #define ORDER_YDM 0x04
7386 #define ORDER_DMY 0x08
7387 #define ORDER_MYD 0x10 /* Synthetic order, used only for funky 2 digit dates */
7389 /* Determine a date for a particular locale, from 3 numbers */
7390 static inline HRESULT VARIANT_MakeDate(DATEPARSE *dp, DWORD iDate,
7391 DWORD offset, SYSTEMTIME *st)
7393 DWORD dwAllOrders, dwTry, dwCount = 0, v1, v2, v3;
7395 if (!dp->dwCount)
7397 v1 = 30; /* Default to (Variant) 0 date part */
7398 v2 = 12;
7399 v3 = 1899;
7400 goto VARIANT_MakeDate_OK;
7403 v1 = dp->dwValues[offset + 0];
7404 v2 = dp->dwValues[offset + 1];
7405 if (dp->dwCount == 2)
7407 SYSTEMTIME current;
7408 GetSystemTime(&current);
7409 v3 = current.wYear;
7411 else
7412 v3 = dp->dwValues[offset + 2];
7414 TRACE("(%d,%d,%d,%d,%d)\n", v1, v2, v3, iDate, offset);
7416 /* If one number must be a month (Because a month name was given), then only
7417 * consider orders with the month in that position.
7418 * If we took the current year as 'v3', then only allow a year in that position.
7420 if (dp->dwFlags[offset + 0] & DP_MONTH)
7422 dwAllOrders = ORDER_MDY;
7424 else if (dp->dwFlags[offset + 1] & DP_MONTH)
7426 dwAllOrders = ORDER_DMY;
7427 if (dp->dwCount > 2)
7428 dwAllOrders |= ORDER_YMD;
7430 else if (dp->dwCount > 2 && dp->dwFlags[offset + 2] & DP_MONTH)
7432 dwAllOrders = ORDER_YDM;
7434 else
7436 dwAllOrders = ORDER_MDY|ORDER_DMY;
7437 if (dp->dwCount > 2)
7438 dwAllOrders |= (ORDER_YMD|ORDER_YDM);
7441 VARIANT_MakeDate_Start:
7442 TRACE("dwAllOrders is 0x%08x\n", dwAllOrders);
7444 while (dwAllOrders)
7446 DWORD dwTemp;
7448 if (dwCount == 0)
7450 /* First: Try the order given by iDate */
7451 switch (iDate)
7453 case 0: dwTry = dwAllOrders & ORDER_MDY; break;
7454 case 1: dwTry = dwAllOrders & ORDER_DMY; break;
7455 default: dwTry = dwAllOrders & ORDER_YMD; break;
7458 else if (dwCount == 1)
7460 /* Second: Try all the orders compatible with iDate */
7461 switch (iDate)
7463 case 0: dwTry = dwAllOrders & ~(ORDER_DMY|ORDER_YDM); break;
7464 case 1: dwTry = dwAllOrders & ~(ORDER_MDY|ORDER_YDM|ORDER_MYD); break;
7465 default: dwTry = dwAllOrders & ~(ORDER_DMY|ORDER_YDM); break;
7468 else
7470 /* Finally: Try any remaining orders */
7471 dwTry = dwAllOrders;
7474 TRACE("Attempt %d, dwTry is 0x%08x\n", dwCount, dwTry);
7476 dwCount++;
7477 if (!dwTry)
7478 continue;
7480 #define DATE_SWAP(x,y) do { dwTemp = x; x = y; y = dwTemp; } while (0)
7482 if (dwTry & ORDER_MDY)
7484 if (VARIANT_IsValidMonthDay(v2,v1,v3))
7486 DATE_SWAP(v1,v2);
7487 goto VARIANT_MakeDate_OK;
7489 dwAllOrders &= ~ORDER_MDY;
7491 if (dwTry & ORDER_YMD)
7493 if (VARIANT_IsValidMonthDay(v3,v2,v1))
7495 DATE_SWAP(v1,v3);
7496 goto VARIANT_MakeDate_OK;
7498 dwAllOrders &= ~ORDER_YMD;
7500 if (dwTry & ORDER_YDM)
7502 if (VARIANT_IsValidMonthDay(v2,v3,v1))
7504 DATE_SWAP(v1,v2);
7505 DATE_SWAP(v2,v3);
7506 goto VARIANT_MakeDate_OK;
7508 dwAllOrders &= ~ORDER_YDM;
7510 if (dwTry & ORDER_DMY)
7512 if (VARIANT_IsValidMonthDay(v1,v2,v3))
7513 goto VARIANT_MakeDate_OK;
7514 dwAllOrders &= ~ORDER_DMY;
7516 if (dwTry & ORDER_MYD)
7518 /* Only occurs if we are trying a 2 year date as M/Y not D/M */
7519 if (VARIANT_IsValidMonthDay(v3,v1,v2))
7521 DATE_SWAP(v1,v3);
7522 DATE_SWAP(v2,v3);
7523 goto VARIANT_MakeDate_OK;
7525 dwAllOrders &= ~ORDER_MYD;
7529 if (dp->dwCount == 2)
7531 /* We couldn't make a date as D/M or M/D, so try M/Y or Y/M */
7532 v3 = 1; /* 1st of the month */
7533 dwAllOrders = ORDER_YMD|ORDER_MYD;
7534 dp->dwCount = 0; /* Don't return to this code path again */
7535 dwCount = 0;
7536 goto VARIANT_MakeDate_Start;
7539 /* No valid dates were able to be constructed */
7540 return DISP_E_TYPEMISMATCH;
7542 VARIANT_MakeDate_OK:
7544 /* Check that the time part is ok */
7545 if (st->wHour > 23 || st->wMinute > 59 || st->wSecond > 59)
7546 return DISP_E_TYPEMISMATCH;
7548 TRACE("Time %d %d %d\n", st->wHour, st->wMinute, st->wSecond);
7549 if (st->wHour < 12 && (dp->dwParseFlags & DP_PM))
7550 st->wHour += 12;
7551 else if (st->wHour == 12 && (dp->dwParseFlags & DP_AM))
7552 st->wHour = 0;
7553 TRACE("Time %d %d %d\n", st->wHour, st->wMinute, st->wSecond);
7555 st->wDay = v1;
7556 st->wMonth = v2;
7557 /* FIXME: For 2 digit dates, I'm not sure if 30 is hard coded or not. It may
7558 * be retrieved from:
7559 * HKCU\Control Panel\International\Calendars\TwoDigitYearMax
7560 * But Wine doesn't have/use that key as at the time of writing.
7562 st->wYear = v3 < 30 ? 2000 + v3 : v3 < 100 ? 1900 + v3 : v3;
7563 TRACE("Returning date %d/%d/%d\n", v1, v2, st->wYear);
7564 return S_OK;
7567 /******************************************************************************
7568 * VarDateFromStr [OLEAUT32.94]
7570 * Convert a VT_BSTR to at VT_DATE.
7572 * PARAMS
7573 * strIn [I] String to convert
7574 * lcid [I] Locale identifier for the conversion
7575 * dwFlags [I] Flags affecting the conversion (VAR_ flags from "oleauto.h")
7576 * pdateOut [O] Destination for the converted value
7578 * RETURNS
7579 * Success: S_OK. pdateOut contains the converted value.
7580 * FAILURE: An HRESULT error code indicating the problem.
7582 * NOTES
7583 * Any date format that can be created using the date formats from lcid
7584 * (Either from kernel Nls functions, variant conversion or formatting) is a
7585 * valid input to this function. In addition, a few more esoteric formats are
7586 * also supported for compatibility with the native version. The date is
7587 * interpreted according to the date settings in the control panel, unless
7588 * the date is invalid in that format, in which the most compatible format
7589 * that produces a valid date will be used.
7591 HRESULT WINAPI VarDateFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, DATE* pdateOut)
7593 static const USHORT ParseDateTokens[] =
7595 LOCALE_SMONTHNAME1, LOCALE_SMONTHNAME2, LOCALE_SMONTHNAME3, LOCALE_SMONTHNAME4,
7596 LOCALE_SMONTHNAME5, LOCALE_SMONTHNAME6, LOCALE_SMONTHNAME7, LOCALE_SMONTHNAME8,
7597 LOCALE_SMONTHNAME9, LOCALE_SMONTHNAME10, LOCALE_SMONTHNAME11, LOCALE_SMONTHNAME12,
7598 LOCALE_SMONTHNAME13,
7599 LOCALE_SABBREVMONTHNAME1, LOCALE_SABBREVMONTHNAME2, LOCALE_SABBREVMONTHNAME3,
7600 LOCALE_SABBREVMONTHNAME4, LOCALE_SABBREVMONTHNAME5, LOCALE_SABBREVMONTHNAME6,
7601 LOCALE_SABBREVMONTHNAME7, LOCALE_SABBREVMONTHNAME8, LOCALE_SABBREVMONTHNAME9,
7602 LOCALE_SABBREVMONTHNAME10, LOCALE_SABBREVMONTHNAME11, LOCALE_SABBREVMONTHNAME12,
7603 LOCALE_SABBREVMONTHNAME13,
7604 LOCALE_SDAYNAME1, LOCALE_SDAYNAME2, LOCALE_SDAYNAME3, LOCALE_SDAYNAME4,
7605 LOCALE_SDAYNAME5, LOCALE_SDAYNAME6, LOCALE_SDAYNAME7,
7606 LOCALE_SABBREVDAYNAME1, LOCALE_SABBREVDAYNAME2, LOCALE_SABBREVDAYNAME3,
7607 LOCALE_SABBREVDAYNAME4, LOCALE_SABBREVDAYNAME5, LOCALE_SABBREVDAYNAME6,
7608 LOCALE_SABBREVDAYNAME7,
7609 LOCALE_S1159, LOCALE_S2359,
7610 LOCALE_SDATE
7612 static const BYTE ParseDateMonths[] =
7614 1,2,3,4,5,6,7,8,9,10,11,12,13,
7615 1,2,3,4,5,6,7,8,9,10,11,12,13
7617 unsigned int i;
7618 BSTR tokens[ARRAY_SIZE(ParseDateTokens)];
7619 DATEPARSE dp;
7620 DWORD dwDateSeps = 0, iDate = 0;
7621 HRESULT hRet = S_OK;
7623 if ((dwFlags & (VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY)) ==
7624 (VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY))
7625 return E_INVALIDARG;
7627 if (!strIn)
7628 return DISP_E_TYPEMISMATCH;
7630 *pdateOut = 0.0;
7632 TRACE("(%s,0x%08x,0x%08x,%p)\n", debugstr_w(strIn), lcid, dwFlags, pdateOut);
7634 memset(&dp, 0, sizeof(dp));
7636 GetLocaleInfoW(lcid, LOCALE_IDATE|LOCALE_RETURN_NUMBER|(dwFlags & LOCALE_NOUSEROVERRIDE),
7637 (LPWSTR)&iDate, sizeof(iDate)/sizeof(WCHAR));
7638 TRACE("iDate is %d\n", iDate);
7640 /* Get the month/day/am/pm tokens for this locale */
7641 for (i = 0; i < ARRAY_SIZE(tokens); i++)
7643 WCHAR buff[128];
7644 LCTYPE lctype = ParseDateTokens[i] | (dwFlags & LOCALE_NOUSEROVERRIDE);
7646 /* FIXME: Alternate calendars - should use GetCalendarInfo() and/or
7647 * GetAltMonthNames(). We should really cache these strings too.
7649 buff[0] = '\0';
7650 GetLocaleInfoW(lcid, lctype, buff, ARRAY_SIZE(buff));
7651 tokens[i] = SysAllocString(buff);
7652 TRACE("token %d is %s\n", i, debugstr_w(tokens[i]));
7655 /* Parse the string into our structure */
7656 while (*strIn)
7658 if ('0' <= *strIn && *strIn <= '9')
7660 if (dp.dwCount >= 6)
7662 hRet = DISP_E_TYPEMISMATCH;
7663 break;
7665 dp.dwValues[dp.dwCount] = wcstoul(strIn, &strIn, 10);
7666 dp.dwCount++;
7667 strIn--;
7669 else if (iswalpha(*strIn))
7671 BOOL bFound = FALSE;
7673 for (i = 0; i < ARRAY_SIZE(tokens); i++)
7675 DWORD dwLen = lstrlenW(tokens[i]);
7676 if (dwLen && !wcsnicmp(strIn, tokens[i], dwLen))
7678 if (i <= 25)
7680 if (dp.dwCount >= 6)
7681 hRet = DISP_E_TYPEMISMATCH;
7682 else
7684 dp.dwValues[dp.dwCount] = ParseDateMonths[i];
7685 dp.dwFlags[dp.dwCount] |= (DP_MONTH|DP_DATESEP);
7686 dp.dwCount++;
7689 else if (i > 39 && i < 42)
7691 if (!dp.dwCount || dp.dwParseFlags & (DP_AM|DP_PM))
7692 hRet = DISP_E_TYPEMISMATCH;
7693 else
7695 dp.dwFlags[dp.dwCount - 1] |= (i == 40 ? DP_AM : DP_PM);
7696 dp.dwParseFlags |= (i == 40 ? DP_AM : DP_PM);
7699 strIn += (dwLen - 1);
7700 bFound = TRUE;
7701 break;
7705 if (!bFound)
7707 if ((*strIn == 'a' || *strIn == 'A' || *strIn == 'p' || *strIn == 'P') &&
7708 (dp.dwCount && !(dp.dwParseFlags & (DP_AM|DP_PM))))
7710 /* Special case - 'a' and 'p' are recognised as short for am/pm */
7711 if (*strIn == 'a' || *strIn == 'A')
7713 dp.dwFlags[dp.dwCount - 1] |= DP_AM;
7714 dp.dwParseFlags |= DP_AM;
7716 else
7718 dp.dwFlags[dp.dwCount - 1] |= DP_PM;
7719 dp.dwParseFlags |= DP_PM;
7721 strIn++;
7723 else
7725 TRACE("No matching token for %s\n", debugstr_w(strIn));
7726 hRet = DISP_E_TYPEMISMATCH;
7727 break;
7731 else if (*strIn == ':' || *strIn == '.')
7733 if (!dp.dwCount || !strIn[1])
7734 hRet = DISP_E_TYPEMISMATCH;
7735 else
7736 if (tokens[42][0] == *strIn)
7738 dwDateSeps++;
7739 if (dwDateSeps > 2)
7740 hRet = DISP_E_TYPEMISMATCH;
7741 else
7742 dp.dwFlags[dp.dwCount - 1] |= DP_DATESEP;
7744 else
7745 dp.dwFlags[dp.dwCount - 1] |= DP_TIMESEP;
7747 else if (*strIn == '-' || *strIn == '/')
7749 dwDateSeps++;
7750 if (dwDateSeps > 2 || !dp.dwCount || !strIn[1])
7751 hRet = DISP_E_TYPEMISMATCH;
7752 else
7753 dp.dwFlags[dp.dwCount - 1] |= DP_DATESEP;
7755 else if (*strIn == ',' || iswspace(*strIn))
7757 if (*strIn == ',' && !strIn[1])
7758 hRet = DISP_E_TYPEMISMATCH;
7760 else
7762 hRet = DISP_E_TYPEMISMATCH;
7764 strIn++;
7767 if (!dp.dwCount || dp.dwCount > 6 ||
7768 (dp.dwCount == 1 && !(dp.dwParseFlags & (DP_AM|DP_PM))))
7769 hRet = DISP_E_TYPEMISMATCH;
7771 if (SUCCEEDED(hRet))
7773 SYSTEMTIME st;
7774 DWORD dwOffset = 0; /* Start of date fields in dp.dwValues */
7776 st.wDayOfWeek = st.wHour = st.wMinute = st.wSecond = st.wMilliseconds = 0;
7778 /* Figure out which numbers correspond to which fields.
7780 * This switch statement works based on the fact that native interprets any
7781 * fields that are not joined with a time separator ('.' or ':') as date
7782 * fields. Thus we construct a value from 0-32 where each set bit indicates
7783 * a time field. This encapsulates the hundreds of permutations of 2-6 fields.
7784 * For valid permutations, we set dwOffset to point to the first date field
7785 * and shorten dp.dwCount by the number of time fields found. The real
7786 * magic here occurs in VARIANT_MakeDate() above, where we determine what
7787 * each date number must represent in the context of iDate.
7789 TRACE("0x%08x\n", TIMEFLAG(0)|TIMEFLAG(1)|TIMEFLAG(2)|TIMEFLAG(3)|TIMEFLAG(4));
7791 switch (TIMEFLAG(0)|TIMEFLAG(1)|TIMEFLAG(2)|TIMEFLAG(3)|TIMEFLAG(4))
7793 case 0x1: /* TT TTDD TTDDD */
7794 if (dp.dwCount > 3 &&
7795 ((dp.dwFlags[2] & (DP_AM|DP_PM)) || (dp.dwFlags[3] & (DP_AM|DP_PM)) ||
7796 (dp.dwFlags[4] & (DP_AM|DP_PM))))
7797 hRet = DISP_E_TYPEMISMATCH;
7798 else if (dp.dwCount != 2 && dp.dwCount != 4 && dp.dwCount != 5)
7799 hRet = DISP_E_TYPEMISMATCH;
7800 st.wHour = dp.dwValues[0];
7801 st.wMinute = dp.dwValues[1];
7802 dp.dwCount -= 2;
7803 dwOffset = 2;
7804 break;
7806 case 0x3: /* TTT TTTDD TTTDDD */
7807 if (dp.dwCount > 4 &&
7808 ((dp.dwFlags[3] & (DP_AM|DP_PM)) || (dp.dwFlags[4] & (DP_AM|DP_PM)) ||
7809 (dp.dwFlags[5] & (DP_AM|DP_PM))))
7810 hRet = DISP_E_TYPEMISMATCH;
7811 else if (dp.dwCount != 3 && dp.dwCount != 5 && dp.dwCount != 6)
7812 hRet = DISP_E_TYPEMISMATCH;
7813 st.wHour = dp.dwValues[0];
7814 st.wMinute = dp.dwValues[1];
7815 st.wSecond = dp.dwValues[2];
7816 dwOffset = 3;
7817 dp.dwCount -= 3;
7818 break;
7820 case 0x4: /* DDTT */
7821 if (dp.dwCount != 4 ||
7822 (dp.dwFlags[0] & (DP_AM|DP_PM)) || (dp.dwFlags[1] & (DP_AM|DP_PM)))
7823 hRet = DISP_E_TYPEMISMATCH;
7825 st.wHour = dp.dwValues[2];
7826 st.wMinute = dp.dwValues[3];
7827 dp.dwCount -= 2;
7828 break;
7830 case 0x0: /* T DD DDD TDDD TDDD */
7831 if (dp.dwCount == 1 && (dp.dwParseFlags & (DP_AM|DP_PM)))
7833 st.wHour = dp.dwValues[0]; /* T */
7834 dp.dwCount = 0;
7835 break;
7837 else if (dp.dwCount > 4 || (dp.dwCount < 3 && dp.dwParseFlags & (DP_AM|DP_PM)))
7839 hRet = DISP_E_TYPEMISMATCH;
7841 else if (dp.dwCount == 3)
7843 if (dp.dwFlags[0] & (DP_AM|DP_PM)) /* TDD */
7845 dp.dwCount = 2;
7846 st.wHour = dp.dwValues[0];
7847 dwOffset = 1;
7848 break;
7850 if (dp.dwFlags[2] & (DP_AM|DP_PM)) /* DDT */
7852 dp.dwCount = 2;
7853 st.wHour = dp.dwValues[2];
7854 break;
7856 else if (dp.dwParseFlags & (DP_AM|DP_PM))
7857 hRet = DISP_E_TYPEMISMATCH;
7859 else if (dp.dwCount == 4)
7861 dp.dwCount = 3;
7862 if (dp.dwFlags[0] & (DP_AM|DP_PM)) /* TDDD */
7864 st.wHour = dp.dwValues[0];
7865 dwOffset = 1;
7867 else if (dp.dwFlags[3] & (DP_AM|DP_PM)) /* DDDT */
7869 st.wHour = dp.dwValues[3];
7871 else
7872 hRet = DISP_E_TYPEMISMATCH;
7873 break;
7875 /* .. fall through .. */
7877 case 0x8: /* DDDTT */
7878 if ((dp.dwCount == 2 && (dp.dwParseFlags & (DP_AM|DP_PM))) ||
7879 (dp.dwCount == 5 && ((dp.dwFlags[0] & (DP_AM|DP_PM)) ||
7880 (dp.dwFlags[1] & (DP_AM|DP_PM)) || (dp.dwFlags[2] & (DP_AM|DP_PM)))) ||
7881 dp.dwCount == 4 || dp.dwCount == 6)
7882 hRet = DISP_E_TYPEMISMATCH;
7883 st.wHour = dp.dwValues[3];
7884 st.wMinute = dp.dwValues[4];
7885 if (dp.dwCount == 5)
7886 dp.dwCount -= 2;
7887 break;
7889 case 0xC: /* DDTTT */
7890 if (dp.dwCount != 5 ||
7891 (dp.dwFlags[0] & (DP_AM|DP_PM)) || (dp.dwFlags[1] & (DP_AM|DP_PM)))
7892 hRet = DISP_E_TYPEMISMATCH;
7893 st.wHour = dp.dwValues[2];
7894 st.wMinute = dp.dwValues[3];
7895 st.wSecond = dp.dwValues[4];
7896 dp.dwCount -= 3;
7897 break;
7899 case 0x18: /* DDDTTT */
7900 if ((dp.dwFlags[0] & (DP_AM|DP_PM)) || (dp.dwFlags[1] & (DP_AM|DP_PM)) ||
7901 (dp.dwFlags[2] & (DP_AM|DP_PM)))
7902 hRet = DISP_E_TYPEMISMATCH;
7903 st.wHour = dp.dwValues[3];
7904 st.wMinute = dp.dwValues[4];
7905 st.wSecond = dp.dwValues[5];
7906 dp.dwCount -= 3;
7907 break;
7909 default:
7910 hRet = DISP_E_TYPEMISMATCH;
7911 break;
7914 if (SUCCEEDED(hRet))
7916 hRet = VARIANT_MakeDate(&dp, iDate, dwOffset, &st);
7918 if (dwFlags & VAR_TIMEVALUEONLY)
7920 st.wYear = 1899;
7921 st.wMonth = 12;
7922 st.wDay = 30;
7924 else if (dwFlags & VAR_DATEVALUEONLY)
7925 st.wHour = st.wMinute = st.wSecond = 0;
7927 /* Finally, convert the value to a VT_DATE */
7928 if (SUCCEEDED(hRet))
7929 hRet = SystemTimeToVariantTime(&st, pdateOut) ? S_OK : DISP_E_TYPEMISMATCH;
7933 for (i = 0; i < ARRAY_SIZE(tokens); i++)
7934 SysFreeString(tokens[i]);
7935 return hRet;
7938 /******************************************************************************
7939 * VarDateFromI1 (OLEAUT32.221)
7941 * Convert a VT_I1 to a VT_DATE.
7943 * PARAMS
7944 * cIn [I] Source
7945 * pdateOut [O] Destination
7947 * RETURNS
7948 * S_OK.
7950 HRESULT WINAPI VarDateFromI1(signed char cIn, DATE* pdateOut)
7952 return VarR8FromI1(cIn, pdateOut);
7955 /******************************************************************************
7956 * VarDateFromUI2 (OLEAUT32.222)
7958 * Convert a VT_UI2 to a VT_DATE.
7960 * PARAMS
7961 * uiIn [I] Source
7962 * pdateOut [O] Destination
7964 * RETURNS
7965 * S_OK.
7967 HRESULT WINAPI VarDateFromUI2(USHORT uiIn, DATE* pdateOut)
7969 return VarR8FromUI2(uiIn, pdateOut);
7972 /******************************************************************************
7973 * VarDateFromUI4 (OLEAUT32.223)
7975 * Convert a VT_UI4 to a VT_DATE.
7977 * PARAMS
7978 * ulIn [I] Source
7979 * pdateOut [O] Destination
7981 * RETURNS
7982 * S_OK.
7984 HRESULT WINAPI VarDateFromUI4(ULONG ulIn, DATE* pdateOut)
7986 return VarDateFromR8(ulIn, pdateOut);
7989 /**********************************************************************
7990 * VarDateFromDec (OLEAUT32.224)
7992 * Convert a VT_DECIMAL to a VT_DATE.
7994 * PARAMS
7995 * pdecIn [I] Source
7996 * pdateOut [O] Destination
7998 * RETURNS
7999 * S_OK.
8001 HRESULT WINAPI VarDateFromDec(const DECIMAL *pdecIn, DATE* pdateOut)
8003 return VarR8FromDec(pdecIn, pdateOut);
8006 /******************************************************************************
8007 * VarDateFromI8 (OLEAUT32.364)
8009 * Convert a VT_I8 to a VT_DATE.
8011 * PARAMS
8012 * llIn [I] Source
8013 * pdateOut [O] Destination
8015 * RETURNS
8016 * Success: S_OK.
8017 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
8019 HRESULT WINAPI VarDateFromI8(LONG64 llIn, DATE* pdateOut)
8021 if (llIn < DATE_MIN || llIn > DATE_MAX) return DISP_E_OVERFLOW;
8022 *pdateOut = (DATE)llIn;
8023 return S_OK;
8026 /******************************************************************************
8027 * VarDateFromUI8 (OLEAUT32.365)
8029 * Convert a VT_UI8 to a VT_DATE.
8031 * PARAMS
8032 * ullIn [I] Source
8033 * pdateOut [O] Destination
8035 * RETURNS
8036 * Success: S_OK.
8037 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
8039 HRESULT WINAPI VarDateFromUI8(ULONG64 ullIn, DATE* pdateOut)
8041 if (ullIn > DATE_MAX) return DISP_E_OVERFLOW;
8042 *pdateOut = (DATE)ullIn;
8043 return S_OK;