4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
33 #define NONAMELESSUNION
34 #define NONAMELESSSTRUCT
41 #include "wine/debug.h"
43 WINE_DEFAULT_DEBUG_CHANNEL(variant
);
45 static CRITICAL_SECTION cache_cs
;
46 static CRITICAL_SECTION_DEBUG critsect_debug
=
49 { &critsect_debug
.ProcessLocksList
, &critsect_debug
.ProcessLocksList
},
50 0, 0, { (DWORD_PTR
)(__FILE__
": cache_cs") }
52 static CRITICAL_SECTION cache_cs
= { &critsect_debug
, -1, 0, 0, 0, 0 };
54 /* Convert a variant from one type to another */
55 static inline HRESULT
VARIANT_Coerce(VARIANTARG
* pd
, LCID lcid
, USHORT wFlags
,
56 VARIANTARG
* ps
, VARTYPE vt
)
58 HRESULT res
= DISP_E_TYPEMISMATCH
;
59 VARTYPE vtFrom
= V_TYPE(ps
);
62 TRACE("(%s,0x%08x,0x%04x,%s,%s)\n", debugstr_variant(pd
), lcid
, wFlags
,
63 debugstr_variant(ps
), debugstr_vt(vt
));
65 if (vt
== VT_BSTR
|| vtFrom
== VT_BSTR
)
67 /* All flags passed to low level function are only used for
68 * changing to or from strings. Map these here.
70 if (wFlags
& VARIANT_LOCALBOOL
)
71 dwFlags
|= VAR_LOCALBOOL
;
72 if (wFlags
& VARIANT_CALENDAR_HIJRI
)
73 dwFlags
|= VAR_CALENDAR_HIJRI
;
74 if (wFlags
& VARIANT_CALENDAR_THAI
)
75 dwFlags
|= VAR_CALENDAR_THAI
;
76 if (wFlags
& VARIANT_CALENDAR_GREGORIAN
)
77 dwFlags
|= VAR_CALENDAR_GREGORIAN
;
78 if (wFlags
& VARIANT_NOUSEROVERRIDE
)
79 dwFlags
|= LOCALE_NOUSEROVERRIDE
;
80 if (wFlags
& VARIANT_USE_NLS
)
81 dwFlags
|= LOCALE_USE_NLS
;
84 /* Map int/uint to i4/ui4 */
87 else if (vt
== VT_UINT
)
92 else if (vtFrom
== VT_UINT
)
96 return VariantCopy(pd
, ps
);
98 if (wFlags
& VARIANT_NOVALUEPROP
&& vtFrom
== VT_DISPATCH
&& vt
!= VT_UNKNOWN
)
100 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
101 * accessing the default object property.
103 return DISP_E_TYPEMISMATCH
;
109 if (vtFrom
== VT_NULL
)
110 return DISP_E_TYPEMISMATCH
;
111 /* ... Fall through */
113 if (vtFrom
<= VT_UINT
&& vtFrom
!= (VARTYPE
)15 && vtFrom
!= VT_ERROR
)
115 res
= VariantClear( pd
);
116 if (vt
== VT_NULL
&& SUCCEEDED(res
))
124 case VT_EMPTY
: V_I1(pd
) = 0; return S_OK
;
125 case VT_I2
: return VarI1FromI2(V_I2(ps
), &V_I1(pd
));
126 case VT_I4
: return VarI1FromI4(V_I4(ps
), &V_I1(pd
));
127 case VT_UI1
: V_I1(pd
) = V_UI1(ps
); return S_OK
;
128 case VT_UI2
: return VarI1FromUI2(V_UI2(ps
), &V_I1(pd
));
129 case VT_UI4
: return VarI1FromUI4(V_UI4(ps
), &V_I1(pd
));
130 case VT_I8
: return VarI1FromI8(V_I8(ps
), &V_I1(pd
));
131 case VT_UI8
: return VarI1FromUI8(V_UI8(ps
), &V_I1(pd
));
132 case VT_R4
: return VarI1FromR4(V_R4(ps
), &V_I1(pd
));
133 case VT_R8
: return VarI1FromR8(V_R8(ps
), &V_I1(pd
));
134 case VT_DATE
: return VarI1FromDate(V_DATE(ps
), &V_I1(pd
));
135 case VT_BOOL
: return VarI1FromBool(V_BOOL(ps
), &V_I1(pd
));
136 case VT_CY
: return VarI1FromCy(V_CY(ps
), &V_I1(pd
));
137 case VT_DECIMAL
: return VarI1FromDec(&V_DECIMAL(ps
), &V_I1(pd
) );
138 case VT_DISPATCH
: return VarI1FromDisp(V_DISPATCH(ps
), lcid
, &V_I1(pd
) );
139 case VT_BSTR
: return VarI1FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I1(pd
) );
146 case VT_EMPTY
: V_I2(pd
) = 0; return S_OK
;
147 case VT_I1
: return VarI2FromI1(V_I1(ps
), &V_I2(pd
));
148 case VT_I4
: return VarI2FromI4(V_I4(ps
), &V_I2(pd
));
149 case VT_UI1
: return VarI2FromUI1(V_UI1(ps
), &V_I2(pd
));
150 case VT_UI2
: V_I2(pd
) = V_UI2(ps
); return S_OK
;
151 case VT_UI4
: return VarI2FromUI4(V_UI4(ps
), &V_I2(pd
));
152 case VT_I8
: return VarI2FromI8(V_I8(ps
), &V_I2(pd
));
153 case VT_UI8
: return VarI2FromUI8(V_UI8(ps
), &V_I2(pd
));
154 case VT_R4
: return VarI2FromR4(V_R4(ps
), &V_I2(pd
));
155 case VT_R8
: return VarI2FromR8(V_R8(ps
), &V_I2(pd
));
156 case VT_DATE
: return VarI2FromDate(V_DATE(ps
), &V_I2(pd
));
157 case VT_BOOL
: return VarI2FromBool(V_BOOL(ps
), &V_I2(pd
));
158 case VT_CY
: return VarI2FromCy(V_CY(ps
), &V_I2(pd
));
159 case VT_DECIMAL
: return VarI2FromDec(&V_DECIMAL(ps
), &V_I2(pd
));
160 case VT_DISPATCH
: return VarI2FromDisp(V_DISPATCH(ps
), lcid
, &V_I2(pd
));
161 case VT_BSTR
: return VarI2FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I2(pd
));
168 case VT_EMPTY
: V_I4(pd
) = 0; return S_OK
;
169 case VT_I1
: return VarI4FromI1(V_I1(ps
), &V_I4(pd
));
170 case VT_I2
: return VarI4FromI2(V_I2(ps
), &V_I4(pd
));
171 case VT_UI1
: return VarI4FromUI1(V_UI1(ps
), &V_I4(pd
));
172 case VT_UI2
: return VarI4FromUI2(V_UI2(ps
), &V_I4(pd
));
173 case VT_UI4
: V_I4(pd
) = V_UI4(ps
); return S_OK
;
174 case VT_I8
: return VarI4FromI8(V_I8(ps
), &V_I4(pd
));
175 case VT_UI8
: return VarI4FromUI8(V_UI8(ps
), &V_I4(pd
));
176 case VT_R4
: return VarI4FromR4(V_R4(ps
), &V_I4(pd
));
177 case VT_R8
: return VarI4FromR8(V_R8(ps
), &V_I4(pd
));
178 case VT_DATE
: return VarI4FromDate(V_DATE(ps
), &V_I4(pd
));
179 case VT_BOOL
: return VarI4FromBool(V_BOOL(ps
), &V_I4(pd
));
180 case VT_CY
: return VarI4FromCy(V_CY(ps
), &V_I4(pd
));
181 case VT_DECIMAL
: return VarI4FromDec(&V_DECIMAL(ps
), &V_I4(pd
));
182 case VT_DISPATCH
: return VarI4FromDisp(V_DISPATCH(ps
), lcid
, &V_I4(pd
));
183 case VT_BSTR
: return VarI4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I4(pd
));
190 case VT_EMPTY
: V_UI1(pd
) = 0; return S_OK
;
191 case VT_I1
: V_UI1(pd
) = V_I1(ps
); return S_OK
;
192 case VT_I2
: return VarUI1FromI2(V_I2(ps
), &V_UI1(pd
));
193 case VT_I4
: return VarUI1FromI4(V_I4(ps
), &V_UI1(pd
));
194 case VT_UI2
: return VarUI1FromUI2(V_UI2(ps
), &V_UI1(pd
));
195 case VT_UI4
: return VarUI1FromUI4(V_UI4(ps
), &V_UI1(pd
));
196 case VT_I8
: return VarUI1FromI8(V_I8(ps
), &V_UI1(pd
));
197 case VT_UI8
: return VarUI1FromUI8(V_UI8(ps
), &V_UI1(pd
));
198 case VT_R4
: return VarUI1FromR4(V_R4(ps
), &V_UI1(pd
));
199 case VT_R8
: return VarUI1FromR8(V_R8(ps
), &V_UI1(pd
));
200 case VT_DATE
: return VarUI1FromDate(V_DATE(ps
), &V_UI1(pd
));
201 case VT_BOOL
: return VarUI1FromBool(V_BOOL(ps
), &V_UI1(pd
));
202 case VT_CY
: return VarUI1FromCy(V_CY(ps
), &V_UI1(pd
));
203 case VT_DECIMAL
: return VarUI1FromDec(&V_DECIMAL(ps
), &V_UI1(pd
));
204 case VT_DISPATCH
: return VarUI1FromDisp(V_DISPATCH(ps
), lcid
, &V_UI1(pd
));
205 case VT_BSTR
: return VarUI1FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI1(pd
));
212 case VT_EMPTY
: V_UI2(pd
) = 0; return S_OK
;
213 case VT_I1
: return VarUI2FromI1(V_I1(ps
), &V_UI2(pd
));
214 case VT_I2
: V_UI2(pd
) = V_I2(ps
); return S_OK
;
215 case VT_I4
: return VarUI2FromI4(V_I4(ps
), &V_UI2(pd
));
216 case VT_UI1
: return VarUI2FromUI1(V_UI1(ps
), &V_UI2(pd
));
217 case VT_UI4
: return VarUI2FromUI4(V_UI4(ps
), &V_UI2(pd
));
218 case VT_I8
: return VarUI4FromI8(V_I8(ps
), &V_UI4(pd
));
219 case VT_UI8
: return VarUI4FromUI8(V_UI8(ps
), &V_UI4(pd
));
220 case VT_R4
: return VarUI2FromR4(V_R4(ps
), &V_UI2(pd
));
221 case VT_R8
: return VarUI2FromR8(V_R8(ps
), &V_UI2(pd
));
222 case VT_DATE
: return VarUI2FromDate(V_DATE(ps
), &V_UI2(pd
));
223 case VT_BOOL
: return VarUI2FromBool(V_BOOL(ps
), &V_UI2(pd
));
224 case VT_CY
: return VarUI2FromCy(V_CY(ps
), &V_UI2(pd
));
225 case VT_DECIMAL
: return VarUI2FromDec(&V_DECIMAL(ps
), &V_UI2(pd
));
226 case VT_DISPATCH
: return VarUI2FromDisp(V_DISPATCH(ps
), lcid
, &V_UI2(pd
));
227 case VT_BSTR
: return VarUI2FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI2(pd
));
234 case VT_EMPTY
: V_UI4(pd
) = 0; return S_OK
;
235 case VT_I1
: return VarUI4FromI1(V_I1(ps
), &V_UI4(pd
));
236 case VT_I2
: return VarUI4FromI2(V_I2(ps
), &V_UI4(pd
));
237 case VT_I4
: V_UI4(pd
) = V_I4(ps
); return S_OK
;
238 case VT_UI1
: return VarUI4FromUI1(V_UI1(ps
), &V_UI4(pd
));
239 case VT_UI2
: return VarUI4FromUI2(V_UI2(ps
), &V_UI4(pd
));
240 case VT_I8
: return VarUI4FromI8(V_I8(ps
), &V_UI4(pd
));
241 case VT_UI8
: return VarUI4FromUI8(V_UI8(ps
), &V_UI4(pd
));
242 case VT_R4
: return VarUI4FromR4(V_R4(ps
), &V_UI4(pd
));
243 case VT_R8
: return VarUI4FromR8(V_R8(ps
), &V_UI4(pd
));
244 case VT_DATE
: return VarUI4FromDate(V_DATE(ps
), &V_UI4(pd
));
245 case VT_BOOL
: return VarUI4FromBool(V_BOOL(ps
), &V_UI4(pd
));
246 case VT_CY
: return VarUI4FromCy(V_CY(ps
), &V_UI4(pd
));
247 case VT_DECIMAL
: return VarUI4FromDec(&V_DECIMAL(ps
), &V_UI4(pd
));
248 case VT_DISPATCH
: return VarUI4FromDisp(V_DISPATCH(ps
), lcid
, &V_UI4(pd
));
249 case VT_BSTR
: return VarUI4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI4(pd
));
256 case VT_EMPTY
: V_UI8(pd
) = 0; return S_OK
;
257 case VT_I4
: if (V_I4(ps
) < 0) return DISP_E_OVERFLOW
; V_UI8(pd
) = V_I4(ps
); return S_OK
;
258 case VT_I1
: return VarUI8FromI1(V_I1(ps
), &V_UI8(pd
));
259 case VT_I2
: return VarUI8FromI2(V_I2(ps
), &V_UI8(pd
));
260 case VT_UI1
: return VarUI8FromUI1(V_UI1(ps
), &V_UI8(pd
));
261 case VT_UI2
: return VarUI8FromUI2(V_UI2(ps
), &V_UI8(pd
));
262 case VT_UI4
: return VarUI8FromUI4(V_UI4(ps
), &V_UI8(pd
));
263 case VT_I8
: V_UI8(pd
) = V_I8(ps
); return S_OK
;
264 case VT_R4
: return VarUI8FromR4(V_R4(ps
), &V_UI8(pd
));
265 case VT_R8
: return VarUI8FromR8(V_R8(ps
), &V_UI8(pd
));
266 case VT_DATE
: return VarUI8FromDate(V_DATE(ps
), &V_UI8(pd
));
267 case VT_BOOL
: return VarUI8FromBool(V_BOOL(ps
), &V_UI8(pd
));
268 case VT_CY
: return VarUI8FromCy(V_CY(ps
), &V_UI8(pd
));
269 case VT_DECIMAL
: return VarUI8FromDec(&V_DECIMAL(ps
), &V_UI8(pd
));
270 case VT_DISPATCH
: return VarUI8FromDisp(V_DISPATCH(ps
), lcid
, &V_UI8(pd
));
271 case VT_BSTR
: return VarUI8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI8(pd
));
278 case VT_EMPTY
: V_I8(pd
) = 0; return S_OK
;
279 case VT_I4
: V_I8(pd
) = V_I4(ps
); return S_OK
;
280 case VT_I1
: return VarI8FromI1(V_I1(ps
), &V_I8(pd
));
281 case VT_I2
: return VarI8FromI2(V_I2(ps
), &V_I8(pd
));
282 case VT_UI1
: return VarI8FromUI1(V_UI1(ps
), &V_I8(pd
));
283 case VT_UI2
: return VarI8FromUI2(V_UI2(ps
), &V_I8(pd
));
284 case VT_UI4
: return VarI8FromUI4(V_UI4(ps
), &V_I8(pd
));
285 case VT_UI8
: V_I8(pd
) = V_UI8(ps
); return S_OK
;
286 case VT_R4
: return VarI8FromR4(V_R4(ps
), &V_I8(pd
));
287 case VT_R8
: return VarI8FromR8(V_R8(ps
), &V_I8(pd
));
288 case VT_DATE
: return VarI8FromDate(V_DATE(ps
), &V_I8(pd
));
289 case VT_BOOL
: return VarI8FromBool(V_BOOL(ps
), &V_I8(pd
));
290 case VT_CY
: return VarI8FromCy(V_CY(ps
), &V_I8(pd
));
291 case VT_DECIMAL
: return VarI8FromDec(&V_DECIMAL(ps
), &V_I8(pd
));
292 case VT_DISPATCH
: return VarI8FromDisp(V_DISPATCH(ps
), lcid
, &V_I8(pd
));
293 case VT_BSTR
: return VarI8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I8(pd
));
300 case VT_EMPTY
: V_R4(pd
) = 0.0f
; return S_OK
;
301 case VT_I1
: return VarR4FromI1(V_I1(ps
), &V_R4(pd
));
302 case VT_I2
: return VarR4FromI2(V_I2(ps
), &V_R4(pd
));
303 case VT_I4
: return VarR4FromI4(V_I4(ps
), &V_R4(pd
));
304 case VT_UI1
: return VarR4FromUI1(V_UI1(ps
), &V_R4(pd
));
305 case VT_UI2
: return VarR4FromUI2(V_UI2(ps
), &V_R4(pd
));
306 case VT_UI4
: return VarR4FromUI4(V_UI4(ps
), &V_R4(pd
));
307 case VT_I8
: return VarR4FromI8(V_I8(ps
), &V_R4(pd
));
308 case VT_UI8
: return VarR4FromUI8(V_UI8(ps
), &V_R4(pd
));
309 case VT_R8
: return VarR4FromR8(V_R8(ps
), &V_R4(pd
));
310 case VT_DATE
: return VarR4FromDate(V_DATE(ps
), &V_R4(pd
));
311 case VT_BOOL
: return VarR4FromBool(V_BOOL(ps
), &V_R4(pd
));
312 case VT_CY
: return VarR4FromCy(V_CY(ps
), &V_R4(pd
));
313 case VT_DECIMAL
: return VarR4FromDec(&V_DECIMAL(ps
), &V_R4(pd
));
314 case VT_DISPATCH
: return VarR4FromDisp(V_DISPATCH(ps
), lcid
, &V_R4(pd
));
315 case VT_BSTR
: return VarR4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_R4(pd
));
322 case VT_EMPTY
: V_R8(pd
) = 0.0; return S_OK
;
323 case VT_I1
: return VarR8FromI1(V_I1(ps
), &V_R8(pd
));
324 case VT_I2
: return VarR8FromI2(V_I2(ps
), &V_R8(pd
));
325 case VT_I4
: return VarR8FromI4(V_I4(ps
), &V_R8(pd
));
326 case VT_UI1
: return VarR8FromUI1(V_UI1(ps
), &V_R8(pd
));
327 case VT_UI2
: return VarR8FromUI2(V_UI2(ps
), &V_R8(pd
));
328 case VT_UI4
: return VarR8FromUI4(V_UI4(ps
), &V_R8(pd
));
329 case VT_I8
: return VarR8FromI8(V_I8(ps
), &V_R8(pd
));
330 case VT_UI8
: return VarR8FromUI8(V_UI8(ps
), &V_R8(pd
));
331 case VT_R4
: return VarR8FromR4(V_R4(ps
), &V_R8(pd
));
332 case VT_DATE
: return VarR8FromDate(V_DATE(ps
), &V_R8(pd
));
333 case VT_BOOL
: return VarR8FromBool(V_BOOL(ps
), &V_R8(pd
));
334 case VT_CY
: return VarR8FromCy(V_CY(ps
), &V_R8(pd
));
335 case VT_DECIMAL
: return VarR8FromDec(&V_DECIMAL(ps
), &V_R8(pd
));
336 case VT_DISPATCH
: return VarR8FromDisp(V_DISPATCH(ps
), lcid
, &V_R8(pd
));
337 case VT_BSTR
: return VarR8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_R8(pd
));
344 case VT_EMPTY
: V_DATE(pd
) = 0.0; return S_OK
;
345 case VT_I1
: return VarDateFromI1(V_I1(ps
), &V_DATE(pd
));
346 case VT_I2
: return VarDateFromI2(V_I2(ps
), &V_DATE(pd
));
347 case VT_I4
: return VarDateFromI4(V_I4(ps
), &V_DATE(pd
));
348 case VT_UI1
: return VarDateFromUI1(V_UI1(ps
), &V_DATE(pd
));
349 case VT_UI2
: return VarDateFromUI2(V_UI2(ps
), &V_DATE(pd
));
350 case VT_UI4
: return VarDateFromUI4(V_UI4(ps
), &V_DATE(pd
));
351 case VT_I8
: return VarDateFromI8(V_I8(ps
), &V_DATE(pd
));
352 case VT_UI8
: return VarDateFromUI8(V_UI8(ps
), &V_DATE(pd
));
353 case VT_R4
: return VarDateFromR4(V_R4(ps
), &V_DATE(pd
));
354 case VT_R8
: return VarDateFromR8(V_R8(ps
), &V_DATE(pd
));
355 case VT_BOOL
: return VarDateFromBool(V_BOOL(ps
), &V_DATE(pd
));
356 case VT_CY
: return VarDateFromCy(V_CY(ps
), &V_DATE(pd
));
357 case VT_DECIMAL
: return VarDateFromDec(&V_DECIMAL(ps
), &V_DATE(pd
));
358 case VT_DISPATCH
: return VarDateFromDisp(V_DISPATCH(ps
), lcid
, &V_DATE(pd
));
359 case VT_BSTR
: return VarDateFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_DATE(pd
));
366 case VT_EMPTY
: V_BOOL(pd
) = 0; return S_OK
;
367 case VT_I1
: return VarBoolFromI1(V_I1(ps
), &V_BOOL(pd
));
368 case VT_I2
: return VarBoolFromI2(V_I2(ps
), &V_BOOL(pd
));
369 case VT_I4
: return VarBoolFromI4(V_I4(ps
), &V_BOOL(pd
));
370 case VT_UI1
: return VarBoolFromUI1(V_UI1(ps
), &V_BOOL(pd
));
371 case VT_UI2
: return VarBoolFromUI2(V_UI2(ps
), &V_BOOL(pd
));
372 case VT_UI4
: return VarBoolFromUI4(V_UI4(ps
), &V_BOOL(pd
));
373 case VT_I8
: return VarBoolFromI8(V_I8(ps
), &V_BOOL(pd
));
374 case VT_UI8
: return VarBoolFromUI8(V_UI8(ps
), &V_BOOL(pd
));
375 case VT_R4
: return VarBoolFromR4(V_R4(ps
), &V_BOOL(pd
));
376 case VT_R8
: return VarBoolFromR8(V_R8(ps
), &V_BOOL(pd
));
377 case VT_DATE
: return VarBoolFromDate(V_DATE(ps
), &V_BOOL(pd
));
378 case VT_CY
: return VarBoolFromCy(V_CY(ps
), &V_BOOL(pd
));
379 case VT_DECIMAL
: return VarBoolFromDec(&V_DECIMAL(ps
), &V_BOOL(pd
));
380 case VT_DISPATCH
: return VarBoolFromDisp(V_DISPATCH(ps
), lcid
, &V_BOOL(pd
));
381 case VT_BSTR
: return VarBoolFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_BOOL(pd
));
389 V_BSTR(pd
) = SysAllocStringLen(NULL
, 0);
390 return V_BSTR(pd
) ? S_OK
: E_OUTOFMEMORY
;
392 if (wFlags
& (VARIANT_ALPHABOOL
|VARIANT_LOCALBOOL
))
393 return VarBstrFromBool(V_BOOL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
394 return VarBstrFromI2(V_BOOL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
395 case VT_I1
: return VarBstrFromI1(V_I1(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
396 case VT_I2
: return VarBstrFromI2(V_I2(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
397 case VT_I4
: return VarBstrFromI4(V_I4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
398 case VT_UI1
: return VarBstrFromUI1(V_UI1(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
399 case VT_UI2
: return VarBstrFromUI2(V_UI2(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
400 case VT_UI4
: return VarBstrFromUI4(V_UI4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
401 case VT_I8
: return VarBstrFromI8(V_I8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
402 case VT_UI8
: return VarBstrFromUI8(V_UI8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
403 case VT_R4
: return VarBstrFromR4(V_R4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
404 case VT_R8
: return VarBstrFromR8(V_R8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
405 case VT_DATE
: return VarBstrFromDate(V_DATE(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
406 case VT_CY
: return VarBstrFromCy(V_CY(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
407 case VT_DECIMAL
: return VarBstrFromDec(&V_DECIMAL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
408 case VT_DISPATCH
: return VarBstrFromDisp(V_DISPATCH(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
415 case VT_EMPTY
: V_CY(pd
).int64
= 0; return S_OK
;
416 case VT_I1
: return VarCyFromI1(V_I1(ps
), &V_CY(pd
));
417 case VT_I2
: return VarCyFromI2(V_I2(ps
), &V_CY(pd
));
418 case VT_I4
: return VarCyFromI4(V_I4(ps
), &V_CY(pd
));
419 case VT_UI1
: return VarCyFromUI1(V_UI1(ps
), &V_CY(pd
));
420 case VT_UI2
: return VarCyFromUI2(V_UI2(ps
), &V_CY(pd
));
421 case VT_UI4
: return VarCyFromUI4(V_UI4(ps
), &V_CY(pd
));
422 case VT_I8
: return VarCyFromI8(V_I8(ps
), &V_CY(pd
));
423 case VT_UI8
: return VarCyFromUI8(V_UI8(ps
), &V_CY(pd
));
424 case VT_R4
: return VarCyFromR4(V_R4(ps
), &V_CY(pd
));
425 case VT_R8
: return VarCyFromR8(V_R8(ps
), &V_CY(pd
));
426 case VT_DATE
: return VarCyFromDate(V_DATE(ps
), &V_CY(pd
));
427 case VT_BOOL
: return VarCyFromBool(V_BOOL(ps
), &V_CY(pd
));
428 case VT_DECIMAL
: return VarCyFromDec(&V_DECIMAL(ps
), &V_CY(pd
));
429 case VT_DISPATCH
: return VarCyFromDisp(V_DISPATCH(ps
), lcid
, &V_CY(pd
));
430 case VT_BSTR
: return VarCyFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_CY(pd
));
439 DEC_SIGNSCALE(&V_DECIMAL(pd
)) = SIGNSCALE(DECIMAL_POS
,0);
440 DEC_HI32(&V_DECIMAL(pd
)) = 0;
441 DEC_MID32(&V_DECIMAL(pd
)) = 0;
442 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
443 * VT_NULL and VT_EMPTY always give a 0 value.
445 DEC_LO32(&V_DECIMAL(pd
)) = vtFrom
== VT_BOOL
&& V_BOOL(ps
) ? 1 : 0;
447 case VT_I1
: return VarDecFromI1(V_I1(ps
), &V_DECIMAL(pd
));
448 case VT_I2
: return VarDecFromI2(V_I2(ps
), &V_DECIMAL(pd
));
449 case VT_I4
: return VarDecFromI4(V_I4(ps
), &V_DECIMAL(pd
));
450 case VT_UI1
: return VarDecFromUI1(V_UI1(ps
), &V_DECIMAL(pd
));
451 case VT_UI2
: return VarDecFromUI2(V_UI2(ps
), &V_DECIMAL(pd
));
452 case VT_UI4
: return VarDecFromUI4(V_UI4(ps
), &V_DECIMAL(pd
));
453 case VT_I8
: return VarDecFromI8(V_I8(ps
), &V_DECIMAL(pd
));
454 case VT_UI8
: return VarDecFromUI8(V_UI8(ps
), &V_DECIMAL(pd
));
455 case VT_R4
: return VarDecFromR4(V_R4(ps
), &V_DECIMAL(pd
));
456 case VT_R8
: return VarDecFromR8(V_R8(ps
), &V_DECIMAL(pd
));
457 case VT_DATE
: return VarDecFromDate(V_DATE(ps
), &V_DECIMAL(pd
));
458 case VT_CY
: return VarDecFromCy(V_CY(ps
), &V_DECIMAL(pd
));
459 case VT_DISPATCH
: return VarDecFromDisp(V_DISPATCH(ps
), lcid
, &V_DECIMAL(pd
));
460 case VT_BSTR
: return VarDecFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_DECIMAL(pd
));
468 if (V_DISPATCH(ps
) == NULL
)
470 V_UNKNOWN(pd
) = NULL
;
474 res
= IDispatch_QueryInterface(V_DISPATCH(ps
), &IID_IUnknown
, (LPVOID
*)&V_UNKNOWN(pd
));
483 if (V_UNKNOWN(ps
) == NULL
)
485 V_DISPATCH(pd
) = NULL
;
489 res
= IUnknown_QueryInterface(V_UNKNOWN(ps
), &IID_IDispatch
, (LPVOID
*)&V_DISPATCH(pd
));
500 /* Coerce to/from an array */
501 static inline HRESULT
VARIANT_CoerceArray(VARIANTARG
* pd
, VARIANTARG
* ps
, VARTYPE vt
)
503 if (vt
== VT_BSTR
&& V_VT(ps
) == (VT_ARRAY
|VT_UI1
))
504 return BstrFromVector(V_ARRAY(ps
), &V_BSTR(pd
));
506 if (V_VT(ps
) == VT_BSTR
&& vt
== (VT_ARRAY
|VT_UI1
))
507 return VectorFromBstr(V_BSTR(ps
), &V_ARRAY(pd
));
510 return SafeArrayCopy(V_ARRAY(ps
), &V_ARRAY(pd
));
512 return DISP_E_TYPEMISMATCH
;
515 static HRESULT
VARIANT_FetchDispatchValue(LPVARIANT pvDispatch
, LPVARIANT pValue
)
518 static DISPPARAMS emptyParams
= { NULL
, NULL
, 0, 0 };
520 if ((V_VT(pvDispatch
) & VT_TYPEMASK
) == VT_DISPATCH
) {
521 if (NULL
== V_DISPATCH(pvDispatch
)) return DISP_E_TYPEMISMATCH
;
522 hres
= IDispatch_Invoke(V_DISPATCH(pvDispatch
), DISPID_VALUE
, &IID_NULL
,
523 LOCALE_USER_DEFAULT
, DISPATCH_PROPERTYGET
, &emptyParams
, pValue
,
526 hres
= DISP_E_TYPEMISMATCH
;
531 /******************************************************************************
532 * Check if a variants type is valid.
534 static inline HRESULT
VARIANT_ValidateType(VARTYPE vt
)
536 VARTYPE vtExtra
= vt
& VT_EXTRA_TYPE
;
540 if (!(vtExtra
& (VT_VECTOR
|VT_RESERVED
)))
542 if (vt
< VT_VOID
|| vt
== VT_RECORD
|| vt
== VT_CLSID
)
544 if ((vtExtra
& (VT_BYREF
|VT_ARRAY
)) && vt
<= VT_NULL
)
545 return DISP_E_BADVARTYPE
;
546 if (vt
!= (VARTYPE
)15)
550 return DISP_E_BADVARTYPE
;
553 /******************************************************************************
554 * VariantInit [OLEAUT32.8]
556 * Initialise a variant.
559 * pVarg [O] Variant to initialise
565 * This function simply sets the type of the variant to VT_EMPTY. It does not
566 * free any existing value, use VariantClear() for that.
568 void WINAPI
VariantInit(VARIANTARG
* pVarg
)
570 TRACE("(%p)\n", pVarg
);
572 /* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
573 V_VT(pVarg
) = VT_EMPTY
;
576 HRESULT
VARIANT_ClearInd(VARIANTARG
*pVarg
)
580 TRACE("(%s)\n", debugstr_variant(pVarg
));
582 hres
= VARIANT_ValidateType(V_VT(pVarg
));
590 if (V_UNKNOWN(pVarg
))
591 IUnknown_Release(V_UNKNOWN(pVarg
));
593 case VT_UNKNOWN
| VT_BYREF
:
594 case VT_DISPATCH
| VT_BYREF
:
595 if(*V_UNKNOWNREF(pVarg
))
596 IUnknown_Release(*V_UNKNOWNREF(pVarg
));
599 SysFreeString(V_BSTR(pVarg
));
601 case VT_BSTR
| VT_BYREF
:
602 SysFreeString(*V_BSTRREF(pVarg
));
604 case VT_VARIANT
| VT_BYREF
:
605 VariantClear(V_VARIANTREF(pVarg
));
608 case VT_RECORD
| VT_BYREF
:
610 struct __tagBRECORD
* pBr
= &V_UNION(pVarg
,brecVal
);
613 IRecordInfo_RecordClear(pBr
->pRecInfo
, pBr
->pvRecord
);
614 IRecordInfo_Release(pBr
->pRecInfo
);
619 if (V_ISARRAY(pVarg
) || (V_VT(pVarg
) & ~VT_BYREF
) == VT_SAFEARRAY
)
621 if (V_ISBYREF(pVarg
))
623 if (*V_ARRAYREF(pVarg
))
624 hres
= SafeArrayDestroy(*V_ARRAYREF(pVarg
));
626 else if (V_ARRAY(pVarg
))
627 hres
= SafeArrayDestroy(V_ARRAY(pVarg
));
632 V_VT(pVarg
) = VT_EMPTY
;
636 /******************************************************************************
637 * VariantClear [OLEAUT32.9]
642 * pVarg [I/O] Variant to clear
645 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
646 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
648 HRESULT WINAPI DECLSPEC_HOTPATCH
VariantClear(VARIANTARG
* pVarg
)
652 TRACE("(%s)\n", debugstr_variant(pVarg
));
654 hres
= VARIANT_ValidateType(V_VT(pVarg
));
658 if (!V_ISBYREF(pVarg
))
660 if (V_ISARRAY(pVarg
) || V_VT(pVarg
) == VT_SAFEARRAY
)
662 hres
= SafeArrayDestroy(V_ARRAY(pVarg
));
664 else if (V_VT(pVarg
) == VT_BSTR
)
666 SysFreeString(V_BSTR(pVarg
));
668 else if (V_VT(pVarg
) == VT_RECORD
)
670 struct __tagBRECORD
* pBr
= &V_UNION(pVarg
,brecVal
);
673 IRecordInfo_RecordClear(pBr
->pRecInfo
, pBr
->pvRecord
);
674 IRecordInfo_Release(pBr
->pRecInfo
);
677 else if (V_VT(pVarg
) == VT_DISPATCH
||
678 V_VT(pVarg
) == VT_UNKNOWN
)
680 if (V_UNKNOWN(pVarg
))
681 IUnknown_Release(V_UNKNOWN(pVarg
));
684 V_VT(pVarg
) = VT_EMPTY
;
689 /******************************************************************************
690 * Copy an IRecordInfo object contained in a variant.
692 static HRESULT
VARIANT_CopyIRecordInfo(VARIANT
*dest
, const VARIANT
*src
)
694 struct __tagBRECORD
*dest_rec
= &V_UNION(dest
, brecVal
);
695 const struct __tagBRECORD
*src_rec
= &V_UNION(src
, brecVal
);
699 if (!src_rec
->pRecInfo
)
701 if (src_rec
->pvRecord
) return E_INVALIDARG
;
705 hr
= IRecordInfo_GetSize(src_rec
->pRecInfo
, &size
);
706 if (FAILED(hr
)) return hr
;
708 /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
709 Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
710 could free it later. */
711 dest_rec
->pvRecord
= HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY
, size
);
712 if (!dest_rec
->pvRecord
) return E_OUTOFMEMORY
;
714 dest_rec
->pRecInfo
= src_rec
->pRecInfo
;
715 IRecordInfo_AddRef(src_rec
->pRecInfo
);
717 return IRecordInfo_RecordCopy(src_rec
->pRecInfo
, src_rec
->pvRecord
, dest_rec
->pvRecord
);
720 /******************************************************************************
721 * VariantCopy [OLEAUT32.10]
726 * pvargDest [O] Destination for copy
727 * pvargSrc [I] Source variant to copy
730 * Success: S_OK. pvargDest contains a copy of pvargSrc.
731 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
732 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
733 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
734 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
737 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
738 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
739 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
740 * fails, so does this function.
741 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
742 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
743 * is copied rather than just any pointers to it.
744 * - For by-value object types the object pointer is copied and the objects
745 * reference count increased using IUnknown_AddRef().
746 * - For all by-reference types, only the referencing pointer is copied.
748 HRESULT WINAPI
VariantCopy(VARIANTARG
* pvargDest
, const VARIANTARG
* pvargSrc
)
752 TRACE("(%s,%s)\n", debugstr_variant(pvargDest
), debugstr_variant(pvargSrc
));
754 if (V_TYPE(pvargSrc
) == VT_CLSID
|| /* VT_CLSID is a special case */
755 FAILED(VARIANT_ValidateType(V_VT(pvargSrc
))))
756 return DISP_E_BADVARTYPE
;
758 if (pvargSrc
!= pvargDest
&&
759 SUCCEEDED(hres
= VariantClear(pvargDest
)))
761 *pvargDest
= *pvargSrc
; /* Shallow copy the value */
763 if (!V_ISBYREF(pvargSrc
))
765 switch (V_VT(pvargSrc
))
768 V_BSTR(pvargDest
) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc
), SysStringByteLen(V_BSTR(pvargSrc
)));
769 if (!V_BSTR(pvargDest
))
770 hres
= E_OUTOFMEMORY
;
773 hres
= VARIANT_CopyIRecordInfo(pvargDest
, pvargSrc
);
777 V_UNKNOWN(pvargDest
) = V_UNKNOWN(pvargSrc
);
778 if (V_UNKNOWN(pvargSrc
))
779 IUnknown_AddRef(V_UNKNOWN(pvargSrc
));
782 if (V_ISARRAY(pvargSrc
))
783 hres
= SafeArrayCopy(V_ARRAY(pvargSrc
), &V_ARRAY(pvargDest
));
790 /* Return the byte size of a variants data */
791 static inline size_t VARIANT_DataSize(const VARIANT
* pv
)
796 case VT_UI1
: return sizeof(BYTE
);
798 case VT_UI2
: return sizeof(SHORT
);
802 case VT_UI4
: return sizeof(LONG
);
804 case VT_UI8
: return sizeof(LONGLONG
);
805 case VT_R4
: return sizeof(float);
806 case VT_R8
: return sizeof(double);
807 case VT_DATE
: return sizeof(DATE
);
808 case VT_BOOL
: return sizeof(VARIANT_BOOL
);
811 case VT_BSTR
: return sizeof(void*);
812 case VT_CY
: return sizeof(CY
);
813 case VT_ERROR
: return sizeof(SCODE
);
815 TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv
));
819 /******************************************************************************
820 * VariantCopyInd [OLEAUT32.11]
822 * Copy a variant, dereferencing it if it is by-reference.
825 * pvargDest [O] Destination for copy
826 * pvargSrc [I] Source variant to copy
829 * Success: S_OK. pvargDest contains a copy of pvargSrc.
830 * Failure: An HRESULT error code indicating the error.
833 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
834 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
835 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
836 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
837 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
840 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
841 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
843 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
844 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
845 * to it. If clearing pvargDest fails, so does this function.
847 HRESULT WINAPI
VariantCopyInd(VARIANT
* pvargDest
, const VARIANTARG
* pvargSrc
)
849 const VARIANTARG
*pSrc
= pvargSrc
;
854 TRACE("(%s,%s)\n", debugstr_variant(pvargDest
), debugstr_variant(pvargSrc
));
856 if (!V_ISBYREF(pvargSrc
))
857 return VariantCopy(pvargDest
, pvargSrc
);
859 /* Argument checking is more lax than VariantCopy()... */
860 vt
= V_TYPE(pvargSrc
);
861 if (V_ISARRAY(pvargSrc
) || (V_VT(pvargSrc
) == (VT_RECORD
|VT_BYREF
)) ||
862 (vt
> VT_NULL
&& vt
!= (VARTYPE
)15 && vt
< VT_VOID
&&
863 !(V_VT(pvargSrc
) & (VT_VECTOR
|VT_RESERVED
))))
868 return E_INVALIDARG
; /* ...And the return value for invalid types differs too */
870 if (pvargSrc
== pvargDest
)
872 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
873 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
877 V_VT(pvargDest
) = VT_EMPTY
;
881 /* Copy into another variant. Free the variant in pvargDest */
882 if (FAILED(hres
= VariantClear(pvargDest
)))
884 TRACE("VariantClear() of destination failed\n");
891 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
892 hres
= SafeArrayCopy(*V_ARRAYREF(pSrc
), &V_ARRAY(pvargDest
));
894 else if (V_VT(pSrc
) == (VT_BSTR
|VT_BYREF
))
896 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
897 V_BSTR(pvargDest
) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc
), SysStringByteLen(*V_BSTRREF(pSrc
)));
899 else if (V_VT(pSrc
) == (VT_RECORD
|VT_BYREF
))
901 hres
= VARIANT_CopyIRecordInfo(pvargDest
, pvargSrc
);
903 else if (V_VT(pSrc
) == (VT_DISPATCH
|VT_BYREF
) ||
904 V_VT(pSrc
) == (VT_UNKNOWN
|VT_BYREF
))
906 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
907 V_UNKNOWN(pvargDest
) = *V_UNKNOWNREF(pSrc
);
908 if (*V_UNKNOWNREF(pSrc
))
909 IUnknown_AddRef(*V_UNKNOWNREF(pSrc
));
911 else if (V_VT(pSrc
) == (VT_VARIANT
|VT_BYREF
))
913 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
914 if (V_VT(V_VARIANTREF(pSrc
)) == (VT_VARIANT
|VT_BYREF
))
915 hres
= E_INVALIDARG
; /* Don't dereference more than one level */
917 hres
= VariantCopyInd(pvargDest
, V_VARIANTREF(pSrc
));
919 /* Use the dereferenced variants type value, not VT_VARIANT */
920 goto VariantCopyInd_Return
;
922 else if (V_VT(pSrc
) == (VT_DECIMAL
|VT_BYREF
))
924 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest
)), &DEC_SCALE(V_DECIMALREF(pSrc
)),
925 sizeof(DECIMAL
) - sizeof(USHORT
));
929 /* Copy the pointed to data into this variant */
930 memcpy(&V_BYREF(pvargDest
), V_BYREF(pSrc
), VARIANT_DataSize(pSrc
));
933 V_VT(pvargDest
) = V_VT(pSrc
) & ~VT_BYREF
;
935 VariantCopyInd_Return
:
937 if (pSrc
!= pvargSrc
)
940 TRACE("returning 0x%08x, %s\n", hres
, debugstr_variant(pvargDest
));
944 /******************************************************************************
945 * VariantChangeType [OLEAUT32.12]
947 * Change the type of a variant.
950 * pvargDest [O] Destination for the converted variant
951 * pvargSrc [O] Source variant to change the type of
952 * wFlags [I] VARIANT_ flags from "oleauto.h"
953 * vt [I] Variant type to change pvargSrc into
956 * Success: S_OK. pvargDest contains the converted value.
957 * Failure: An HRESULT error code describing the failure.
960 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
961 * See VariantChangeTypeEx.
963 HRESULT WINAPI DECLSPEC_HOTPATCH
VariantChangeType(VARIANTARG
* pvargDest
, const VARIANTARG
* pvargSrc
,
964 USHORT wFlags
, VARTYPE vt
)
966 return VariantChangeTypeEx( pvargDest
, pvargSrc
, LOCALE_USER_DEFAULT
, wFlags
, vt
);
969 /******************************************************************************
970 * VariantChangeTypeEx [OLEAUT32.147]
972 * Change the type of a variant.
975 * pvargDest [O] Destination for the converted variant
976 * pvargSrc [O] Source variant to change the type of
977 * lcid [I] LCID for the conversion
978 * wFlags [I] VARIANT_ flags from "oleauto.h"
979 * vt [I] Variant type to change pvargSrc into
982 * Success: S_OK. pvargDest contains the converted value.
983 * Failure: An HRESULT error code describing the failure.
986 * pvargDest and pvargSrc can point to the same variant to perform an in-place
987 * conversion. If the conversion is successful, pvargSrc will be freed.
989 HRESULT WINAPI
VariantChangeTypeEx(VARIANTARG
* pvargDest
, const VARIANTARG
* pvargSrc
,
990 LCID lcid
, USHORT wFlags
, VARTYPE vt
)
994 TRACE("(%s,%s,0x%08x,0x%04x,%s)\n", debugstr_variant(pvargDest
),
995 debugstr_variant(pvargSrc
), lcid
, wFlags
, debugstr_vt(vt
));
998 res
= DISP_E_BADVARTYPE
;
1001 res
= VARIANT_ValidateType(V_VT(pvargSrc
));
1005 res
= VARIANT_ValidateType(vt
);
1009 VARIANTARG vTmp
, vSrcDeref
;
1011 if(V_ISBYREF(pvargSrc
) && !V_BYREF(pvargSrc
))
1012 res
= DISP_E_TYPEMISMATCH
;
1015 V_VT(&vTmp
) = VT_EMPTY
;
1016 V_VT(&vSrcDeref
) = VT_EMPTY
;
1017 VariantClear(&vTmp
);
1018 VariantClear(&vSrcDeref
);
1023 res
= VariantCopyInd(&vSrcDeref
, pvargSrc
);
1026 if (V_ISARRAY(&vSrcDeref
) || (vt
& VT_ARRAY
))
1027 res
= VARIANT_CoerceArray(&vTmp
, &vSrcDeref
, vt
);
1029 res
= VARIANT_Coerce(&vTmp
, lcid
, wFlags
, &vSrcDeref
, vt
);
1031 if (SUCCEEDED(res
)) {
1033 res
= VariantCopy(pvargDest
, &vTmp
);
1035 VariantClear(&vTmp
);
1036 VariantClear(&vSrcDeref
);
1043 TRACE("returning 0x%08x, %s\n", res
, debugstr_variant(pvargDest
));
1047 /* Date Conversions */
1049 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1051 /* Convert a VT_DATE value to a Julian Date */
1052 static inline int VARIANT_JulianFromDate(int dateIn
)
1054 int julianDays
= dateIn
;
1056 julianDays
-= DATE_MIN
; /* Convert to + days from 1 Jan 100 AD */
1057 julianDays
+= 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1061 /* Convert a Julian Date to a VT_DATE value */
1062 static inline int VARIANT_DateFromJulian(int dateIn
)
1064 int julianDays
= dateIn
;
1066 julianDays
-= 1757585; /* Convert to + days from 1 Jan 100 AD */
1067 julianDays
+= DATE_MIN
; /* Convert to +/- days from 1 Jan 1899 AD */
1071 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1072 static inline void VARIANT_DMYFromJulian(int jd
, USHORT
*year
, USHORT
*month
, USHORT
*day
)
1078 l
-= (n
* 146097 + 3) / 4;
1079 i
= (4000 * (l
+ 1)) / 1461001;
1080 l
+= 31 - (i
* 1461) / 4;
1081 j
= (l
* 80) / 2447;
1082 *day
= l
- (j
* 2447) / 80;
1084 *month
= (j
+ 2) - (12 * l
);
1085 *year
= 100 * (n
- 49) + i
+ l
;
1088 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1089 static inline double VARIANT_JulianFromDMY(USHORT year
, USHORT month
, USHORT day
)
1091 int m12
= (month
- 14) / 12;
1093 return ((1461 * (year
+ 4800 + m12
)) / 4 + (367 * (month
- 2 - 12 * m12
)) / 12 -
1094 (3 * ((year
+ 4900 + m12
) / 100)) / 4 + day
- 32075);
1097 /* Macros for accessing DOS format date/time fields */
1098 #define DOS_YEAR(x) (1980 + (x >> 9))
1099 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1100 #define DOS_DAY(x) (x & 0x1f)
1101 #define DOS_HOUR(x) (x >> 11)
1102 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1103 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1104 /* Create a DOS format date/time */
1105 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1106 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1108 /* Roll a date forwards or backwards to correct it */
1109 static HRESULT
VARIANT_RollUdate(UDATE
*lpUd
)
1111 static const BYTE days
[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1112 short iYear
, iMonth
, iDay
, iHour
, iMinute
, iSecond
;
1114 /* interpret values signed */
1115 iYear
= lpUd
->st
.wYear
;
1116 iMonth
= lpUd
->st
.wMonth
;
1117 iDay
= lpUd
->st
.wDay
;
1118 iHour
= lpUd
->st
.wHour
;
1119 iMinute
= lpUd
->st
.wMinute
;
1120 iSecond
= lpUd
->st
.wSecond
;
1122 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay
, iMonth
,
1123 iYear
, iHour
, iMinute
, iSecond
);
1125 if (iYear
> 9999 || iYear
< -9999)
1126 return E_INVALIDARG
; /* Invalid value */
1127 /* Year 0 to 29 are treated as 2000 + year */
1128 if (iYear
>= 0 && iYear
< 30)
1130 /* Remaining years < 100 are treated as 1900 + year */
1131 else if (iYear
>= 30 && iYear
< 100)
1134 iMinute
+= iSecond
/ 60;
1135 iSecond
= iSecond
% 60;
1136 iHour
+= iMinute
/ 60;
1137 iMinute
= iMinute
% 60;
1140 iYear
+= iMonth
/ 12;
1141 iMonth
= iMonth
% 12;
1142 if (iMonth
<=0) {iMonth
+=12; iYear
--;}
1143 while (iDay
> days
[iMonth
])
1145 if (iMonth
== 2 && IsLeapYear(iYear
))
1148 iDay
-= days
[iMonth
];
1150 iYear
+= iMonth
/ 12;
1151 iMonth
= iMonth
% 12;
1156 if (iMonth
<=0) {iMonth
+=12; iYear
--;}
1157 if (iMonth
== 2 && IsLeapYear(iYear
))
1160 iDay
+= days
[iMonth
];
1163 if (iSecond
<0){iSecond
+=60; iMinute
--;}
1164 if (iMinute
<0){iMinute
+=60; iHour
--;}
1165 if (iHour
<0) {iHour
+=24; iDay
--;}
1166 if (iYear
<=0) iYear
+=2000;
1168 lpUd
->st
.wYear
= iYear
;
1169 lpUd
->st
.wMonth
= iMonth
;
1170 lpUd
->st
.wDay
= iDay
;
1171 lpUd
->st
.wHour
= iHour
;
1172 lpUd
->st
.wMinute
= iMinute
;
1173 lpUd
->st
.wSecond
= iSecond
;
1175 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd
->st
.wDay
, lpUd
->st
.wMonth
,
1176 lpUd
->st
.wYear
, lpUd
->st
.wHour
, lpUd
->st
.wMinute
, lpUd
->st
.wSecond
);
1180 /**********************************************************************
1181 * DosDateTimeToVariantTime [OLEAUT32.14]
1183 * Convert a Dos format date and time into variant VT_DATE format.
1186 * wDosDate [I] Dos format date
1187 * wDosTime [I] Dos format time
1188 * pDateOut [O] Destination for VT_DATE format
1191 * Success: TRUE. pDateOut contains the converted time.
1192 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1195 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1196 * - Dos format times are accurate to only 2 second precision.
1197 * - The format of a Dos Date is:
1198 *| Bits Values Meaning
1199 *| ---- ------ -------
1200 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1201 *| the days in the month rolls forward the extra days.
1202 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1203 *| year. 13-15 are invalid.
1204 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1205 * - The format of a Dos Time is:
1206 *| Bits Values Meaning
1207 *| ---- ------ -------
1208 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1209 *| 5-10 0-59 Minutes. 60-63 are invalid.
1210 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1212 INT WINAPI
DosDateTimeToVariantTime(USHORT wDosDate
, USHORT wDosTime
,
1217 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1218 wDosDate
, DOS_YEAR(wDosDate
), DOS_MONTH(wDosDate
), DOS_DAY(wDosDate
),
1219 wDosTime
, DOS_HOUR(wDosTime
), DOS_MINUTE(wDosTime
), DOS_SECOND(wDosTime
),
1222 ud
.st
.wYear
= DOS_YEAR(wDosDate
);
1223 ud
.st
.wMonth
= DOS_MONTH(wDosDate
);
1224 if (ud
.st
.wYear
> 2099 || ud
.st
.wMonth
> 12)
1226 ud
.st
.wDay
= DOS_DAY(wDosDate
);
1227 ud
.st
.wHour
= DOS_HOUR(wDosTime
);
1228 ud
.st
.wMinute
= DOS_MINUTE(wDosTime
);
1229 ud
.st
.wSecond
= DOS_SECOND(wDosTime
);
1230 ud
.st
.wDayOfWeek
= ud
.st
.wMilliseconds
= 0;
1231 if (ud
.st
.wHour
> 23 || ud
.st
.wMinute
> 59 || ud
.st
.wSecond
> 59)
1232 return FALSE
; /* Invalid values in Dos*/
1234 return VarDateFromUdate(&ud
, 0, pDateOut
) == S_OK
;
1237 /**********************************************************************
1238 * VariantTimeToDosDateTime [OLEAUT32.13]
1240 * Convert a variant format date into a Dos format date and time.
1242 * dateIn [I] VT_DATE time format
1243 * pwDosDate [O] Destination for Dos format date
1244 * pwDosTime [O] Destination for Dos format time
1247 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1248 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1251 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1253 INT WINAPI
VariantTimeToDosDateTime(double dateIn
, USHORT
*pwDosDate
, USHORT
*pwDosTime
)
1257 TRACE("(%g,%p,%p)\n", dateIn
, pwDosDate
, pwDosTime
);
1259 if (FAILED(VarUdateFromDate(dateIn
, 0, &ud
)))
1262 if (ud
.st
.wYear
< 1980 || ud
.st
.wYear
> 2099)
1265 *pwDosDate
= DOS_DATE(ud
.st
.wDay
, ud
.st
.wMonth
, ud
.st
.wYear
);
1266 *pwDosTime
= DOS_TIME(ud
.st
.wHour
, ud
.st
.wMinute
, ud
.st
.wSecond
);
1268 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1269 *pwDosDate
, DOS_YEAR(*pwDosDate
), DOS_MONTH(*pwDosDate
), DOS_DAY(*pwDosDate
),
1270 *pwDosTime
, DOS_HOUR(*pwDosTime
), DOS_MINUTE(*pwDosTime
), DOS_SECOND(*pwDosTime
));
1274 /***********************************************************************
1275 * SystemTimeToVariantTime [OLEAUT32.184]
1277 * Convert a System format date and time into variant VT_DATE format.
1280 * lpSt [I] System format date and time
1281 * pDateOut [O] Destination for VT_DATE format date
1284 * Success: TRUE. *pDateOut contains the converted value.
1285 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1287 INT WINAPI
SystemTimeToVariantTime(LPSYSTEMTIME lpSt
, double *pDateOut
)
1291 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt
, lpSt
->wDay
, lpSt
->wMonth
,
1292 lpSt
->wYear
, lpSt
->wHour
, lpSt
->wMinute
, lpSt
->wSecond
, pDateOut
);
1294 if (lpSt
->wMonth
> 12)
1296 if (lpSt
->wDay
> 31)
1298 if ((short)lpSt
->wYear
< 0)
1302 return VarDateFromUdate(&ud
, 0, pDateOut
) == S_OK
;
1305 /***********************************************************************
1306 * VariantTimeToSystemTime [OLEAUT32.185]
1308 * Convert a variant VT_DATE into a System format date and time.
1311 * datein [I] Variant VT_DATE format date
1312 * lpSt [O] Destination for System format date and time
1315 * Success: TRUE. *lpSt contains the converted value.
1316 * Failure: FALSE, if dateIn is too large or small.
1318 INT WINAPI
VariantTimeToSystemTime(double dateIn
, LPSYSTEMTIME lpSt
)
1322 TRACE("(%g,%p)\n", dateIn
, lpSt
);
1324 if (FAILED(VarUdateFromDate(dateIn
, 0, &ud
)))
1331 /***********************************************************************
1332 * VarDateFromUdateEx [OLEAUT32.319]
1334 * Convert an unpacked format date and time to a variant VT_DATE.
1337 * pUdateIn [I] Unpacked format date and time to convert
1338 * lcid [I] Locale identifier for the conversion
1339 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1340 * pDateOut [O] Destination for variant VT_DATE.
1343 * Success: S_OK. *pDateOut contains the converted value.
1344 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1346 HRESULT WINAPI
VarDateFromUdateEx(UDATE
*pUdateIn
, LCID lcid
, ULONG dwFlags
, DATE
*pDateOut
)
1351 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn
,
1352 pUdateIn
->st
.wMonth
, pUdateIn
->st
.wDay
, pUdateIn
->st
.wYear
,
1353 pUdateIn
->st
.wHour
, pUdateIn
->st
.wMinute
, pUdateIn
->st
.wSecond
,
1354 pUdateIn
->st
.wMilliseconds
, pUdateIn
->st
.wDayOfWeek
,
1355 pUdateIn
->wDayOfYear
, lcid
, dwFlags
, pDateOut
);
1357 if (lcid
!= MAKELCID(MAKELANGID(LANG_ENGLISH
, SUBLANG_ENGLISH_US
), SORT_DEFAULT
))
1358 FIXME("lcid possibly not handled, treating as en-us\n");
1359 if (dwFlags
& ~(VAR_TIMEVALUEONLY
|VAR_DATEVALUEONLY
))
1360 FIXME("unsupported flags: %x\n", dwFlags
);
1364 if (dwFlags
& VAR_VALIDDATE
)
1365 WARN("Ignoring VAR_VALIDDATE\n");
1367 if (FAILED(VARIANT_RollUdate(&ud
)))
1368 return E_INVALIDARG
;
1371 if (!(dwFlags
& VAR_TIMEVALUEONLY
))
1372 dateVal
= VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud
.st
.wYear
, ud
.st
.wMonth
, ud
.st
.wDay
));
1374 if ((dwFlags
& VAR_TIMEVALUEONLY
) || !(dwFlags
& VAR_DATEVALUEONLY
))
1376 double dateSign
= (dateVal
< 0.0) ? -1.0 : 1.0;
1379 dateVal
+= ud
.st
.wHour
/ 24.0 * dateSign
;
1380 dateVal
+= ud
.st
.wMinute
/ 1440.0 * dateSign
;
1381 dateVal
+= ud
.st
.wSecond
/ 86400.0 * dateSign
;
1384 TRACE("Returning %g\n", dateVal
);
1385 *pDateOut
= dateVal
;
1389 /***********************************************************************
1390 * VarDateFromUdate [OLEAUT32.330]
1392 * Convert an unpacked format date and time to a variant VT_DATE.
1395 * pUdateIn [I] Unpacked format date and time to convert
1396 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1397 * pDateOut [O] Destination for variant VT_DATE.
1400 * Success: S_OK. *pDateOut contains the converted value.
1401 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1404 * This function uses the United States English locale for the conversion. Use
1405 * VarDateFromUdateEx() for alternate locales.
1407 HRESULT WINAPI
VarDateFromUdate(UDATE
*pUdateIn
, ULONG dwFlags
, DATE
*pDateOut
)
1409 LCID lcid
= MAKELCID(MAKELANGID(LANG_ENGLISH
, SUBLANG_ENGLISH_US
), SORT_DEFAULT
);
1411 return VarDateFromUdateEx(pUdateIn
, lcid
, dwFlags
, pDateOut
);
1414 /***********************************************************************
1415 * VarUdateFromDate [OLEAUT32.331]
1417 * Convert a variant VT_DATE into an unpacked format date and time.
1420 * datein [I] Variant VT_DATE format date
1421 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1422 * lpUdate [O] Destination for unpacked format date and time
1425 * Success: S_OK. *lpUdate contains the converted value.
1426 * Failure: E_INVALIDARG, if dateIn is too large or small.
1428 HRESULT WINAPI
VarUdateFromDate(DATE dateIn
, ULONG dwFlags
, UDATE
*lpUdate
)
1430 /* Cumulative totals of days per month */
1431 static const USHORT cumulativeDays
[] =
1433 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1435 double datePart
, timePart
;
1438 TRACE("(%g,0x%08x,%p)\n", dateIn
, dwFlags
, lpUdate
);
1440 if (dateIn
<= (DATE_MIN
- 1.0) || dateIn
>= (DATE_MAX
+ 1.0))
1441 return E_INVALIDARG
;
1443 datePart
= dateIn
< 0.0 ? ceil(dateIn
) : floor(dateIn
);
1444 /* Compensate for int truncation (always downwards) */
1445 timePart
= fabs(dateIn
- datePart
) + 0.00000000001;
1446 if (timePart
>= 1.0)
1447 timePart
-= 0.00000000001;
1450 julianDays
= VARIANT_JulianFromDate(dateIn
);
1451 VARIANT_DMYFromJulian(julianDays
, &lpUdate
->st
.wYear
, &lpUdate
->st
.wMonth
,
1454 datePart
= (datePart
+ 1.5) / 7.0;
1455 lpUdate
->st
.wDayOfWeek
= (datePart
- floor(datePart
)) * 7;
1456 if (lpUdate
->st
.wDayOfWeek
== 0)
1457 lpUdate
->st
.wDayOfWeek
= 5;
1458 else if (lpUdate
->st
.wDayOfWeek
== 1)
1459 lpUdate
->st
.wDayOfWeek
= 6;
1461 lpUdate
->st
.wDayOfWeek
-= 2;
1463 if (lpUdate
->st
.wMonth
> 2 && IsLeapYear(lpUdate
->st
.wYear
))
1464 lpUdate
->wDayOfYear
= 1; /* After February, in a leap year */
1466 lpUdate
->wDayOfYear
= 0;
1468 lpUdate
->wDayOfYear
+= cumulativeDays
[lpUdate
->st
.wMonth
];
1469 lpUdate
->wDayOfYear
+= lpUdate
->st
.wDay
;
1473 lpUdate
->st
.wHour
= timePart
;
1474 timePart
-= lpUdate
->st
.wHour
;
1476 lpUdate
->st
.wMinute
= timePart
;
1477 timePart
-= lpUdate
->st
.wMinute
;
1479 lpUdate
->st
.wSecond
= timePart
;
1480 timePart
-= lpUdate
->st
.wSecond
;
1481 lpUdate
->st
.wMilliseconds
= 0;
1484 /* Round the milliseconds, adjusting the time/date forward if needed */
1485 if (lpUdate
->st
.wSecond
< 59)
1486 lpUdate
->st
.wSecond
++;
1489 lpUdate
->st
.wSecond
= 0;
1490 if (lpUdate
->st
.wMinute
< 59)
1491 lpUdate
->st
.wMinute
++;
1494 lpUdate
->st
.wMinute
= 0;
1495 if (lpUdate
->st
.wHour
< 23)
1496 lpUdate
->st
.wHour
++;
1499 lpUdate
->st
.wHour
= 0;
1500 /* Roll over a whole day */
1501 if (++lpUdate
->st
.wDay
> 28)
1502 VARIANT_RollUdate(lpUdate
);
1510 #define GET_NUMBER_TEXT(fld,name) \
1512 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1513 WARN("buffer too small for " #fld "\n"); \
1515 if (buff[0]) lpChars->name = buff[0]; \
1516 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1518 /* Get the valid number characters for an lcid */
1519 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS
*lpChars
, LCID lcid
, DWORD dwFlags
)
1521 static const VARIANT_NUMBER_CHARS defaultChars
= { '-','+','.',',','$',0,'.',',' };
1522 static VARIANT_NUMBER_CHARS lastChars
;
1523 static LCID lastLcid
= -1;
1524 static DWORD lastFlags
= 0;
1525 LCTYPE lctype
= dwFlags
& LOCALE_NOUSEROVERRIDE
;
1528 /* To make caching thread-safe, a critical section is needed */
1529 EnterCriticalSection(&cache_cs
);
1531 /* Asking for default locale entries is very expensive: It is a registry
1532 server call. So cache one locally, as Microsoft does it too */
1533 if(lcid
== lastLcid
&& dwFlags
== lastFlags
)
1535 memcpy(lpChars
, &lastChars
, sizeof(defaultChars
));
1536 LeaveCriticalSection(&cache_cs
);
1540 memcpy(lpChars
, &defaultChars
, sizeof(defaultChars
));
1541 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN
, cNegativeSymbol
);
1542 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN
, cPositiveSymbol
);
1543 GET_NUMBER_TEXT(LOCALE_SDECIMAL
, cDecimalPoint
);
1544 GET_NUMBER_TEXT(LOCALE_STHOUSAND
, cDigitSeparator
);
1545 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP
, cCurrencyDecimalPoint
);
1546 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP
, cCurrencyDigitSeparator
);
1548 /* Local currency symbols are often 2 characters */
1549 lpChars
->cCurrencyLocal2
= '\0';
1550 switch(GetLocaleInfoW(lcid
, lctype
|LOCALE_SCURRENCY
, buff
, ARRAY_SIZE(buff
)))
1552 case 3: lpChars
->cCurrencyLocal2
= buff
[1]; /* Fall through */
1553 case 2: lpChars
->cCurrencyLocal
= buff
[0];
1555 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1557 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid
, lpChars
->cCurrencyLocal
,
1558 lpChars
->cCurrencyLocal2
, lpChars
->cCurrencyLocal
, lpChars
->cCurrencyLocal2
);
1560 memcpy(&lastChars
, lpChars
, sizeof(defaultChars
));
1562 lastFlags
= dwFlags
;
1563 LeaveCriticalSection(&cache_cs
);
1566 /* Number Parsing States */
1567 #define B_PROCESSING_EXPONENT 0x1
1568 #define B_NEGATIVE_EXPONENT 0x2
1569 #define B_EXPONENT_START 0x4
1570 #define B_INEXACT_ZEROS 0x8
1571 #define B_LEADING_ZERO 0x10
1572 #define B_PROCESSING_HEX 0x20
1573 #define B_PROCESSING_OCT 0x40
1575 static inline BOOL
is_digit(WCHAR c
)
1577 return '0' <= c
&& c
<= '9';
1580 /**********************************************************************
1581 * VarParseNumFromStr [OLEAUT32.46]
1583 * Parse a string containing a number into a NUMPARSE structure.
1586 * lpszStr [I] String to parse number from
1587 * lcid [I] Locale Id for the conversion
1588 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1589 * pNumprs [I/O] Destination for parsed number
1590 * rgbDig [O] Destination for digits read in
1593 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1595 * Failure: E_INVALIDARG, if any parameter is invalid.
1596 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1598 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1601 * pNumprs must have the following fields set:
1602 * cDig: Set to the size of rgbDig.
1603 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1607 * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1608 * numerals, so this has not been implemented.
1610 HRESULT WINAPI
VarParseNumFromStr(OLECHAR
*lpszStr
, LCID lcid
, ULONG dwFlags
,
1611 NUMPARSE
*pNumprs
, BYTE
*rgbDig
)
1613 VARIANT_NUMBER_CHARS chars
;
1615 DWORD dwState
= B_EXPONENT_START
|B_INEXACT_ZEROS
;
1616 int iMaxDigits
= ARRAY_SIZE(rgbTmp
);
1619 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr
), lcid
, dwFlags
, pNumprs
, rgbDig
);
1621 if (!pNumprs
|| !rgbDig
)
1622 return E_INVALIDARG
;
1624 if (pNumprs
->cDig
< iMaxDigits
)
1625 iMaxDigits
= pNumprs
->cDig
;
1628 pNumprs
->dwOutFlags
= 0;
1629 pNumprs
->cchUsed
= 0;
1630 pNumprs
->nBaseShift
= 0;
1631 pNumprs
->nPwr10
= 0;
1634 return DISP_E_TYPEMISMATCH
;
1636 VARIANT_GetLocalisedNumberChars(&chars
, lcid
, dwFlags
);
1638 /* First consume all the leading symbols and space from the string */
1641 if (pNumprs
->dwInFlags
& NUMPRS_LEADING_WHITE
&& iswspace(*lpszStr
))
1643 pNumprs
->dwOutFlags
|= NUMPRS_LEADING_WHITE
;
1648 } while (iswspace(*lpszStr
));
1650 else if (pNumprs
->dwInFlags
& NUMPRS_LEADING_PLUS
&&
1651 *lpszStr
== chars
.cPositiveSymbol
&&
1652 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_PLUS
))
1654 pNumprs
->dwOutFlags
|= NUMPRS_LEADING_PLUS
;
1658 else if (pNumprs
->dwInFlags
& NUMPRS_LEADING_MINUS
&&
1659 *lpszStr
== chars
.cNegativeSymbol
&&
1660 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_MINUS
))
1662 pNumprs
->dwOutFlags
|= (NUMPRS_LEADING_MINUS
|NUMPRS_NEG
);
1666 else if (pNumprs
->dwInFlags
& NUMPRS_CURRENCY
&&
1667 !(pNumprs
->dwOutFlags
& NUMPRS_CURRENCY
) &&
1668 *lpszStr
== chars
.cCurrencyLocal
&&
1669 (!chars
.cCurrencyLocal2
|| lpszStr
[1] == chars
.cCurrencyLocal2
))
1671 pNumprs
->dwOutFlags
|= NUMPRS_CURRENCY
;
1674 /* Only accept currency characters */
1675 chars
.cDecimalPoint
= chars
.cCurrencyDecimalPoint
;
1676 chars
.cDigitSeparator
= chars
.cCurrencyDigitSeparator
;
1678 else if (pNumprs
->dwInFlags
& NUMPRS_PARENS
&& *lpszStr
== '(' &&
1679 !(pNumprs
->dwOutFlags
& NUMPRS_PARENS
))
1681 pNumprs
->dwOutFlags
|= NUMPRS_PARENS
;
1689 if (!(pNumprs
->dwOutFlags
& NUMPRS_CURRENCY
))
1691 /* Only accept non-currency characters */
1692 chars
.cCurrencyDecimalPoint
= chars
.cDecimalPoint
;
1693 chars
.cCurrencyDigitSeparator
= chars
.cDigitSeparator
;
1696 if ((*lpszStr
== '&' && (*(lpszStr
+1) == 'H' || *(lpszStr
+1) == 'h')) &&
1697 pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1699 dwState
|= B_PROCESSING_HEX
;
1700 pNumprs
->dwOutFlags
|= NUMPRS_HEX_OCT
;
1704 else if ((*lpszStr
== '&' && (*(lpszStr
+1) == 'O' || *(lpszStr
+1) == 'o')) &&
1705 pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1707 dwState
|= B_PROCESSING_OCT
;
1708 pNumprs
->dwOutFlags
|= NUMPRS_HEX_OCT
;
1713 /* Strip Leading zeros */
1714 while (*lpszStr
== '0')
1716 dwState
|= B_LEADING_ZERO
;
1723 if (is_digit(*lpszStr
))
1725 if (dwState
& B_PROCESSING_EXPONENT
)
1727 int exponentSize
= 0;
1728 if (dwState
& B_EXPONENT_START
)
1730 if (!is_digit(*lpszStr
))
1731 break; /* No exponent digits - invalid */
1732 while (*lpszStr
== '0')
1734 /* Skip leading zero's in the exponent */
1740 while (is_digit(*lpszStr
))
1743 exponentSize
+= *lpszStr
- '0';
1747 if (dwState
& B_NEGATIVE_EXPONENT
)
1748 exponentSize
= -exponentSize
;
1749 /* Add the exponent into the powers of 10 */
1750 pNumprs
->nPwr10
+= exponentSize
;
1751 dwState
&= ~(B_PROCESSING_EXPONENT
|B_EXPONENT_START
);
1752 lpszStr
--; /* back up to allow processing of next char */
1756 if ((pNumprs
->cDig
>= iMaxDigits
) && !(dwState
& B_PROCESSING_HEX
)
1757 && !(dwState
& B_PROCESSING_OCT
))
1759 pNumprs
->dwOutFlags
|= NUMPRS_INEXACT
;
1761 if (*lpszStr
!= '0')
1762 dwState
&= ~B_INEXACT_ZEROS
; /* Inexact number with non-trailing zeros */
1764 /* This digit can't be represented, but count it in nPwr10 */
1765 if (pNumprs
->dwOutFlags
& NUMPRS_DECIMAL
)
1772 if ((dwState
& B_PROCESSING_OCT
) && ((*lpszStr
== '8') || (*lpszStr
== '9')))
1775 if (pNumprs
->dwOutFlags
& NUMPRS_DECIMAL
)
1776 pNumprs
->nPwr10
--; /* Count decimal points in nPwr10 */
1778 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- '0';
1784 else if (*lpszStr
== chars
.cDigitSeparator
&& pNumprs
->dwInFlags
& NUMPRS_THOUSANDS
)
1786 pNumprs
->dwOutFlags
|= NUMPRS_THOUSANDS
;
1789 else if (*lpszStr
== chars
.cDecimalPoint
&&
1790 pNumprs
->dwInFlags
& NUMPRS_DECIMAL
&&
1791 !(pNumprs
->dwOutFlags
& (NUMPRS_DECIMAL
|NUMPRS_EXPONENT
)))
1793 pNumprs
->dwOutFlags
|= NUMPRS_DECIMAL
;
1796 /* If we have no digits so far, skip leading zeros */
1799 while (lpszStr
[1] == '0')
1801 dwState
|= B_LEADING_ZERO
;
1808 else if (((*lpszStr
>= 'a' && *lpszStr
<= 'f') ||
1809 (*lpszStr
>= 'A' && *lpszStr
<= 'F')) &&
1810 dwState
& B_PROCESSING_HEX
)
1812 if (pNumprs
->cDig
>= iMaxDigits
)
1814 return DISP_E_OVERFLOW
;
1818 if (*lpszStr
>= 'a')
1819 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- 'a' + 10;
1821 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- 'A' + 10;
1826 else if ((*lpszStr
== 'e' || *lpszStr
== 'E') &&
1827 pNumprs
->dwInFlags
& NUMPRS_EXPONENT
&&
1828 !(pNumprs
->dwOutFlags
& NUMPRS_EXPONENT
))
1830 dwState
|= B_PROCESSING_EXPONENT
;
1831 pNumprs
->dwOutFlags
|= NUMPRS_EXPONENT
;
1834 else if (dwState
& B_PROCESSING_EXPONENT
&& *lpszStr
== chars
.cPositiveSymbol
)
1836 cchUsed
++; /* Ignore positive exponent */
1838 else if (dwState
& B_PROCESSING_EXPONENT
&& *lpszStr
== chars
.cNegativeSymbol
)
1840 dwState
|= B_NEGATIVE_EXPONENT
;
1844 break; /* Stop at an unrecognised character */
1849 if (!pNumprs
->cDig
&& dwState
& B_LEADING_ZERO
)
1851 /* Ensure a 0 on its own gets stored */
1856 if (pNumprs
->dwOutFlags
& NUMPRS_EXPONENT
&& dwState
& B_PROCESSING_EXPONENT
)
1858 pNumprs
->cchUsed
= cchUsed
;
1859 WARN("didn't completely parse exponent\n");
1860 return DISP_E_TYPEMISMATCH
; /* Failed to completely parse the exponent */
1863 if (pNumprs
->dwOutFlags
& NUMPRS_INEXACT
)
1865 if (dwState
& B_INEXACT_ZEROS
)
1866 pNumprs
->dwOutFlags
&= ~NUMPRS_INEXACT
; /* All zeros doesn't set NUMPRS_INEXACT */
1867 } else if(pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1869 /* copy all of the digits into the output digit buffer */
1870 /* this is exactly what windows does although it also returns */
1871 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1872 memcpy(rgbDig
, rgbTmp
, pNumprs
->cDig
* sizeof(BYTE
));
1874 if (dwState
& B_PROCESSING_HEX
) {
1875 /* hex numbers have always the same format */
1877 pNumprs
->nBaseShift
=4;
1879 if (dwState
& B_PROCESSING_OCT
) {
1880 /* oct numbers have always the same format */
1882 pNumprs
->nBaseShift
=3;
1884 while (pNumprs
->cDig
> 1 && !rgbTmp
[pNumprs
->cDig
- 1])
1893 /* Remove trailing zeros from the last (whole number or decimal) part */
1894 while (pNumprs
->cDig
> 1 && !rgbTmp
[pNumprs
->cDig
- 1])
1901 if (pNumprs
->cDig
<= iMaxDigits
)
1902 pNumprs
->dwOutFlags
&= ~NUMPRS_INEXACT
; /* Ignore stripped zeros for NUMPRS_INEXACT */
1904 pNumprs
->cDig
= iMaxDigits
; /* Only return iMaxDigits worth of digits */
1906 /* Copy the digits we processed into rgbDig */
1907 memcpy(rgbDig
, rgbTmp
, pNumprs
->cDig
* sizeof(BYTE
));
1909 /* Consume any trailing symbols and space */
1912 if ((pNumprs
->dwInFlags
& NUMPRS_TRAILING_WHITE
) && iswspace(*lpszStr
))
1914 pNumprs
->dwOutFlags
|= NUMPRS_TRAILING_WHITE
;
1919 } while (iswspace(*lpszStr
));
1921 else if (pNumprs
->dwInFlags
& NUMPRS_TRAILING_PLUS
&&
1922 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_PLUS
) &&
1923 *lpszStr
== chars
.cPositiveSymbol
)
1925 pNumprs
->dwOutFlags
|= NUMPRS_TRAILING_PLUS
;
1929 else if (pNumprs
->dwInFlags
& NUMPRS_TRAILING_MINUS
&&
1930 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_MINUS
) &&
1931 *lpszStr
== chars
.cNegativeSymbol
)
1933 pNumprs
->dwOutFlags
|= (NUMPRS_TRAILING_MINUS
|NUMPRS_NEG
);
1937 else if (pNumprs
->dwInFlags
& NUMPRS_PARENS
&& *lpszStr
== ')' &&
1938 pNumprs
->dwOutFlags
& NUMPRS_PARENS
)
1942 pNumprs
->dwOutFlags
|= NUMPRS_NEG
;
1948 if (pNumprs
->dwOutFlags
& NUMPRS_PARENS
&& !(pNumprs
->dwOutFlags
& NUMPRS_NEG
))
1950 pNumprs
->cchUsed
= cchUsed
;
1951 return DISP_E_TYPEMISMATCH
; /* Opening parenthesis not matched */
1954 if (pNumprs
->dwInFlags
& NUMPRS_USE_ALL
&& *lpszStr
!= '\0')
1955 return DISP_E_TYPEMISMATCH
; /* Not all chars were consumed */
1958 return DISP_E_TYPEMISMATCH
; /* No Number found */
1960 pNumprs
->cchUsed
= cchUsed
;
1964 /* VTBIT flags indicating an integer value */
1965 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1966 /* VTBIT flags indicating a real number value */
1967 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1969 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1970 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1971 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1972 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1974 /**********************************************************************
1975 * VarNumFromParseNum [OLEAUT32.47]
1977 * Convert a NUMPARSE structure into a numeric Variant type.
1980 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1981 * rgbDig [I] Source for the numbers digits
1982 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1983 * pVarDst [O] Destination for the converted Variant value.
1986 * Success: S_OK. pVarDst contains the converted value.
1987 * Failure: E_INVALIDARG, if any parameter is invalid.
1988 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1991 * - The smallest favoured type present in dwVtBits that can represent the
1992 * number in pNumprs without losing precision is used.
1993 * - Signed types are preferred over unsigned types of the same size.
1994 * - Preferred types in order are: integer, float, double, currency then decimal.
1995 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1996 * for details of the rounding method.
1997 * - pVarDst is not cleared before the result is stored in it.
1998 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
1999 * design?): If some other VTBIT's for integers are specified together
2000 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
2001 * the number to the smallest requested integer truncating this way the
2002 * number. Wine doesn't implement this "feature" (yet?).
2004 HRESULT WINAPI
VarNumFromParseNum(NUMPARSE
*pNumprs
, BYTE
*rgbDig
,
2005 ULONG dwVtBits
, VARIANT
*pVarDst
)
2007 /* Scale factors and limits for double arithmetic */
2008 static const double dblMultipliers
[11] = {
2009 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2010 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2012 static const double dblMinimums
[11] = {
2013 R8_MIN
, R8_MIN
*10.0, R8_MIN
*100.0, R8_MIN
*1000.0, R8_MIN
*10000.0,
2014 R8_MIN
*100000.0, R8_MIN
*1000000.0, R8_MIN
*10000000.0,
2015 R8_MIN
*100000000.0, R8_MIN
*1000000000.0, R8_MIN
*10000000000.0
2017 static const double dblMaximums
[11] = {
2018 R8_MAX
, R8_MAX
/10.0, R8_MAX
/100.0, R8_MAX
/1000.0, R8_MAX
/10000.0,
2019 R8_MAX
/100000.0, R8_MAX
/1000000.0, R8_MAX
/10000000.0,
2020 R8_MAX
/100000000.0, R8_MAX
/1000000000.0, R8_MAX
/10000000000.0
2023 int wholeNumberDigits
, fractionalDigits
, divisor10
= 0, multiplier10
= 0;
2025 TRACE("(%p,%p,0x%x,%p)\n", pNumprs
, rgbDig
, dwVtBits
, pVarDst
);
2027 if (pNumprs
->nBaseShift
)
2029 /* nBaseShift indicates a hex or octal number */
2034 /* Convert the hex or octal number string into a UI64 */
2035 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2037 if (ul64
> ((UI8_MAX
>>pNumprs
->nBaseShift
) - rgbDig
[i
]))
2039 TRACE("Overflow multiplying digits\n");
2040 return DISP_E_OVERFLOW
;
2042 ul64
= (ul64
<<pNumprs
->nBaseShift
) + rgbDig
[i
];
2045 /* also make a negative representation */
2048 /* Try signed and unsigned types in size order */
2049 if (dwVtBits
& VTBIT_I1
&& FITS_AS_I1(ul64
))
2051 V_VT(pVarDst
) = VT_I1
;
2052 V_I1(pVarDst
) = ul64
;
2055 else if (dwVtBits
& VTBIT_UI1
&& FITS_AS_I1(ul64
))
2057 V_VT(pVarDst
) = VT_UI1
;
2058 V_UI1(pVarDst
) = ul64
;
2061 else if (dwVtBits
& VTBIT_I2
&& FITS_AS_I2(ul64
))
2063 V_VT(pVarDst
) = VT_I2
;
2064 V_I2(pVarDst
) = ul64
;
2067 else if (dwVtBits
& VTBIT_UI2
&& FITS_AS_I2(ul64
))
2069 V_VT(pVarDst
) = VT_UI2
;
2070 V_UI2(pVarDst
) = ul64
;
2073 else if (dwVtBits
& VTBIT_I4
&& FITS_AS_I4(ul64
))
2075 V_VT(pVarDst
) = VT_I4
;
2076 V_I4(pVarDst
) = ul64
;
2079 else if (dwVtBits
& VTBIT_UI4
&& FITS_AS_I4(ul64
))
2081 V_VT(pVarDst
) = VT_UI4
;
2082 V_UI4(pVarDst
) = ul64
;
2085 else if (dwVtBits
& VTBIT_I8
&& ((ul64
<= I8_MAX
)||(l64
>=I8_MIN
)))
2087 V_VT(pVarDst
) = VT_I8
;
2088 V_I8(pVarDst
) = ul64
;
2091 else if (dwVtBits
& VTBIT_UI8
)
2093 V_VT(pVarDst
) = VT_UI8
;
2094 V_UI8(pVarDst
) = ul64
;
2097 else if ((dwVtBits
& VTBIT_DECIMAL
) == VTBIT_DECIMAL
)
2099 V_VT(pVarDst
) = VT_DECIMAL
;
2100 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_POS
,0);
2101 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2102 DEC_LO64(&V_DECIMAL(pVarDst
)) = ul64
;
2105 else if (dwVtBits
& VTBIT_R4
&& ((ul64
<= I4_MAX
)||(l64
>= I4_MIN
)))
2107 V_VT(pVarDst
) = VT_R4
;
2109 V_R4(pVarDst
) = ul64
;
2111 V_R4(pVarDst
) = l64
;
2114 else if (dwVtBits
& VTBIT_R8
&& ((ul64
<= I4_MAX
)||(l64
>= I4_MIN
)))
2116 V_VT(pVarDst
) = VT_R8
;
2118 V_R8(pVarDst
) = ul64
;
2120 V_R8(pVarDst
) = l64
;
2124 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits
, wine_dbgstr_longlong(ul64
));
2125 return DISP_E_OVERFLOW
;
2128 /* Count the number of relevant fractional and whole digits stored,
2129 * And compute the divisor/multiplier to scale the number by.
2131 if (pNumprs
->nPwr10
< 0)
2133 if (-pNumprs
->nPwr10
>= pNumprs
->cDig
)
2135 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2136 wholeNumberDigits
= 0;
2137 fractionalDigits
= pNumprs
->cDig
;
2138 divisor10
= -pNumprs
->nPwr10
;
2142 /* An exactly represented real number e.g. 1.024 */
2143 wholeNumberDigits
= pNumprs
->cDig
+ pNumprs
->nPwr10
;
2144 fractionalDigits
= pNumprs
->cDig
- wholeNumberDigits
;
2145 divisor10
= pNumprs
->cDig
- wholeNumberDigits
;
2148 else if (pNumprs
->nPwr10
== 0)
2150 /* An exactly represented whole number e.g. 1024 */
2151 wholeNumberDigits
= pNumprs
->cDig
;
2152 fractionalDigits
= 0;
2154 else /* pNumprs->nPwr10 > 0 */
2156 /* A whole number followed by nPwr10 0's e.g. 102400 */
2157 wholeNumberDigits
= pNumprs
->cDig
;
2158 fractionalDigits
= 0;
2159 multiplier10
= pNumprs
->nPwr10
;
2162 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2163 pNumprs
->cDig
, pNumprs
->nPwr10
, wholeNumberDigits
, fractionalDigits
,
2164 multiplier10
, divisor10
);
2166 if (dwVtBits
& (INTEGER_VTBITS
|VTBIT_DECIMAL
) &&
2167 (!fractionalDigits
|| !(dwVtBits
& (REAL_VTBITS
|VTBIT_DECIMAL
))))
2169 /* We have one or more integer output choices, and either:
2170 * 1) An integer input value, or
2171 * 2) A real number input value but no floating output choices.
2172 * Alternately, we have a DECIMAL output available and an integer input.
2174 * So, place the integer value into pVarDst, using the smallest type
2175 * possible and preferring signed over unsigned types.
2177 BOOL bOverflow
= FALSE
, bNegative
;
2181 /* Convert the integer part of the number into a UI8 */
2182 for (i
= 0; i
< wholeNumberDigits
; i
++)
2184 if (ul64
> UI8_MAX
/ 10 || (ul64
== UI8_MAX
/ 10 && rgbDig
[i
] > UI8_MAX
% 10))
2186 TRACE("Overflow multiplying digits\n");
2190 ul64
= ul64
* 10 + rgbDig
[i
];
2193 /* Account for the scale of the number */
2194 if (!bOverflow
&& multiplier10
)
2196 for (i
= 0; i
< multiplier10
; i
++)
2198 if (ul64
> (UI8_MAX
/ 10))
2200 TRACE("Overflow scaling number\n");
2208 /* If we have any fractional digits, round the value.
2209 * Note we don't have to do this if divisor10 is < 1,
2210 * because this means the fractional part must be < 0.5
2212 if (!bOverflow
&& fractionalDigits
&& divisor10
> 0)
2214 const BYTE
* fracDig
= rgbDig
+ wholeNumberDigits
;
2215 BOOL bAdjust
= FALSE
;
2217 TRACE("first decimal value is %d\n", *fracDig
);
2220 bAdjust
= TRUE
; /* > 0.5 */
2221 else if (*fracDig
== 5)
2223 for (i
= 1; i
< fractionalDigits
; i
++)
2227 bAdjust
= TRUE
; /* > 0.5 */
2231 /* If exactly 0.5, round only odd values */
2232 if (i
== fractionalDigits
&& (ul64
& 1))
2238 if (ul64
== UI8_MAX
)
2240 TRACE("Overflow after rounding\n");
2247 /* Zero is not a negative number */
2248 bNegative
= pNumprs
->dwOutFlags
& NUMPRS_NEG
&& ul64
;
2250 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64
), bNegative
);
2252 /* For negative integers, try the signed types in size order */
2253 if (!bOverflow
&& bNegative
)
2255 if (dwVtBits
& (VTBIT_I1
|VTBIT_I2
|VTBIT_I4
|VTBIT_I8
))
2257 if (dwVtBits
& VTBIT_I1
&& ul64
<= -I1_MIN
)
2259 V_VT(pVarDst
) = VT_I1
;
2260 V_I1(pVarDst
) = -ul64
;
2263 else if (dwVtBits
& VTBIT_I2
&& ul64
<= -I2_MIN
)
2265 V_VT(pVarDst
) = VT_I2
;
2266 V_I2(pVarDst
) = -ul64
;
2269 else if (dwVtBits
& VTBIT_I4
&& ul64
<= -((LONGLONG
)I4_MIN
))
2271 V_VT(pVarDst
) = VT_I4
;
2272 V_I4(pVarDst
) = -ul64
;
2275 else if (dwVtBits
& VTBIT_I8
&& ul64
<= (ULONGLONG
)I8_MAX
+ 1)
2277 V_VT(pVarDst
) = VT_I8
;
2278 V_I8(pVarDst
) = -ul64
;
2281 else if ((dwVtBits
& (REAL_VTBITS
|VTBIT_DECIMAL
)) == VTBIT_DECIMAL
)
2283 /* Decimal is only output choice left - fast path */
2284 V_VT(pVarDst
) = VT_DECIMAL
;
2285 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_NEG
,0);
2286 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2287 DEC_LO64(&V_DECIMAL(pVarDst
)) = -ul64
;
2292 else if (!bOverflow
)
2294 /* For positive integers, try signed then unsigned types in size order */
2295 if (dwVtBits
& VTBIT_I1
&& ul64
<= I1_MAX
)
2297 V_VT(pVarDst
) = VT_I1
;
2298 V_I1(pVarDst
) = ul64
;
2301 else if (dwVtBits
& VTBIT_UI1
&& ul64
<= UI1_MAX
)
2303 V_VT(pVarDst
) = VT_UI1
;
2304 V_UI1(pVarDst
) = ul64
;
2307 else if (dwVtBits
& VTBIT_I2
&& ul64
<= I2_MAX
)
2309 V_VT(pVarDst
) = VT_I2
;
2310 V_I2(pVarDst
) = ul64
;
2313 else if (dwVtBits
& VTBIT_UI2
&& ul64
<= UI2_MAX
)
2315 V_VT(pVarDst
) = VT_UI2
;
2316 V_UI2(pVarDst
) = ul64
;
2319 else if (dwVtBits
& VTBIT_I4
&& ul64
<= I4_MAX
)
2321 V_VT(pVarDst
) = VT_I4
;
2322 V_I4(pVarDst
) = ul64
;
2325 else if (dwVtBits
& VTBIT_UI4
&& ul64
<= UI4_MAX
)
2327 V_VT(pVarDst
) = VT_UI4
;
2328 V_UI4(pVarDst
) = ul64
;
2331 else if (dwVtBits
& VTBIT_I8
&& ul64
<= I8_MAX
)
2333 V_VT(pVarDst
) = VT_I8
;
2334 V_I8(pVarDst
) = ul64
;
2337 else if (dwVtBits
& VTBIT_UI8
)
2339 V_VT(pVarDst
) = VT_UI8
;
2340 V_UI8(pVarDst
) = ul64
;
2343 else if ((dwVtBits
& (REAL_VTBITS
|VTBIT_DECIMAL
)) == VTBIT_DECIMAL
)
2345 /* Decimal is only output choice left - fast path */
2346 V_VT(pVarDst
) = VT_DECIMAL
;
2347 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_POS
,0);
2348 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2349 DEC_LO64(&V_DECIMAL(pVarDst
)) = ul64
;
2355 if (dwVtBits
& REAL_VTBITS
)
2357 /* Try to put the number into a float or real */
2358 BOOL bOverflow
= FALSE
, bNegative
= pNumprs
->dwOutFlags
& NUMPRS_NEG
;
2362 /* Convert the number into a double */
2363 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2364 whole
= whole
* 10.0 + rgbDig
[i
];
2366 TRACE("Whole double value is %16.16g\n", whole
);
2368 /* Account for the scale */
2369 while (multiplier10
> 10)
2371 if (whole
> dblMaximums
[10])
2373 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
);
2377 whole
= whole
* dblMultipliers
[10];
2380 if (multiplier10
&& !bOverflow
)
2382 if (whole
> dblMaximums
[multiplier10
])
2384 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
);
2388 whole
= whole
* dblMultipliers
[multiplier10
];
2392 TRACE("Scaled double value is %16.16g\n", whole
);
2394 while (divisor10
> 10 && !bOverflow
)
2396 if (whole
< dblMinimums
[10] && whole
!= 0)
2398 whole
= 0; /* ignore underflow */
2402 whole
= whole
/ dblMultipliers
[10];
2405 if (divisor10
&& !bOverflow
)
2407 if (whole
< dblMinimums
[divisor10
] && whole
!= 0)
2409 whole
= 0; /* ignore underflow */
2413 whole
= whole
/ dblMultipliers
[divisor10
];
2416 TRACE("Final double value is %16.16g\n", whole
);
2418 if (dwVtBits
& VTBIT_R4
&&
2419 ((whole
<= R4_MAX
&& whole
>= R4_MIN
) || whole
== 0.0))
2421 TRACE("Set R4 to final value\n");
2422 V_VT(pVarDst
) = VT_R4
; /* Fits into a float */
2423 V_R4(pVarDst
) = pNumprs
->dwOutFlags
& NUMPRS_NEG
? -whole
: whole
;
2427 if (dwVtBits
& VTBIT_R8
)
2429 TRACE("Set R8 to final value\n");
2430 V_VT(pVarDst
) = VT_R8
; /* Fits into a double */
2431 V_R8(pVarDst
) = pNumprs
->dwOutFlags
& NUMPRS_NEG
? -whole
: whole
;
2435 if (dwVtBits
& VTBIT_CY
)
2437 if (SUCCEEDED(VarCyFromR8(bNegative
? -whole
: whole
, &V_CY(pVarDst
))))
2439 V_VT(pVarDst
) = VT_CY
; /* Fits into a currency */
2440 TRACE("Set CY to final value\n");
2443 TRACE("Value Overflows CY\n");
2447 if (dwVtBits
& VTBIT_DECIMAL
)
2452 DECIMAL
* pDec
= &V_DECIMAL(pVarDst
);
2454 DECIMAL_SETZERO(*pDec
);
2457 if (pNumprs
->dwOutFlags
& NUMPRS_NEG
)
2458 DEC_SIGN(pDec
) = DECIMAL_NEG
;
2460 DEC_SIGN(pDec
) = DECIMAL_POS
;
2462 /* Factor the significant digits */
2463 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2465 tmp
= (ULONG64
)DEC_LO32(pDec
) * 10 + rgbDig
[i
];
2466 carry
= (ULONG
)(tmp
>> 32);
2467 DEC_LO32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2468 tmp
= (ULONG64
)DEC_MID32(pDec
) * 10 + carry
;
2469 carry
= (ULONG
)(tmp
>> 32);
2470 DEC_MID32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2471 tmp
= (ULONG64
)DEC_HI32(pDec
) * 10 + carry
;
2472 DEC_HI32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2474 if (tmp
>> 32 & UI4_MAX
)
2476 VarNumFromParseNum_DecOverflow
:
2477 TRACE("Overflow\n");
2478 DEC_LO32(pDec
) = DEC_MID32(pDec
) = DEC_HI32(pDec
) = UI4_MAX
;
2479 return DISP_E_OVERFLOW
;
2483 /* Account for the scale of the number */
2484 while (multiplier10
> 0)
2486 tmp
= (ULONG64
)DEC_LO32(pDec
) * 10;
2487 carry
= (ULONG
)(tmp
>> 32);
2488 DEC_LO32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2489 tmp
= (ULONG64
)DEC_MID32(pDec
) * 10 + carry
;
2490 carry
= (ULONG
)(tmp
>> 32);
2491 DEC_MID32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2492 tmp
= (ULONG64
)DEC_HI32(pDec
) * 10 + carry
;
2493 DEC_HI32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2495 if (tmp
>> 32 & UI4_MAX
)
2496 goto VarNumFromParseNum_DecOverflow
;
2499 DEC_SCALE(pDec
) = divisor10
;
2501 V_VT(pVarDst
) = VT_DECIMAL
;
2504 return DISP_E_OVERFLOW
; /* No more output choices */
2507 /**********************************************************************
2508 * VarCat [OLEAUT32.318]
2510 * Concatenates one variant onto another.
2513 * left [I] First variant
2514 * right [I] Second variant
2515 * result [O] Result variant
2519 * Failure: An HRESULT error code indicating the error.
2521 HRESULT WINAPI
VarCat(LPVARIANT left
, LPVARIANT right
, LPVARIANT out
)
2523 BSTR left_str
= NULL
, right_str
= NULL
;
2524 VARTYPE leftvt
, rightvt
;
2527 TRACE("%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), out
);
2529 leftvt
= V_VT(left
);
2530 rightvt
= V_VT(right
);
2532 /* when both left and right are NULL the result is NULL */
2533 if (leftvt
== VT_NULL
&& rightvt
== VT_NULL
)
2535 V_VT(out
) = VT_NULL
;
2539 /* There are many special case for errors and return types */
2540 if (leftvt
== VT_VARIANT
&& (rightvt
== VT_ERROR
||
2541 rightvt
== VT_DATE
|| rightvt
== VT_DECIMAL
))
2542 hres
= DISP_E_TYPEMISMATCH
;
2543 else if ((leftvt
== VT_I2
|| leftvt
== VT_I4
||
2544 leftvt
== VT_R4
|| leftvt
== VT_R8
||
2545 leftvt
== VT_CY
|| leftvt
== VT_BOOL
||
2546 leftvt
== VT_BSTR
|| leftvt
== VT_I1
||
2547 leftvt
== VT_UI1
|| leftvt
== VT_UI2
||
2548 leftvt
== VT_UI4
|| leftvt
== VT_I8
||
2549 leftvt
== VT_UI8
|| leftvt
== VT_INT
||
2550 leftvt
== VT_UINT
|| leftvt
== VT_EMPTY
||
2551 leftvt
== VT_NULL
|| leftvt
== VT_DATE
||
2552 leftvt
== VT_DECIMAL
|| leftvt
== VT_DISPATCH
)
2554 (rightvt
== VT_I2
|| rightvt
== VT_I4
||
2555 rightvt
== VT_R4
|| rightvt
== VT_R8
||
2556 rightvt
== VT_CY
|| rightvt
== VT_BOOL
||
2557 rightvt
== VT_BSTR
|| rightvt
== VT_I1
||
2558 rightvt
== VT_UI1
|| rightvt
== VT_UI2
||
2559 rightvt
== VT_UI4
|| rightvt
== VT_I8
||
2560 rightvt
== VT_UI8
|| rightvt
== VT_INT
||
2561 rightvt
== VT_UINT
|| rightvt
== VT_EMPTY
||
2562 rightvt
== VT_NULL
|| rightvt
== VT_DATE
||
2563 rightvt
== VT_DECIMAL
|| rightvt
== VT_DISPATCH
))
2565 else if (rightvt
== VT_ERROR
&& leftvt
< VT_VOID
)
2566 hres
= DISP_E_TYPEMISMATCH
;
2567 else if (leftvt
== VT_ERROR
&& (rightvt
== VT_DATE
||
2568 rightvt
== VT_ERROR
|| rightvt
== VT_DECIMAL
))
2569 hres
= DISP_E_TYPEMISMATCH
;
2570 else if (rightvt
== VT_DATE
|| rightvt
== VT_ERROR
||
2571 rightvt
== VT_DECIMAL
)
2572 hres
= DISP_E_BADVARTYPE
;
2573 else if (leftvt
== VT_ERROR
|| rightvt
== VT_ERROR
)
2574 hres
= DISP_E_TYPEMISMATCH
;
2575 else if (leftvt
== VT_VARIANT
)
2576 hres
= DISP_E_TYPEMISMATCH
;
2577 else if (rightvt
== VT_VARIANT
&& (leftvt
== VT_EMPTY
||
2578 leftvt
== VT_NULL
|| leftvt
== VT_I2
||
2579 leftvt
== VT_I4
|| leftvt
== VT_R4
||
2580 leftvt
== VT_R8
|| leftvt
== VT_CY
||
2581 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
2582 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
2583 leftvt
== VT_I1
|| leftvt
== VT_UI1
||
2584 leftvt
== VT_UI2
|| leftvt
== VT_UI4
||
2585 leftvt
== VT_I8
|| leftvt
== VT_UI8
||
2586 leftvt
== VT_INT
|| leftvt
== VT_UINT
))
2587 hres
= DISP_E_TYPEMISMATCH
;
2589 hres
= DISP_E_BADVARTYPE
;
2591 /* if result type is not S_OK, then no need to go further */
2594 V_VT(out
) = VT_EMPTY
;
2598 if (leftvt
== VT_BSTR
)
2599 left_str
= V_BSTR(left
);
2602 VARIANT converted
, *tmp
= left
;
2604 VariantInit(&converted
);
2605 if(leftvt
== VT_DISPATCH
)
2607 hres
= VARIANT_FetchDispatchValue(left
, &converted
);
2614 hres
= VariantChangeTypeEx(&converted
, tmp
, 0, VARIANT_ALPHABOOL
|VARIANT_LOCALBOOL
, VT_BSTR
);
2615 if (SUCCEEDED(hres
))
2616 left_str
= V_BSTR(&converted
);
2617 else if (hres
!= DISP_E_TYPEMISMATCH
)
2619 VariantClear(&converted
);
2624 if (rightvt
== VT_BSTR
)
2625 right_str
= V_BSTR(right
);
2628 VARIANT converted
, *tmp
= right
;
2630 VariantInit(&converted
);
2631 if(rightvt
== VT_DISPATCH
)
2633 hres
= VARIANT_FetchDispatchValue(right
, &converted
);
2640 hres
= VariantChangeTypeEx(&converted
, tmp
, 0, VARIANT_ALPHABOOL
|VARIANT_LOCALBOOL
, VT_BSTR
);
2641 if (SUCCEEDED(hres
))
2642 right_str
= V_BSTR(&converted
);
2643 else if (hres
!= DISP_E_TYPEMISMATCH
)
2645 VariantClear(&converted
);
2651 V_VT(out
) = VT_BSTR
;
2652 hres
= VarBstrCat(left_str
, right_str
, &V_BSTR(out
));
2655 if(V_VT(left
) != VT_BSTR
)
2656 SysFreeString(left_str
);
2657 if(V_VT(right
) != VT_BSTR
)
2658 SysFreeString(right_str
);
2663 /* Wrapper around VariantChangeTypeEx() which permits changing a
2664 variant with VT_RESERVED flag set. Needed by VarCmp. */
2665 static HRESULT
_VarChangeTypeExWrap (VARIANTARG
* pvargDest
,
2666 VARIANTARG
* pvargSrc
, LCID lcid
, USHORT wFlags
, VARTYPE vt
)
2668 VARIANTARG vtmpsrc
= *pvargSrc
;
2670 V_VT(&vtmpsrc
) &= ~VT_RESERVED
;
2671 return VariantChangeTypeEx(pvargDest
,&vtmpsrc
,lcid
,wFlags
,vt
);
2674 /**********************************************************************
2675 * VarCmp [OLEAUT32.176]
2677 * Compare two variants.
2680 * left [I] First variant
2681 * right [I] Second variant
2682 * lcid [I] LCID (locale identifier) for the comparison
2683 * flags [I] Flags to be used in the comparison:
2684 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2685 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2688 * VARCMP_LT: left variant is less than right variant.
2689 * VARCMP_EQ: input variants are equal.
2690 * VARCMP_GT: left variant is greater than right variant.
2691 * VARCMP_NULL: either one of the input variants is NULL.
2692 * Failure: An HRESULT error code indicating the error.
2695 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2696 * UI8 and UINT as input variants. INT is accepted only as left variant.
2698 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2699 * an ERROR variant will trigger an error.
2701 * Both input variants can have VT_RESERVED flag set which is ignored
2702 * unless one and only one of the variants is a BSTR and the other one
2703 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2704 * different meaning:
2705 * - BSTR and other: BSTR is always greater than the other variant.
2706 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2707 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2708 * comparison will take place else the BSTR is always greater.
2709 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2710 * variant is ignored and the return value depends only on the sign
2711 * of the BSTR if it is a number else the BSTR is always greater. A
2712 * positive BSTR is greater, a negative one is smaller than the other
2716 * VarBstrCmp for the lcid and flags usage.
2718 HRESULT WINAPI
VarCmp(LPVARIANT left
, LPVARIANT right
, LCID lcid
, DWORD flags
)
2720 VARTYPE lvt
, rvt
, vt
;
2725 TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left
), debugstr_variant(right
), lcid
, flags
);
2727 lvt
= V_VT(left
) & VT_TYPEMASK
;
2728 rvt
= V_VT(right
) & VT_TYPEMASK
;
2729 xmask
= (1 << lvt
) | (1 << rvt
);
2731 /* If we have any flag set except VT_RESERVED bail out.
2732 Same for the left input variant type > VT_INT and for the
2733 right input variant type > VT_I8. Yes, VT_INT is only supported
2734 as left variant. Go figure */
2735 if (((V_VT(left
) | V_VT(right
)) & ~VT_TYPEMASK
& ~VT_RESERVED
) ||
2736 lvt
> VT_INT
|| rvt
> VT_I8
) {
2737 return DISP_E_BADVARTYPE
;
2740 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2741 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2742 if (rvt
== VT_INT
|| xmask
& (VTBIT_I1
| VTBIT_UI2
| VTBIT_UI4
| VTBIT_UI8
|
2743 VTBIT_DISPATCH
| VTBIT_VARIANT
| VTBIT_UNKNOWN
| VTBIT_15
))
2744 return DISP_E_TYPEMISMATCH
;
2746 /* If both variants are VT_ERROR return VARCMP_EQ */
2747 if (xmask
== VTBIT_ERROR
)
2749 else if (xmask
& VTBIT_ERROR
)
2750 return DISP_E_TYPEMISMATCH
;
2752 if (xmask
& VTBIT_NULL
)
2758 /* Two BSTRs, ignore VT_RESERVED */
2759 if (xmask
== VTBIT_BSTR
)
2760 return VarBstrCmp(V_BSTR(left
), V_BSTR(right
), lcid
, flags
);
2762 /* A BSTR and another variant; we have to take care of VT_RESERVED */
2763 if (xmask
& VTBIT_BSTR
) {
2764 VARIANT
*bstrv
, *nonbv
;
2768 /* Swap the variants so the BSTR is always on the left */
2769 if (lvt
== VT_BSTR
) {
2780 /* BSTR and EMPTY: ignore VT_RESERVED */
2781 if (nonbvt
== VT_EMPTY
)
2782 rc
= (!V_BSTR(bstrv
) || !*V_BSTR(bstrv
)) ? VARCMP_EQ
: VARCMP_GT
;
2784 VARTYPE breserv
= V_VT(bstrv
) & ~VT_TYPEMASK
;
2785 VARTYPE nreserv
= V_VT(nonbv
) & ~VT_TYPEMASK
;
2787 if (!breserv
&& !nreserv
)
2788 /* No VT_RESERVED set ==> BSTR always greater */
2790 else if (breserv
&& !nreserv
) {
2791 /* BSTR has VT_RESERVED set. Do a string comparison */
2792 rc
= VariantChangeTypeEx(&rv
,nonbv
,lcid
,0,VT_BSTR
);
2795 rc
= VarBstrCmp(V_BSTR(bstrv
), V_BSTR(&rv
), lcid
, flags
);
2797 } else if (V_BSTR(bstrv
) && *V_BSTR(bstrv
)) {
2798 /* Non NULL nor empty BSTR */
2799 /* If the BSTR is not a number the BSTR is greater */
2800 rc
= _VarChangeTypeExWrap(&lv
,bstrv
,lcid
,0,VT_R8
);
2803 else if (breserv
&& nreserv
)
2804 /* FIXME: This is strange: with both VT_RESERVED set it
2805 looks like the result depends only on the sign of
2807 rc
= (V_R8(&lv
) >= 0) ? VARCMP_GT
: VARCMP_LT
;
2809 /* Numeric comparison, will be handled below.
2810 VARCMP_NULL used only to break out. */
2815 /* Empty or NULL BSTR */
2818 /* Fixup the return code if we swapped left and right */
2820 if (rc
== VARCMP_GT
)
2822 else if (rc
== VARCMP_LT
)
2825 if (rc
!= VARCMP_NULL
)
2829 if (xmask
& VTBIT_DECIMAL
)
2831 else if (xmask
& VTBIT_BSTR
)
2833 else if (xmask
& VTBIT_R4
)
2835 else if (xmask
& (VTBIT_R8
| VTBIT_DATE
))
2837 else if (xmask
& VTBIT_CY
)
2843 /* Coerce the variants */
2844 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2845 if (rc
== DISP_E_OVERFLOW
&& vt
!= VT_R8
) {
2846 /* Overflow, change to R8 */
2848 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2852 rc
= _VarChangeTypeExWrap(&rv
,right
,lcid
,0,vt
);
2853 if (rc
== DISP_E_OVERFLOW
&& vt
!= VT_R8
) {
2854 /* Overflow, change to R8 */
2856 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2859 rc
= _VarChangeTypeExWrap(&rv
,right
,lcid
,0,vt
);
2864 #define _VARCMP(a,b) \
2865 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2869 return VarCyCmp(V_CY(&lv
), V_CY(&rv
));
2871 return VarDecCmp(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
));
2873 return _VARCMP(V_I8(&lv
), V_I8(&rv
));
2875 return _VARCMP(V_R4(&lv
), V_R4(&rv
));
2877 return _VARCMP(V_R8(&lv
), V_R8(&rv
));
2879 /* We should never get here */
2885 /**********************************************************************
2886 * VarAnd [OLEAUT32.142]
2888 * Computes the logical AND of two variants.
2891 * left [I] First variant
2892 * right [I] Second variant
2893 * result [O] Result variant
2897 * Failure: An HRESULT error code indicating the error.
2899 HRESULT WINAPI
VarAnd(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
2901 HRESULT hres
= S_OK
;
2902 VARTYPE resvt
= VT_EMPTY
;
2903 VARTYPE leftvt
,rightvt
;
2904 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
2905 VARIANT varLeft
, varRight
;
2906 VARIANT tempLeft
, tempRight
;
2908 VariantInit(&varLeft
);
2909 VariantInit(&varRight
);
2910 VariantInit(&tempLeft
);
2911 VariantInit(&tempRight
);
2913 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
2915 /* Handle VT_DISPATCH by storing and taking address of returned value */
2916 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
2918 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
2919 if (FAILED(hres
)) goto VarAnd_Exit
;
2922 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
2924 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
2925 if (FAILED(hres
)) goto VarAnd_Exit
;
2929 leftvt
= V_VT(left
)&VT_TYPEMASK
;
2930 rightvt
= V_VT(right
)&VT_TYPEMASK
;
2931 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
2932 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
2934 if (leftExtraFlags
!= rightExtraFlags
)
2936 hres
= DISP_E_BADVARTYPE
;
2939 ExtraFlags
= leftExtraFlags
;
2941 /* Native VarAnd always returns an error when using extra
2942 * flags or if the variant combination is I8 and INT.
2944 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
2945 (leftvt
== VT_INT
&& rightvt
== VT_I8
) ||
2948 hres
= DISP_E_BADVARTYPE
;
2952 /* Determine return type */
2953 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
2955 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
2956 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
2957 leftvt
== VT_INT
|| rightvt
== VT_INT
||
2958 leftvt
== VT_R4
|| rightvt
== VT_R4
||
2959 leftvt
== VT_R8
|| rightvt
== VT_R8
||
2960 leftvt
== VT_CY
|| rightvt
== VT_CY
||
2961 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
2962 leftvt
== VT_I1
|| rightvt
== VT_I1
||
2963 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
2964 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
2965 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
2966 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
2968 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
||
2969 leftvt
== VT_I2
|| rightvt
== VT_I2
||
2970 leftvt
== VT_EMPTY
|| rightvt
== VT_EMPTY
)
2971 if ((leftvt
== VT_NULL
&& rightvt
== VT_UI1
) ||
2972 (leftvt
== VT_UI1
&& rightvt
== VT_NULL
) ||
2973 (leftvt
== VT_UI1
&& rightvt
== VT_UI1
))
2977 else if (leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
2978 (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
))
2980 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
||
2981 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
2985 hres
= DISP_E_BADVARTYPE
;
2989 if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
2992 * Special cases for when left variant is VT_NULL
2993 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
2995 if (leftvt
== VT_NULL
)
3000 case VT_I1
: if (V_I1(right
)) resvt
= VT_NULL
; break;
3001 case VT_UI1
: if (V_UI1(right
)) resvt
= VT_NULL
; break;
3002 case VT_I2
: if (V_I2(right
)) resvt
= VT_NULL
; break;
3003 case VT_UI2
: if (V_UI2(right
)) resvt
= VT_NULL
; break;
3004 case VT_I4
: if (V_I4(right
)) resvt
= VT_NULL
; break;
3005 case VT_UI4
: if (V_UI4(right
)) resvt
= VT_NULL
; break;
3006 case VT_I8
: if (V_I8(right
)) resvt
= VT_NULL
; break;
3007 case VT_UI8
: if (V_UI8(right
)) resvt
= VT_NULL
; break;
3008 case VT_INT
: if (V_INT(right
)) resvt
= VT_NULL
; break;
3009 case VT_UINT
: if (V_UINT(right
)) resvt
= VT_NULL
; break;
3010 case VT_BOOL
: if (V_BOOL(right
)) resvt
= VT_NULL
; break;
3011 case VT_R4
: if (V_R4(right
)) resvt
= VT_NULL
; break;
3012 case VT_R8
: if (V_R8(right
)) resvt
= VT_NULL
; break;
3014 if(V_CY(right
).int64
)
3018 if (DEC_HI32(&V_DECIMAL(right
)) ||
3019 DEC_LO64(&V_DECIMAL(right
)))
3023 hres
= VarBoolFromStr(V_BSTR(right
),
3024 LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
3028 V_VT(result
) = VT_NULL
;
3031 V_VT(result
) = VT_BOOL
;
3037 V_VT(result
) = resvt
;
3041 hres
= VariantCopy(&varLeft
, left
);
3042 if (FAILED(hres
)) goto VarAnd_Exit
;
3044 hres
= VariantCopy(&varRight
, right
);
3045 if (FAILED(hres
)) goto VarAnd_Exit
;
3047 if (resvt
== VT_I4
&& V_VT(&varLeft
) == VT_UI4
)
3048 V_VT(&varLeft
) = VT_I4
; /* Don't overflow */
3053 if (V_VT(&varLeft
) == VT_BSTR
&&
3054 FAILED(VarR8FromStr(V_BSTR(&varLeft
),
3055 LOCALE_USER_DEFAULT
, 0, &d
)))
3056 hres
= VariantChangeType(&varLeft
,&varLeft
,
3057 VARIANT_LOCALBOOL
, VT_BOOL
);
3058 if (SUCCEEDED(hres
) && V_VT(&varLeft
) != resvt
)
3059 hres
= VariantChangeType(&varLeft
,&varLeft
,0,resvt
);
3060 if (FAILED(hres
)) goto VarAnd_Exit
;
3063 if (resvt
== VT_I4
&& V_VT(&varRight
) == VT_UI4
)
3064 V_VT(&varRight
) = VT_I4
; /* Don't overflow */
3069 if (V_VT(&varRight
) == VT_BSTR
&&
3070 FAILED(VarR8FromStr(V_BSTR(&varRight
),
3071 LOCALE_USER_DEFAULT
, 0, &d
)))
3072 hres
= VariantChangeType(&varRight
, &varRight
,
3073 VARIANT_LOCALBOOL
, VT_BOOL
);
3074 if (SUCCEEDED(hres
) && V_VT(&varRight
) != resvt
)
3075 hres
= VariantChangeType(&varRight
, &varRight
, 0, resvt
);
3076 if (FAILED(hres
)) goto VarAnd_Exit
;
3079 V_VT(result
) = resvt
;
3083 V_I8(result
) = V_I8(&varLeft
) & V_I8(&varRight
);
3086 V_I4(result
) = V_I4(&varLeft
) & V_I4(&varRight
);
3089 V_I2(result
) = V_I2(&varLeft
) & V_I2(&varRight
);
3092 V_UI1(result
) = V_UI1(&varLeft
) & V_UI1(&varRight
);
3095 V_BOOL(result
) = V_BOOL(&varLeft
) & V_BOOL(&varRight
);
3098 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3103 VariantClear(&varLeft
);
3104 VariantClear(&varRight
);
3105 VariantClear(&tempLeft
);
3106 VariantClear(&tempRight
);
3111 /**********************************************************************
3112 * VarAdd [OLEAUT32.141]
3117 * left [I] First variant
3118 * right [I] Second variant
3119 * result [O] Result variant
3123 * Failure: An HRESULT error code indicating the error.
3126 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3127 * UI8, INT and UINT as input variants.
3129 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3133 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3136 HRESULT WINAPI
VarAdd(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3139 VARTYPE lvt
, rvt
, resvt
, tvt
;
3141 VARIANT tempLeft
, tempRight
;
3144 /* Variant priority for coercion. Sorted from lowest to highest.
3145 VT_ERROR shows an invalid input variant type. */
3146 enum coerceprio
{ vt_EMPTY
, vt_UI1
, vt_I2
, vt_I4
, vt_I8
, vt_BSTR
,vt_R4
,
3147 vt_R8
, vt_CY
, vt_DATE
, vt_DECIMAL
, vt_DISPATCH
, vt_NULL
,
3149 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3150 static const VARTYPE prio2vt
[] = { VT_EMPTY
, VT_UI1
, VT_I2
, VT_I4
, VT_I8
, VT_BSTR
, VT_R4
,
3151 VT_R8
, VT_CY
, VT_DATE
, VT_DECIMAL
, VT_DISPATCH
,
3152 VT_NULL
, VT_ERROR
};
3154 /* Mapping for coercion from input variant to priority of result variant. */
3155 static const VARTYPE coerce
[] = {
3156 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3157 vt_EMPTY
, vt_NULL
, vt_I2
, vt_I4
, vt_R4
,
3158 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3159 vt_R8
, vt_CY
, vt_DATE
, vt_BSTR
, vt_DISPATCH
,
3160 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3161 vt_ERROR
, vt_I2
, vt_ERROR
, vt_ERROR
, vt_DECIMAL
,
3162 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3163 vt_ERROR
, vt_ERROR
, vt_UI1
, vt_ERROR
, vt_ERROR
, vt_I8
3166 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
3171 VariantInit(&tempLeft
);
3172 VariantInit(&tempRight
);
3174 /* Handle VT_DISPATCH by storing and taking address of returned value */
3175 if ((V_VT(left
) & VT_TYPEMASK
) != VT_NULL
&& (V_VT(right
) & VT_TYPEMASK
) != VT_NULL
)
3177 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3179 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3180 if (FAILED(hres
)) goto end
;
3183 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3185 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3186 if (FAILED(hres
)) goto end
;
3191 lvt
= V_VT(left
)&VT_TYPEMASK
;
3192 rvt
= V_VT(right
)&VT_TYPEMASK
;
3194 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3195 Same for any input variant type > VT_I8 */
3196 if (V_VT(left
) & ~VT_TYPEMASK
|| V_VT(right
) & ~VT_TYPEMASK
||
3197 lvt
> VT_I8
|| rvt
> VT_I8
) {
3198 hres
= DISP_E_BADVARTYPE
;
3202 /* Determine the variant type to coerce to. */
3203 if (coerce
[lvt
] > coerce
[rvt
]) {
3204 resvt
= prio2vt
[coerce
[lvt
]];
3205 tvt
= prio2vt
[coerce
[rvt
]];
3207 resvt
= prio2vt
[coerce
[rvt
]];
3208 tvt
= prio2vt
[coerce
[lvt
]];
3211 /* Special cases where the result variant type is defined by both
3212 input variants and not only that with the highest priority */
3213 if (resvt
== VT_BSTR
) {
3214 if (tvt
== VT_EMPTY
|| tvt
== VT_BSTR
)
3219 if (resvt
== VT_R4
&& (tvt
== VT_BSTR
|| tvt
== VT_I8
|| tvt
== VT_I4
))
3222 /* For overflow detection use the biggest compatible type for the
3226 hres
= DISP_E_BADVARTYPE
;
3230 V_VT(result
) = VT_NULL
;
3233 FIXME("cannot handle variant type VT_DISPATCH\n");
3234 hres
= DISP_E_TYPEMISMATCH
;
3253 /* Now coerce the variants */
3254 hres
= VariantChangeType(&lv
, left
, 0, tvt
);
3257 hres
= VariantChangeType(&rv
, right
, 0, tvt
);
3263 V_VT(result
) = resvt
;
3266 hres
= VarDecAdd(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
),
3267 &V_DECIMAL(result
));
3270 hres
= VarCyAdd(V_CY(&lv
), V_CY(&rv
), &V_CY(result
));
3273 /* We do not add those, we concatenate them. */
3274 hres
= VarBstrCat(V_BSTR(&lv
), V_BSTR(&rv
), &V_BSTR(result
));
3277 /* Overflow detection */
3278 r8res
= (double)V_I8(&lv
) + (double)V_I8(&rv
);
3279 if (r8res
> (double)I8_MAX
|| r8res
< (double)I8_MIN
) {
3280 V_VT(result
) = VT_R8
;
3281 V_R8(result
) = r8res
;
3285 V_I8(&tv
) = V_I8(&lv
) + V_I8(&rv
);
3290 /* FIXME: overflow detection */
3291 V_R8(&tv
) = V_R8(&lv
) + V_R8(&rv
);
3294 ERR("We shouldn't get here! tvt = %d!\n", tvt
);
3298 if ((hres
= VariantChangeType(result
, &tv
, 0, resvt
)) != S_OK
) {
3299 /* Overflow! Change to the vartype with the next higher priority.
3300 With one exception: I4 ==> R8 even if it would fit in I8 */
3304 resvt
= prio2vt
[coerce
[resvt
] + 1];
3305 hres
= VariantChangeType(result
, &tv
, 0, resvt
);
3308 hres
= VariantCopy(result
, &tv
);
3312 V_VT(result
) = VT_EMPTY
;
3313 V_I4(result
) = 0; /* No V_EMPTY */
3318 VariantClear(&tempLeft
);
3319 VariantClear(&tempRight
);
3320 TRACE("returning 0x%8x %s\n", hres
, debugstr_variant(result
));
3324 /**********************************************************************
3325 * VarMul [OLEAUT32.156]
3327 * Multiply two variants.
3330 * left [I] First variant
3331 * right [I] Second variant
3332 * result [O] Result variant
3336 * Failure: An HRESULT error code indicating the error.
3339 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3340 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3342 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3346 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3349 HRESULT WINAPI
VarMul(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3352 VARTYPE lvt
, rvt
, resvt
, tvt
;
3354 VARIANT tempLeft
, tempRight
;
3357 /* Variant priority for coercion. Sorted from lowest to highest.
3358 VT_ERROR shows an invalid input variant type. */
3359 enum coerceprio
{ vt_UI1
= 0, vt_I2
, vt_I4
, vt_I8
, vt_CY
, vt_R4
, vt_R8
,
3360 vt_DECIMAL
, vt_NULL
, vt_ERROR
};
3361 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3362 static const VARTYPE prio2vt
[] = { VT_UI1
, VT_I2
, VT_I4
, VT_I8
, VT_CY
, VT_R4
, VT_R8
,
3363 VT_DECIMAL
, VT_NULL
, VT_ERROR
};
3365 /* Mapping for coercion from input variant to priority of result variant. */
3366 static const VARTYPE coerce
[] = {
3367 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3368 vt_UI1
, vt_NULL
, vt_I2
, vt_I4
, vt_R4
,
3369 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3370 vt_R8
, vt_CY
, vt_R8
, vt_R8
, vt_ERROR
,
3371 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3372 vt_ERROR
, vt_I2
, vt_ERROR
, vt_ERROR
, vt_DECIMAL
,
3373 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3374 vt_ERROR
, vt_ERROR
, vt_UI1
, vt_ERROR
, vt_ERROR
, vt_I8
3377 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
3382 VariantInit(&tempLeft
);
3383 VariantInit(&tempRight
);
3385 /* Handle VT_DISPATCH by storing and taking address of returned value */
3386 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3388 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3389 if (FAILED(hres
)) goto end
;
3392 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3394 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3395 if (FAILED(hres
)) goto end
;
3399 lvt
= V_VT(left
)&VT_TYPEMASK
;
3400 rvt
= V_VT(right
)&VT_TYPEMASK
;
3402 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3403 Same for any input variant type > VT_I8 */
3404 if (V_VT(left
) & ~VT_TYPEMASK
|| V_VT(right
) & ~VT_TYPEMASK
||
3405 lvt
> VT_I8
|| rvt
> VT_I8
) {
3406 hres
= DISP_E_BADVARTYPE
;
3410 /* Determine the variant type to coerce to. */
3411 if (coerce
[lvt
] > coerce
[rvt
]) {
3412 resvt
= prio2vt
[coerce
[lvt
]];
3413 tvt
= prio2vt
[coerce
[rvt
]];
3415 resvt
= prio2vt
[coerce
[rvt
]];
3416 tvt
= prio2vt
[coerce
[lvt
]];
3419 /* Special cases where the result variant type is defined by both
3420 input variants and not only that with the highest priority */
3421 if (resvt
== VT_R4
&& (tvt
== VT_CY
|| tvt
== VT_I8
|| tvt
== VT_I4
))
3423 if (lvt
== VT_EMPTY
&& rvt
== VT_EMPTY
)
3426 /* For overflow detection use the biggest compatible type for the
3430 hres
= DISP_E_BADVARTYPE
;
3434 V_VT(result
) = VT_NULL
;
3449 /* Now coerce the variants */
3450 hres
= VariantChangeType(&lv
, left
, 0, tvt
);
3453 hres
= VariantChangeType(&rv
, right
, 0, tvt
);
3460 V_VT(result
) = resvt
;
3463 hres
= VarDecMul(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
),
3464 &V_DECIMAL(result
));
3467 hres
= VarCyMul(V_CY(&lv
), V_CY(&rv
), &V_CY(result
));
3470 /* Overflow detection */
3471 r8res
= (double)V_I8(&lv
) * (double)V_I8(&rv
);
3472 if (r8res
> (double)I8_MAX
|| r8res
< (double)I8_MIN
) {
3473 V_VT(result
) = VT_R8
;
3474 V_R8(result
) = r8res
;
3477 V_I8(&tv
) = V_I8(&lv
) * V_I8(&rv
);
3480 /* FIXME: overflow detection */
3481 V_R8(&tv
) = V_R8(&lv
) * V_R8(&rv
);
3484 ERR("We shouldn't get here! tvt = %d!\n", tvt
);
3488 while ((hres
= VariantChangeType(result
, &tv
, 0, resvt
)) != S_OK
) {
3489 /* Overflow! Change to the vartype with the next higher priority.
3490 With one exception: I4 ==> R8 even if it would fit in I8 */
3494 resvt
= prio2vt
[coerce
[resvt
] + 1];
3497 hres
= VariantCopy(result
, &tv
);
3501 V_VT(result
) = VT_EMPTY
;
3502 V_I4(result
) = 0; /* No V_EMPTY */
3507 VariantClear(&tempLeft
);
3508 VariantClear(&tempRight
);
3509 TRACE("returning 0x%8x %s\n", hres
, debugstr_variant(result
));
3513 /**********************************************************************
3514 * VarDiv [OLEAUT32.143]
3516 * Divides one variant with another.
3519 * left [I] First variant
3520 * right [I] Second variant
3521 * result [O] Result variant
3525 * Failure: An HRESULT error code indicating the error.
3527 HRESULT WINAPI
VarDiv(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3529 HRESULT hres
= S_OK
;
3530 VARTYPE resvt
= VT_EMPTY
;
3531 VARTYPE leftvt
,rightvt
;
3532 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
3534 VARIANT tempLeft
, tempRight
;
3536 VariantInit(&tempLeft
);
3537 VariantInit(&tempRight
);
3541 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
3543 /* Handle VT_DISPATCH by storing and taking address of returned value */
3544 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3546 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3547 if (FAILED(hres
)) goto end
;
3550 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3552 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3553 if (FAILED(hres
)) goto end
;
3557 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3558 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3559 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3560 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3562 if (leftExtraFlags
!= rightExtraFlags
)
3564 hres
= DISP_E_BADVARTYPE
;
3567 ExtraFlags
= leftExtraFlags
;
3569 /* Native VarDiv always returns an error when using extra flags */
3570 if (ExtraFlags
!= 0)
3572 hres
= DISP_E_BADVARTYPE
;
3576 /* Determine return type */
3577 if (rightvt
!= VT_EMPTY
)
3579 if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3581 V_VT(result
) = VT_NULL
;
3585 else if (leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3587 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
||
3588 leftvt
== VT_CY
|| rightvt
== VT_CY
||
3589 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
3590 leftvt
== VT_I4
|| rightvt
== VT_I4
||
3591 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
||
3592 leftvt
== VT_I2
|| rightvt
== VT_I2
||
3593 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3594 leftvt
== VT_R8
|| rightvt
== VT_R8
||
3595 leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
3597 if ((leftvt
== VT_UI1
&& rightvt
== VT_R4
) ||
3598 (leftvt
== VT_R4
&& rightvt
== VT_UI1
))
3600 else if ((leftvt
== VT_R4
&& (rightvt
== VT_BOOL
||
3601 rightvt
== VT_I2
)) || (rightvt
== VT_R4
&&
3602 (leftvt
== VT_BOOL
|| leftvt
== VT_I2
)))
3607 else if (leftvt
== VT_R4
|| rightvt
== VT_R4
)
3610 else if (leftvt
== VT_NULL
)
3612 V_VT(result
) = VT_NULL
;
3618 hres
= DISP_E_BADVARTYPE
;
3622 /* coerce to the result type */
3623 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
3624 if (hres
!= S_OK
) goto end
;
3626 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
3627 if (hres
!= S_OK
) goto end
;
3630 V_VT(result
) = resvt
;
3634 if (V_R4(&lv
) == 0.0 && V_R4(&rv
) == 0.0)
3636 hres
= DISP_E_OVERFLOW
;
3637 V_VT(result
) = VT_EMPTY
;
3639 else if (V_R4(&rv
) == 0.0)
3641 hres
= DISP_E_DIVBYZERO
;
3642 V_VT(result
) = VT_EMPTY
;
3645 V_R4(result
) = V_R4(&lv
) / V_R4(&rv
);
3648 if (V_R8(&lv
) == 0.0 && V_R8(&rv
) == 0.0)
3650 hres
= DISP_E_OVERFLOW
;
3651 V_VT(result
) = VT_EMPTY
;
3653 else if (V_R8(&rv
) == 0.0)
3655 hres
= DISP_E_DIVBYZERO
;
3656 V_VT(result
) = VT_EMPTY
;
3659 V_R8(result
) = V_R8(&lv
) / V_R8(&rv
);
3662 hres
= VarDecDiv(&(V_DECIMAL(&lv
)), &(V_DECIMAL(&rv
)), &(V_DECIMAL(result
)));
3669 VariantClear(&tempLeft
);
3670 VariantClear(&tempRight
);
3671 TRACE("returning 0x%8x %s\n", hres
, debugstr_variant(result
));
3675 /**********************************************************************
3676 * VarSub [OLEAUT32.159]
3678 * Subtract two variants.
3681 * left [I] First variant
3682 * right [I] Second variant
3683 * result [O] Result variant
3687 * Failure: An HRESULT error code indicating the error.
3689 HRESULT WINAPI
VarSub(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3691 HRESULT hres
= S_OK
;
3692 VARTYPE resvt
= VT_EMPTY
;
3693 VARTYPE leftvt
,rightvt
;
3694 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
3696 VARIANT tempLeft
, tempRight
;
3700 VariantInit(&tempLeft
);
3701 VariantInit(&tempRight
);
3703 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
3705 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
&&
3706 (V_VT(left
)&(~VT_TYPEMASK
)) == 0 &&
3707 (V_VT(right
) & VT_TYPEMASK
) != VT_NULL
)
3709 if (NULL
== V_DISPATCH(left
)) {
3710 if ((V_VT(right
) & VT_TYPEMASK
) >= VT_INT_PTR
)
3711 hres
= DISP_E_BADVARTYPE
;
3712 else if ((V_VT(right
) & VT_TYPEMASK
) >= VT_UI8
&&
3713 (V_VT(right
) & VT_TYPEMASK
) < VT_RECORD
)
3714 hres
= DISP_E_BADVARTYPE
;
3715 else switch (V_VT(right
) & VT_TYPEMASK
)
3723 hres
= DISP_E_BADVARTYPE
;
3725 if (FAILED(hres
)) goto end
;
3727 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3728 if (FAILED(hres
)) goto end
;
3731 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
&&
3732 (V_VT(right
)&(~VT_TYPEMASK
)) == 0 &&
3733 (V_VT(left
) & VT_TYPEMASK
) != VT_NULL
)
3735 if (NULL
== V_DISPATCH(right
))
3737 if ((V_VT(left
) & VT_TYPEMASK
) >= VT_INT_PTR
)
3738 hres
= DISP_E_BADVARTYPE
;
3739 else if ((V_VT(left
) & VT_TYPEMASK
) >= VT_UI8
&&
3740 (V_VT(left
) & VT_TYPEMASK
) < VT_RECORD
)
3741 hres
= DISP_E_BADVARTYPE
;
3742 else switch (V_VT(left
) & VT_TYPEMASK
)
3750 hres
= DISP_E_BADVARTYPE
;
3752 if (FAILED(hres
)) goto end
;
3754 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3755 if (FAILED(hres
)) goto end
;
3759 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3760 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3761 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3762 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3764 if (leftExtraFlags
!= rightExtraFlags
)
3766 hres
= DISP_E_BADVARTYPE
;
3769 ExtraFlags
= leftExtraFlags
;
3771 /* determine return type and return code */
3772 /* All extra flags produce errors */
3773 if (ExtraFlags
== (VT_VECTOR
|VT_BYREF
|VT_RESERVED
) ||
3774 ExtraFlags
== (VT_VECTOR
|VT_RESERVED
) ||
3775 ExtraFlags
== (VT_VECTOR
|VT_BYREF
) ||
3776 ExtraFlags
== (VT_BYREF
|VT_RESERVED
) ||
3777 ExtraFlags
== VT_VECTOR
||
3778 ExtraFlags
== VT_BYREF
||
3779 ExtraFlags
== VT_RESERVED
)
3781 hres
= DISP_E_BADVARTYPE
;
3784 else if (ExtraFlags
>= VT_ARRAY
)
3786 hres
= DISP_E_TYPEMISMATCH
;
3789 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3790 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3791 else if (leftvt
== VT_CLSID
|| rightvt
== VT_CLSID
||
3792 leftvt
== VT_VARIANT
|| rightvt
== VT_VARIANT
||
3793 leftvt
== VT_I1
|| rightvt
== VT_I1
||
3794 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
3795 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
3796 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
3797 leftvt
== VT_INT
|| rightvt
== VT_INT
||
3798 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
3799 leftvt
== VT_UNKNOWN
|| rightvt
== VT_UNKNOWN
||
3800 leftvt
== VT_RECORD
|| rightvt
== VT_RECORD
)
3802 if (leftvt
== VT_RECORD
&& rightvt
== VT_I8
)
3803 hres
= DISP_E_TYPEMISMATCH
;
3804 else if (leftvt
< VT_UI1
&& rightvt
== VT_RECORD
)
3805 hres
= DISP_E_TYPEMISMATCH
;
3806 else if (leftvt
>= VT_UI1
&& rightvt
== VT_RECORD
)
3807 hres
= DISP_E_TYPEMISMATCH
;
3808 else if (leftvt
== VT_RECORD
&& rightvt
<= VT_UI1
)
3809 hres
= DISP_E_TYPEMISMATCH
;
3810 else if (leftvt
== VT_RECORD
&& rightvt
> VT_UI1
)
3811 hres
= DISP_E_BADVARTYPE
;
3813 hres
= DISP_E_BADVARTYPE
;
3816 /* The following flags/types are invalid for left variant */
3817 else if (!((leftvt
<= VT_LPWSTR
|| leftvt
== VT_RECORD
||
3818 leftvt
== VT_CLSID
) && leftvt
!= (VARTYPE
)15 /* undefined vt */ &&
3819 (leftvt
< VT_VOID
|| leftvt
> VT_LPWSTR
)))
3821 hres
= DISP_E_BADVARTYPE
;
3824 /* The following flags/types are invalid for right variant */
3825 else if (!((rightvt
<= VT_LPWSTR
|| rightvt
== VT_RECORD
||
3826 rightvt
== VT_CLSID
) && rightvt
!= (VARTYPE
)15 /* undefined vt */ &&
3827 (rightvt
< VT_VOID
|| rightvt
> VT_LPWSTR
)))
3829 hres
= DISP_E_BADVARTYPE
;
3832 else if ((leftvt
== VT_NULL
&& rightvt
== VT_DISPATCH
) ||
3833 (leftvt
== VT_DISPATCH
&& rightvt
== VT_NULL
))
3835 else if (leftvt
== VT_DISPATCH
|| rightvt
== VT_DISPATCH
||
3836 leftvt
== VT_ERROR
|| rightvt
== VT_ERROR
)
3838 hres
= DISP_E_TYPEMISMATCH
;
3841 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3843 else if ((leftvt
== VT_EMPTY
&& rightvt
== VT_BSTR
) ||
3844 (leftvt
== VT_DATE
&& rightvt
== VT_DATE
) ||
3845 (leftvt
== VT_BSTR
&& rightvt
== VT_EMPTY
) ||
3846 (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
))
3848 else if (leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3850 else if (leftvt
== VT_DATE
|| rightvt
== VT_DATE
)
3852 else if (leftvt
== VT_CY
|| rightvt
== VT_CY
)
3854 else if (leftvt
== VT_R8
|| rightvt
== VT_R8
)
3856 else if (leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
3858 else if (leftvt
== VT_R4
|| rightvt
== VT_R4
)
3860 if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
3861 leftvt
== VT_I8
|| rightvt
== VT_I8
)
3866 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
3868 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
)
3870 else if (leftvt
== VT_I2
|| rightvt
== VT_I2
||
3871 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3872 (leftvt
== VT_EMPTY
&& rightvt
== VT_EMPTY
))
3874 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
3878 hres
= DISP_E_TYPEMISMATCH
;
3882 /* coerce to the result type */
3883 if (leftvt
== VT_BSTR
&& rightvt
== VT_DATE
)
3884 hres
= VariantChangeType(&lv
, left
, 0, VT_R8
);
3886 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
3887 if (hres
!= S_OK
) goto end
;
3888 if (leftvt
== VT_DATE
&& rightvt
== VT_BSTR
)
3889 hres
= VariantChangeType(&rv
, right
, 0, VT_R8
);
3891 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
3892 if (hres
!= S_OK
) goto end
;
3895 V_VT(result
) = resvt
;
3901 V_DATE(result
) = V_DATE(&lv
) - V_DATE(&rv
);
3904 hres
= VarCySub(V_CY(&lv
), V_CY(&rv
), &(V_CY(result
)));
3907 V_R4(result
) = V_R4(&lv
) - V_R4(&rv
);
3910 V_I8(result
) = V_I8(&lv
) - V_I8(&rv
);
3913 V_I4(result
) = V_I4(&lv
) - V_I4(&rv
);
3916 V_I2(result
) = V_I2(&lv
) - V_I2(&rv
);
3919 V_UI1(result
) = V_UI2(&lv
) - V_UI1(&rv
);
3922 V_R8(result
) = V_R8(&lv
) - V_R8(&rv
);
3925 hres
= VarDecSub(&(V_DECIMAL(&lv
)), &(V_DECIMAL(&rv
)), &(V_DECIMAL(result
)));
3932 VariantClear(&tempLeft
);
3933 VariantClear(&tempRight
);
3934 TRACE("returning 0x%8x %s\n", hres
, debugstr_variant(result
));
3939 /**********************************************************************
3940 * VarOr [OLEAUT32.157]
3942 * Perform a logical or (OR) operation on two variants.
3945 * pVarLeft [I] First variant
3946 * pVarRight [I] Variant to OR with pVarLeft
3947 * pVarOut [O] Destination for OR result
3950 * Success: S_OK. pVarOut contains the result of the operation with its type
3951 * taken from the table listed under VarXor().
3952 * Failure: An HRESULT error code indicating the error.
3955 * See the Notes section of VarXor() for further information.
3957 HRESULT WINAPI
VarOr(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
3960 VARIANT varLeft
, varRight
, varStr
;
3962 VARIANT tempLeft
, tempRight
;
3964 VariantInit(&tempLeft
);
3965 VariantInit(&tempRight
);
3966 VariantInit(&varLeft
);
3967 VariantInit(&varRight
);
3968 VariantInit(&varStr
);
3970 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft
), debugstr_variant(pVarRight
), pVarOut
);
3972 /* Handle VT_DISPATCH by storing and taking address of returned value */
3973 if ((V_VT(pVarLeft
) & VT_TYPEMASK
) == VT_DISPATCH
)
3975 hRet
= VARIANT_FetchDispatchValue(pVarLeft
, &tempLeft
);
3976 if (FAILED(hRet
)) goto VarOr_Exit
;
3977 pVarLeft
= &tempLeft
;
3979 if ((V_VT(pVarRight
) & VT_TYPEMASK
) == VT_DISPATCH
)
3981 hRet
= VARIANT_FetchDispatchValue(pVarRight
, &tempRight
);
3982 if (FAILED(hRet
)) goto VarOr_Exit
;
3983 pVarRight
= &tempRight
;
3986 if (V_EXTRA_TYPE(pVarLeft
) || V_EXTRA_TYPE(pVarRight
) ||
3987 V_VT(pVarLeft
) == VT_UNKNOWN
|| V_VT(pVarRight
) == VT_UNKNOWN
||
3988 V_VT(pVarLeft
) == VT_DISPATCH
|| V_VT(pVarRight
) == VT_DISPATCH
||
3989 V_VT(pVarLeft
) == VT_RECORD
|| V_VT(pVarRight
) == VT_RECORD
)
3991 hRet
= DISP_E_BADVARTYPE
;
3995 V_VT(&varLeft
) = V_VT(&varRight
) = V_VT(&varStr
) = VT_EMPTY
;
3997 if (V_VT(pVarLeft
) == VT_NULL
|| V_VT(pVarRight
) == VT_NULL
)
3999 /* NULL OR Zero is NULL, NULL OR value is value */
4000 if (V_VT(pVarLeft
) == VT_NULL
)
4001 pVarLeft
= pVarRight
; /* point to the non-NULL var */
4003 V_VT(pVarOut
) = VT_NULL
;
4006 switch (V_VT(pVarLeft
))
4008 case VT_DATE
: case VT_R8
:
4014 if (V_BOOL(pVarLeft
))
4015 *pVarOut
= *pVarLeft
;
4018 case VT_I2
: case VT_UI2
:
4029 if (V_UI1(pVarLeft
))
4030 *pVarOut
= *pVarLeft
;
4038 case VT_I4
: case VT_UI4
: case VT_INT
: case VT_UINT
:
4044 if (V_CY(pVarLeft
).int64
)
4048 case VT_I8
: case VT_UI8
:
4054 if (DEC_HI32(&V_DECIMAL(pVarLeft
)) || DEC_LO64(&V_DECIMAL(pVarLeft
)))
4062 if (!V_BSTR(pVarLeft
))
4064 hRet
= DISP_E_BADVARTYPE
;
4068 hRet
= VarBoolFromStr(V_BSTR(pVarLeft
), LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
4069 if (SUCCEEDED(hRet
) && b
)
4071 V_VT(pVarOut
) = VT_BOOL
;
4072 V_BOOL(pVarOut
) = b
;
4076 case VT_NULL
: case VT_EMPTY
:
4077 V_VT(pVarOut
) = VT_NULL
;
4081 hRet
= DISP_E_BADVARTYPE
;
4086 if (V_VT(pVarLeft
) == VT_EMPTY
|| V_VT(pVarRight
) == VT_EMPTY
)
4088 if (V_VT(pVarLeft
) == VT_EMPTY
)
4089 pVarLeft
= pVarRight
; /* point to the non-EMPTY var */
4092 /* Since one argument is empty (0), OR'ing it with the other simply
4093 * gives the others value (as 0|x => x). So just convert the other
4094 * argument to the required result type.
4096 switch (V_VT(pVarLeft
))
4099 if (!V_BSTR(pVarLeft
))
4101 hRet
= DISP_E_BADVARTYPE
;
4105 hRet
= VariantCopy(&varStr
, pVarLeft
);
4109 hRet
= VariantChangeType(pVarLeft
, pVarLeft
, 0, VT_BOOL
);
4112 /* Fall Through ... */
4113 case VT_EMPTY
: case VT_UI1
: case VT_BOOL
: case VT_I2
:
4114 V_VT(pVarOut
) = VT_I2
;
4116 case VT_DATE
: case VT_CY
: case VT_DECIMAL
: case VT_R4
: case VT_R8
:
4117 case VT_I1
: case VT_UI2
: case VT_I4
: case VT_UI4
:
4118 case VT_INT
: case VT_UINT
: case VT_UI8
:
4119 V_VT(pVarOut
) = VT_I4
;
4122 V_VT(pVarOut
) = VT_I8
;
4125 hRet
= DISP_E_BADVARTYPE
;
4128 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4131 pVarLeft
= &varLeft
;
4132 hRet
= VariantChangeType(pVarOut
, pVarLeft
, 0, V_VT(pVarOut
));
4136 if (V_VT(pVarLeft
) == VT_BOOL
&& V_VT(pVarRight
) == VT_BOOL
)
4138 V_VT(pVarOut
) = VT_BOOL
;
4139 V_BOOL(pVarOut
) = V_BOOL(pVarLeft
) | V_BOOL(pVarRight
);
4144 if (V_VT(pVarLeft
) == VT_UI1
&& V_VT(pVarRight
) == VT_UI1
)
4146 V_VT(pVarOut
) = VT_UI1
;
4147 V_UI1(pVarOut
) = V_UI1(pVarLeft
) | V_UI1(pVarRight
);
4152 if (V_VT(pVarLeft
) == VT_BSTR
)
4154 hRet
= VariantCopy(&varStr
, pVarLeft
);
4158 hRet
= VariantChangeType(pVarLeft
, pVarLeft
, 0, VT_BOOL
);
4163 if (V_VT(pVarLeft
) == VT_BOOL
&&
4164 (V_VT(pVarRight
) == VT_BOOL
|| V_VT(pVarRight
) == VT_BSTR
))
4168 else if ((V_VT(pVarLeft
) == VT_BOOL
|| V_VT(pVarLeft
) == VT_UI1
||
4169 V_VT(pVarLeft
) == VT_I2
|| V_VT(pVarLeft
) == VT_BSTR
) &&
4170 (V_VT(pVarRight
) == VT_BOOL
|| V_VT(pVarRight
) == VT_UI1
||
4171 V_VT(pVarRight
) == VT_I2
|| V_VT(pVarRight
) == VT_BSTR
))
4175 else if (V_VT(pVarLeft
) == VT_I8
|| V_VT(pVarRight
) == VT_I8
)
4177 if (V_VT(pVarLeft
) == VT_INT
|| V_VT(pVarRight
) == VT_INT
)
4179 hRet
= DISP_E_TYPEMISMATCH
;
4185 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4189 hRet
= VariantCopy(&varRight
, pVarRight
);
4193 if (vt
== VT_I4
&& V_VT(&varLeft
) == VT_UI4
)
4194 V_VT(&varLeft
) = VT_I4
; /* Don't overflow */
4199 if (V_VT(&varLeft
) == VT_BSTR
&&
4200 FAILED(VarR8FromStr(V_BSTR(&varLeft
), LOCALE_USER_DEFAULT
, 0, &d
)))
4201 hRet
= VariantChangeType(&varLeft
, &varLeft
, VARIANT_LOCALBOOL
, VT_BOOL
);
4202 if (SUCCEEDED(hRet
) && V_VT(&varLeft
) != vt
)
4203 hRet
= VariantChangeType(&varLeft
, &varLeft
, 0, vt
);
4208 if (vt
== VT_I4
&& V_VT(&varRight
) == VT_UI4
)
4209 V_VT(&varRight
) = VT_I4
; /* Don't overflow */
4214 if (V_VT(&varRight
) == VT_BSTR
&&
4215 FAILED(VarR8FromStr(V_BSTR(&varRight
), LOCALE_USER_DEFAULT
, 0, &d
)))
4216 hRet
= VariantChangeType(&varRight
, &varRight
, VARIANT_LOCALBOOL
, VT_BOOL
);
4217 if (SUCCEEDED(hRet
) && V_VT(&varRight
) != vt
)
4218 hRet
= VariantChangeType(&varRight
, &varRight
, 0, vt
);
4226 V_I8(pVarOut
) = V_I8(&varLeft
) | V_I8(&varRight
);
4228 else if (vt
== VT_I4
)
4230 V_I4(pVarOut
) = V_I4(&varLeft
) | V_I4(&varRight
);
4234 V_I2(pVarOut
) = V_I2(&varLeft
) | V_I2(&varRight
);
4238 VariantClear(&varStr
);
4239 VariantClear(&varLeft
);
4240 VariantClear(&varRight
);
4241 VariantClear(&tempLeft
);
4242 VariantClear(&tempRight
);
4246 /**********************************************************************
4247 * VarAbs [OLEAUT32.168]
4249 * Convert a variant to its absolute value.
4252 * pVarIn [I] Source variant
4253 * pVarOut [O] Destination for converted value
4256 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4257 * Failure: An HRESULT error code indicating the error.
4260 * - This function does not process by-reference variants.
4261 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4262 * according to the following table:
4263 *| Input Type Output Type
4264 *| ---------- -----------
4267 *| (All others) Unchanged
4269 HRESULT WINAPI
VarAbs(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4272 HRESULT hRet
= S_OK
;
4277 TRACE("(%s,%p)\n", debugstr_variant(pVarIn
), pVarOut
);
4279 /* Handle VT_DISPATCH by storing and taking address of returned value */
4280 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4282 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4283 if (FAILED(hRet
)) goto VarAbs_Exit
;
4287 if (V_ISARRAY(pVarIn
) || V_VT(pVarIn
) == VT_UNKNOWN
||
4288 V_VT(pVarIn
) == VT_DISPATCH
|| V_VT(pVarIn
) == VT_RECORD
||
4289 V_VT(pVarIn
) == VT_ERROR
)
4291 hRet
= DISP_E_TYPEMISMATCH
;
4294 *pVarOut
= *pVarIn
; /* Shallow copy the value, and invert it if needed */
4296 #define ABS_CASE(typ,min) \
4297 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4298 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4301 switch (V_VT(pVarIn
))
4303 ABS_CASE(I1
,I1_MIN
);
4305 V_VT(pVarOut
) = VT_I2
;
4306 /* BOOL->I2, Fall through ... */
4307 ABS_CASE(I2
,I2_MIN
);
4309 ABS_CASE(I4
,I4_MIN
);
4310 ABS_CASE(I8
,I8_MIN
);
4311 ABS_CASE(R4
,R4_MIN
);
4313 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
4316 V_VT(pVarOut
) = VT_R8
;
4318 /* Fall through ... */
4320 ABS_CASE(R8
,R8_MIN
);
4322 hRet
= VarCyAbs(V_CY(pVarIn
), & V_CY(pVarOut
));
4325 DEC_SIGN(&V_DECIMAL(pVarOut
)) &= ~DECIMAL_NEG
;
4335 V_VT(pVarOut
) = VT_I2
;
4340 hRet
= DISP_E_BADVARTYPE
;
4344 VariantClear(&temp
);
4348 /**********************************************************************
4349 * VarFix [OLEAUT32.169]
4351 * Truncate a variants value to a whole number.
4354 * pVarIn [I] Source variant
4355 * pVarOut [O] Destination for converted value
4358 * Success: S_OK. pVarOut contains the converted value.
4359 * Failure: An HRESULT error code indicating the error.
4362 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4363 * according to the following table:
4364 *| Input Type Output Type
4365 *| ---------- -----------
4369 *| All Others Unchanged
4370 * - The difference between this function and VarInt() is that VarInt() rounds
4371 * negative numbers away from 0, while this function rounds them towards zero.
4373 HRESULT WINAPI
VarFix(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4375 HRESULT hRet
= S_OK
;
4380 TRACE("(%s,%p)\n", debugstr_variant(pVarIn
), pVarOut
);
4382 /* Handle VT_DISPATCH by storing and taking address of returned value */
4383 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4385 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4386 if (FAILED(hRet
)) goto VarFix_Exit
;
4389 V_VT(pVarOut
) = V_VT(pVarIn
);
4391 switch (V_VT(pVarIn
))
4394 V_UI1(pVarOut
) = V_UI1(pVarIn
);
4397 V_VT(pVarOut
) = VT_I2
;
4400 V_I2(pVarOut
) = V_I2(pVarIn
);
4403 V_I4(pVarOut
) = V_I4(pVarIn
);
4406 V_I8(pVarOut
) = V_I8(pVarIn
);
4409 if (V_R4(pVarIn
) < 0.0f
)
4410 V_R4(pVarOut
) = (float)ceil(V_R4(pVarIn
));
4412 V_R4(pVarOut
) = (float)floor(V_R4(pVarIn
));
4415 V_VT(pVarOut
) = VT_R8
;
4416 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4421 if (V_R8(pVarIn
) < 0.0)
4422 V_R8(pVarOut
) = ceil(V_R8(pVarIn
));
4424 V_R8(pVarOut
) = floor(V_R8(pVarIn
));
4427 hRet
= VarCyFix(V_CY(pVarIn
), &V_CY(pVarOut
));
4430 hRet
= VarDecFix(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4433 V_VT(pVarOut
) = VT_I2
;
4440 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
4441 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
4442 hRet
= DISP_E_BADVARTYPE
;
4444 hRet
= DISP_E_TYPEMISMATCH
;
4448 V_VT(pVarOut
) = VT_EMPTY
;
4449 VariantClear(&temp
);
4454 /**********************************************************************
4455 * VarInt [OLEAUT32.172]
4457 * Truncate a variants value to a whole number.
4460 * pVarIn [I] Source variant
4461 * pVarOut [O] Destination for converted value
4464 * Success: S_OK. pVarOut contains the converted value.
4465 * Failure: An HRESULT error code indicating the error.
4468 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4469 * according to the following table:
4470 *| Input Type Output Type
4471 *| ---------- -----------
4475 *| All Others Unchanged
4476 * - The difference between this function and VarFix() is that VarFix() rounds
4477 * negative numbers towards 0, while this function rounds them away from zero.
4479 HRESULT WINAPI
VarInt(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4481 HRESULT hRet
= S_OK
;
4486 TRACE("(%s,%p)\n", debugstr_variant(pVarIn
), pVarOut
);
4488 /* Handle VT_DISPATCH by storing and taking address of returned value */
4489 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4491 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4492 if (FAILED(hRet
)) goto VarInt_Exit
;
4495 V_VT(pVarOut
) = V_VT(pVarIn
);
4497 switch (V_VT(pVarIn
))
4500 V_R4(pVarOut
) = (float)floor(V_R4(pVarIn
));
4503 V_VT(pVarOut
) = VT_R8
;
4504 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4509 V_R8(pVarOut
) = floor(V_R8(pVarIn
));
4512 hRet
= VarCyInt(V_CY(pVarIn
), &V_CY(pVarOut
));
4515 hRet
= VarDecInt(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4518 hRet
= VarFix(pVarIn
, pVarOut
);
4521 VariantClear(&temp
);
4526 /**********************************************************************
4527 * VarXor [OLEAUT32.167]
4529 * Perform a logical exclusive-or (XOR) operation on two variants.
4532 * pVarLeft [I] First variant
4533 * pVarRight [I] Variant to XOR with pVarLeft
4534 * pVarOut [O] Destination for XOR result
4537 * Success: S_OK. pVarOut contains the result of the operation with its type
4538 * taken from the table below).
4539 * Failure: An HRESULT error code indicating the error.
4542 * - Neither pVarLeft or pVarRight are modified by this function.
4543 * - This function does not process by-reference variants.
4544 * - Input types of VT_BSTR may be numeric strings or boolean text.
4545 * - The type of result stored in pVarOut depends on the types of pVarLeft
4546 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4547 * or VT_NULL if the function succeeds.
4548 * - Type promotion is inconsistent and as a result certain combinations of
4549 * values will return DISP_E_OVERFLOW even when they could be represented.
4550 * This matches the behaviour of native oleaut32.
4552 HRESULT WINAPI
VarXor(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4555 VARIANT varLeft
, varRight
;
4556 VARIANT tempLeft
, tempRight
;
4560 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft
), debugstr_variant(pVarRight
), pVarOut
);
4562 if (V_EXTRA_TYPE(pVarLeft
) || V_EXTRA_TYPE(pVarRight
) ||
4563 V_VT(pVarLeft
) > VT_UINT
|| V_VT(pVarRight
) > VT_UINT
||
4564 V_VT(pVarLeft
) == VT_VARIANT
|| V_VT(pVarRight
) == VT_VARIANT
||
4565 V_VT(pVarLeft
) == VT_UNKNOWN
|| V_VT(pVarRight
) == VT_UNKNOWN
||
4566 V_VT(pVarLeft
) == (VARTYPE
)15 || V_VT(pVarRight
) == (VARTYPE
)15 ||
4567 V_VT(pVarLeft
) == VT_ERROR
|| V_VT(pVarRight
) == VT_ERROR
)
4568 return DISP_E_BADVARTYPE
;
4570 if (V_VT(pVarLeft
) == VT_NULL
|| V_VT(pVarRight
) == VT_NULL
)
4572 /* NULL XOR anything valid is NULL */
4573 V_VT(pVarOut
) = VT_NULL
;
4577 VariantInit(&tempLeft
);
4578 VariantInit(&tempRight
);
4580 /* Handle VT_DISPATCH by storing and taking address of returned value */
4581 if ((V_VT(pVarLeft
) & VT_TYPEMASK
) == VT_DISPATCH
)
4583 hRet
= VARIANT_FetchDispatchValue(pVarLeft
, &tempLeft
);
4584 if (FAILED(hRet
)) goto VarXor_Exit
;
4585 pVarLeft
= &tempLeft
;
4587 if ((V_VT(pVarRight
) & VT_TYPEMASK
) == VT_DISPATCH
)
4589 hRet
= VARIANT_FetchDispatchValue(pVarRight
, &tempRight
);
4590 if (FAILED(hRet
)) goto VarXor_Exit
;
4591 pVarRight
= &tempRight
;
4594 /* Copy our inputs so we don't disturb anything */
4595 V_VT(&varLeft
) = V_VT(&varRight
) = VT_EMPTY
;
4597 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4601 hRet
= VariantCopy(&varRight
, pVarRight
);
4605 /* Try any strings first as numbers, then as VT_BOOL */
4606 if (V_VT(&varLeft
) == VT_BSTR
)
4608 hRet
= VarR8FromStr(V_BSTR(&varLeft
), LOCALE_USER_DEFAULT
, 0, &d
);
4609 hRet
= VariantChangeType(&varLeft
, &varLeft
, VARIANT_LOCALBOOL
,
4610 FAILED(hRet
) ? VT_BOOL
: VT_I4
);
4615 if (V_VT(&varRight
) == VT_BSTR
)
4617 hRet
= VarR8FromStr(V_BSTR(&varRight
), LOCALE_USER_DEFAULT
, 0, &d
);
4618 hRet
= VariantChangeType(&varRight
, &varRight
, VARIANT_LOCALBOOL
,
4619 FAILED(hRet
) ? VT_BOOL
: VT_I4
);
4624 /* Determine the result type */
4625 if (V_VT(&varLeft
) == VT_I8
|| V_VT(&varRight
) == VT_I8
)
4627 if (V_VT(pVarLeft
) == VT_INT
|| V_VT(pVarRight
) == VT_INT
)
4629 hRet
= DISP_E_TYPEMISMATCH
;
4636 switch ((V_VT(&varLeft
) << 16) | V_VT(&varRight
))
4638 case (VT_BOOL
<< 16) | VT_BOOL
:
4641 case (VT_UI1
<< 16) | VT_UI1
:
4644 case (VT_EMPTY
<< 16) | VT_EMPTY
:
4645 case (VT_EMPTY
<< 16) | VT_UI1
:
4646 case (VT_EMPTY
<< 16) | VT_I2
:
4647 case (VT_EMPTY
<< 16) | VT_BOOL
:
4648 case (VT_UI1
<< 16) | VT_EMPTY
:
4649 case (VT_UI1
<< 16) | VT_I2
:
4650 case (VT_UI1
<< 16) | VT_BOOL
:
4651 case (VT_I2
<< 16) | VT_EMPTY
:
4652 case (VT_I2
<< 16) | VT_UI1
:
4653 case (VT_I2
<< 16) | VT_I2
:
4654 case (VT_I2
<< 16) | VT_BOOL
:
4655 case (VT_BOOL
<< 16) | VT_EMPTY
:
4656 case (VT_BOOL
<< 16) | VT_UI1
:
4657 case (VT_BOOL
<< 16) | VT_I2
:
4666 /* VT_UI4 does not overflow */
4669 if (V_VT(&varLeft
) == VT_UI4
)
4670 V_VT(&varLeft
) = VT_I4
;
4671 if (V_VT(&varRight
) == VT_UI4
)
4672 V_VT(&varRight
) = VT_I4
;
4675 /* Convert our input copies to the result type */
4676 if (V_VT(&varLeft
) != vt
)
4677 hRet
= VariantChangeType(&varLeft
, &varLeft
, 0, vt
);
4681 if (V_VT(&varRight
) != vt
)
4682 hRet
= VariantChangeType(&varRight
, &varRight
, 0, vt
);
4688 /* Calculate the result */
4692 V_I8(pVarOut
) = V_I8(&varLeft
) ^ V_I8(&varRight
);
4695 V_I4(pVarOut
) = V_I4(&varLeft
) ^ V_I4(&varRight
);
4699 V_I2(pVarOut
) = V_I2(&varLeft
) ^ V_I2(&varRight
);
4702 V_UI1(pVarOut
) = V_UI1(&varLeft
) ^ V_UI1(&varRight
);
4707 VariantClear(&varLeft
);
4708 VariantClear(&varRight
);
4709 VariantClear(&tempLeft
);
4710 VariantClear(&tempRight
);
4714 /**********************************************************************
4715 * VarEqv [OLEAUT32.172]
4717 * Determine if two variants contain the same value.
4720 * pVarLeft [I] First variant to compare
4721 * pVarRight [I] Variant to compare to pVarLeft
4722 * pVarOut [O] Destination for comparison result
4725 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4726 * if equivalent or non-zero otherwise.
4727 * Failure: An HRESULT error code indicating the error.
4730 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4733 HRESULT WINAPI
VarEqv(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4737 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft
), debugstr_variant(pVarRight
), pVarOut
);
4739 hRet
= VarXor(pVarLeft
, pVarRight
, pVarOut
);
4740 if (SUCCEEDED(hRet
))
4742 if (V_VT(pVarOut
) == VT_I8
)
4743 V_I8(pVarOut
) = ~V_I8(pVarOut
);
4745 V_UI4(pVarOut
) = ~V_UI4(pVarOut
);
4750 /**********************************************************************
4751 * VarNeg [OLEAUT32.173]
4753 * Negate the value of a variant.
4756 * pVarIn [I] Source variant
4757 * pVarOut [O] Destination for converted value
4760 * Success: S_OK. pVarOut contains the converted value.
4761 * Failure: An HRESULT error code indicating the error.
4764 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4765 * according to the following table:
4766 *| Input Type Output Type
4767 *| ---------- -----------
4772 *| All Others Unchanged (unless promoted)
4773 * - Where the negated value of a variant does not fit in its base type, the type
4774 * is promoted according to the following table:
4775 *| Input Type Promoted To
4776 *| ---------- -----------
4780 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4781 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4782 * for types which are not valid. Since this is in contravention of the
4783 * meaning of those error codes and unlikely to be relied on by applications,
4784 * this implementation returns errors consistent with the other high level
4785 * variant math functions.
4787 HRESULT WINAPI
VarNeg(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4789 HRESULT hRet
= S_OK
;
4794 TRACE("(%s,%p)\n", debugstr_variant(pVarIn
), pVarOut
);
4796 /* Handle VT_DISPATCH by storing and taking address of returned value */
4797 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4799 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4800 if (FAILED(hRet
)) goto VarNeg_Exit
;
4803 V_VT(pVarOut
) = V_VT(pVarIn
);
4805 switch (V_VT(pVarIn
))
4808 V_VT(pVarOut
) = VT_I2
;
4809 V_I2(pVarOut
) = -V_UI1(pVarIn
);
4812 V_VT(pVarOut
) = VT_I2
;
4815 if (V_I2(pVarIn
) == I2_MIN
)
4817 V_VT(pVarOut
) = VT_I4
;
4818 V_I4(pVarOut
) = -(int)V_I2(pVarIn
);
4821 V_I2(pVarOut
) = -V_I2(pVarIn
);
4824 if (V_I4(pVarIn
) == I4_MIN
)
4826 V_VT(pVarOut
) = VT_R8
;
4827 V_R8(pVarOut
) = -(double)V_I4(pVarIn
);
4830 V_I4(pVarOut
) = -V_I4(pVarIn
);
4833 if (V_I8(pVarIn
) == I8_MIN
)
4835 V_VT(pVarOut
) = VT_R8
;
4836 hRet
= VarR8FromI8(V_I8(pVarIn
), &V_R8(pVarOut
));
4837 V_R8(pVarOut
) *= -1.0;
4840 V_I8(pVarOut
) = -V_I8(pVarIn
);
4843 V_R4(pVarOut
) = -V_R4(pVarIn
);
4847 V_R8(pVarOut
) = -V_R8(pVarIn
);
4850 hRet
= VarCyNeg(V_CY(pVarIn
), &V_CY(pVarOut
));
4853 hRet
= VarDecNeg(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4856 V_VT(pVarOut
) = VT_R8
;
4857 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4858 V_R8(pVarOut
) = -V_R8(pVarOut
);
4861 V_VT(pVarOut
) = VT_I2
;
4868 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
4869 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
4870 hRet
= DISP_E_BADVARTYPE
;
4872 hRet
= DISP_E_TYPEMISMATCH
;
4876 V_VT(pVarOut
) = VT_EMPTY
;
4877 VariantClear(&temp
);
4882 /**********************************************************************
4883 * VarNot [OLEAUT32.174]
4885 * Perform a not operation on a variant.
4888 * pVarIn [I] Source variant
4889 * pVarOut [O] Destination for converted value
4892 * Success: S_OK. pVarOut contains the converted value.
4893 * Failure: An HRESULT error code indicating the error.
4896 * - Strictly speaking, this function performs a bitwise ones complement
4897 * on the variants value (after possibly converting to VT_I4, see below).
4898 * This only behaves like a boolean not operation if the value in
4899 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4900 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4901 * before calling this function.
4902 * - This function does not process by-reference variants.
4903 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4904 * according to the following table:
4905 *| Input Type Output Type
4906 *| ---------- -----------
4913 *| (All others) Unchanged
4915 HRESULT WINAPI
VarNot(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4918 HRESULT hRet
= S_OK
;
4923 TRACE("(%s,%p)\n", debugstr_variant(pVarIn
), pVarOut
);
4925 /* Handle VT_DISPATCH by storing and taking address of returned value */
4926 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4928 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4929 if (FAILED(hRet
)) goto VarNot_Exit
;
4933 if (V_VT(pVarIn
) == VT_BSTR
)
4935 V_VT(&varIn
) = VT_R8
;
4936 hRet
= VarR8FromStr( V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
) );
4939 V_VT(&varIn
) = VT_BOOL
;
4940 hRet
= VarBoolFromStr( V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &V_BOOL(&varIn
) );
4942 if (FAILED(hRet
)) goto VarNot_Exit
;
4946 V_VT(pVarOut
) = V_VT(pVarIn
);
4948 switch (V_VT(pVarIn
))
4951 V_I4(pVarOut
) = ~V_I1(pVarIn
);
4952 V_VT(pVarOut
) = VT_I4
;
4954 case VT_UI1
: V_UI1(pVarOut
) = ~V_UI1(pVarIn
); break;
4956 case VT_I2
: V_I2(pVarOut
) = ~V_I2(pVarIn
); break;
4958 V_I4(pVarOut
) = ~V_UI2(pVarIn
);
4959 V_VT(pVarOut
) = VT_I4
;
4962 hRet
= VarI4FromDec(&V_DECIMAL(pVarIn
), &V_I4(&varIn
));
4966 /* Fall through ... */
4968 V_VT(pVarOut
) = VT_I4
;
4969 /* Fall through ... */
4970 case VT_I4
: V_I4(pVarOut
) = ~V_I4(pVarIn
); break;
4973 V_I4(pVarOut
) = ~V_UI4(pVarIn
);
4974 V_VT(pVarOut
) = VT_I4
;
4976 case VT_I8
: V_I8(pVarOut
) = ~V_I8(pVarIn
); break;
4978 V_I4(pVarOut
) = ~V_UI8(pVarIn
);
4979 V_VT(pVarOut
) = VT_I4
;
4982 hRet
= VarI4FromR4(V_R4(pVarIn
), &V_I4(pVarOut
));
4983 V_I4(pVarOut
) = ~V_I4(pVarOut
);
4984 V_VT(pVarOut
) = VT_I4
;
4988 hRet
= VarI4FromR8(V_R8(pVarIn
), &V_I4(pVarOut
));
4989 V_I4(pVarOut
) = ~V_I4(pVarOut
);
4990 V_VT(pVarOut
) = VT_I4
;
4993 hRet
= VarI4FromCy(V_CY(pVarIn
), &V_I4(pVarOut
));
4994 V_I4(pVarOut
) = ~V_I4(pVarOut
);
4995 V_VT(pVarOut
) = VT_I4
;
4999 V_VT(pVarOut
) = VT_I2
;
5005 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
5006 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
5007 hRet
= DISP_E_BADVARTYPE
;
5009 hRet
= DISP_E_TYPEMISMATCH
;
5013 V_VT(pVarOut
) = VT_EMPTY
;
5014 VariantClear(&temp
);
5019 /**********************************************************************
5020 * VarRound [OLEAUT32.175]
5022 * Perform a round operation on a variant.
5025 * pVarIn [I] Source variant
5026 * deci [I] Number of decimals to round to
5027 * pVarOut [O] Destination for converted value
5030 * Success: S_OK. pVarOut contains the converted value.
5031 * Failure: An HRESULT error code indicating the error.
5034 * - Floating point values are rounded to the desired number of decimals.
5035 * - Some integer types are just copied to the return variable.
5036 * - Some other integer types are not handled and fail.
5038 HRESULT WINAPI
VarRound(LPVARIANT pVarIn
, int deci
, LPVARIANT pVarOut
)
5041 HRESULT hRet
= S_OK
;
5047 TRACE("(%s,%d)\n", debugstr_variant(pVarIn
), deci
);
5049 /* Handle VT_DISPATCH by storing and taking address of returned value */
5050 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
5052 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
5053 if (FAILED(hRet
)) goto VarRound_Exit
;
5057 switch (V_VT(pVarIn
))
5059 /* cases that fail on windows */
5064 hRet
= DISP_E_BADVARTYPE
;
5067 /* cases just copying in to out */
5069 V_VT(pVarOut
) = V_VT(pVarIn
);
5070 V_UI1(pVarOut
) = V_UI1(pVarIn
);
5073 V_VT(pVarOut
) = V_VT(pVarIn
);
5074 V_I2(pVarOut
) = V_I2(pVarIn
);
5077 V_VT(pVarOut
) = V_VT(pVarIn
);
5078 V_I4(pVarOut
) = V_I4(pVarIn
);
5081 V_VT(pVarOut
) = V_VT(pVarIn
);
5082 /* value unchanged */
5085 /* cases that change type */
5087 V_VT(pVarOut
) = VT_I2
;
5091 V_VT(pVarOut
) = VT_I2
;
5092 V_I2(pVarOut
) = V_BOOL(pVarIn
);
5095 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
5100 /* Fall through ... */
5102 /* cases we need to do math */
5104 if (V_R8(pVarIn
)>0) {
5105 V_R8(pVarOut
)=floor(V_R8(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5107 V_R8(pVarOut
)=ceil(V_R8(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5109 V_VT(pVarOut
) = V_VT(pVarIn
);
5112 if (V_R4(pVarIn
)>0) {
5113 V_R4(pVarOut
)=floor(V_R4(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5115 V_R4(pVarOut
)=ceil(V_R4(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5117 V_VT(pVarOut
) = V_VT(pVarIn
);
5120 if (V_DATE(pVarIn
)>0) {
5121 V_DATE(pVarOut
)=floor(V_DATE(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5123 V_DATE(pVarOut
)=ceil(V_DATE(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5125 V_VT(pVarOut
) = V_VT(pVarIn
);
5131 factor
=pow(10, 4-deci
);
5133 if (V_CY(pVarIn
).int64
>0) {
5134 V_CY(pVarOut
).int64
=floor(V_CY(pVarIn
).int64
/factor
)*factor
;
5136 V_CY(pVarOut
).int64
=ceil(V_CY(pVarIn
).int64
/factor
)*factor
;
5138 V_VT(pVarOut
) = V_VT(pVarIn
);
5144 hRet
= VarR8FromDec(&V_DECIMAL(pVarIn
), &dbl
);
5149 dbl
= floor(dbl
*pow(10,deci
)+0.5);
5151 dbl
= ceil(dbl
*pow(10,deci
)-0.5);
5153 V_VT(pVarOut
)=VT_DECIMAL
;
5154 hRet
= VarDecFromR8(dbl
, &V_DECIMAL(pVarOut
));
5157 /* cases we don't know yet */
5159 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5160 V_VT(pVarIn
) & VT_TYPEMASK
, deci
);
5161 hRet
= DISP_E_BADVARTYPE
;
5165 V_VT(pVarOut
) = VT_EMPTY
;
5166 VariantClear(&temp
);
5168 TRACE("returning 0x%08x %s\n", hRet
, debugstr_variant(pVarOut
));
5172 /**********************************************************************
5173 * VarIdiv [OLEAUT32.153]
5175 * Converts input variants to integers and divides them.
5178 * left [I] Left hand variant
5179 * right [I] Right hand variant
5180 * result [O] Destination for quotient
5183 * Success: S_OK. result contains the quotient.
5184 * Failure: An HRESULT error code indicating the error.
5187 * If either expression is null, null is returned, as per MSDN
5189 HRESULT WINAPI
VarIdiv(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5191 HRESULT hres
= S_OK
;
5192 VARTYPE resvt
= VT_EMPTY
;
5193 VARTYPE leftvt
,rightvt
;
5194 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5196 VARIANT tempLeft
, tempRight
;
5198 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
5202 VariantInit(&tempLeft
);
5203 VariantInit(&tempRight
);
5205 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5206 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5207 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5208 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5210 if (leftExtraFlags
!= rightExtraFlags
)
5212 hres
= DISP_E_BADVARTYPE
;
5215 ExtraFlags
= leftExtraFlags
;
5217 /* Native VarIdiv always returns an error when using extra
5218 * flags or if the variant combination is I8 and INT.
5220 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
5221 (leftvt
== VT_INT
&& rightvt
== VT_I8
) ||
5222 (rightvt
== VT_EMPTY
&& leftvt
!= VT_NULL
) ||
5225 hres
= DISP_E_BADVARTYPE
;
5229 /* Determine variant type */
5230 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
5232 V_VT(result
) = VT_NULL
;
5236 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
5238 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
5239 leftvt
== VT_INT
|| rightvt
== VT_INT
||
5240 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
5241 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
5242 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
5243 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
5244 leftvt
== VT_I1
|| rightvt
== VT_I1
||
5245 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
||
5246 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
5247 leftvt
== VT_CY
|| rightvt
== VT_CY
||
5248 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
||
5249 leftvt
== VT_R8
|| rightvt
== VT_R8
||
5250 leftvt
== VT_R4
|| rightvt
== VT_R4
)
5252 else if (leftvt
== VT_I2
|| rightvt
== VT_I2
||
5253 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
5256 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
5260 hres
= DISP_E_BADVARTYPE
;
5264 /* coerce to the result type */
5265 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
5266 if (hres
!= S_OK
) goto end
;
5267 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
5268 if (hres
!= S_OK
) goto end
;
5271 V_VT(result
) = resvt
;
5275 if (V_UI1(&rv
) == 0)
5277 hres
= DISP_E_DIVBYZERO
;
5278 V_VT(result
) = VT_EMPTY
;
5281 V_UI1(result
) = V_UI1(&lv
) / V_UI1(&rv
);
5286 hres
= DISP_E_DIVBYZERO
;
5287 V_VT(result
) = VT_EMPTY
;
5290 V_I2(result
) = V_I2(&lv
) / V_I2(&rv
);
5295 hres
= DISP_E_DIVBYZERO
;
5296 V_VT(result
) = VT_EMPTY
;
5299 V_I4(result
) = V_I4(&lv
) / V_I4(&rv
);
5304 hres
= DISP_E_DIVBYZERO
;
5305 V_VT(result
) = VT_EMPTY
;
5308 V_I8(result
) = V_I8(&lv
) / V_I8(&rv
);
5311 FIXME("Couldn't integer divide variant types %d,%d\n",
5318 VariantClear(&tempLeft
);
5319 VariantClear(&tempRight
);
5325 /**********************************************************************
5326 * VarMod [OLEAUT32.155]
5328 * Perform the modulus operation of the right hand variant on the left
5331 * left [I] Left hand variant
5332 * right [I] Right hand variant
5333 * result [O] Destination for converted value
5336 * Success: S_OK. result contains the remainder.
5337 * Failure: An HRESULT error code indicating the error.
5340 * If an error occurs the type of result will be modified but the value will not be.
5341 * Doesn't support arrays or any special flags yet.
5343 HRESULT WINAPI
VarMod(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5346 HRESULT rc
= E_FAIL
;
5349 VARIANT tempLeft
, tempRight
;
5351 VariantInit(&tempLeft
);
5352 VariantInit(&tempRight
);
5356 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
5358 /* Handle VT_DISPATCH by storing and taking address of returned value */
5359 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5361 rc
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5362 if (FAILED(rc
)) goto end
;
5365 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5367 rc
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5368 if (FAILED(rc
)) goto end
;
5372 /* check for invalid inputs */
5374 switch (V_VT(left
) & VT_TYPEMASK
) {
5396 V_VT(result
) = VT_EMPTY
;
5397 rc
= DISP_E_TYPEMISMATCH
;
5400 rc
= DISP_E_TYPEMISMATCH
;
5403 V_VT(result
) = VT_EMPTY
;
5404 rc
= DISP_E_TYPEMISMATCH
;
5409 V_VT(result
) = VT_EMPTY
;
5410 rc
= DISP_E_BADVARTYPE
;
5415 switch (V_VT(right
) & VT_TYPEMASK
) {
5421 if((V_VT(left
) == VT_INT
) && (V_VT(right
) == VT_I8
))
5423 V_VT(result
) = VT_EMPTY
;
5424 rc
= DISP_E_TYPEMISMATCH
;
5428 if((V_VT(right
) == VT_INT
) && (V_VT(left
) == VT_I8
))
5430 V_VT(result
) = VT_EMPTY
;
5431 rc
= DISP_E_TYPEMISMATCH
;
5442 if(V_VT(left
) == VT_EMPTY
)
5444 V_VT(result
) = VT_I4
;
5451 if(V_VT(left
) == VT_ERROR
)
5453 V_VT(result
) = VT_EMPTY
;
5454 rc
= DISP_E_TYPEMISMATCH
;
5458 if(V_VT(left
) == VT_NULL
)
5460 V_VT(result
) = VT_NULL
;
5467 V_VT(result
) = VT_EMPTY
;
5468 rc
= DISP_E_BADVARTYPE
;
5471 if(V_VT(left
) == VT_VOID
)
5473 V_VT(result
) = VT_EMPTY
;
5474 rc
= DISP_E_BADVARTYPE
;
5475 } else if((V_VT(left
) == VT_NULL
) || (V_VT(left
) == VT_EMPTY
) || (V_VT(left
) == VT_ERROR
) ||
5478 V_VT(result
) = VT_NULL
;
5482 V_VT(result
) = VT_NULL
;
5483 rc
= DISP_E_BADVARTYPE
;
5488 V_VT(result
) = VT_EMPTY
;
5489 rc
= DISP_E_TYPEMISMATCH
;
5492 rc
= DISP_E_TYPEMISMATCH
;
5495 if((V_VT(left
) == 15) || ((V_VT(left
) >= 24) && (V_VT(left
) <= 35)) || !lOk
)
5497 V_VT(result
) = VT_EMPTY
;
5498 rc
= DISP_E_BADVARTYPE
;
5501 V_VT(result
) = VT_EMPTY
;
5502 rc
= DISP_E_TYPEMISMATCH
;
5506 V_VT(result
) = VT_EMPTY
;
5507 rc
= DISP_E_BADVARTYPE
;
5511 /* determine the result type */
5512 if((V_VT(left
) == VT_I8
) || (V_VT(right
) == VT_I8
)) resT
= VT_I8
;
5513 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5514 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_UI1
)) resT
= VT_UI1
;
5515 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5516 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5517 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_UI1
)) resT
= VT_I2
;
5518 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5519 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5520 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_UI1
)) resT
= VT_I2
;
5521 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5522 else resT
= VT_I4
; /* most outputs are I4 */
5524 /* convert to I8 for the modulo */
5525 rc
= VariantChangeType(&lv
, left
, 0, VT_I8
);
5528 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left
), VT_I8
, rc
);
5532 rc
= VariantChangeType(&rv
, right
, 0, VT_I8
);
5535 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right
), VT_I8
, rc
);
5539 /* if right is zero set VT_EMPTY and return divide by zero */
5542 V_VT(result
) = VT_EMPTY
;
5543 rc
= DISP_E_DIVBYZERO
;
5547 /* perform the modulo operation */
5548 V_VT(result
) = VT_I8
;
5549 V_I8(result
) = V_I8(&lv
) % V_I8(&rv
);
5551 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5552 wine_dbgstr_longlong(V_I8(&lv
)), wine_dbgstr_longlong(V_I8(&rv
)),
5553 wine_dbgstr_longlong(V_I8(result
)));
5555 /* convert left and right to the destination type */
5556 rc
= VariantChangeType(result
, result
, 0, resT
);
5559 FIXME("Could not convert 0x%x to %d?\n", V_VT(result
), resT
);
5560 /* fall to end of function */
5566 VariantClear(&tempLeft
);
5567 VariantClear(&tempRight
);
5571 /**********************************************************************
5572 * VarPow [OLEAUT32.158]
5574 * Computes the power of one variant to another variant.
5577 * left [I] First variant
5578 * right [I] Second variant
5579 * result [O] Result variant
5583 * Failure: An HRESULT error code indicating the error.
5585 HRESULT WINAPI
VarPow(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5589 VARTYPE resvt
= VT_EMPTY
;
5590 VARTYPE leftvt
,rightvt
;
5591 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5592 VARIANT tempLeft
, tempRight
;
5594 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
5598 VariantInit(&tempLeft
);
5599 VariantInit(&tempRight
);
5601 /* Handle VT_DISPATCH by storing and taking address of returned value */
5602 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5604 hr
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5605 if (FAILED(hr
)) goto end
;
5608 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5610 hr
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5611 if (FAILED(hr
)) goto end
;
5615 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5616 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5617 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5618 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5620 if (leftExtraFlags
!= rightExtraFlags
)
5622 hr
= DISP_E_BADVARTYPE
;
5625 ExtraFlags
= leftExtraFlags
;
5627 /* Native VarPow always returns an error when using extra flags */
5628 if (ExtraFlags
!= 0)
5630 hr
= DISP_E_BADVARTYPE
;
5634 /* Determine return type */
5635 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
) {
5636 V_VT(result
) = VT_NULL
;
5640 else if ((leftvt
== VT_EMPTY
|| leftvt
== VT_I2
||
5641 leftvt
== VT_I4
|| leftvt
== VT_R4
||
5642 leftvt
== VT_R8
|| leftvt
== VT_CY
||
5643 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
5644 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
5645 (leftvt
>= VT_I1
&& leftvt
<= VT_UINT
)) &&
5646 (rightvt
== VT_EMPTY
|| rightvt
== VT_I2
||
5647 rightvt
== VT_I4
|| rightvt
== VT_R4
||
5648 rightvt
== VT_R8
|| rightvt
== VT_CY
||
5649 rightvt
== VT_DATE
|| rightvt
== VT_BSTR
||
5650 rightvt
== VT_BOOL
|| rightvt
== VT_DECIMAL
||
5651 (rightvt
>= VT_I1
&& rightvt
<= VT_UINT
)))
5655 hr
= DISP_E_BADVARTYPE
;
5659 hr
= VariantChangeType(&dl
,left
,0,resvt
);
5661 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5666 hr
= VariantChangeType(&dr
,right
,0,resvt
);
5668 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5673 V_VT(result
) = VT_R8
;
5674 V_R8(result
) = pow(V_R8(&dl
),V_R8(&dr
));
5679 VariantClear(&tempLeft
);
5680 VariantClear(&tempRight
);
5685 /**********************************************************************
5686 * VarImp [OLEAUT32.154]
5688 * Bitwise implication of two variants.
5691 * left [I] First variant
5692 * right [I] Second variant
5693 * result [O] Result variant
5697 * Failure: An HRESULT error code indicating the error.
5699 HRESULT WINAPI
VarImp(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5701 HRESULT hres
= S_OK
;
5702 VARTYPE resvt
= VT_EMPTY
;
5703 VARTYPE leftvt
,rightvt
;
5704 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5707 VARIANT tempLeft
, tempRight
;
5711 VariantInit(&tempLeft
);
5712 VariantInit(&tempRight
);
5714 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
5716 /* Handle VT_DISPATCH by storing and taking address of returned value */
5717 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5719 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5720 if (FAILED(hres
)) goto VarImp_Exit
;
5723 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5725 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5726 if (FAILED(hres
)) goto VarImp_Exit
;
5730 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5731 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5732 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5733 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5735 if (leftExtraFlags
!= rightExtraFlags
)
5737 hres
= DISP_E_BADVARTYPE
;
5740 ExtraFlags
= leftExtraFlags
;
5742 /* Native VarImp always returns an error when using extra
5743 * flags or if the variants are I8 and INT.
5745 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
5748 hres
= DISP_E_BADVARTYPE
;
5752 /* Determine result type */
5753 else if ((leftvt
== VT_NULL
&& rightvt
== VT_NULL
) ||
5754 (leftvt
== VT_NULL
&& rightvt
== VT_EMPTY
))
5756 V_VT(result
) = VT_NULL
;
5760 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
5762 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
5763 leftvt
== VT_INT
|| rightvt
== VT_INT
||
5764 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
5765 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
5766 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
5767 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
5768 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
||
5769 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
5770 leftvt
== VT_CY
|| rightvt
== VT_CY
||
5771 leftvt
== VT_R8
|| rightvt
== VT_R8
||
5772 leftvt
== VT_R4
|| rightvt
== VT_R4
||
5773 leftvt
== VT_I1
|| rightvt
== VT_I1
)
5775 else if ((leftvt
== VT_UI1
&& rightvt
== VT_UI1
) ||
5776 (leftvt
== VT_UI1
&& rightvt
== VT_NULL
) ||
5777 (leftvt
== VT_NULL
&& rightvt
== VT_UI1
))
5779 else if (leftvt
== VT_EMPTY
|| rightvt
== VT_EMPTY
||
5780 leftvt
== VT_I2
|| rightvt
== VT_I2
||
5781 leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
5783 else if (leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
5784 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
5787 /* VT_NULL requires special handling for when the opposite
5788 * variant is equal to something other than -1.
5789 * (NULL Imp 0 = NULL, NULL Imp n = n)
5791 if (leftvt
== VT_NULL
)
5796 case VT_I1
: if (!V_I1(right
)) resvt
= VT_NULL
; break;
5797 case VT_UI1
: if (!V_UI1(right
)) resvt
= VT_NULL
; break;
5798 case VT_I2
: if (!V_I2(right
)) resvt
= VT_NULL
; break;
5799 case VT_UI2
: if (!V_UI2(right
)) resvt
= VT_NULL
; break;
5800 case VT_I4
: if (!V_I4(right
)) resvt
= VT_NULL
; break;
5801 case VT_UI4
: if (!V_UI4(right
)) resvt
= VT_NULL
; break;
5802 case VT_I8
: if (!V_I8(right
)) resvt
= VT_NULL
; break;
5803 case VT_UI8
: if (!V_UI8(right
)) resvt
= VT_NULL
; break;
5804 case VT_INT
: if (!V_INT(right
)) resvt
= VT_NULL
; break;
5805 case VT_UINT
: if (!V_UINT(right
)) resvt
= VT_NULL
; break;
5806 case VT_BOOL
: if (!V_BOOL(right
)) resvt
= VT_NULL
; break;
5807 case VT_R4
: if (!V_R4(right
)) resvt
= VT_NULL
; break;
5808 case VT_R8
: if (!V_R8(right
)) resvt
= VT_NULL
; break;
5809 case VT_DATE
: if (!V_DATE(right
)) resvt
= VT_NULL
; break;
5810 case VT_CY
: if (!V_CY(right
).int64
) resvt
= VT_NULL
; break;
5812 if (!(DEC_HI32(&V_DECIMAL(right
)) || DEC_LO64(&V_DECIMAL(right
))))
5816 hres
= VarBoolFromStr(V_BSTR(right
),LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
5817 if (FAILED(hres
)) goto VarImp_Exit
;
5819 V_VT(result
) = VT_NULL
;
5822 V_VT(result
) = VT_BOOL
;
5827 if (resvt
== VT_NULL
)
5829 V_VT(result
) = resvt
;
5834 hres
= VariantChangeType(result
,right
,0,resvt
);
5839 /* Special handling is required when NULL is the right variant.
5840 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5842 else if (rightvt
== VT_NULL
)
5847 case VT_I1
: if (V_I1(left
) == -1) resvt
= VT_NULL
; break;
5848 case VT_UI1
: if (V_UI1(left
) == 0xff) resvt
= VT_NULL
; break;
5849 case VT_I2
: if (V_I2(left
) == -1) resvt
= VT_NULL
; break;
5850 case VT_UI2
: if (V_UI2(left
) == 0xffff) resvt
= VT_NULL
; break;
5851 case VT_INT
: if (V_INT(left
) == -1) resvt
= VT_NULL
; break;
5852 case VT_UINT
: if (V_UINT(left
) == ~0u) resvt
= VT_NULL
; break;
5853 case VT_I4
: if (V_I4(left
) == -1) resvt
= VT_NULL
; break;
5854 case VT_UI4
: if (V_UI4(left
) == ~0u) resvt
= VT_NULL
; break;
5855 case VT_I8
: if (V_I8(left
) == -1) resvt
= VT_NULL
; break;
5856 case VT_UI8
: if (V_UI8(left
) == ~(ULONGLONG
)0) resvt
= VT_NULL
; break;
5857 case VT_BOOL
: if (V_BOOL(left
) == VARIANT_TRUE
) resvt
= VT_NULL
; break;
5858 case VT_R4
: if (V_R4(left
) == -1.0) resvt
= VT_NULL
; break;
5859 case VT_R8
: if (V_R8(left
) == -1.0) resvt
= VT_NULL
; break;
5860 case VT_CY
: if (V_CY(left
).int64
== -1) resvt
= VT_NULL
; break;
5862 if (DEC_HI32(&V_DECIMAL(left
)) == 0xffffffff)
5866 hres
= VarBoolFromStr(V_BSTR(left
),LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
5867 if (FAILED(hres
)) goto VarImp_Exit
;
5868 else if (b
== VARIANT_TRUE
)
5871 if (resvt
== VT_NULL
)
5873 V_VT(result
) = resvt
;
5878 hres
= VariantCopy(&lv
, left
);
5879 if (FAILED(hres
)) goto VarImp_Exit
;
5881 if (rightvt
== VT_NULL
)
5883 memset( &rv
, 0, sizeof(rv
) );
5888 hres
= VariantCopy(&rv
, right
);
5889 if (FAILED(hres
)) goto VarImp_Exit
;
5892 if (V_VT(&lv
) == VT_BSTR
&&
5893 FAILED(VarR8FromStr(V_BSTR(&lv
),LOCALE_USER_DEFAULT
, 0, &d
)))
5894 hres
= VariantChangeType(&lv
,&lv
,VARIANT_LOCALBOOL
, VT_BOOL
);
5895 if (SUCCEEDED(hres
) && V_VT(&lv
) != resvt
)
5896 hres
= VariantChangeType(&lv
,&lv
,0,resvt
);
5897 if (FAILED(hres
)) goto VarImp_Exit
;
5899 if (V_VT(&rv
) == VT_BSTR
&&
5900 FAILED(VarR8FromStr(V_BSTR(&rv
),LOCALE_USER_DEFAULT
, 0, &d
)))
5901 hres
= VariantChangeType(&rv
, &rv
,VARIANT_LOCALBOOL
, VT_BOOL
);
5902 if (SUCCEEDED(hres
) && V_VT(&rv
) != resvt
)
5903 hres
= VariantChangeType(&rv
, &rv
, 0, resvt
);
5904 if (FAILED(hres
)) goto VarImp_Exit
;
5907 V_VT(result
) = resvt
;
5911 V_I8(result
) = (~V_I8(&lv
)) | V_I8(&rv
);
5914 V_I4(result
) = (~V_I4(&lv
)) | V_I4(&rv
);
5917 V_I2(result
) = (~V_I2(&lv
)) | V_I2(&rv
);
5920 V_UI1(result
) = (~V_UI1(&lv
)) | V_UI1(&rv
);
5923 V_BOOL(result
) = (~V_BOOL(&lv
)) | V_BOOL(&rv
);
5926 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
5934 VariantClear(&tempLeft
);
5935 VariantClear(&tempRight
);