Revert "drsuapi_dissect_element_DsGetNCChangesCtr6TS_ctr6 dissect_krb5_PAC_NDRHEADERBLOB"
[wireshark-sm.git] / tools / lemon / lemon.c
blobc4b488110740c6b9109ee3bb84ba1903024810f4
1 /*
2 ** This file contains all sources (including headers) to the LEMON
3 ** LALR(1) parser generator. The sources have been combined into a
4 ** single file to make it easy to include LEMON in the source tree
5 ** and Makefile of another program.
6 **
7 ** The author of this program disclaims copyright.
8 */
9 #include <stdio.h>
10 #include <stdarg.h>
11 #include <string.h>
12 #include <ctype.h>
13 #include <stdlib.h>
14 #include <assert.h>
16 #define ISSPACE(X) isspace((unsigned char)(X))
17 #define ISDIGIT(X) isdigit((unsigned char)(X))
18 #define ISALNUM(X) isalnum((unsigned char)(X))
19 #define ISALPHA(X) isalpha((unsigned char)(X))
20 #define ISUPPER(X) isupper((unsigned char)(X))
21 #define ISLOWER(X) islower((unsigned char)(X))
24 #ifndef __WIN32__
25 # if defined(_WIN32) || defined(WIN32)
26 # define __WIN32__
27 # endif
28 #endif
30 #ifdef __WIN32__
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34 extern int access(const char *path, int mode);
35 #ifdef __cplusplus
37 #endif
38 #else
39 #include <unistd.h>
40 #endif
42 /* #define PRIVATE static */
43 #define PRIVATE
45 #ifdef TEST
46 #define MAXRHS 5 /* Set low to exercise exception code */
47 #else
48 #define MAXRHS 1000
49 #endif
51 extern void memory_error();
52 static int showPrecedenceConflict = 0;
53 static char *msort(char*,char**,int(*)(const char*,const char*));
56 ** Compilers are getting increasingly pedantic about type conversions
57 ** as C evolves ever closer to Ada.... To work around the latest problems
58 ** we have to define the following variant of strlen().
60 #define lemonStrlen(X) ((int)strlen(X))
63 ** Compilers are starting to complain about the use of sprintf() and strcpy(),
64 ** saying they are unsafe. So we define our own versions of those routines too.
66 ** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and
67 ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf().
68 ** The third is a helper routine for vsnprintf() that adds texts to the end of a
69 ** buffer, making sure the buffer is always zero-terminated.
71 ** The string formatter is a minimal subset of stdlib sprintf() supporting only
72 ** a few simply conversions:
74 ** %d
75 ** %s
76 ** %.*s
79 static void lemon_addtext(
80 char *zBuf, /* The buffer to which text is added */
81 int *pnUsed, /* Slots of the buffer used so far */
82 const char *zIn, /* Text to add */
83 int nIn, /* Bytes of text to add. -1 to use strlen() */
84 int iWidth /* Field width. Negative to left justify */
86 if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){}
87 while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; }
88 if( nIn==0 ) return;
89 memcpy(&zBuf[*pnUsed], zIn, nIn);
90 *pnUsed += nIn;
91 while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; }
92 zBuf[*pnUsed] = 0;
94 static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){
95 int i, j, k, c;
96 int nUsed = 0;
97 const char *z;
98 char zTemp[50];
99 str[0] = 0;
100 for(i=j=0; (c = zFormat[i])!=0; i++){
101 if( c=='%' ){
102 int iWidth = 0;
103 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
104 c = zFormat[++i];
105 if( ISDIGIT(c) || (c=='-' && ISDIGIT(zFormat[i+1])) ){
106 if( c=='-' ) i++;
107 while( ISDIGIT(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0';
108 if( c=='-' ) iWidth = -iWidth;
109 c = zFormat[i];
111 if( c=='d' ){
112 int v = va_arg(ap, int);
113 if( v<0 ){
114 lemon_addtext(str, &nUsed, "-", 1, iWidth);
115 v = -v;
116 }else if( v==0 ){
117 lemon_addtext(str, &nUsed, "0", 1, iWidth);
119 k = 0;
120 while( v>0 ){
121 k++;
122 zTemp[sizeof(zTemp)-k] = (v%10) + '0';
123 v /= 10;
125 lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth);
126 }else if( c=='s' ){
127 z = va_arg(ap, const char*);
128 lemon_addtext(str, &nUsed, z, -1, iWidth);
129 }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){
130 i += 2;
131 k = va_arg(ap, int);
132 z = va_arg(ap, const char*);
133 lemon_addtext(str, &nUsed, z, k, iWidth);
134 }else if( c=='%' ){
135 lemon_addtext(str, &nUsed, "%", 1, 0);
136 }else{
137 fprintf(stderr, "illegal format\n");
138 exit(1);
140 j = i+1;
143 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
144 return nUsed;
146 static int lemon_sprintf(char *str, const char *format, ...){
147 va_list ap;
148 int rc;
149 va_start(ap, format);
150 rc = lemon_vsprintf(str, format, ap);
151 va_end(ap);
152 return rc;
154 static void lemon_strcpy(char *dest, const char *src){
155 while( (*(dest++) = *(src++))!=0 ){}
157 static void lemon_strcat(char *dest, const char *src){
158 while( *dest ) dest++;
159 lemon_strcpy(dest, src);
163 /* a few forward declarations... */
164 struct rule;
165 struct lemon;
166 struct action;
168 static struct action *Action_new(void);
169 static struct action *Action_sort(struct action *);
171 /********** From the file "build.h" ************************************/
172 void FindRulePrecedences(struct lemon*);
173 void FindFirstSets(struct lemon*);
174 void FindStates(struct lemon*);
175 void FindLinks(struct lemon*);
176 void FindFollowSets(struct lemon*);
177 void FindActions(struct lemon*);
179 /********* From the file "configlist.h" *********************************/
180 void Configlist_init(void);
181 struct config *Configlist_add(struct rule *, int);
182 struct config *Configlist_addbasis(struct rule *, int);
183 void Configlist_closure(struct lemon *);
184 void Configlist_sort(void);
185 void Configlist_sortbasis(void);
186 struct config *Configlist_return(void);
187 struct config *Configlist_basis(void);
188 void Configlist_eat(struct config *);
189 void Configlist_reset(void);
191 /********* From the file "error.h" ***************************************/
192 void ErrorMsg(const char *, int,const char *, ...);
194 /****** From the file "option.h" ******************************************/
195 enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
196 OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
197 struct s_options {
198 enum option_type type;
199 const char *label;
200 char *arg;
201 const char *message;
203 int OptInit(char**,struct s_options*,FILE*);
204 int OptNArgs(void);
205 char *OptArg(int);
206 void OptErr(int);
207 void OptPrint(void);
209 /******** From the file "parse.h" *****************************************/
210 void Parse(struct lemon *lemp);
212 /********* From the file "plink.h" ***************************************/
213 struct plink *Plink_new(void);
214 void Plink_add(struct plink **, struct config *);
215 void Plink_copy(struct plink **, struct plink *);
216 void Plink_delete(struct plink *);
218 /********** From the file "report.h" *************************************/
219 void Reprint(struct lemon *);
220 void ReportOutput(struct lemon *);
221 void ReportTable(struct lemon *, int, int);
222 void ReportHeader(struct lemon *);
223 void CompressTables(struct lemon *);
224 void ResortStates(struct lemon *);
226 /********** From the file "set.h" ****************************************/
227 void SetSize(int); /* All sets will be of size N */
228 char *SetNew(void); /* A new set for element 0..N */
229 void SetFree(char*); /* Deallocate a set */
230 int SetAdd(char*,int); /* Add element to a set */
231 int SetUnion(char *,char *); /* A <- A U B, thru element N */
232 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
234 /********** From the file "struct.h" *************************************/
236 ** Principal data structures for the LEMON parser generator.
239 typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
241 /* Symbols (terminals and nonterminals) of the grammar are stored
242 ** in the following: */
243 enum symbol_type {
244 TERMINAL,
245 NONTERMINAL,
246 MULTITERMINAL
248 enum e_assoc {
249 LEFT,
250 RIGHT,
251 NONE,
254 struct symbol {
255 const char *name; /* Name of the symbol */
256 int index; /* Index number for this symbol */
257 enum symbol_type type; /* Symbols are all either TERMINALS or NTs */
258 struct rule *rule; /* Linked list of rules of this (if an NT) */
259 struct symbol *fallback; /* fallback token in case this token doesn't parse */
260 int prec; /* Precedence if defined (-1 otherwise) */
261 enum e_assoc assoc; /* Associativity if precedence is defined */
262 char *firstset; /* First-set for all rules of this symbol */
263 Boolean lambda; /* True if NT and can generate an empty string */
264 int useCnt; /* Number of times used */
265 char *destructor; /* Code which executes whenever this symbol is
266 ** popped from the stack during error processing */
267 int destLineno; /* Line number for start of destructor. Set to
268 ** -1 for duplicate destructors. */
269 char *datatype; /* The data type of information held by this
270 ** object. Only used if type==NONTERMINAL */
271 int dtnum; /* The data type number. In the parser, the value
272 ** stack is a union. The .yy%d element of this
273 ** union is the correct data type for this object */
274 int bContent; /* True if this symbol ever carries content - if
275 ** it is ever more than just syntax */
276 /* The following fields are used by MULTITERMINALs only */
277 int nsubsym; /* Number of constituent symbols in the MULTI */
278 struct symbol **subsym; /* Array of constituent symbols */
281 /* Each production rule in the grammar is stored in the following
282 ** structure. */
283 struct rule {
284 struct symbol *lhs; /* Left-hand side of the rule */
285 const char *lhsalias; /* Alias for the LHS (NULL if none) */
286 int lhsStart; /* True if left-hand side is the start symbol */
287 int ruleline; /* Line number for the rule */
288 int nrhs; /* Number of RHS symbols */
289 struct symbol **rhs; /* The RHS symbols */
290 const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
291 int line; /* Line number at which code begins */
292 const char *code; /* The code executed when this rule is reduced */
293 const char *codePrefix; /* Setup code before code[] above */
294 const char *codeSuffix; /* Breakdown code after code[] above */
295 struct symbol *precsym; /* Precedence symbol for this rule */
296 int index; /* An index number for this rule */
297 int iRule; /* Rule number as used in the generated tables */
298 Boolean noCode; /* True if this rule has no associated C code */
299 Boolean codeEmitted; /* True if the code has been emitted already */
300 Boolean canReduce; /* True if this rule is ever reduced */
301 Boolean doesReduce; /* Reduce actions occur after optimization */
302 Boolean neverReduce; /* Reduce is theoretically possible, but prevented
303 ** by actions or other outside implementation */
304 struct rule *nextlhs; /* Next rule with the same LHS */
305 struct rule *next; /* Next rule in the global list */
308 /* A configuration is a production rule of the grammar together with
309 ** a mark (dot) showing how much of that rule has been processed so far.
310 ** Configurations also contain a follow-set which is a list of terminal
311 ** symbols which are allowed to immediately follow the end of the rule.
312 ** Every configuration is recorded as an instance of the following: */
313 enum cfgstatus {
314 COMPLETE,
315 INCOMPLETE
317 struct config {
318 struct rule *rp; /* The rule upon which the configuration is based */
319 int dot; /* The parse point */
320 char *fws; /* Follow-set for this configuration only */
321 struct plink *fplp; /* Follow-set forward propagation links */
322 struct plink *bplp; /* Follow-set backwards propagation links */
323 struct state *stp; /* Pointer to state which contains this */
324 enum cfgstatus status; /* used during followset and shift computations */
325 struct config *next; /* Next configuration in the state */
326 struct config *bp; /* The next basis configuration */
329 enum e_action {
330 SHIFT,
331 ACCEPT,
332 REDUCE,
333 ERROR,
334 SSCONFLICT, /* A shift/shift conflict */
335 SRCONFLICT, /* Was a reduce, but part of a conflict */
336 RRCONFLICT, /* Was a reduce, but part of a conflict */
337 SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
338 RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
339 NOT_USED, /* Deleted by compression */
340 SHIFTREDUCE /* Shift first, then reduce */
343 /* Every shift or reduce operation is stored as one of the following */
344 struct action {
345 struct symbol *sp; /* The look-ahead symbol */
346 enum e_action type;
347 union {
348 struct state *stp; /* The new state, if a shift */
349 struct rule *rp; /* The rule, if a reduce */
350 } x;
351 struct symbol *spOpt; /* SHIFTREDUCE optimization to this symbol */
352 struct action *next; /* Next action for this state */
353 struct action *collide; /* Next action with the same hash */
356 /* Each state of the generated parser's finite state machine
357 ** is encoded as an instance of the following structure. */
358 struct state {
359 struct config *bp; /* The basis configurations for this state */
360 struct config *cfp; /* All configurations in this set */
361 int statenum; /* Sequential number for this state */
362 struct action *ap; /* List of actions for this state */
363 int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
364 int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
365 int iDfltReduce; /* Default action is to REDUCE by this rule */
366 struct rule *pDfltReduce;/* The default REDUCE rule. */
367 int autoReduce; /* True if this is an auto-reduce state */
369 #define NO_OFFSET (-2147483647)
371 /* A followset propagation link indicates that the contents of one
372 ** configuration followset should be propagated to another whenever
373 ** the first changes. */
374 struct plink {
375 struct config *cfp; /* The configuration to which linked */
376 struct plink *next; /* The next propagate link */
379 /* The state vector for the entire parser generator is recorded as
380 ** follows. (LEMON uses no global variables and makes little use of
381 ** static variables. Fields in the following structure can be thought
382 ** of as begin global variables in the program.) */
383 struct lemon {
384 struct state **sorted; /* Table of states sorted by state number */
385 struct rule *rule; /* List of all rules */
386 struct rule *startRule; /* First rule */
387 int nstate; /* Number of states */
388 int nxstate; /* nstate with tail degenerate states removed */
389 int nrule; /* Number of rules */
390 int nruleWithAction; /* Number of rules with actions */
391 int nsymbol; /* Number of terminal and nonterminal symbols */
392 int nterminal; /* Number of terminal symbols */
393 int minShiftReduce; /* Minimum shift-reduce action value */
394 int errAction; /* Error action value */
395 int accAction; /* Accept action value */
396 int noAction; /* No-op action value */
397 int minReduce; /* Minimum reduce action */
398 int maxAction; /* Maximum action value of any kind */
399 struct symbol **symbols; /* Sorted array of pointers to symbols */
400 int errorcnt; /* Number of errors */
401 struct symbol *errsym; /* The error symbol */
402 struct symbol *wildcard; /* Token that matches anything */
403 char *name; /* Name of the generated parser */
404 char *arg; /* Declaration of the 3rd argument to parser */
405 char *ctx; /* Declaration of 2nd argument to constructor */
406 char *tokentype; /* Type of terminal symbols in the parser stack */
407 char *vartype; /* The default type of non-terminal symbols */
408 char *start; /* Name of the start symbol for the grammar */
409 char *stacksize; /* Size of the parser stack */
410 char *include; /* Code to put at the start of the C file */
411 char *error; /* Code to execute when an error is seen */
412 char *overflow; /* Code to execute on a stack overflow */
413 char *failure; /* Code to execute on parser failure */
414 char *accept; /* Code to execute when the parser excepts */
415 char *extracode; /* Code appended to the generated file */
416 char *tokendest; /* Code to execute to destroy token data */
417 char *vardest; /* Code for the default non-terminal destructor */
418 char *filename; /* Name of the input file */
419 char *outname; /* Name of the current output file */
420 char *tokenprefix; /* A prefix added to token names in the .h file */
421 int nconflict; /* Number of parsing conflicts */
422 int nactiontab; /* Number of entries in the yy_action[] table */
423 int nlookaheadtab; /* Number of entries in yy_lookahead[] */
424 int tablesize; /* Total table size of all tables in bytes */
425 int basisflag; /* Print only basis configurations */
426 int printPreprocessed; /* Show preprocessor output on stdout */
427 int has_fallback; /* True if any %fallback is seen in the grammar */
428 int nolinenosflag; /* True if #line statements should not be printed */
429 char *argv0; /* Name of the program */
432 #define MemoryCheck(X) if((X)==0){ \
433 extern void memory_error(); \
434 memory_error(); \
437 /**************** From the file "table.h" *********************************/
439 ** All code in this file has been automatically generated
440 ** from a specification in the file
441 ** "table.q"
442 ** by the associative array code building program "aagen".
443 ** Do not edit this file! Instead, edit the specification
444 ** file, then rerun aagen.
447 ** Code for processing tables in the LEMON parser generator.
449 /* Routines for handling a strings */
451 const char *Strsafe(const char *);
453 void Strsafe_init(void);
454 int Strsafe_insert(const char *);
455 const char *Strsafe_find(const char *);
457 /* Routines for handling symbols of the grammar */
459 struct symbol *Symbol_new(const char *);
460 int Symbolcmpp(const void *, const void *);
461 void Symbol_init(void);
462 int Symbol_insert(struct symbol *, const char *);
463 struct symbol *Symbol_find(const char *);
464 struct symbol *Symbol_Nth(int);
465 int Symbol_count(void);
466 struct symbol **Symbol_arrayof(void);
468 /* Routines to manage the state table */
470 int Configcmp(const char *, const char *);
471 struct state *State_new(void);
472 void State_init(void);
473 int State_insert(struct state *, struct config *);
474 struct state *State_find(struct config *);
475 struct state **State_arrayof(void);
477 /* Routines used for efficiency in Configlist_add */
479 void Configtable_init(void);
480 int Configtable_insert(struct config *);
481 struct config *Configtable_find(struct config *);
482 void Configtable_clear(int(*)(struct config *));
484 /****************** From the file "action.c" *******************************/
486 ** Routines processing parser actions in the LEMON parser generator.
489 /* Allocate a new parser action */
490 static struct action *Action_new(void){
491 static struct action *actionfreelist = 0;
492 struct action *newaction;
494 if( actionfreelist==0 ){
495 int i;
496 int amt = 100;
497 actionfreelist = (struct action *)calloc(amt, sizeof(struct action));
498 if( actionfreelist==0 ){
499 fprintf(stderr,"Unable to allocate memory for a new parser action.");
500 exit(1);
502 for(i=0; i<amt-1; i++) actionfreelist[i].next = &actionfreelist[i+1];
503 actionfreelist[amt-1].next = 0;
505 newaction = actionfreelist;
506 actionfreelist = actionfreelist->next;
507 return newaction;
510 /* Compare two actions for sorting purposes. Return negative, zero, or
511 ** positive if the first action is less than, equal to, or greater than
512 ** the first
514 static int actioncmp(
515 struct action *ap1,
516 struct action *ap2
518 int rc;
519 rc = ap1->sp->index - ap2->sp->index;
520 if( rc==0 ){
521 rc = (int)ap1->type - (int)ap2->type;
523 if( rc==0 && (ap1->type==REDUCE || ap1->type==SHIFTREDUCE) ){
524 rc = ap1->x.rp->index - ap2->x.rp->index;
526 if( rc==0 ){
527 rc = (int) (ap2 - ap1);
529 return rc;
532 /* Sort parser actions */
533 static struct action *Action_sort(
534 struct action *ap
536 ap = (struct action *)msort((char *)ap,(char **)&ap->next,
537 (int(*)(const char*,const char*))actioncmp);
538 return ap;
541 void Action_add(
542 struct action **app,
543 enum e_action type,
544 struct symbol *sp,
545 char *arg
547 struct action *newaction;
548 newaction = Action_new();
549 newaction->next = *app;
550 *app = newaction;
551 newaction->type = type;
552 newaction->sp = sp;
553 newaction->spOpt = 0;
554 if( type==SHIFT ){
555 newaction->x.stp = (struct state *)arg;
556 }else{
557 newaction->x.rp = (struct rule *)arg;
560 /********************** New code to implement the "acttab" module ***********/
562 ** This module implements routines use to construct the yy_action[] table.
566 ** The state of the yy_action table under construction is an instance of
567 ** the following structure.
569 ** The yy_action table maps the pair (state_number, lookahead) into an
570 ** action_number. The table is an array of integers pairs. The state_number
571 ** determines an initial offset into the yy_action array. The lookahead
572 ** value is then added to this initial offset to get an index X into the
573 ** yy_action array. If the aAction[X].lookahead equals the value of the
574 ** of the lookahead input, then the value of the action_number output is
575 ** aAction[X].action. If the lookaheads do not match then the
576 ** default action for the state_number is returned.
578 ** All actions associated with a single state_number are first entered
579 ** into aLookahead[] using multiple calls to acttab_action(). Then the
580 ** actions for that single state_number are placed into the aAction[]
581 ** array with a single call to acttab_insert(). The acttab_insert() call
582 ** also resets the aLookahead[] array in preparation for the next
583 ** state number.
585 struct lookahead_action {
586 int lookahead; /* Value of the lookahead token */
587 int action; /* Action to take on the given lookahead */
589 typedef struct acttab acttab;
590 struct acttab {
591 int nAction; /* Number of used slots in aAction[] */
592 int nActionAlloc; /* Slots allocated for aAction[] */
593 struct lookahead_action
594 *aAction, /* The yy_action[] table under construction */
595 *aLookahead; /* A single new transaction set */
596 int mnLookahead; /* Minimum aLookahead[].lookahead */
597 int mnAction; /* Action associated with mnLookahead */
598 int mxLookahead; /* Maximum aLookahead[].lookahead */
599 int nLookahead; /* Used slots in aLookahead[] */
600 int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
601 int nterminal; /* Number of terminal symbols */
602 int nsymbol; /* total number of symbols */
605 /* Return the number of entries in the yy_action table */
606 #define acttab_lookahead_size(X) ((X)->nAction)
608 /* The value for the N-th entry in yy_action */
609 #define acttab_yyaction(X,N) ((X)->aAction[N].action)
611 /* The value for the N-th entry in yy_lookahead */
612 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
614 /* Free all memory associated with the given acttab */
615 void acttab_free(acttab *p){
616 free( p->aAction );
617 free( p->aLookahead );
618 free( p );
621 /* Allocate a new acttab structure */
622 acttab *acttab_alloc(int nsymbol, int nterminal){
623 acttab *p = (acttab *) calloc( 1, sizeof(*p) );
624 if( p==0 ){
625 fprintf(stderr,"Unable to allocate memory for a new acttab.");
626 exit(1);
628 memset(p, 0, sizeof(*p));
629 p->nsymbol = nsymbol;
630 p->nterminal = nterminal;
631 return p;
634 /* Add a new action to the current transaction set.
636 ** This routine is called once for each lookahead for a particular
637 ** state.
639 void acttab_action(acttab *p, int lookahead, int action){
640 if( p->nLookahead>=p->nLookaheadAlloc ){
641 p->nLookaheadAlloc += 25;
642 p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
643 sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
644 if( p->aLookahead==0 ){
645 fprintf(stderr,"malloc failed\n");
646 exit(1);
649 if( p->nLookahead==0 ){
650 p->mxLookahead = lookahead;
651 p->mnLookahead = lookahead;
652 p->mnAction = action;
653 }else{
654 if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
655 if( p->mnLookahead>lookahead ){
656 p->mnLookahead = lookahead;
657 p->mnAction = action;
660 p->aLookahead[p->nLookahead].lookahead = lookahead;
661 p->aLookahead[p->nLookahead].action = action;
662 p->nLookahead++;
666 ** Add the transaction set built up with prior calls to acttab_action()
667 ** into the current action table. Then reset the transaction set back
668 ** to an empty set in preparation for a new round of acttab_action() calls.
670 ** Return the offset into the action table of the new transaction.
672 ** If the makeItSafe parameter is true, then the offset is chosen so that
673 ** it is impossible to overread the yy_lookaside[] table regardless of
674 ** the lookaside token. This is done for the terminal symbols, as they
675 ** come from external inputs and can contain syntax errors. When makeItSafe
676 ** is false, there is more flexibility in selecting offsets, resulting in
677 ** a smaller table. For non-terminal symbols, which are never syntax errors,
678 ** makeItSafe can be false.
680 int acttab_insert(acttab *p, int makeItSafe){
681 int i, j, k, n, end;
682 assert( p->nLookahead>0 );
684 /* Make sure we have enough space to hold the expanded action table
685 ** in the worst case. The worst case occurs if the transaction set
686 ** must be appended to the current action table
688 n = p->nsymbol + 1;
689 if( p->nAction + n >= p->nActionAlloc ){
690 int oldAlloc = p->nActionAlloc;
691 p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
692 p->aAction = (struct lookahead_action *) realloc( p->aAction,
693 sizeof(p->aAction[0])*p->nActionAlloc);
694 if( p->aAction==0 ){
695 fprintf(stderr,"malloc failed\n");
696 exit(1);
698 for(i=oldAlloc; i<p->nActionAlloc; i++){
699 p->aAction[i].lookahead = -1;
700 p->aAction[i].action = -1;
704 /* Scan the existing action table looking for an offset that is a
705 ** duplicate of the current transaction set. Fall out of the loop
706 ** if and when the duplicate is found.
708 ** i is the index in p->aAction[] where p->mnLookahead is inserted.
710 end = makeItSafe ? p->mnLookahead : 0;
711 for(i=p->nAction-1; i>=end; i--){
712 if( p->aAction[i].lookahead==p->mnLookahead ){
713 /* All lookaheads and actions in the aLookahead[] transaction
714 ** must match against the candidate aAction[i] entry. */
715 if( p->aAction[i].action!=p->mnAction ) continue;
716 for(j=0; j<p->nLookahead; j++){
717 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
718 if( k<0 || k>=p->nAction ) break;
719 if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
720 if( p->aLookahead[j].action!=p->aAction[k].action ) break;
722 if( j<p->nLookahead ) continue;
724 /* No possible lookahead value that is not in the aLookahead[]
725 ** transaction is allowed to match aAction[i] */
726 n = 0;
727 for(j=0; j<p->nAction; j++){
728 if( p->aAction[j].lookahead<0 ) continue;
729 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
731 if( n==p->nLookahead ){
732 break; /* An exact match is found at offset i */
737 /* If no existing offsets exactly match the current transaction, find an
738 ** an empty offset in the aAction[] table in which we can add the
739 ** aLookahead[] transaction.
741 if( i<end ){
742 /* Look for holes in the aAction[] table that fit the current
743 ** aLookahead[] transaction. Leave i set to the offset of the hole.
744 ** If no holes are found, i is left at p->nAction, which means the
745 ** transaction will be appended. */
746 i = makeItSafe ? p->mnLookahead : 0;
747 for(; i<p->nActionAlloc - p->mxLookahead; i++){
748 if( p->aAction[i].lookahead<0 ){
749 for(j=0; j<p->nLookahead; j++){
750 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
751 if( k<0 ) break;
752 if( p->aAction[k].lookahead>=0 ) break;
754 if( j<p->nLookahead ) continue;
755 for(j=0; j<p->nAction; j++){
756 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
758 if( j==p->nAction ){
759 break; /* Fits in empty slots */
764 /* Insert transaction set at index i. */
765 #if 0
766 printf("Acttab:");
767 for(j=0; j<p->nLookahead; j++){
768 printf(" %d", p->aLookahead[j].lookahead);
770 printf(" inserted at %d\n", i);
771 #endif
772 for(j=0; j<p->nLookahead; j++){
773 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
774 p->aAction[k] = p->aLookahead[j];
775 if( k>=p->nAction ) p->nAction = k+1;
777 if( makeItSafe && i+p->nterminal>=p->nAction ) p->nAction = i+p->nterminal+1;
778 p->nLookahead = 0;
780 /* Return the offset that is added to the lookahead in order to get the
781 ** index into yy_action of the action */
782 return i - p->mnLookahead;
786 ** Return the size of the action table without the trailing syntax error
787 ** entries.
789 int acttab_action_size(acttab *p){
790 int n = p->nAction;
791 while( n>0 && p->aAction[n-1].lookahead<0 ){ n--; }
792 return n;
795 /********************** From the file "build.c" *****************************/
797 ** Routines to construction the finite state machine for the LEMON
798 ** parser generator.
801 /* Find a precedence symbol of every rule in the grammar.
803 ** Those rules which have a precedence symbol coded in the input
804 ** grammar using the "[symbol]" construct will already have the
805 ** rp->precsym field filled. Other rules take as their precedence
806 ** symbol the first RHS symbol with a defined precedence. If there
807 ** are not RHS symbols with a defined precedence, the precedence
808 ** symbol field is left blank.
810 void FindRulePrecedences(struct lemon *xp)
812 struct rule *rp;
813 for(rp=xp->rule; rp; rp=rp->next){
814 if( rp->precsym==0 ){
815 int i, j;
816 for(i=0; i<rp->nrhs && rp->precsym==0; i++){
817 struct symbol *sp = rp->rhs[i];
818 if( sp->type==MULTITERMINAL ){
819 for(j=0; j<sp->nsubsym; j++){
820 if( sp->subsym[j]->prec>=0 ){
821 rp->precsym = sp->subsym[j];
822 break;
825 }else if( sp->prec>=0 ){
826 rp->precsym = rp->rhs[i];
831 return;
834 /* Find all nonterminals which will generate the empty string.
835 ** Then go back and compute the first sets of every nonterminal.
836 ** The first set is the set of all terminal symbols which can begin
837 ** a string generated by that nonterminal.
839 void FindFirstSets(struct lemon *lemp)
841 int i, j;
842 struct rule *rp;
843 int progress;
845 for(i=0; i<lemp->nsymbol; i++){
846 lemp->symbols[i]->lambda = LEMON_FALSE;
848 for(i=lemp->nterminal; i<lemp->nsymbol; i++){
849 lemp->symbols[i]->firstset = SetNew();
852 /* First compute all lambdas */
854 progress = 0;
855 for(rp=lemp->rule; rp; rp=rp->next){
856 if( rp->lhs->lambda ) continue;
857 for(i=0; i<rp->nrhs; i++){
858 struct symbol *sp = rp->rhs[i];
859 assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE );
860 if( sp->lambda==LEMON_FALSE ) break;
862 if( i==rp->nrhs ){
863 rp->lhs->lambda = LEMON_TRUE;
864 progress = 1;
867 }while( progress );
869 /* Now compute all first sets */
871 struct symbol *s1, *s2;
872 progress = 0;
873 for(rp=lemp->rule; rp; rp=rp->next){
874 s1 = rp->lhs;
875 for(i=0; i<rp->nrhs; i++){
876 s2 = rp->rhs[i];
877 if( s2->type==TERMINAL ){
878 progress += SetAdd(s1->firstset,s2->index);
879 break;
880 }else if( s2->type==MULTITERMINAL ){
881 for(j=0; j<s2->nsubsym; j++){
882 progress += SetAdd(s1->firstset,s2->subsym[j]->index);
884 break;
885 }else if( s1==s2 ){
886 if( s1->lambda==LEMON_FALSE ) break;
887 }else{
888 progress += SetUnion(s1->firstset,s2->firstset);
889 if( s2->lambda==LEMON_FALSE ) break;
893 }while( progress );
894 return;
897 /* Compute all LR(0) states for the grammar. Links
898 ** are added to between some states so that the LR(1) follow sets
899 ** can be computed later.
901 PRIVATE struct state *getstate(struct lemon *); /* forward reference */
902 void FindStates(struct lemon *lemp)
904 struct symbol *sp;
905 struct rule *rp;
907 Configlist_init();
909 /* Find the start symbol */
910 if( lemp->start ){
911 sp = Symbol_find(lemp->start);
912 if( sp==0 ){
913 ErrorMsg(lemp->filename,0,
914 "The specified start symbol \"%s\" is not "
915 "in a nonterminal of the grammar. \"%s\" will be used as the start "
916 "symbol instead.",lemp->start,lemp->startRule->lhs->name);
917 lemp->errorcnt++;
918 sp = lemp->startRule->lhs;
920 }else if( lemp->startRule ){
921 sp = lemp->startRule->lhs;
922 }else{
923 ErrorMsg(lemp->filename,0,"Internal error - no start rule\n");
924 exit(1);
927 /* Make sure the start symbol doesn't occur on the right-hand side of
928 ** any rule. Report an error if it does. (YACC would generate a new
929 ** start symbol in this case.) */
930 for(rp=lemp->rule; rp; rp=rp->next){
931 int i;
932 for(i=0; i<rp->nrhs; i++){
933 if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */
934 ErrorMsg(lemp->filename,0,
935 "The start symbol \"%s\" occurs on the "
936 "right-hand side of a rule. This will result in a parser which "
937 "does not work properly.",sp->name);
938 lemp->errorcnt++;
943 /* The basis configuration set for the first state
944 ** is all rules which have the start symbol as their
945 ** left-hand side */
946 for(rp=sp->rule; rp; rp=rp->nextlhs){
947 struct config *newcfp;
948 rp->lhsStart = 1;
949 newcfp = Configlist_addbasis(rp,0);
950 SetAdd(newcfp->fws,0);
953 /* Compute the first state. All other states will be
954 ** computed automatically during the computation of the first one.
955 ** The returned pointer to the first state is not used. */
956 (void)getstate(lemp);
957 return;
960 /* Return a pointer to a state which is described by the configuration
961 ** list which has been built from calls to Configlist_add.
963 PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
964 PRIVATE struct state *getstate(struct lemon *lemp)
966 struct config *cfp, *bp;
967 struct state *stp;
969 /* Extract the sorted basis of the new state. The basis was constructed
970 ** by prior calls to "Configlist_addbasis()". */
971 Configlist_sortbasis();
972 bp = Configlist_basis();
974 /* Get a state with the same basis */
975 stp = State_find(bp);
976 if( stp ){
977 /* A state with the same basis already exists! Copy all the follow-set
978 ** propagation links from the state under construction into the
979 ** preexisting state, then return a pointer to the preexisting state */
980 struct config *x, *y;
981 for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
982 Plink_copy(&y->bplp,x->bplp);
983 Plink_delete(x->fplp);
984 x->fplp = x->bplp = 0;
986 cfp = Configlist_return();
987 Configlist_eat(cfp);
988 }else{
989 /* This really is a new state. Construct all the details */
990 Configlist_closure(lemp); /* Compute the configuration closure */
991 Configlist_sort(); /* Sort the configuration closure */
992 cfp = Configlist_return(); /* Get a pointer to the config list */
993 stp = State_new(); /* A new state structure */
994 MemoryCheck(stp);
995 stp->bp = bp; /* Remember the configuration basis */
996 stp->cfp = cfp; /* Remember the configuration closure */
997 stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
998 stp->ap = 0; /* No actions, yet. */
999 State_insert(stp,stp->bp); /* Add to the state table */
1000 buildshifts(lemp,stp); /* Recursively compute successor states */
1002 return stp;
1006 ** Return true if two symbols are the same.
1008 int same_symbol(struct symbol *a, struct symbol *b)
1010 int i;
1011 if( a==b ) return 1;
1012 if( a->type!=MULTITERMINAL ) return 0;
1013 if( b->type!=MULTITERMINAL ) return 0;
1014 if( a->nsubsym!=b->nsubsym ) return 0;
1015 for(i=0; i<a->nsubsym; i++){
1016 if( a->subsym[i]!=b->subsym[i] ) return 0;
1018 return 1;
1021 /* Construct all successor states to the given state. A "successor"
1022 ** state is any state which can be reached by a shift action.
1024 PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
1026 struct config *cfp; /* For looping thru the config closure of "stp" */
1027 struct config *bcfp; /* For the inner loop on config closure of "stp" */
1028 struct config *newcfg; /* */
1029 struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
1030 struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
1031 struct state *newstp; /* A pointer to a successor state */
1033 /* Each configuration becomes complete after it contributes to a successor
1034 ** state. Initially, all configurations are incomplete */
1035 for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
1037 /* Loop through all configurations of the state "stp" */
1038 for(cfp=stp->cfp; cfp; cfp=cfp->next){
1039 if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
1040 if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
1041 Configlist_reset(); /* Reset the new config set */
1042 sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
1044 /* For every configuration in the state "stp" which has the symbol "sp"
1045 ** following its dot, add the same configuration to the basis set under
1046 ** construction but with the dot shifted one symbol to the right. */
1047 for(bcfp=cfp; bcfp; bcfp=bcfp->next){
1048 if( bcfp->status==COMPLETE ) continue; /* Already used */
1049 if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
1050 bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
1051 if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */
1052 bcfp->status = COMPLETE; /* Mark this config as used */
1053 newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
1054 Plink_add(&newcfg->bplp,bcfp);
1057 /* Get a pointer to the state described by the basis configuration set
1058 ** constructed in the preceding loop */
1059 newstp = getstate(lemp);
1061 /* The state "newstp" is reached from the state "stp" by a shift action
1062 ** on the symbol "sp" */
1063 if( sp->type==MULTITERMINAL ){
1064 int i;
1065 for(i=0; i<sp->nsubsym; i++){
1066 Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
1068 }else{
1069 Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
1075 ** Construct the propagation links
1077 void FindLinks(struct lemon *lemp)
1079 int i;
1080 struct config *cfp, *other;
1081 struct state *stp;
1082 struct plink *plp;
1084 /* Housekeeping detail:
1085 ** Add to every propagate link a pointer back to the state to
1086 ** which the link is attached. */
1087 for(i=0; i<lemp->nstate; i++){
1088 stp = lemp->sorted[i];
1089 for(cfp=stp?stp->cfp:0; cfp; cfp=cfp->next){
1090 cfp->stp = stp;
1094 /* Convert all backlinks into forward links. Only the forward
1095 ** links are used in the follow-set computation. */
1096 for(i=0; i<lemp->nstate; i++){
1097 stp = lemp->sorted[i];
1098 for(cfp=stp?stp->cfp:0; cfp; cfp=cfp->next){
1099 for(plp=cfp->bplp; plp; plp=plp->next){
1100 other = plp->cfp;
1101 Plink_add(&other->fplp,cfp);
1107 /* Compute all followsets.
1109 ** A followset is the set of all symbols which can come immediately
1110 ** after a configuration.
1112 void FindFollowSets(struct lemon *lemp)
1114 int i;
1115 struct config *cfp;
1116 struct plink *plp;
1117 int progress;
1118 int change;
1120 for(i=0; i<lemp->nstate; i++){
1121 assert( lemp->sorted[i]!=0 );
1122 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
1123 cfp->status = INCOMPLETE;
1128 progress = 0;
1129 for(i=0; i<lemp->nstate; i++){
1130 assert( lemp->sorted[i]!=0 );
1131 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
1132 if( cfp->status==COMPLETE ) continue;
1133 for(plp=cfp->fplp; plp; plp=plp->next){
1134 change = SetUnion(plp->cfp->fws,cfp->fws);
1135 if( change ){
1136 plp->cfp->status = INCOMPLETE;
1137 progress = 1;
1140 cfp->status = COMPLETE;
1143 }while( progress );
1146 static int resolve_conflict(struct action *,struct action *);
1148 /* Compute the reduce actions, and resolve conflicts.
1150 void FindActions(struct lemon *lemp)
1152 int i,j;
1153 struct config *cfp;
1154 struct state *stp;
1155 struct symbol *sp;
1156 struct rule *rp;
1158 /* Add all of the reduce actions
1159 ** A reduce action is added for each element of the followset of
1160 ** a configuration which has its dot at the extreme right.
1162 for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
1163 stp = lemp->sorted[i];
1164 for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
1165 if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
1166 for(j=0; j<lemp->nterminal; j++){
1167 if( SetFind(cfp->fws,j) ){
1168 /* Add a reduce action to the state "stp" which will reduce by the
1169 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
1170 Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
1177 /* Add the accepting token */
1178 if( lemp->start ){
1179 sp = Symbol_find(lemp->start);
1180 if( sp==0 ){
1181 if( lemp->startRule==0 ){
1182 fprintf(stderr, "internal error on source line %d: no start rule\n",
1183 __LINE__);
1184 exit(1);
1186 sp = lemp->startRule->lhs;
1188 }else{
1189 sp = lemp->startRule->lhs;
1191 /* Add to the first state (which is always the starting state of the
1192 ** finite state machine) an action to ACCEPT if the lookahead is the
1193 ** start nonterminal. */
1194 Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
1196 /* Resolve conflicts */
1197 for(i=0; i<lemp->nstate; i++){
1198 struct action *ap, *nap;
1199 stp = lemp->sorted[i];
1200 /* assert( stp->ap ); */
1201 stp->ap = Action_sort(stp->ap);
1202 for(ap=stp->ap; ap && ap->next; ap=ap->next){
1203 for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
1204 /* The two actions "ap" and "nap" have the same lookahead.
1205 ** Figure out which one should be used */
1206 lemp->nconflict += resolve_conflict(ap,nap);
1211 /* Report an error for each rule that can never be reduced. */
1212 for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
1213 for(i=0; i<lemp->nstate; i++){
1214 struct action *ap;
1215 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
1216 if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
1219 for(rp=lemp->rule; rp; rp=rp->next){
1220 if( rp->canReduce ) continue;
1221 ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
1222 lemp->errorcnt++;
1226 /* Resolve a conflict between the two given actions. If the
1227 ** conflict can't be resolved, return non-zero.
1229 ** NO LONGER TRUE:
1230 ** To resolve a conflict, first look to see if either action
1231 ** is on an error rule. In that case, take the action which
1232 ** is not associated with the error rule. If neither or both
1233 ** actions are associated with an error rule, then try to
1234 ** use precedence to resolve the conflict.
1236 ** If either action is a SHIFT, then it must be apx. This
1237 ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
1239 static int resolve_conflict(
1240 struct action *apx,
1241 struct action *apy
1243 struct symbol *spx, *spy;
1244 int errcnt = 0;
1245 assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
1246 if( apx->type==SHIFT && apy->type==SHIFT ){
1247 apy->type = SSCONFLICT;
1248 errcnt++;
1250 if( apx->type==SHIFT && apy->type==REDUCE ){
1251 spx = apx->sp;
1252 spy = apy->x.rp->precsym;
1253 if( spy==0 || spx->prec<0 || spy->prec<0 ){
1254 /* Not enough precedence information. */
1255 apy->type = SRCONFLICT;
1256 errcnt++;
1257 }else if( spx->prec>spy->prec ){ /* higher precedence wins */
1258 apy->type = RD_RESOLVED;
1259 }else if( spx->prec<spy->prec ){
1260 apx->type = SH_RESOLVED;
1261 }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
1262 apy->type = RD_RESOLVED; /* associativity */
1263 }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
1264 apx->type = SH_RESOLVED;
1265 }else{
1266 assert( spx->prec==spy->prec && spx->assoc==NONE );
1267 apx->type = ERROR;
1269 }else if( apx->type==REDUCE && apy->type==REDUCE ){
1270 spx = apx->x.rp->precsym;
1271 spy = apy->x.rp->precsym;
1272 if( spx==0 || spy==0 || spx->prec<0 ||
1273 spy->prec<0 || spx->prec==spy->prec ){
1274 apy->type = RRCONFLICT;
1275 errcnt++;
1276 }else if( spx->prec>spy->prec ){
1277 apy->type = RD_RESOLVED;
1278 }else if( spx->prec<spy->prec ){
1279 apx->type = RD_RESOLVED;
1281 }else{
1282 assert(
1283 apx->type==SH_RESOLVED ||
1284 apx->type==RD_RESOLVED ||
1285 apx->type==SSCONFLICT ||
1286 apx->type==SRCONFLICT ||
1287 apx->type==RRCONFLICT ||
1288 apy->type==SH_RESOLVED ||
1289 apy->type==RD_RESOLVED ||
1290 apy->type==SSCONFLICT ||
1291 apy->type==SRCONFLICT ||
1292 apy->type==RRCONFLICT
1294 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1295 ** REDUCEs on the list. If we reach this point it must be because
1296 ** the parser conflict had already been resolved. */
1298 return errcnt;
1300 /********************* From the file "configlist.c" *************************/
1302 ** Routines to processing a configuration list and building a state
1303 ** in the LEMON parser generator.
1306 static struct config *freelist = 0; /* List of free configurations */
1307 static struct config *current = 0; /* Top of list of configurations */
1308 static struct config **currentend = 0; /* Last on list of configs */
1309 static struct config *basis = 0; /* Top of list of basis configs */
1310 static struct config **basisend = 0; /* End of list of basis configs */
1312 /* Return a pointer to a new configuration */
1313 PRIVATE struct config *newconfig(void){
1314 return (struct config*)calloc(1, sizeof(struct config));
1317 /* The configuration "old" is no longer used */
1318 PRIVATE void deleteconfig(struct config *old)
1320 old->next = freelist;
1321 freelist = old;
1324 /* Initialized the configuration list builder */
1325 void Configlist_init(void){
1326 current = 0;
1327 currentend = &current;
1328 basis = 0;
1329 basisend = &basis;
1330 Configtable_init();
1331 return;
1334 /* Initialized the configuration list builder */
1335 void Configlist_reset(void){
1336 current = 0;
1337 currentend = &current;
1338 basis = 0;
1339 basisend = &basis;
1340 Configtable_clear(0);
1341 return;
1344 /* Add another configuration to the configuration list */
1345 struct config *Configlist_add(
1346 struct rule *rp, /* The rule */
1347 int dot /* Index into the RHS of the rule where the dot goes */
1349 struct config *cfp, model;
1351 assert( currentend!=0 );
1352 model.rp = rp;
1353 model.dot = dot;
1354 cfp = Configtable_find(&model);
1355 if( cfp==0 ){
1356 cfp = newconfig();
1357 cfp->rp = rp;
1358 cfp->dot = dot;
1359 cfp->fws = SetNew();
1360 cfp->stp = 0;
1361 cfp->fplp = cfp->bplp = 0;
1362 cfp->next = 0;
1363 cfp->bp = 0;
1364 *currentend = cfp;
1365 currentend = &cfp->next;
1366 Configtable_insert(cfp);
1368 return cfp;
1371 /* Add a basis configuration to the configuration list */
1372 struct config *Configlist_addbasis(struct rule *rp, int dot)
1374 struct config *cfp, model;
1376 assert( basisend!=0 );
1377 assert( currentend!=0 );
1378 model.rp = rp;
1379 model.dot = dot;
1380 cfp = Configtable_find(&model);
1381 if( cfp==0 ){
1382 cfp = newconfig();
1383 cfp->rp = rp;
1384 cfp->dot = dot;
1385 cfp->fws = SetNew();
1386 cfp->stp = 0;
1387 cfp->fplp = cfp->bplp = 0;
1388 cfp->next = 0;
1389 cfp->bp = 0;
1390 *currentend = cfp;
1391 currentend = &cfp->next;
1392 *basisend = cfp;
1393 basisend = &cfp->bp;
1394 Configtable_insert(cfp);
1396 return cfp;
1399 /* Compute the closure of the configuration list */
1400 void Configlist_closure(struct lemon *lemp)
1402 struct config *cfp, *newcfp;
1403 struct rule *rp, *newrp;
1404 struct symbol *sp, *xsp;
1405 int i, dot;
1407 assert( currentend!=0 );
1408 for(cfp=current; cfp; cfp=cfp->next){
1409 rp = cfp->rp;
1410 dot = cfp->dot;
1411 if( dot>=rp->nrhs ) continue;
1412 sp = rp->rhs[dot];
1413 if( sp->type==NONTERMINAL ){
1414 if( sp->rule==0 && sp!=lemp->errsym ){
1415 ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
1416 sp->name);
1417 lemp->errorcnt++;
1419 for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
1420 newcfp = Configlist_add(newrp,0);
1421 for(i=dot+1; i<rp->nrhs; i++){
1422 xsp = rp->rhs[i];
1423 if( xsp->type==TERMINAL ){
1424 SetAdd(newcfp->fws,xsp->index);
1425 break;
1426 }else if( xsp->type==MULTITERMINAL ){
1427 int k;
1428 for(k=0; k<xsp->nsubsym; k++){
1429 SetAdd(newcfp->fws, xsp->subsym[k]->index);
1431 break;
1432 }else{
1433 SetUnion(newcfp->fws,xsp->firstset);
1434 if( xsp->lambda==LEMON_FALSE ) break;
1437 if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
1441 return;
1444 /* Sort the configuration list */
1445 void Configlist_sort(void){
1446 current = (struct config*)msort((char*)current,(char**)&(current->next),
1447 Configcmp);
1448 currentend = 0;
1449 return;
1452 /* Sort the basis configuration list */
1453 void Configlist_sortbasis(void){
1454 basis = (struct config*)msort((char*)current,(char**)&(current->bp),
1455 Configcmp);
1456 basisend = 0;
1457 return;
1460 /* Return a pointer to the head of the configuration list and
1461 ** reset the list */
1462 struct config *Configlist_return(void){
1463 struct config *old;
1464 old = current;
1465 current = 0;
1466 currentend = 0;
1467 return old;
1470 /* Return a pointer to the head of the configuration list and
1471 ** reset the list */
1472 struct config *Configlist_basis(void){
1473 struct config *old;
1474 old = basis;
1475 basis = 0;
1476 basisend = 0;
1477 return old;
1480 /* Free all elements of the given configuration list */
1481 void Configlist_eat(struct config *cfp)
1483 struct config *nextcfp;
1484 for(; cfp; cfp=nextcfp){
1485 nextcfp = cfp->next;
1486 assert( cfp->fplp==0 );
1487 assert( cfp->bplp==0 );
1488 if( cfp->fws ) SetFree(cfp->fws);
1489 deleteconfig(cfp);
1491 return;
1493 /***************** From the file "error.c" *********************************/
1495 ** Code for printing error message.
1498 void ErrorMsg(const char *filename, int lineno, const char *format, ...){
1499 va_list ap;
1500 fprintf(stderr, "%s:%d: ", filename, lineno);
1501 va_start(ap, format);
1502 vfprintf(stderr,format,ap);
1503 va_end(ap);
1504 fprintf(stderr, "\n");
1506 /**************** From the file "main.c" ************************************/
1508 ** Main program file for the LEMON parser generator.
1511 /* Report an out-of-memory condition and abort. This function
1512 ** is used mostly by the "MemoryCheck" macro in struct.h
1514 void memory_error(void){
1515 fprintf(stderr,"Out of memory. Aborting...\n");
1516 exit(1);
1519 static int nDefine = 0; /* Number of -D options on the command line */
1520 static char **azDefine = 0; /* Name of the -D macros */
1522 /* This routine is called with the argument to each -D command-line option.
1523 ** Add the macro defined to the azDefine array.
1525 static void handle_D_option(char *z){
1526 char **paz;
1527 nDefine++;
1528 azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
1529 if( azDefine==0 ){
1530 fprintf(stderr,"out of memory\n");
1531 exit(1);
1533 paz = &azDefine[nDefine-1];
1534 *paz = (char *) malloc( lemonStrlen(z)+1 );
1535 if( *paz==0 ){
1536 fprintf(stderr,"out of memory\n");
1537 exit(1);
1539 lemon_strcpy(*paz, z);
1540 for(z=*paz; *z && *z!='='; z++){}
1541 *z = 0;
1544 /* Rember the name of the output directory
1546 static char *outputDir = NULL;
1547 static void handle_d_option(char *z){
1548 outputDir = (char *) malloc( lemonStrlen(z)+1 );
1549 if( outputDir==0 ){
1550 fprintf(stderr,"out of memory\n");
1551 exit(1);
1553 lemon_strcpy(outputDir, z);
1556 static char *user_templatename = NULL;
1557 static void handle_T_option(char *z){
1558 user_templatename = (char *) malloc( lemonStrlen(z)+1 );
1559 if( user_templatename==0 ){
1560 memory_error();
1562 lemon_strcpy(user_templatename, z);
1565 /* Merge together to lists of rules ordered by rule.iRule */
1566 static struct rule *Rule_merge(struct rule *pA, struct rule *pB){
1567 struct rule *pFirst = 0;
1568 struct rule **ppPrev = &pFirst;
1569 while( pA && pB ){
1570 if( pA->iRule<pB->iRule ){
1571 *ppPrev = pA;
1572 ppPrev = &pA->next;
1573 pA = pA->next;
1574 }else{
1575 *ppPrev = pB;
1576 ppPrev = &pB->next;
1577 pB = pB->next;
1580 if( pA ){
1581 *ppPrev = pA;
1582 }else{
1583 *ppPrev = pB;
1585 return pFirst;
1589 ** Sort a list of rules in order of increasing iRule value
1591 static struct rule *Rule_sort(struct rule *rp){
1592 unsigned int i;
1593 struct rule *pNext;
1594 struct rule *x[32];
1595 memset(x, 0, sizeof(x));
1596 while( rp ){
1597 pNext = rp->next;
1598 rp->next = 0;
1599 for(i=0; i<sizeof(x)/sizeof(x[0])-1 && x[i]; i++){
1600 rp = Rule_merge(x[i], rp);
1601 x[i] = 0;
1603 x[i] = rp;
1604 rp = pNext;
1606 rp = 0;
1607 for(i=0; i<sizeof(x)/sizeof(x[0]); i++){
1608 rp = Rule_merge(x[i], rp);
1610 return rp;
1613 /* forward reference */
1614 static const char *minimum_size_type(int lwr, int upr, int *pnByte);
1616 /* Print a single line of the "Parser Stats" output
1618 static void stats_line(const char *zLabel, int iValue){
1619 int nLabel = lemonStrlen(zLabel);
1620 printf(" %s%.*s %5d\n", zLabel,
1621 35-nLabel, "................................",
1622 iValue);
1625 /* The main program. Parse the command line and do it... */
1626 int main(int argc, char **argv){
1627 static int version = 0;
1628 static int rpflag = 0;
1629 static int basisflag = 0;
1630 static int compress = 0;
1631 static int quiet = 0;
1632 static int statistics = 0;
1633 static int mhflag = 0;
1634 static int nolinenosflag = 0;
1635 static int noResort = 0;
1636 static int sqlFlag = 0;
1637 static int printPP = 0;
1639 static struct s_options options[] = {
1640 {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
1641 {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
1642 {OPT_FSTR, "d", (char*)&handle_d_option, "Output directory. Default '.'"},
1643 {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
1644 {OPT_FLAG, "E", (char*)&printPP, "Print input file after preprocessing."},
1645 {OPT_FSTR, "f", 0, "Ignored. (Placeholder for -f compiler options.)"},
1646 {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
1647 {OPT_FSTR, "I", 0, "Ignored. (Placeholder for '-I' compiler options.)"},
1648 {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
1649 {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
1650 {OPT_FSTR, "O", 0, "Ignored. (Placeholder for '-O' compiler options.)"},
1651 {OPT_FLAG, "p", (char*)&showPrecedenceConflict,
1652 "Show conflicts resolved by precedence rules"},
1653 {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
1654 {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
1655 {OPT_FLAG, "s", (char*)&statistics,
1656 "Print parser stats to standard output."},
1657 {OPT_FLAG, "S", (char*)&sqlFlag,
1658 "Generate the *.sql file describing the parser tables."},
1659 {OPT_FLAG, "x", (char*)&version, "Print the version number."},
1660 {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
1661 {OPT_FSTR, "W", 0, "Ignored. (Placeholder for '-W' compiler options.)"},
1662 {OPT_FLAG,0,0,0}
1664 int i;
1665 int exitcode;
1666 struct lemon lem;
1667 struct rule *rp;
1669 (void)argc;
1670 OptInit(argv,options,stderr);
1671 if( version ){
1672 printf("Lemon version 1.0\n");
1673 exit(0);
1675 if( OptNArgs()!=1 ){
1676 fprintf(stderr,"Exactly one filename argument is required.\n");
1677 exit(1);
1679 memset(&lem, 0, sizeof(lem));
1680 lem.errorcnt = 0;
1682 /* Initialize the machine */
1683 Strsafe_init();
1684 Symbol_init();
1685 State_init();
1686 lem.argv0 = argv[0];
1687 lem.filename = OptArg(0);
1688 lem.basisflag = basisflag;
1689 lem.nolinenosflag = nolinenosflag;
1690 lem.printPreprocessed = printPP;
1691 Symbol_new("$");
1693 /* Parse the input file */
1694 Parse(&lem);
1695 if( lem.printPreprocessed || lem.errorcnt ) exit(lem.errorcnt);
1696 if( lem.nrule==0 ){
1697 fprintf(stderr,"Empty grammar.\n");
1698 exit(1);
1700 lem.errsym = Symbol_find("error");
1702 /* Count and index the symbols of the grammar */
1703 Symbol_new("{default}");
1704 lem.nsymbol = Symbol_count();
1705 lem.symbols = Symbol_arrayof();
1706 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
1707 qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp);
1708 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
1709 while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; }
1710 assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 );
1711 lem.nsymbol = i - 1;
1712 for(i=1; ISUPPER(lem.symbols[i]->name[0]); i++);
1713 lem.nterminal = i;
1715 /* Assign sequential rule numbers. Start with 0. Put rules that have no
1716 ** reduce action C-code associated with them last, so that the switch()
1717 ** statement that selects reduction actions will have a smaller jump table.
1719 for(i=0, rp=lem.rule; rp; rp=rp->next){
1720 rp->iRule = rp->code ? i++ : -1;
1722 lem.nruleWithAction = i;
1723 for(rp=lem.rule; rp; rp=rp->next){
1724 if( rp->iRule<0 ) rp->iRule = i++;
1726 lem.startRule = lem.rule;
1727 lem.rule = Rule_sort(lem.rule);
1729 /* Generate a reprint of the grammar, if requested on the command line */
1730 if( rpflag ){
1731 Reprint(&lem);
1732 }else{
1733 /* Initialize the size for all follow and first sets */
1734 SetSize(lem.nterminal+1);
1736 /* Find the precedence for every production rule (that has one) */
1737 FindRulePrecedences(&lem);
1739 /* Compute the lambda-nonterminals and the first-sets for every
1740 ** nonterminal */
1741 FindFirstSets(&lem);
1743 /* Compute all LR(0) states. Also record follow-set propagation
1744 ** links so that the follow-set can be computed later */
1745 lem.nstate = 0;
1746 FindStates(&lem);
1747 lem.sorted = State_arrayof();
1749 /* Tie up loose ends on the propagation links */
1750 FindLinks(&lem);
1752 /* Compute the follow set of every reducible configuration */
1753 FindFollowSets(&lem);
1755 /* Compute the action tables */
1756 FindActions(&lem);
1758 /* Compress the action tables */
1759 if( compress==0 ) CompressTables(&lem);
1761 /* Reorder and renumber the states so that states with fewer choices
1762 ** occur at the end. This is an optimization that helps make the
1763 ** generated parser tables smaller. */
1764 if( noResort==0 ) ResortStates(&lem);
1766 /* Generate a report of the parser generated. (the "y.output" file) */
1767 if( !quiet ) ReportOutput(&lem);
1769 /* Generate the source code for the parser */
1770 ReportTable(&lem, mhflag, sqlFlag);
1772 /* Produce a header file for use by the scanner. (This step is
1773 ** omitted if the "-m" option is used because makeheaders will
1774 ** generate the file for us.) */
1775 if( !mhflag ) ReportHeader(&lem);
1777 if( statistics ){
1778 printf("Parser statistics:\n");
1779 stats_line("terminal symbols", lem.nterminal);
1780 stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal);
1781 stats_line("total symbols", lem.nsymbol);
1782 stats_line("rules", lem.nrule);
1783 stats_line("states", lem.nxstate);
1784 stats_line("conflicts", lem.nconflict);
1785 stats_line("action table entries", lem.nactiontab);
1786 stats_line("lookahead table entries", lem.nlookaheadtab);
1787 stats_line("total table size (bytes)", lem.tablesize);
1789 if( lem.nconflict > 0 ){
1790 fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
1793 /* return 0 on success, 1 on failure. */
1794 exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
1795 exit(exitcode);
1796 return (exitcode);
1798 /******************** From the file "msort.c" *******************************/
1800 ** A generic merge-sort program.
1802 ** USAGE:
1803 ** Let "ptr" be a pointer to some structure which is at the head of
1804 ** a null-terminated list. Then to sort the list call:
1806 ** ptr = msort(ptr,&(ptr->next),cmpfnc);
1808 ** In the above, "cmpfnc" is a pointer to a function which compares
1809 ** two instances of the structure and returns an integer, as in
1810 ** strcmp. The second argument is a pointer to the pointer to the
1811 ** second element of the linked list. This address is used to compute
1812 ** the offset to the "next" field within the structure. The offset to
1813 ** the "next" field must be constant for all structures in the list.
1815 ** The function returns a new pointer which is the head of the list
1816 ** after sorting.
1818 ** ALGORITHM:
1819 ** Merge-sort.
1823 ** Return a pointer to the next structure in the linked list.
1825 #define NEXT(A) (*(char**)(((char*)A)+offset))
1828 ** Inputs:
1829 ** a: A sorted, null-terminated linked list. (May be null).
1830 ** b: A sorted, null-terminated linked list. (May be null).
1831 ** cmp: A pointer to the comparison function.
1832 ** offset: Offset in the structure to the "next" field.
1834 ** Return Value:
1835 ** A pointer to the head of a sorted list containing the elements
1836 ** of both a and b.
1838 ** Side effects:
1839 ** The "next" pointers for elements in the lists a and b are
1840 ** changed.
1842 static char *merge(
1843 char *a,
1844 char *b,
1845 int (*cmp)(const char*,const char*),
1846 int offset
1848 char *ptr, *head;
1850 if( a==0 ){
1851 head = b;
1852 }else if( b==0 ){
1853 head = a;
1854 }else{
1855 if( (*cmp)(a,b)<=0 ){
1856 ptr = a;
1857 a = NEXT(a);
1858 }else{
1859 ptr = b;
1860 b = NEXT(b);
1862 head = ptr;
1863 while( a && b ){
1864 if( (*cmp)(a,b)<=0 ){
1865 NEXT(ptr) = a;
1866 ptr = a;
1867 a = NEXT(a);
1868 }else{
1869 NEXT(ptr) = b;
1870 ptr = b;
1871 b = NEXT(b);
1874 if( a ) NEXT(ptr) = a;
1875 else NEXT(ptr) = b;
1877 return head;
1881 ** Inputs:
1882 ** list: Pointer to a singly-linked list of structures.
1883 ** next: Pointer to pointer to the second element of the list.
1884 ** cmp: A comparison function.
1886 ** Return Value:
1887 ** A pointer to the head of a sorted list containing the elements
1888 ** originally in list.
1890 ** Side effects:
1891 ** The "next" pointers for elements in list are changed.
1893 #define LISTSIZE 30
1894 static char *msort(
1895 char *list,
1896 char **next,
1897 int (*cmp)(const char*,const char*)
1899 unsigned long offset;
1900 char *ep;
1901 char *set[LISTSIZE];
1902 int i;
1903 offset = (unsigned long)((char*)next - (char*)list);
1904 for(i=0; i<LISTSIZE; i++) set[i] = 0;
1905 while( list ){
1906 ep = list;
1907 list = NEXT(list);
1908 NEXT(ep) = 0;
1909 for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
1910 ep = merge(ep,set[i],cmp,offset);
1911 set[i] = 0;
1913 set[i] = ep;
1915 ep = 0;
1916 for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
1917 return ep;
1919 /************************ From the file "option.c" **************************/
1920 static char **g_argv;
1921 static struct s_options *op;
1922 static FILE *errstream;
1924 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1927 ** Print the command line with a carrot pointing to the k-th character
1928 ** of the n-th field.
1930 static void errline(int n, int k, FILE *err)
1932 int spcnt, i;
1933 if( g_argv[0] ){
1934 fprintf(err,"%s",g_argv[0]);
1935 spcnt = lemonStrlen(g_argv[0]) + 1;
1936 }else{
1937 spcnt = 0;
1939 for(i=1; i<n && g_argv[i]; i++){
1940 fprintf(err," %s",g_argv[i]);
1941 spcnt += lemonStrlen(g_argv[i])+1;
1943 spcnt += k;
1944 for(; g_argv[i]; i++) fprintf(err," %s",g_argv[i]);
1945 if( spcnt<20 ){
1946 fprintf(err,"\n%*s^-- here\n",spcnt,"");
1947 }else{
1948 fprintf(err,"\n%*shere --^\n",spcnt-7,"");
1953 ** Return the index of the N-th non-switch argument. Return -1
1954 ** if N is out of range.
1956 static int argindex(int n)
1958 int i;
1959 int dashdash = 0;
1960 if( g_argv!=0 && *g_argv!=0 ){
1961 for(i=1; g_argv[i]; i++){
1962 if( dashdash || !ISOPT(g_argv[i]) ){
1963 if( n==0 ) return i;
1964 n--;
1966 if( strcmp(g_argv[i],"--")==0 ) dashdash = 1;
1969 return -1;
1972 static char emsg[] = "Command line syntax error: ";
1975 ** Process a flag command line argument.
1977 static int handleflags(int i, FILE *err)
1979 int v;
1980 int errcnt = 0;
1981 int j;
1982 for(j=0; op[j].label; j++){
1983 if( strncmp(&g_argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
1985 v = g_argv[i][0]=='-' ? 1 : 0;
1986 if( op[j].label==0 ){
1987 if( err ){
1988 fprintf(err,"%sundefined option.\n",emsg);
1989 errline(i,1,err);
1991 errcnt++;
1992 }else if( op[j].arg==0 ){
1993 /* Ignore this option */
1994 }else if( op[j].type==OPT_FLAG ){
1995 *((int*)op[j].arg) = v;
1996 }else if( op[j].type==OPT_FFLAG ){
1997 (*(void(*)(int))(op[j].arg))(v);
1998 }else if( op[j].type==OPT_FSTR ){
1999 (*(void(*)(char *))(op[j].arg))(&g_argv[i][2]);
2000 }else{
2001 if( err ){
2002 fprintf(err,"%smissing argument on switch.\n",emsg);
2003 errline(i,1,err);
2005 errcnt++;
2007 return errcnt;
2011 ** Process a command line switch which has an argument.
2013 static int handleswitch(int i, FILE *err)
2015 int lv = 0;
2016 double dv = 0.0;
2017 char *sv = 0, *end;
2018 char *cp;
2019 int j;
2020 int errcnt = 0;
2021 cp = strchr(g_argv[i],'=');
2022 assert( cp!=0 );
2023 *cp = 0;
2024 for(j=0; op[j].label; j++){
2025 if( strcmp(g_argv[i],op[j].label)==0 ) break;
2027 *cp = '=';
2028 if( op[j].label==0 ){
2029 if( err ){
2030 fprintf(err,"%sundefined option.\n",emsg);
2031 errline(i,0,err);
2033 errcnt++;
2034 }else{
2035 cp++;
2036 switch( op[j].type ){
2037 case OPT_FLAG:
2038 case OPT_FFLAG:
2039 if( err ){
2040 fprintf(err,"%soption requires an argument.\n",emsg);
2041 errline(i,0,err);
2043 errcnt++;
2044 break;
2045 case OPT_DBL:
2046 case OPT_FDBL:
2047 dv = strtod(cp,&end);
2048 if( *end ){
2049 if( err ){
2050 fprintf(err,
2051 "%sillegal character in floating-point argument.\n",emsg);
2052 errline(i,(int)((char*)end-(char*)g_argv[i]),err);
2054 errcnt++;
2056 break;
2057 case OPT_INT:
2058 case OPT_FINT:
2059 lv = strtol(cp,&end,0);
2060 if( *end ){
2061 if( err ){
2062 fprintf(err,"%sillegal character in integer argument.\n",emsg);
2063 errline(i,(int)((char*)end-(char*)g_argv[i]),err);
2065 errcnt++;
2067 break;
2068 case OPT_STR:
2069 case OPT_FSTR:
2070 sv = cp;
2071 break;
2073 switch( op[j].type ){
2074 case OPT_FLAG:
2075 case OPT_FFLAG:
2076 break;
2077 case OPT_DBL:
2078 *(double*)(op[j].arg) = dv;
2079 break;
2080 case OPT_FDBL:
2081 (*(void(*)(double))(op[j].arg))(dv);
2082 break;
2083 case OPT_INT:
2084 *(int*)(op[j].arg) = lv;
2085 break;
2086 case OPT_FINT:
2087 (*(void(*)(int))(op[j].arg))((int)lv);
2088 break;
2089 case OPT_STR:
2090 *(char**)(op[j].arg) = sv;
2091 break;
2092 case OPT_FSTR:
2093 (*(void(*)(char *))(op[j].arg))(sv);
2094 break;
2097 return errcnt;
2100 int OptInit(char **a, struct s_options *o, FILE *err)
2102 int errcnt = 0;
2103 g_argv = a;
2104 op = o;
2105 errstream = err;
2106 if( g_argv && *g_argv && op ){
2107 int i;
2108 for(i=1; g_argv[i]; i++){
2109 if( strcmp(g_argv[i],"--")==0 ) break;
2110 if( g_argv[i][0]=='+' || g_argv[i][0]=='-' ){
2111 errcnt += handleflags(i,err);
2112 }else if( strchr(g_argv[i],'=') ){
2113 errcnt += handleswitch(i,err);
2117 if( errcnt>0 ){
2118 fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
2119 OptPrint();
2120 exit(1);
2122 return 0;
2125 int OptNArgs(void){
2126 int cnt = 0;
2127 int dashdash = 0;
2128 int i;
2129 if( g_argv!=0 && g_argv[0]!=0 ){
2130 for(i=1; g_argv[i]; i++){
2131 if( dashdash || !ISOPT(g_argv[i]) ) cnt++;
2132 if( strcmp(g_argv[i],"--")==0 ) dashdash = 1;
2135 return cnt;
2138 char *OptArg(int n)
2140 int i;
2141 i = argindex(n);
2142 return i>=0 ? g_argv[i] : 0;
2145 void OptErr(int n)
2147 int i;
2148 i = argindex(n);
2149 if( i>=0 ) errline(i,0,errstream);
2152 void OptPrint(void){
2153 int i;
2154 int max, len;
2155 max = 0;
2156 for(i=0; op[i].label; i++){
2157 len = lemonStrlen(op[i].label) + 1;
2158 switch( op[i].type ){
2159 case OPT_FLAG:
2160 case OPT_FFLAG:
2161 break;
2162 case OPT_INT:
2163 case OPT_FINT:
2164 len += 9; /* length of "<integer>" */
2165 break;
2166 case OPT_DBL:
2167 case OPT_FDBL:
2168 len += 6; /* length of "<real>" */
2169 break;
2170 case OPT_STR:
2171 case OPT_FSTR:
2172 len += 8; /* length of "<string>" */
2173 break;
2175 if( len>max ) max = len;
2177 for(i=0; op[i].label; i++){
2178 switch( op[i].type ){
2179 case OPT_FLAG:
2180 case OPT_FFLAG:
2181 fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message);
2182 break;
2183 case OPT_INT:
2184 case OPT_FINT:
2185 fprintf(errstream," -%s<integer>%*s %s\n",op[i].label,
2186 (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
2187 break;
2188 case OPT_DBL:
2189 case OPT_FDBL:
2190 fprintf(errstream," -%s<real>%*s %s\n",op[i].label,
2191 (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
2192 break;
2193 case OPT_STR:
2194 case OPT_FSTR:
2195 fprintf(errstream," -%s<string>%*s %s\n",op[i].label,
2196 (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
2197 break;
2201 /*********************** From the file "parse.c" ****************************/
2203 ** Input file parser for the LEMON parser generator.
2206 /* The state of the parser */
2207 enum e_state {
2208 INITIALIZE,
2209 WAITING_FOR_DECL_OR_RULE,
2210 WAITING_FOR_DECL_KEYWORD,
2211 WAITING_FOR_DECL_ARG,
2212 WAITING_FOR_PRECEDENCE_SYMBOL,
2213 WAITING_FOR_ARROW,
2214 IN_RHS,
2215 LHS_ALIAS_1,
2216 LHS_ALIAS_2,
2217 LHS_ALIAS_3,
2218 RHS_ALIAS_1,
2219 RHS_ALIAS_2,
2220 PRECEDENCE_MARK_1,
2221 PRECEDENCE_MARK_2,
2222 RESYNC_AFTER_RULE_ERROR,
2223 RESYNC_AFTER_DECL_ERROR,
2224 WAITING_FOR_DESTRUCTOR_SYMBOL,
2225 WAITING_FOR_DATATYPE_SYMBOL,
2226 WAITING_FOR_FALLBACK_ID,
2227 WAITING_FOR_WILDCARD_ID,
2228 WAITING_FOR_CLASS_ID,
2229 WAITING_FOR_CLASS_TOKEN,
2230 WAITING_FOR_TOKEN_NAME
2232 struct pstate {
2233 char *filename; /* Name of the input file */
2234 int tokenlineno; /* Linenumber at which current token starts */
2235 int errorcnt; /* Number of errors so far */
2236 char *tokenstart; /* Text of current token */
2237 struct lemon *gp; /* Global state vector */
2238 enum e_state state; /* The state of the parser */
2239 struct symbol *fallback; /* The fallback token */
2240 struct symbol *tkclass; /* Token class symbol */
2241 struct symbol *lhs; /* Left-hand side of current rule */
2242 const char *lhsalias; /* Alias for the LHS */
2243 int nrhs; /* Number of right-hand side symbols seen */
2244 struct symbol *rhs[MAXRHS]; /* RHS symbols */
2245 const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
2246 struct rule *prevrule; /* Previous rule parsed */
2247 const char *declkeyword; /* Keyword of a declaration */
2248 char **declargslot; /* Where the declaration argument should be put */
2249 int insertLineMacro; /* Add #line before declaration insert */
2250 int *decllinenoslot; /* Where to write declaration line number */
2251 enum e_assoc declassoc; /* Assign this association to decl arguments */
2252 int preccounter; /* Assign this precedence to decl arguments */
2253 struct rule *firstrule; /* Pointer to first rule in the grammar */
2254 struct rule *lastrule; /* Pointer to the most recently parsed rule */
2257 /* Parse a single token */
2258 static void parseonetoken(struct pstate *psp)
2260 const char *x;
2261 x = Strsafe(psp->tokenstart); /* Save the token permanently */
2262 #if 0
2263 printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
2264 x,psp->state);
2265 #endif
2266 switch( psp->state ){
2267 case INITIALIZE:
2268 psp->prevrule = 0;
2269 psp->preccounter = 0;
2270 psp->firstrule = psp->lastrule = 0;
2271 psp->gp->nrule = 0;
2272 /* fall through */
2273 case WAITING_FOR_DECL_OR_RULE:
2274 if( x[0]=='%' ){
2275 psp->state = WAITING_FOR_DECL_KEYWORD;
2276 }else if( ISLOWER(x[0]) ){
2277 psp->lhs = Symbol_new(x);
2278 psp->nrhs = 0;
2279 psp->lhsalias = 0;
2280 psp->state = WAITING_FOR_ARROW;
2281 }else if( x[0]=='{' ){
2282 if( psp->prevrule==0 ){
2283 ErrorMsg(psp->filename,psp->tokenlineno,
2284 "There is no prior rule upon which to attach the code "
2285 "fragment which begins on this line.");
2286 psp->errorcnt++;
2287 }else if( psp->prevrule->code!=0 ){
2288 ErrorMsg(psp->filename,psp->tokenlineno,
2289 "Code fragment beginning on this line is not the first "
2290 "to follow the previous rule.");
2291 psp->errorcnt++;
2292 }else if( strcmp(x, "{NEVER-REDUCE")==0 ){
2293 psp->prevrule->neverReduce = 1;
2294 }else{
2295 psp->prevrule->line = psp->tokenlineno;
2296 psp->prevrule->code = &x[1];
2297 psp->prevrule->noCode = 0;
2299 }else if( x[0]=='[' ){
2300 psp->state = PRECEDENCE_MARK_1;
2301 }else{
2302 ErrorMsg(psp->filename,psp->tokenlineno,
2303 "Token \"%s\" should be either \"%%\" or a nonterminal name.",
2305 psp->errorcnt++;
2307 break;
2308 case PRECEDENCE_MARK_1:
2309 if( !ISUPPER(x[0]) ){
2310 ErrorMsg(psp->filename,psp->tokenlineno,
2311 "The precedence symbol must be a terminal.");
2312 psp->errorcnt++;
2313 }else if( psp->prevrule==0 ){
2314 ErrorMsg(psp->filename,psp->tokenlineno,
2315 "There is no prior rule to assign precedence \"[%s]\".",x);
2316 psp->errorcnt++;
2317 }else if( psp->prevrule->precsym!=0 ){
2318 ErrorMsg(psp->filename,psp->tokenlineno,
2319 "Precedence mark on this line is not the first "
2320 "to follow the previous rule.");
2321 psp->errorcnt++;
2322 }else{
2323 psp->prevrule->precsym = Symbol_new(x);
2325 psp->state = PRECEDENCE_MARK_2;
2326 break;
2327 case PRECEDENCE_MARK_2:
2328 if( x[0]!=']' ){
2329 ErrorMsg(psp->filename,psp->tokenlineno,
2330 "Missing \"]\" on precedence mark.");
2331 psp->errorcnt++;
2333 psp->state = WAITING_FOR_DECL_OR_RULE;
2334 break;
2335 case WAITING_FOR_ARROW:
2336 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2337 psp->state = IN_RHS;
2338 }else if( x[0]=='(' ){
2339 psp->state = LHS_ALIAS_1;
2340 }else{
2341 ErrorMsg(psp->filename,psp->tokenlineno,
2342 "Expected to see a \":\" following the LHS symbol \"%s\".",
2343 psp->lhs->name);
2344 psp->errorcnt++;
2345 psp->state = RESYNC_AFTER_RULE_ERROR;
2347 break;
2348 case LHS_ALIAS_1:
2349 if( ISALPHA(x[0]) ){
2350 psp->lhsalias = x;
2351 psp->state = LHS_ALIAS_2;
2352 }else{
2353 ErrorMsg(psp->filename,psp->tokenlineno,
2354 "\"%s\" is not a valid alias for the LHS \"%s\"\n",
2355 x,psp->lhs->name);
2356 psp->errorcnt++;
2357 psp->state = RESYNC_AFTER_RULE_ERROR;
2359 break;
2360 case LHS_ALIAS_2:
2361 if( x[0]==')' ){
2362 psp->state = LHS_ALIAS_3;
2363 }else{
2364 ErrorMsg(psp->filename,psp->tokenlineno,
2365 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2366 psp->errorcnt++;
2367 psp->state = RESYNC_AFTER_RULE_ERROR;
2369 break;
2370 case LHS_ALIAS_3:
2371 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2372 psp->state = IN_RHS;
2373 }else{
2374 ErrorMsg(psp->filename,psp->tokenlineno,
2375 "Missing \"->\" following: \"%s(%s)\".",
2376 psp->lhs->name,psp->lhsalias);
2377 psp->errorcnt++;
2378 psp->state = RESYNC_AFTER_RULE_ERROR;
2380 break;
2381 case IN_RHS:
2382 if( x[0]=='.' ){
2383 struct rule *rp;
2384 rp = (struct rule *)calloc( sizeof(struct rule) +
2385 sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
2386 if( rp==0 ){
2387 ErrorMsg(psp->filename,psp->tokenlineno,
2388 "Can't allocate enough memory for this rule.");
2389 psp->errorcnt++;
2390 psp->prevrule = 0;
2391 }else{
2392 int i;
2393 rp->ruleline = psp->tokenlineno;
2394 rp->rhs = (struct symbol**)&rp[1];
2395 rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
2396 for(i=0; i<psp->nrhs; i++){
2397 rp->rhs[i] = psp->rhs[i];
2398 rp->rhsalias[i] = psp->alias[i];
2399 if( rp->rhsalias[i]!=0 ){ rp->rhs[i]->bContent = 1; }
2401 rp->lhs = psp->lhs;
2402 rp->lhsalias = psp->lhsalias;
2403 rp->nrhs = psp->nrhs;
2404 rp->code = 0;
2405 rp->noCode = 1;
2406 rp->precsym = 0;
2407 rp->index = psp->gp->nrule++;
2408 rp->nextlhs = rp->lhs->rule;
2409 rp->lhs->rule = rp;
2410 rp->next = 0;
2411 if( psp->firstrule==0 ){
2412 psp->firstrule = psp->lastrule = rp;
2413 }else{
2414 psp->lastrule->next = rp;
2415 psp->lastrule = rp;
2417 psp->prevrule = rp;
2419 psp->state = WAITING_FOR_DECL_OR_RULE;
2420 }else if( ISALPHA(x[0]) ){
2421 if( psp->nrhs>=MAXRHS ){
2422 ErrorMsg(psp->filename,psp->tokenlineno,
2423 "Too many symbols on RHS of rule beginning at \"%s\".",
2425 psp->errorcnt++;
2426 psp->state = RESYNC_AFTER_RULE_ERROR;
2427 }else{
2428 psp->rhs[psp->nrhs] = Symbol_new(x);
2429 psp->alias[psp->nrhs] = 0;
2430 psp->nrhs++;
2432 }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 && ISUPPER(x[1]) ){
2433 struct symbol *msp = psp->rhs[psp->nrhs-1];
2434 if( msp->type!=MULTITERMINAL ){
2435 struct symbol *origsp = msp;
2436 msp = (struct symbol *) calloc(1,sizeof(*msp));
2437 memset(msp, 0, sizeof(*msp));
2438 msp->type = MULTITERMINAL;
2439 msp->nsubsym = 1;
2440 msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
2441 msp->subsym[0] = origsp;
2442 msp->name = origsp->name;
2443 psp->rhs[psp->nrhs-1] = msp;
2445 msp->nsubsym++;
2446 msp->subsym = (struct symbol **) realloc(msp->subsym,
2447 sizeof(struct symbol*)*msp->nsubsym);
2448 msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
2449 if( ISLOWER(x[1]) || ISLOWER(msp->subsym[0]->name[0]) ){
2450 ErrorMsg(psp->filename,psp->tokenlineno,
2451 "Cannot form a compound containing a non-terminal");
2452 psp->errorcnt++;
2454 }else if( x[0]=='(' && psp->nrhs>0 ){
2455 psp->state = RHS_ALIAS_1;
2456 }else{
2457 ErrorMsg(psp->filename,psp->tokenlineno,
2458 "Illegal character on RHS of rule: \"%s\".",x);
2459 psp->errorcnt++;
2460 psp->state = RESYNC_AFTER_RULE_ERROR;
2462 break;
2463 case RHS_ALIAS_1:
2464 if( ISALPHA(x[0]) ){
2465 psp->alias[psp->nrhs-1] = x;
2466 psp->state = RHS_ALIAS_2;
2467 }else{
2468 ErrorMsg(psp->filename,psp->tokenlineno,
2469 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2470 x,psp->rhs[psp->nrhs-1]->name);
2471 psp->errorcnt++;
2472 psp->state = RESYNC_AFTER_RULE_ERROR;
2474 break;
2475 case RHS_ALIAS_2:
2476 if( x[0]==')' ){
2477 psp->state = IN_RHS;
2478 }else{
2479 ErrorMsg(psp->filename,psp->tokenlineno,
2480 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2481 psp->errorcnt++;
2482 psp->state = RESYNC_AFTER_RULE_ERROR;
2484 break;
2485 case WAITING_FOR_DECL_KEYWORD:
2486 if( ISALPHA(x[0]) ){
2487 psp->declkeyword = x;
2488 psp->declargslot = 0;
2489 psp->decllinenoslot = 0;
2490 psp->insertLineMacro = 1;
2491 psp->state = WAITING_FOR_DECL_ARG;
2492 if( strcmp(x,"name")==0 ){
2493 psp->declargslot = &(psp->gp->name);
2494 psp->insertLineMacro = 0;
2495 }else if( strcmp(x,"include")==0 ){
2496 psp->declargslot = &(psp->gp->include);
2497 }else if( strcmp(x,"code")==0 ){
2498 psp->declargslot = &(psp->gp->extracode);
2499 }else if( strcmp(x,"token_destructor")==0 ){
2500 psp->declargslot = &psp->gp->tokendest;
2501 }else if( strcmp(x,"default_destructor")==0 ){
2502 psp->declargslot = &psp->gp->vardest;
2503 }else if( strcmp(x,"token_prefix")==0 ){
2504 psp->declargslot = &psp->gp->tokenprefix;
2505 psp->insertLineMacro = 0;
2506 }else if( strcmp(x,"syntax_error")==0 ){
2507 psp->declargslot = &(psp->gp->error);
2508 }else if( strcmp(x,"parse_accept")==0 ){
2509 psp->declargslot = &(psp->gp->accept);
2510 }else if( strcmp(x,"parse_failure")==0 ){
2511 psp->declargslot = &(psp->gp->failure);
2512 }else if( strcmp(x,"stack_overflow")==0 ){
2513 psp->declargslot = &(psp->gp->overflow);
2514 }else if( strcmp(x,"extra_argument")==0 ){
2515 psp->declargslot = &(psp->gp->arg);
2516 psp->insertLineMacro = 0;
2517 }else if( strcmp(x,"extra_context")==0 ){
2518 psp->declargslot = &(psp->gp->ctx);
2519 psp->insertLineMacro = 0;
2520 }else if( strcmp(x,"token_type")==0 ){
2521 psp->declargslot = &(psp->gp->tokentype);
2522 psp->insertLineMacro = 0;
2523 }else if( strcmp(x,"default_type")==0 ){
2524 psp->declargslot = &(psp->gp->vartype);
2525 psp->insertLineMacro = 0;
2526 }else if( strcmp(x,"stack_size")==0 ){
2527 psp->declargslot = &(psp->gp->stacksize);
2528 psp->insertLineMacro = 0;
2529 }else if( strcmp(x,"start_symbol")==0 ){
2530 psp->declargslot = &(psp->gp->start);
2531 psp->insertLineMacro = 0;
2532 }else if( strcmp(x,"left")==0 ){
2533 psp->preccounter++;
2534 psp->declassoc = LEFT;
2535 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2536 }else if( strcmp(x,"right")==0 ){
2537 psp->preccounter++;
2538 psp->declassoc = RIGHT;
2539 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2540 }else if( strcmp(x,"nonassoc")==0 ){
2541 psp->preccounter++;
2542 psp->declassoc = NONE;
2543 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2544 }else if( strcmp(x,"destructor")==0 ){
2545 psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
2546 }else if( strcmp(x,"type")==0 ){
2547 psp->state = WAITING_FOR_DATATYPE_SYMBOL;
2548 }else if( strcmp(x,"fallback")==0 ){
2549 psp->fallback = 0;
2550 psp->state = WAITING_FOR_FALLBACK_ID;
2551 }else if( strcmp(x,"token")==0 ){
2552 psp->state = WAITING_FOR_TOKEN_NAME;
2553 }else if( strcmp(x,"wildcard")==0 ){
2554 psp->state = WAITING_FOR_WILDCARD_ID;
2555 }else if( strcmp(x,"token_class")==0 ){
2556 psp->state = WAITING_FOR_CLASS_ID;
2557 }else{
2558 ErrorMsg(psp->filename,psp->tokenlineno,
2559 "Unknown declaration keyword: \"%%%s\".",x);
2560 psp->errorcnt++;
2561 psp->state = RESYNC_AFTER_DECL_ERROR;
2563 }else{
2564 ErrorMsg(psp->filename,psp->tokenlineno,
2565 "Illegal declaration keyword: \"%s\".",x);
2566 psp->errorcnt++;
2567 psp->state = RESYNC_AFTER_DECL_ERROR;
2569 break;
2570 case WAITING_FOR_DESTRUCTOR_SYMBOL:
2571 if( !ISALPHA(x[0]) ){
2572 ErrorMsg(psp->filename,psp->tokenlineno,
2573 "Symbol name missing after %%destructor keyword");
2574 psp->errorcnt++;
2575 psp->state = RESYNC_AFTER_DECL_ERROR;
2576 }else{
2577 struct symbol *sp = Symbol_new(x);
2578 psp->declargslot = &sp->destructor;
2579 psp->decllinenoslot = &sp->destLineno;
2580 psp->insertLineMacro = 1;
2581 psp->state = WAITING_FOR_DECL_ARG;
2583 break;
2584 case WAITING_FOR_DATATYPE_SYMBOL:
2585 if( !ISALPHA(x[0]) ){
2586 ErrorMsg(psp->filename,psp->tokenlineno,
2587 "Symbol name missing after %%type keyword");
2588 psp->errorcnt++;
2589 psp->state = RESYNC_AFTER_DECL_ERROR;
2590 }else{
2591 struct symbol *sp = Symbol_find(x);
2592 if((sp) && (sp->datatype)){
2593 ErrorMsg(psp->filename,psp->tokenlineno,
2594 "Symbol %%type \"%s\" already defined", x);
2595 psp->errorcnt++;
2596 psp->state = RESYNC_AFTER_DECL_ERROR;
2597 }else{
2598 if (!sp){
2599 sp = Symbol_new(x);
2601 psp->declargslot = &sp->datatype;
2602 psp->insertLineMacro = 0;
2603 psp->state = WAITING_FOR_DECL_ARG;
2606 break;
2607 case WAITING_FOR_PRECEDENCE_SYMBOL:
2608 if( x[0]=='.' ){
2609 psp->state = WAITING_FOR_DECL_OR_RULE;
2610 }else if( ISUPPER(x[0]) ){
2611 struct symbol *sp;
2612 sp = Symbol_new(x);
2613 if( sp->prec>=0 ){
2614 ErrorMsg(psp->filename,psp->tokenlineno,
2615 "Symbol \"%s\" has already be given a precedence.",x);
2616 psp->errorcnt++;
2617 }else{
2618 sp->prec = psp->preccounter;
2619 sp->assoc = psp->declassoc;
2621 }else{
2622 ErrorMsg(psp->filename,psp->tokenlineno,
2623 "Can't assign a precedence to \"%s\".",x);
2624 psp->errorcnt++;
2626 break;
2627 case WAITING_FOR_DECL_ARG:
2628 if( x[0]=='{' || x[0]=='\"' || ISALNUM(x[0]) ){
2629 const char *zOld, *zNew;
2630 char *zBuf, *z;
2631 int nOld, n, nLine = 0, nNew, nBack;
2632 int addLineMacro;
2633 char zLine[50];
2634 zNew = x;
2635 if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
2636 nNew = lemonStrlen(zNew);
2637 if( *psp->declargslot ){
2638 zOld = *psp->declargslot;
2639 }else{
2640 zOld = "";
2642 nOld = lemonStrlen(zOld);
2643 n = nOld + nNew + 20;
2644 addLineMacro = !psp->gp->nolinenosflag
2645 && psp->insertLineMacro
2646 && psp->tokenlineno>1
2647 && (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
2648 if( addLineMacro ){
2649 for(z=psp->filename, nBack=0; *z; z++){
2650 if( *z=='\\' ) nBack++;
2652 lemon_sprintf(zLine, "#line %d ", psp->tokenlineno);
2653 nLine = lemonStrlen(zLine);
2654 n += nLine + lemonStrlen(psp->filename) + nBack;
2656 *psp->declargslot = (char *) realloc(*psp->declargslot, n);
2657 zBuf = *psp->declargslot + nOld;
2658 if( addLineMacro ){
2659 if( nOld && zBuf[-1]!='\n' ){
2660 *(zBuf++) = '\n';
2662 memcpy(zBuf, zLine, nLine);
2663 zBuf += nLine;
2664 *(zBuf++) = '"';
2665 for(z=psp->filename; *z; z++){
2666 if( *z=='\\' ){
2667 *(zBuf++) = '\\';
2669 *(zBuf++) = *z;
2671 *(zBuf++) = '"';
2672 *(zBuf++) = '\n';
2674 if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
2675 psp->decllinenoslot[0] = psp->tokenlineno;
2677 memcpy(zBuf, zNew, nNew);
2678 zBuf += nNew;
2679 *zBuf = 0;
2680 psp->state = WAITING_FOR_DECL_OR_RULE;
2681 }else{
2682 ErrorMsg(psp->filename,psp->tokenlineno,
2683 "Illegal argument to %%%s: %s",psp->declkeyword,x);
2684 psp->errorcnt++;
2685 psp->state = RESYNC_AFTER_DECL_ERROR;
2687 break;
2688 case WAITING_FOR_FALLBACK_ID:
2689 if( x[0]=='.' ){
2690 psp->state = WAITING_FOR_DECL_OR_RULE;
2691 }else if( !ISUPPER(x[0]) ){
2692 ErrorMsg(psp->filename, psp->tokenlineno,
2693 "%%fallback argument \"%s\" should be a token", x);
2694 psp->errorcnt++;
2695 }else{
2696 struct symbol *sp = Symbol_new(x);
2697 if( psp->fallback==0 ){
2698 psp->fallback = sp;
2699 }else if( sp->fallback ){
2700 ErrorMsg(psp->filename, psp->tokenlineno,
2701 "More than one fallback assigned to token %s", x);
2702 psp->errorcnt++;
2703 }else{
2704 sp->fallback = psp->fallback;
2705 psp->gp->has_fallback = 1;
2708 break;
2709 case WAITING_FOR_TOKEN_NAME:
2710 /* Tokens do not have to be declared before use. But they can be
2711 ** in order to control their assigned integer number. The number for
2712 ** each token is assigned when it is first seen. So by including
2714 ** %token ONE TWO THREE.
2716 ** early in the grammar file, that assigns small consecutive values
2717 ** to each of the tokens ONE TWO and THREE.
2719 if( x[0]=='.' ){
2720 psp->state = WAITING_FOR_DECL_OR_RULE;
2721 }else if( !ISUPPER(x[0]) ){
2722 ErrorMsg(psp->filename, psp->tokenlineno,
2723 "%%token argument \"%s\" should be a token", x);
2724 psp->errorcnt++;
2725 }else{
2726 (void)Symbol_new(x);
2728 break;
2729 case WAITING_FOR_WILDCARD_ID:
2730 if( x[0]=='.' ){
2731 psp->state = WAITING_FOR_DECL_OR_RULE;
2732 }else if( !ISUPPER(x[0]) ){
2733 ErrorMsg(psp->filename, psp->tokenlineno,
2734 "%%wildcard argument \"%s\" should be a token", x);
2735 psp->errorcnt++;
2736 }else{
2737 struct symbol *sp = Symbol_new(x);
2738 if( psp->gp->wildcard==0 ){
2739 psp->gp->wildcard = sp;
2740 }else{
2741 ErrorMsg(psp->filename, psp->tokenlineno,
2742 "Extra wildcard to token: %s", x);
2743 psp->errorcnt++;
2746 break;
2747 case WAITING_FOR_CLASS_ID:
2748 if( !ISLOWER(x[0]) ){
2749 ErrorMsg(psp->filename, psp->tokenlineno,
2750 "%%token_class must be followed by an identifier: %s", x);
2751 psp->errorcnt++;
2752 psp->state = RESYNC_AFTER_DECL_ERROR;
2753 }else if( Symbol_find(x) ){
2754 ErrorMsg(psp->filename, psp->tokenlineno,
2755 "Symbol \"%s\" already used", x);
2756 psp->errorcnt++;
2757 psp->state = RESYNC_AFTER_DECL_ERROR;
2758 }else{
2759 psp->tkclass = Symbol_new(x);
2760 psp->tkclass->type = MULTITERMINAL;
2761 psp->state = WAITING_FOR_CLASS_TOKEN;
2763 break;
2764 case WAITING_FOR_CLASS_TOKEN:
2765 if( x[0]=='.' ){
2766 psp->state = WAITING_FOR_DECL_OR_RULE;
2767 }else if( ISUPPER(x[0]) || ((x[0]=='|' || x[0]=='/') && ISUPPER(x[1])) ){
2768 struct symbol *msp = psp->tkclass;
2769 msp->nsubsym++;
2770 msp->subsym = (struct symbol **) realloc(msp->subsym,
2771 sizeof(struct symbol*)*msp->nsubsym);
2772 if( !ISUPPER(x[0]) ) x++;
2773 msp->subsym[msp->nsubsym-1] = Symbol_new(x);
2774 }else{
2775 ErrorMsg(psp->filename, psp->tokenlineno,
2776 "%%token_class argument \"%s\" should be a token", x);
2777 psp->errorcnt++;
2778 psp->state = RESYNC_AFTER_DECL_ERROR;
2780 break;
2781 case RESYNC_AFTER_RULE_ERROR:
2782 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2783 ** break; */
2784 case RESYNC_AFTER_DECL_ERROR:
2785 if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2786 if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
2787 break;
2791 /* The text in the input is part of the argument to an %ifdef or %ifndef.
2792 ** Evaluate the text as a boolean expression. Return true or false.
2794 static int eval_preprocessor_boolean(char *z, int lineno){
2795 int neg = 0;
2796 int res = 0;
2797 int okTerm = 1;
2798 int i;
2799 for(i=0; z[i]!=0; i++){
2800 if( ISSPACE(z[i]) ) continue;
2801 if( z[i]=='!' ){
2802 if( !okTerm ) goto pp_syntax_error;
2803 neg = !neg;
2804 continue;
2806 if( z[i]=='|' && z[i+1]=='|' ){
2807 if( okTerm ) goto pp_syntax_error;
2808 if( res ) return 1;
2809 i++;
2810 okTerm = 1;
2811 continue;
2813 if( z[i]=='&' && z[i+1]=='&' ){
2814 if( okTerm ) goto pp_syntax_error;
2815 if( !res ) return 0;
2816 i++;
2817 okTerm = 1;
2818 continue;
2820 if( z[i]=='(' ){
2821 int k;
2822 int n = 1;
2823 if( !okTerm ) goto pp_syntax_error;
2824 for(k=i+1; z[k]; k++){
2825 if( z[k]==')' ){
2826 n--;
2827 if( n==0 ){
2828 z[k] = 0;
2829 res = eval_preprocessor_boolean(&z[i+1], -1);
2830 z[k] = ')';
2831 if( res<0 ){
2832 i = i-res;
2833 goto pp_syntax_error;
2835 i = k;
2836 break;
2838 }else if( z[k]=='(' ){
2839 n++;
2840 }else if( z[k]==0 ){
2841 i = k;
2842 goto pp_syntax_error;
2845 if( neg ){
2846 res = !res;
2847 neg = 0;
2849 okTerm = 0;
2850 continue;
2852 if( ISALPHA(z[i]) ){
2853 int j, k, n;
2854 if( !okTerm ) goto pp_syntax_error;
2855 for(k=i+1; ISALNUM(z[k]) || z[k]=='_'; k++){}
2856 n = k - i;
2857 res = 0;
2858 for(j=0; j<nDefine; j++){
2859 if( strncmp(azDefine[j],&z[i],n)==0 && azDefine[j][n]==0 ){
2860 res = 1;
2861 break;
2864 i = k-1;
2865 if( neg ){
2866 res = !res;
2867 neg = 0;
2869 okTerm = 0;
2870 continue;
2872 goto pp_syntax_error;
2874 return res;
2876 pp_syntax_error:
2877 if( lineno>0 ){
2878 fprintf(stderr, "%%if syntax error on line %d.\n", lineno);
2879 fprintf(stderr, " %.*s <-- syntax error here\n", i+1, z);
2880 exit(1);
2881 }else{
2882 return -(i+1);
2886 /* Run the preprocessor over the input file text. The global variables
2887 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
2888 ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
2889 ** comments them out. Text in between is also commented out as appropriate.
2891 static void preprocess_input(char *z){
2892 int i, j, k;
2893 int exclude = 0;
2894 int start = 0;
2895 int lineno = 1;
2896 int start_lineno = 1;
2897 for(i=0; z[i]; i++){
2898 if( z[i]=='\n' ) lineno++;
2899 if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
2900 if( strncmp(&z[i],"%endif",6)==0 && ISSPACE(z[i+6]) ){
2901 if( exclude ){
2902 exclude--;
2903 if( exclude==0 ){
2904 for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
2907 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2908 }else if( strncmp(&z[i],"%else",5)==0 && ISSPACE(z[i+5]) ){
2909 if( exclude==1){
2910 exclude = 0;
2911 for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
2912 }else if( exclude==0 ){
2913 exclude = 1;
2914 start = i;
2915 start_lineno = lineno;
2917 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2918 }else if( strncmp(&z[i],"%ifdef ",7)==0
2919 || strncmp(&z[i],"%if ",4)==0
2920 || strncmp(&z[i],"%ifndef ",8)==0 ){
2921 if( exclude ){
2922 exclude++;
2923 }else{
2924 int isNot;
2925 int iBool;
2926 for(j=i; z[j] && !ISSPACE(z[j]); j++){}
2927 iBool = j;
2928 isNot = (j==i+7);
2929 while( z[j] && z[j]!='\n' ){ j++; }
2930 k = z[j];
2931 z[j] = 0;
2932 exclude = eval_preprocessor_boolean(&z[iBool], lineno);
2933 z[j] = k;
2934 if( !isNot ) exclude = !exclude;
2935 if( exclude ){
2936 start = i;
2937 start_lineno = lineno;
2940 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2943 if( exclude ){
2944 fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
2945 exit(1);
2949 /* In spite of its name, this function is really a scanner. It read
2950 ** in the entire input file (all at once) then tokenizes it. Each
2951 ** token is passed to the function "parseonetoken" which builds all
2952 ** the appropriate data structures in the global state vector "gp".
2954 void Parse(struct lemon *gp)
2956 struct pstate ps;
2957 FILE *fp;
2958 char *filebuf;
2959 unsigned int filesize;
2960 int lineno;
2961 int c;
2962 char *cp, *nextcp;
2963 int startline = 0;
2965 memset(&ps, '\0', sizeof(ps));
2966 ps.gp = gp;
2967 ps.filename = gp->filename;
2968 ps.errorcnt = 0;
2969 ps.state = INITIALIZE;
2971 /* Begin by reading the input file */
2972 fp = fopen(ps.filename,"rb");
2973 if( fp==0 ){
2974 ErrorMsg(ps.filename,0,"Can't open this file for reading.");
2975 gp->errorcnt++;
2976 return;
2978 fseek(fp,0,2);
2979 filesize = ftell(fp);
2980 rewind(fp);
2981 filebuf = (char *)malloc( filesize+1 );
2982 if( filesize>100000000 || filebuf==0 ){
2983 ErrorMsg(ps.filename,0,"Input file too large.");
2984 free(filebuf);
2985 gp->errorcnt++;
2986 fclose(fp);
2987 return;
2989 if( fread(filebuf,1,filesize,fp)!=filesize ){
2990 ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
2991 filesize);
2992 free(filebuf);
2993 gp->errorcnt++;
2994 fclose(fp);
2995 return;
2997 fclose(fp);
2998 filebuf[filesize] = 0;
3000 /* Make an initial pass through the file to handle %ifdef and %ifndef */
3001 preprocess_input(filebuf);
3002 if( gp->printPreprocessed ){
3003 printf("%s\n", filebuf);
3004 return;
3007 /* Now scan the text of the input file */
3008 lineno = 1;
3009 for(cp=filebuf; (c= *cp)!=0; ){
3010 if( c=='\n' ) lineno++; /* Keep track of the line number */
3011 if( ISSPACE(c) ){ cp++; continue; } /* Skip all white space */
3012 if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
3013 cp+=2;
3014 while( (c= *cp)!=0 && c!='\n' ) cp++;
3015 continue;
3017 if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
3018 cp+=2;
3019 if( (*cp)=='/' ) cp++;
3020 while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
3021 if( c=='\n' ) lineno++;
3022 cp++;
3024 if( c ) cp++;
3025 continue;
3027 ps.tokenstart = cp; /* Mark the beginning of the token */
3028 ps.tokenlineno = lineno; /* Linenumber on which token begins */
3029 if( c=='\"' ){ /* String literals */
3030 cp++;
3031 while( (c= *cp)!=0 && c!='\"' ){
3032 if( c=='\n' ) lineno++;
3033 cp++;
3035 if( c==0 ){
3036 ErrorMsg(ps.filename,startline,
3037 "String starting on this line is not terminated before "
3038 "the end of the file.");
3039 ps.errorcnt++;
3040 nextcp = cp;
3041 }else{
3042 nextcp = cp+1;
3044 }else if( c=='{' ){ /* A block of C code */
3045 int level;
3046 cp++;
3047 for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
3048 if( c=='\n' ) lineno++;
3049 else if( c=='{' ) level++;
3050 else if( c=='}' ) level--;
3051 else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
3052 int prevc;
3053 cp = &cp[2];
3054 prevc = 0;
3055 while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
3056 if( c=='\n' ) lineno++;
3057 prevc = c;
3058 cp++;
3060 }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
3061 cp = &cp[2];
3062 while( (c= *cp)!=0 && c!='\n' ) cp++;
3063 if( c ) lineno++;
3064 }else if( c=='\'' || c=='\"' ){ /* String a character literals */
3065 int startchar, prevc;
3066 startchar = c;
3067 prevc = 0;
3068 for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
3069 if( c=='\n' ) lineno++;
3070 if( prevc=='\\' ) prevc = 0;
3071 else prevc = c;
3075 if( c==0 ){
3076 ErrorMsg(ps.filename,ps.tokenlineno,
3077 "C code starting on this line is not terminated before "
3078 "the end of the file.");
3079 ps.errorcnt++;
3080 nextcp = cp;
3081 }else{
3082 nextcp = cp+1;
3084 }else if( ISALNUM(c) ){ /* Identifiers */
3085 while( (c= *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
3086 nextcp = cp;
3087 }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
3088 cp += 3;
3089 nextcp = cp;
3090 }else if( (c=='/' || c=='|') && ISALPHA(cp[1]) ){
3091 cp += 2;
3092 while( (c = *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
3093 nextcp = cp;
3094 }else{ /* All other (one character) operators */
3095 cp++;
3096 nextcp = cp;
3098 c = *cp;
3099 *cp = 0; /* Null terminate the token */
3100 parseonetoken(&ps); /* Parse the token */
3101 *cp = (char)c; /* Restore the buffer */
3102 cp = nextcp;
3104 free(filebuf); /* Release the buffer after parsing */
3105 gp->rule = ps.firstrule;
3106 gp->errorcnt = ps.errorcnt;
3108 /*************************** From the file "plink.c" *********************/
3110 ** Routines processing configuration follow-set propagation links
3111 ** in the LEMON parser generator.
3113 static struct plink *plink_freelist = 0;
3115 /* Allocate a new plink */
3116 struct plink *Plink_new(void){
3117 struct plink *newlink;
3119 if( plink_freelist==0 ){
3120 int i;
3121 int amt = 100;
3122 plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
3123 if( plink_freelist==0 ){
3124 fprintf(stderr,
3125 "Unable to allocate memory for a new follow-set propagation link.\n");
3126 exit(1);
3128 for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
3129 plink_freelist[amt-1].next = 0;
3131 newlink = plink_freelist;
3132 plink_freelist = plink_freelist->next;
3133 return newlink;
3136 /* Add a plink to a plink list */
3137 void Plink_add(struct plink **plpp, struct config *cfp)
3139 struct plink *newlink;
3140 newlink = Plink_new();
3141 newlink->next = *plpp;
3142 *plpp = newlink;
3143 newlink->cfp = cfp;
3146 /* Transfer every plink on the list "from" to the list "to" */
3147 void Plink_copy(struct plink **to, struct plink *from)
3149 struct plink *nextpl;
3150 while( from ){
3151 nextpl = from->next;
3152 from->next = *to;
3153 *to = from;
3154 from = nextpl;
3158 /* Delete every plink on the list */
3159 void Plink_delete(struct plink *plp)
3161 struct plink *nextpl;
3163 while( plp ){
3164 nextpl = plp->next;
3165 plp->next = plink_freelist;
3166 plink_freelist = plp;
3167 plp = nextpl;
3170 /*********************** From the file "report.c" **************************/
3172 ** Procedures for generating reports and tables in the LEMON parser generator.
3175 /* Generate a filename with the given suffix. Space to hold the
3176 ** name comes from malloc() and must be freed by the calling
3177 ** function.
3179 PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
3181 char *name;
3182 char *cp;
3183 char *filename = lemp->filename;
3184 int sz;
3186 if( outputDir ){
3187 cp = strrchr(filename, '/');
3188 if( cp ) filename = cp + 1;
3190 sz = lemonStrlen(filename);
3191 sz += lemonStrlen(suffix);
3192 if( outputDir ) sz += lemonStrlen(outputDir) + 1;
3193 sz += 5;
3194 name = (char*)malloc( sz );
3195 if( name==0 ){
3196 fprintf(stderr,"Can't allocate space for a filename.\n");
3197 exit(1);
3199 name[0] = 0;
3200 if( outputDir ){
3201 lemon_strcpy(name, outputDir);
3202 lemon_strcat(name, "/");
3204 lemon_strcat(name,filename);
3205 cp = strrchr(name,'.');
3206 if( cp ) *cp = 0;
3207 lemon_strcat(name,suffix);
3208 return name;
3211 /* Open a file with a name based on the name of the input file,
3212 ** but with a different (specified) suffix, and return a pointer
3213 ** to the stream */
3214 PRIVATE FILE *file_open(
3215 struct lemon *lemp,
3216 const char *suffix,
3217 const char *mode
3219 FILE *fp;
3221 if( lemp->outname ) free(lemp->outname);
3222 lemp->outname = file_makename(lemp, suffix);
3223 fp = fopen(lemp->outname,mode);
3224 if( fp==0 && *mode=='w' ){
3225 fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
3226 lemp->errorcnt++;
3227 return 0;
3229 return fp;
3232 /* Print the text of a rule
3234 void rule_print(FILE *out, struct rule *rp){
3235 int i, j;
3236 fprintf(out, "%s",rp->lhs->name);
3237 /* if( rp->lhsalias ) fprintf(out,"(%s)",rp->lhsalias); */
3238 fprintf(out," ::=");
3239 for(i=0; i<rp->nrhs; i++){
3240 struct symbol *sp = rp->rhs[i];
3241 if( sp->type==MULTITERMINAL ){
3242 fprintf(out," %s", sp->subsym[0]->name);
3243 for(j=1; j<sp->nsubsym; j++){
3244 fprintf(out,"|%s", sp->subsym[j]->name);
3246 }else{
3247 fprintf(out," %s", sp->name);
3249 /* if( rp->rhsalias[i] ) fprintf(out,"(%s)",rp->rhsalias[i]); */
3253 /* Duplicate the input file without comments and without actions
3254 ** on rules */
3255 void Reprint(struct lemon *lemp)
3257 struct rule *rp;
3258 struct symbol *sp;
3259 int i, j, maxlen, len, ncolumns, skip;
3260 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
3261 maxlen = 10;
3262 for(i=0; i<lemp->nsymbol; i++){
3263 sp = lemp->symbols[i];
3264 len = lemonStrlen(sp->name);
3265 if( len>maxlen ) maxlen = len;
3267 ncolumns = 76/(maxlen+5);
3268 if( ncolumns<1 ) ncolumns = 1;
3269 skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
3270 for(i=0; i<skip; i++){
3271 printf("//");
3272 for(j=i; j<lemp->nsymbol; j+=skip){
3273 sp = lemp->symbols[j];
3274 assert( sp->index==j );
3275 printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
3277 printf("\n");
3279 for(rp=lemp->rule; rp; rp=rp->next){
3280 rule_print(stdout, rp);
3281 printf(".");
3282 if( rp->precsym ) printf(" [%s]",rp->precsym->name);
3283 /* if( rp->code ) printf("\n %s",rp->code); */
3284 printf("\n");
3288 /* Print a single rule.
3290 void RulePrint(FILE *fp, struct rule *rp, int iCursor){
3291 struct symbol *sp;
3292 int i, j;
3293 fprintf(fp,"%s ::=",rp->lhs->name);
3294 for(i=0; i<=rp->nrhs; i++){
3295 if( i==iCursor ) fprintf(fp," *");
3296 if( i==rp->nrhs ) break;
3297 sp = rp->rhs[i];
3298 if( sp->type==MULTITERMINAL ){
3299 fprintf(fp," %s", sp->subsym[0]->name);
3300 for(j=1; j<sp->nsubsym; j++){
3301 fprintf(fp,"|%s",sp->subsym[j]->name);
3303 }else{
3304 fprintf(fp," %s", sp->name);
3309 /* Print the rule for a configuration.
3311 void ConfigPrint(FILE *fp, struct config *cfp){
3312 RulePrint(fp, cfp->rp, cfp->dot);
3315 /* #define TEST */
3316 #if 0
3317 /* Print a set */
3318 PRIVATE void SetPrint(out,set,lemp)
3319 FILE *out;
3320 char *set;
3321 struct lemon *lemp;
3323 int i;
3324 char *spacer;
3325 spacer = "";
3326 fprintf(out,"%12s[","");
3327 for(i=0; i<lemp->nterminal; i++){
3328 if( SetFind(set,i) ){
3329 fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
3330 spacer = " ";
3333 fprintf(out,"]\n");
3336 /* Print a plink chain */
3337 PRIVATE void PlinkPrint(out,plp,tag)
3338 FILE *out;
3339 struct plink *plp;
3340 char *tag;
3342 while( plp ){
3343 fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
3344 ConfigPrint(out,plp->cfp);
3345 fprintf(out,"\n");
3346 plp = plp->next;
3349 #endif
3351 /* Print an action to the given file descriptor. Return FALSE if
3352 ** nothing was actually printed.
3354 int PrintAction(
3355 struct action *ap, /* The action to print */
3356 FILE *fp, /* Print the action here */
3357 int indent /* Indent by this amount */
3359 int result = 1;
3360 switch( ap->type ){
3361 case SHIFT: {
3362 struct state *stp = ap->x.stp;
3363 fprintf(fp,"%*s shift %-7d",indent,ap->sp->name,stp->statenum);
3364 break;
3366 case REDUCE: {
3367 struct rule *rp = ap->x.rp;
3368 fprintf(fp,"%*s reduce %-7d",indent,ap->sp->name,rp->iRule);
3369 RulePrint(fp, rp, -1);
3370 break;
3372 case SHIFTREDUCE: {
3373 struct rule *rp = ap->x.rp;
3374 fprintf(fp,"%*s shift-reduce %-7d",indent,ap->sp->name,rp->iRule);
3375 RulePrint(fp, rp, -1);
3376 break;
3378 case ACCEPT:
3379 fprintf(fp,"%*s accept",indent,ap->sp->name);
3380 break;
3381 case ERROR:
3382 fprintf(fp,"%*s error",indent,ap->sp->name);
3383 break;
3384 case SRCONFLICT:
3385 case RRCONFLICT:
3386 fprintf(fp,"%*s reduce %-7d ** Parsing conflict **",
3387 indent,ap->sp->name,ap->x.rp->iRule);
3388 break;
3389 case SSCONFLICT:
3390 fprintf(fp,"%*s shift %-7d ** Parsing conflict **",
3391 indent,ap->sp->name,ap->x.stp->statenum);
3392 break;
3393 case SH_RESOLVED:
3394 if( showPrecedenceConflict ){
3395 fprintf(fp,"%*s shift %-7d -- dropped by precedence",
3396 indent,ap->sp->name,ap->x.stp->statenum);
3397 }else{
3398 result = 0;
3400 break;
3401 case RD_RESOLVED:
3402 if( showPrecedenceConflict ){
3403 fprintf(fp,"%*s reduce %-7d -- dropped by precedence",
3404 indent,ap->sp->name,ap->x.rp->iRule);
3405 }else{
3406 result = 0;
3408 break;
3409 case NOT_USED:
3410 result = 0;
3411 break;
3413 if( result && ap->spOpt ){
3414 fprintf(fp," /* because %s==%s */", ap->sp->name, ap->spOpt->name);
3416 return result;
3419 /* Generate the "*.out" log file */
3420 void ReportOutput(struct lemon *lemp)
3422 int i, n;
3423 struct state *stp;
3424 struct config *cfp;
3425 struct action *ap;
3426 struct rule *rp;
3427 FILE *fp;
3429 fp = file_open(lemp,".out","wb");
3430 if( fp==0 ) return;
3431 for(i=0; i<lemp->nxstate; i++){
3432 stp = lemp->sorted[i];
3433 fprintf(fp,"State %d:\n",stp->statenum);
3434 if( lemp->basisflag ) cfp=stp->bp;
3435 else cfp=stp->cfp;
3436 while( cfp ){
3437 char buf[20];
3438 if( cfp->dot==cfp->rp->nrhs ){
3439 lemon_sprintf(buf,"(%d)",cfp->rp->iRule);
3440 fprintf(fp," %5s ",buf);
3441 }else{
3442 fprintf(fp," ");
3444 ConfigPrint(fp,cfp);
3445 fprintf(fp,"\n");
3446 #if 0
3447 SetPrint(fp,cfp->fws,lemp);
3448 PlinkPrint(fp,cfp->fplp,"To ");
3449 PlinkPrint(fp,cfp->bplp,"From");
3450 #endif
3451 if( lemp->basisflag ) cfp=cfp->bp;
3452 else cfp=cfp->next;
3454 fprintf(fp,"\n");
3455 for(ap=stp->ap; ap; ap=ap->next){
3456 if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
3458 fprintf(fp,"\n");
3460 fprintf(fp, "----------------------------------------------------\n");
3461 fprintf(fp, "Symbols:\n");
3462 fprintf(fp, "The first-set of non-terminals is shown after the name.\n\n");
3463 for(i=0; i<lemp->nsymbol; i++){
3464 int j;
3465 struct symbol *sp;
3467 sp = lemp->symbols[i];
3468 fprintf(fp, " %3d: %s", i, sp->name);
3469 if( sp->type==NONTERMINAL ){
3470 fprintf(fp, ":");
3471 if( sp->lambda ){
3472 fprintf(fp, " <lambda>");
3474 for(j=0; j<lemp->nterminal; j++){
3475 if( sp->firstset && SetFind(sp->firstset, j) ){
3476 fprintf(fp, " %s", lemp->symbols[j]->name);
3480 if( sp->prec>=0 ) fprintf(fp," (precedence=%d)", sp->prec);
3481 fprintf(fp, "\n");
3483 fprintf(fp, "----------------------------------------------------\n");
3484 fprintf(fp, "Syntax-only Symbols:\n");
3485 fprintf(fp, "The following symbols never carry semantic content.\n\n");
3486 for(i=n=0; i<lemp->nsymbol; i++){
3487 int w;
3488 struct symbol *sp = lemp->symbols[i];
3489 if( sp->bContent ) continue;
3490 w = (int)strlen(sp->name);
3491 if( n>0 && n+w>75 ){
3492 fprintf(fp,"\n");
3493 n = 0;
3495 if( n>0 ){
3496 fprintf(fp, " ");
3497 n++;
3499 fprintf(fp, "%s", sp->name);
3500 n += w;
3502 if( n>0 ) fprintf(fp, "\n");
3503 fprintf(fp, "----------------------------------------------------\n");
3504 fprintf(fp, "Rules:\n");
3505 for(rp=lemp->rule; rp; rp=rp->next){
3506 fprintf(fp, "%4d: ", rp->iRule);
3507 rule_print(fp, rp);
3508 fprintf(fp,".");
3509 if( rp->precsym ){
3510 fprintf(fp," [%s precedence=%d]",
3511 rp->precsym->name, rp->precsym->prec);
3513 fprintf(fp,"\n");
3515 fclose(fp);
3516 return;
3519 /* Search for the file "name" which is in the same directory as
3520 ** the executable */
3521 PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
3523 const char *pathlist;
3524 char *pathbufptr = 0;
3525 char *pathbuf = 0;
3526 char *path,*cp;
3527 char c;
3529 #ifdef __WIN32__
3530 cp = strrchr(argv0,'\\');
3531 #else
3532 cp = strrchr(argv0,'/');
3533 #endif
3534 if( cp ){
3535 c = *cp;
3536 *cp = 0;
3537 path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
3538 if( path ) lemon_sprintf(path,"%s/%s",argv0,name);
3539 *cp = c;
3540 }else{
3541 pathlist = getenv("PATH");
3542 if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
3543 pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
3544 path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
3545 if( (pathbuf != 0) && (path!=0) ){
3546 pathbufptr = pathbuf;
3547 lemon_strcpy(pathbuf, pathlist);
3548 while( *pathbuf ){
3549 cp = strchr(pathbuf,':');
3550 if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
3551 c = *cp;
3552 *cp = 0;
3553 lemon_sprintf(path,"%s/%s",pathbuf,name);
3554 *cp = c;
3555 if( c==0 ) pathbuf[0] = 0;
3556 else pathbuf = &cp[1];
3557 if( access(path,modemask)==0 ) break;
3560 free(pathbufptr);
3562 return path;
3565 /* Given an action, compute the integer value for that action
3566 ** which is to be put in the action table of the generated machine.
3567 ** Return negative if no action should be generated.
3569 PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
3571 int act;
3572 switch( ap->type ){
3573 case SHIFT: act = ap->x.stp->statenum; break;
3574 case SHIFTREDUCE: {
3575 /* Since a SHIFT is inherient after a prior REDUCE, convert any
3576 ** SHIFTREDUCE action with a nonterminal on the LHS into a simple
3577 ** REDUCE action: */
3578 if( ap->sp->index>=lemp->nterminal
3579 && (lemp->errsym==0 || ap->sp->index!=lemp->errsym->index)
3581 act = lemp->minReduce + ap->x.rp->iRule;
3582 }else{
3583 act = lemp->minShiftReduce + ap->x.rp->iRule;
3585 break;
3587 case REDUCE: act = lemp->minReduce + ap->x.rp->iRule; break;
3588 case ERROR: act = lemp->errAction; break;
3589 case ACCEPT: act = lemp->accAction; break;
3590 default: act = -1; break;
3592 return act;
3595 #define LINESIZE 1000
3596 /* The next cluster of routines are for reading the template file
3597 ** and writing the results to the generated parser */
3598 /* The first function transfers data from "in" to "out" until
3599 ** a line is seen which begins with "%%". The line number is
3600 ** tracked.
3602 ** if name!=0, then any word that begin with "Parse" is changed to
3603 ** begin with *name instead.
3605 PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
3607 int i, iStart;
3608 char line[LINESIZE];
3609 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
3610 (*lineno)++;
3611 iStart = 0;
3612 if( name ){
3613 for(i=0; line[i]; i++){
3614 if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
3615 && (i==0 || !ISALPHA(line[i-1]))
3617 if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
3618 fprintf(out,"%s",name);
3619 i += 4;
3620 iStart = i+1;
3624 fprintf(out,"%s",&line[iStart]);
3628 /* Skip forward past the header of the template file to the first "%%"
3630 PRIVATE void tplt_skip_header(FILE *in, int *lineno)
3632 char line[LINESIZE];
3633 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
3634 (*lineno)++;
3638 /* The next function finds the template file and opens it, returning
3639 ** a pointer to the opened file. */
3640 PRIVATE FILE *tplt_open(struct lemon *lemp)
3642 static char templatename[] = "lempar.c";
3643 char buf[1000];
3644 FILE *in;
3645 char *tpltname;
3646 char *toFree = 0;
3647 char *cp;
3649 /* first, see if user specified a template filename on the command line. */
3650 if (user_templatename != 0) {
3651 if( access(user_templatename,004)==-1 ){
3652 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3653 user_templatename);
3654 lemp->errorcnt++;
3655 return 0;
3657 in = fopen(user_templatename,"rb");
3658 if( in==0 ){
3659 fprintf(stderr,"Can't open the template file \"%s\".\n",
3660 user_templatename);
3661 lemp->errorcnt++;
3662 return 0;
3664 return in;
3667 cp = strrchr(lemp->filename,'.');
3668 if( cp ){
3669 lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
3670 }else{
3671 lemon_sprintf(buf,"%s.lt",lemp->filename);
3673 if( access(buf,004)==0 ){
3674 tpltname = buf;
3675 }else if( access(templatename,004)==0 ){
3676 tpltname = templatename;
3677 }else{
3678 toFree = tpltname = pathsearch(lemp->argv0,templatename,0);
3680 if( tpltname==0 ){
3681 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3682 templatename);
3683 lemp->errorcnt++;
3684 return 0;
3686 in = fopen(tpltname,"rb");
3687 if( in==0 ){
3688 fprintf(stderr,"Can't open the template file \"%s\".\n",tpltname);
3689 lemp->errorcnt++;
3691 free(toFree);
3692 return in;
3695 /* Print a #line directive line to the output file. */
3696 PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
3698 fprintf(out,"#line %d \"",lineno);
3699 while( *filename ){
3700 if( *filename == '\\' ) putc('\\',out);
3701 putc(*filename,out);
3702 filename++;
3704 fprintf(out,"\"\n");
3707 /* Print a string to the file and keep the linenumber up to date */
3708 PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
3710 if( str==0 ) return;
3711 while( *str ){
3712 putc(*str,out);
3713 if( *str=='\n' ) (*lineno)++;
3714 str++;
3716 if( str[-1]!='\n' ){
3717 putc('\n',out);
3718 (*lineno)++;
3720 if (!lemp->nolinenosflag) {
3721 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3723 return;
3727 ** The following routine emits code for the destructor for the
3728 ** symbol sp
3730 void emit_destructor_code(
3731 FILE *out,
3732 struct symbol *sp,
3733 struct lemon *lemp,
3734 int *lineno
3736 char *cp = 0;
3738 if( sp->type==TERMINAL ){
3739 cp = lemp->tokendest;
3740 if( cp==0 ) return;
3741 fprintf(out,"{\n"); (*lineno)++;
3742 }else if( sp->destructor ){
3743 cp = sp->destructor;
3744 fprintf(out,"{\n"); (*lineno)++;
3745 if( !lemp->nolinenosflag ){
3746 (*lineno)++;
3747 tplt_linedir(out,sp->destLineno,lemp->filename);
3749 }else if( lemp->vardest ){
3750 cp = lemp->vardest;
3751 if( cp==0 ) return;
3752 fprintf(out,"{\n"); (*lineno)++;
3753 }else{
3754 assert( 0 ); /* Cannot happen */
3756 for(; *cp; cp++){
3757 if( *cp=='$' && cp[1]=='$' ){
3758 fprintf(out,"(yypminor->yy%d)",sp->dtnum);
3759 cp++;
3760 continue;
3762 if( *cp=='\n' ) (*lineno)++;
3763 fputc(*cp,out);
3765 fprintf(out,"\n"); (*lineno)++;
3766 if (!lemp->nolinenosflag) {
3767 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3769 fprintf(out,"}\n"); (*lineno)++;
3770 return;
3774 ** Return TRUE (non-zero) if the given symbol has a destructor.
3776 int has_destructor(struct symbol *sp, struct lemon *lemp)
3778 int ret;
3779 if( sp->type==TERMINAL ){
3780 ret = lemp->tokendest!=0;
3781 }else{
3782 ret = lemp->vardest!=0 || sp->destructor!=0;
3784 return ret;
3788 ** Append text to a dynamically allocated string. If zText is 0 then
3789 ** reset the string to be empty again. Always return the complete text
3790 ** of the string (which is overwritten with each call).
3792 ** n bytes of zText are stored. If n==0 then all of zText up to the first
3793 ** \000 terminator is stored. zText can contain up to two instances of
3794 ** %d. The values of p1 and p2 are written into the first and second
3795 ** %d.
3797 ** If n==-1, then the previous character is overwritten.
3799 PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
3800 static char empty[1] = { 0 };
3801 static char *z = 0;
3802 static int alloced = 0;
3803 static int used = 0;
3804 int c;
3805 char zInt[40];
3806 if( zText==0 ){
3807 if( used==0 && z!=0 ) z[0] = 0;
3808 used = 0;
3809 return z;
3811 if( n<=0 ){
3812 if( n<0 ){
3813 used += n;
3814 assert( used>=0 );
3816 n = lemonStrlen(zText);
3818 if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
3819 alloced = n + sizeof(zInt)*2 + used + 200;
3820 z = (char *) realloc(z, alloced);
3822 if( z==0 ) return empty;
3823 while( n-- > 0 ){
3824 c = *(zText++);
3825 if( c=='%' && n>0 && zText[0]=='d' ){
3826 lemon_sprintf(zInt, "%d", p1);
3827 p1 = p2;
3828 lemon_strcpy(&z[used], zInt);
3829 used += lemonStrlen(&z[used]);
3830 zText++;
3831 n--;
3832 }else{
3833 z[used++] = (char)c;
3836 z[used] = 0;
3837 return z;
3841 ** Write and transform the rp->code string so that symbols are expanded.
3842 ** Populate the rp->codePrefix and rp->codeSuffix strings, as appropriate.
3844 ** Return 1 if the expanded code requires that "yylhsminor" local variable
3845 ** to be defined.
3847 PRIVATE int translate_code(struct lemon *lemp, struct rule *rp){
3848 char *cp, *xp;
3849 int i;
3850 int rc = 0; /* True if yylhsminor is used */
3851 int dontUseRhs0 = 0; /* If true, use of left-most RHS label is illegal */
3852 const char *zSkip = 0; /* The zOvwrt comment within rp->code, or NULL */
3853 char lhsused = 0; /* True if the LHS element has been used */
3854 char lhsdirect; /* True if LHS writes directly into stack */
3855 char used[MAXRHS]; /* True for each RHS element which is used */
3856 char zLhs[50]; /* Convert the LHS symbol into this string */
3857 char zOvwrt[900]; /* Comment that to allow LHS to overwrite RHS */
3859 for(i=0; i<rp->nrhs; i++) used[i] = 0;
3860 lhsused = 0;
3862 if( rp->code==0 ){
3863 static char newlinestr[2] = { '\n', '\0' };
3864 rp->code = newlinestr;
3865 rp->line = rp->ruleline;
3866 rp->noCode = 1;
3867 }else{
3868 rp->noCode = 0;
3872 if( rp->nrhs==0 ){
3873 /* If there are no RHS symbols, then writing directly to the LHS is ok */
3874 lhsdirect = 1;
3875 }else if( rp->rhsalias[0]==0 ){
3876 /* The left-most RHS symbol has no value. LHS direct is ok. But
3877 ** we have to call the destructor on the RHS symbol first. */
3878 lhsdirect = 1;
3879 if( has_destructor(rp->rhs[0],lemp) ){
3880 append_str(0,0,0,0);
3881 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
3882 rp->rhs[0]->index,1-rp->nrhs);
3883 rp->codePrefix = Strsafe(append_str(0,0,0,0));
3884 rp->noCode = 0;
3886 }else if( rp->lhsalias==0 ){
3887 /* There is no LHS value symbol. */
3888 lhsdirect = 1;
3889 }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){
3890 /* The LHS symbol and the left-most RHS symbol are the same, so
3891 ** direct writing is allowed */
3892 lhsdirect = 1;
3893 lhsused = 1;
3894 used[0] = 1;
3895 if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){
3896 ErrorMsg(lemp->filename,rp->ruleline,
3897 "%s(%s) and %s(%s) share the same label but have "
3898 "different datatypes.",
3899 rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]);
3900 lemp->errorcnt++;
3902 }else{
3903 lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/",
3904 rp->lhsalias, rp->rhsalias[0]);
3905 zSkip = strstr(rp->code, zOvwrt);
3906 if( zSkip!=0 ){
3907 /* The code contains a special comment that indicates that it is safe
3908 ** for the LHS label to overwrite left-most RHS label. */
3909 lhsdirect = 1;
3910 }else{
3911 lhsdirect = 0;
3914 if( lhsdirect ){
3915 sprintf(zLhs, "yymsp[%d].minor.yy%d",1-rp->nrhs,rp->lhs->dtnum);
3916 }else{
3917 rc = 1;
3918 sprintf(zLhs, "yylhsminor.yy%d",rp->lhs->dtnum);
3921 append_str(0,0,0,0);
3923 /* This const cast is wrong but harmless, if we're careful. */
3924 for(cp=(char *)rp->code; *cp; cp++){
3925 if( cp==zSkip ){
3926 append_str(zOvwrt,0,0,0);
3927 cp += lemonStrlen(zOvwrt)-1;
3928 dontUseRhs0 = 1;
3929 continue;
3931 if( ISALPHA(*cp) && (cp==rp->code || (!ISALNUM(cp[-1]) && cp[-1]!='_')) ){
3932 char saved;
3933 for(xp= &cp[1]; ISALNUM(*xp) || *xp=='_'; xp++);
3934 saved = *xp;
3935 *xp = 0;
3936 if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
3937 append_str(zLhs,0,0,0);
3938 cp = xp;
3939 lhsused = 1;
3940 }else{
3941 for(i=0; i<rp->nrhs; i++){
3942 if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
3943 if( i==0 && dontUseRhs0 ){
3944 ErrorMsg(lemp->filename,rp->ruleline,
3945 "Label %s used after '%s'.",
3946 rp->rhsalias[0], zOvwrt);
3947 lemp->errorcnt++;
3948 }else if( cp!=rp->code && cp[-1]=='@' ){
3949 /* If the argument is of the form @X then substituted
3950 ** the token number of X, not the value of X */
3951 append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
3952 }else{
3953 struct symbol *sp = rp->rhs[i];
3954 int dtnum;
3955 if( sp->type==MULTITERMINAL ){
3956 dtnum = sp->subsym[0]->dtnum;
3957 }else{
3958 dtnum = sp->dtnum;
3960 append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
3962 cp = xp;
3963 used[i] = 1;
3964 break;
3968 *xp = saved;
3970 append_str(cp, 1, 0, 0);
3971 } /* End loop */
3973 /* Main code generation completed */
3974 cp = append_str(0,0,0,0);
3975 if( cp && cp[0] ) rp->code = Strsafe(cp);
3976 append_str(0,0,0,0);
3978 /* Check to make sure the LHS has been used */
3979 if( rp->lhsalias && !lhsused ){
3980 ErrorMsg(lemp->filename,rp->ruleline,
3981 "Label \"%s\" for \"%s(%s)\" is never used.",
3982 rp->lhsalias,rp->lhs->name,rp->lhsalias);
3983 lemp->errorcnt++;
3986 /* Generate destructor code for RHS minor values which are not referenced.
3987 ** Generate error messages for unused labels and duplicate labels.
3989 for(i=0; i<rp->nrhs; i++){
3990 if( rp->rhsalias[i] ){
3991 if( i>0 ){
3992 int j;
3993 if( rp->lhsalias && strcmp(rp->lhsalias,rp->rhsalias[i])==0 ){
3994 ErrorMsg(lemp->filename,rp->ruleline,
3995 "%s(%s) has the same label as the LHS but is not the left-most "
3996 "symbol on the RHS.",
3997 rp->rhs[i]->name, rp->rhsalias[i]);
3998 lemp->errorcnt++;
4000 for(j=0; j<i; j++){
4001 if( rp->rhsalias[j] && strcmp(rp->rhsalias[j],rp->rhsalias[i])==0 ){
4002 ErrorMsg(lemp->filename,rp->ruleline,
4003 "Label %s used for multiple symbols on the RHS of a rule.",
4004 rp->rhsalias[i]);
4005 lemp->errorcnt++;
4006 break;
4010 if( !used[i] ){
4011 ErrorMsg(lemp->filename,rp->ruleline,
4012 "Label %s for \"%s(%s)\" is never used.",
4013 rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
4014 lemp->errorcnt++;
4016 }else if( i>0 && has_destructor(rp->rhs[i],lemp) ){
4017 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
4018 rp->rhs[i]->index,i-rp->nrhs+1);
4022 /* If unable to write LHS values directly into the stack, write the
4023 ** saved LHS value now. */
4024 if( lhsdirect==0 ){
4025 append_str(" yymsp[%d].minor.yy%d = ", 0, 1-rp->nrhs, rp->lhs->dtnum);
4026 append_str(zLhs, 0, 0, 0);
4027 append_str(";\n", 0, 0, 0);
4030 /* Suffix code generation complete */
4031 cp = append_str(0,0,0,0);
4032 if( cp && cp[0] ){
4033 rp->codeSuffix = Strsafe(cp);
4034 rp->noCode = 0;
4037 return rc;
4041 ** Generate code which executes when the rule "rp" is reduced. Write
4042 ** the code to "out". Make sure lineno stays up-to-date.
4044 PRIVATE void emit_code(
4045 FILE *out,
4046 struct rule *rp,
4047 struct lemon *lemp,
4048 int *lineno
4050 const char *cp;
4052 /* Setup code prior to the #line directive */
4053 if( rp->codePrefix && rp->codePrefix[0] ){
4054 fprintf(out, "{%s", rp->codePrefix);
4055 for(cp=rp->codePrefix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
4058 /* Generate code to do the reduce action */
4059 if( rp->code ){
4060 if( !lemp->nolinenosflag ){
4061 (*lineno)++;
4062 tplt_linedir(out,rp->line,lemp->filename);
4064 fprintf(out,"{%s",rp->code);
4065 for(cp=rp->code; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
4066 fprintf(out,"}\n"); (*lineno)++;
4067 if( !lemp->nolinenosflag ){
4068 (*lineno)++;
4069 tplt_linedir(out,*lineno,lemp->outname);
4073 /* Generate breakdown code that occurs after the #line directive */
4074 if( rp->codeSuffix && rp->codeSuffix[0] ){
4075 fprintf(out, "%s", rp->codeSuffix);
4076 for(cp=rp->codeSuffix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
4079 if( rp->codePrefix ){
4080 fprintf(out, "}\n"); (*lineno)++;
4083 return;
4087 ** Print the definition of the union used for the parser's data stack.
4088 ** This union contains fields for every possible data type for tokens
4089 ** and nonterminals. In the process of computing and printing this
4090 ** union, also set the ".dtnum" field of every terminal and nonterminal
4091 ** symbol.
4093 void print_stack_union(
4094 FILE *out, /* The output stream */
4095 struct lemon *lemp, /* The main info structure for this parser */
4096 int *plineno, /* Pointer to the line number */
4097 int mhflag /* True if generating makeheaders output */
4099 int lineno; /* The line number of the output */
4100 char **types; /* A hash table of datatypes */
4101 int arraysize; /* Size of the "types" array */
4102 int maxdtlength; /* Maximum length of any ".datatype" field. */
4103 char *stddt; /* Standardized name for a datatype */
4104 int i,j; /* Loop counters */
4105 unsigned hash; /* For hashing the name of a type */
4106 const char *name; /* Name of the parser */
4108 /* Allocate and initialize types[] and allocate stddt[] */
4109 arraysize = lemp->nsymbol * 2;
4110 types = (char**)calloc( arraysize, sizeof(char*) );
4111 if( types==0 ){
4112 fprintf(stderr,"Out of memory.\n");
4113 exit(1);
4115 for(i=0; i<arraysize; i++) types[i] = 0;
4116 maxdtlength = 0;
4117 if( lemp->vartype ){
4118 maxdtlength = lemonStrlen(lemp->vartype);
4120 for(i=0; i<lemp->nsymbol; i++){
4121 int len;
4122 struct symbol *sp = lemp->symbols[i];
4123 if( sp->datatype==0 ) continue;
4124 len = lemonStrlen(sp->datatype);
4125 if( len>maxdtlength ) maxdtlength = len;
4127 stddt = (char*)malloc( maxdtlength*2 + 1 );
4128 if( stddt==0 ){
4129 fprintf(stderr,"Out of memory.\n");
4130 exit(1);
4133 /* Build a hash table of datatypes. The ".dtnum" field of each symbol
4134 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
4135 ** used for terminal symbols. If there is no %default_type defined then
4136 ** 0 is also used as the .dtnum value for nonterminals which do not specify
4137 ** a datatype using the %type directive.
4139 for(i=0; i<lemp->nsymbol; i++){
4140 struct symbol *sp = lemp->symbols[i];
4141 char *cp;
4142 if( sp==lemp->errsym ){
4143 sp->dtnum = arraysize+1;
4144 continue;
4146 if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
4147 sp->dtnum = 0;
4148 continue;
4150 cp = sp->datatype;
4151 if( cp==0 ) cp = lemp->vartype;
4152 j = 0;
4153 while( ISSPACE(*cp) ) cp++;
4154 while( *cp ) stddt[j++] = *cp++;
4155 while( j>0 && ISSPACE(stddt[j-1]) ) j--;
4156 stddt[j] = 0;
4157 if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
4158 sp->dtnum = 0;
4159 continue;
4161 hash = 0;
4162 for(j=0; stddt[j]; j++){
4163 hash = hash*53 + stddt[j];
4165 hash = (hash & 0x7fffffff)%arraysize;
4166 while( types[hash] ){
4167 if( strcmp(types[hash],stddt)==0 ){
4168 sp->dtnum = hash + 1;
4169 break;
4171 hash++;
4172 if( hash>=(unsigned)arraysize ) hash = 0;
4174 if( types[hash]==0 ){
4175 sp->dtnum = hash + 1;
4176 types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
4177 if( types[hash]==0 ){
4178 fprintf(stderr,"Out of memory.\n");
4179 exit(1);
4181 lemon_strcpy(types[hash],stddt);
4185 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
4186 name = lemp->name ? lemp->name : "Parse";
4187 lineno = *plineno;
4188 if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
4189 fprintf(out,"#define %sTOKENTYPE %s\n",name,
4190 lemp->tokentype?lemp->tokentype:"void*"); lineno++;
4191 if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
4192 fprintf(out,"typedef union {\n"); lineno++;
4193 fprintf(out," int yyinit;\n"); lineno++;
4194 fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
4195 for(i=0; i<arraysize; i++){
4196 if( types[i]==0 ) continue;
4197 fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
4198 free(types[i]);
4200 if( lemp->errsym && lemp->errsym->useCnt ){
4201 fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
4203 free(stddt);
4204 free(types);
4205 fprintf(out,"} YYMINORTYPE;\n"); lineno++;
4206 *plineno = lineno;
4210 ** Return the name of a C datatype able to represent values between
4211 ** lwr and upr, inclusive. If pnByte!=NULL then also write the sizeof
4212 ** for that type (1, 2, or 4) into *pnByte.
4214 static const char *minimum_size_type(int lwr, int upr, int *pnByte){
4215 const char *zType = "int";
4216 int nByte = 4;
4217 if( lwr>=0 ){
4218 if( upr<=255 ){
4219 zType = "unsigned char";
4220 nByte = 1;
4221 }else if( upr<65535 ){
4222 zType = "unsigned short int";
4223 nByte = 2;
4224 }else{
4225 zType = "unsigned int";
4226 nByte = 4;
4228 }else if( lwr>=-127 && upr<=127 ){
4229 zType = "signed char";
4230 nByte = 1;
4231 }else if( lwr>=-32767 && upr<32767 ){
4232 zType = "short";
4233 nByte = 2;
4235 if( pnByte ) *pnByte = nByte;
4236 return zType;
4240 ** Each state contains a set of token transaction and a set of
4241 ** nonterminal transactions. Each of these sets makes an instance
4242 ** of the following structure. An array of these structures is used
4243 ** to order the creation of entries in the yy_action[] table.
4245 struct axset {
4246 struct state *stp; /* A pointer to a state */
4247 int isTkn; /* True to use tokens. False for non-terminals */
4248 int nAction; /* Number of actions */
4249 int iOrder; /* Original order of action sets */
4253 ** Compare to axset structures for sorting purposes
4255 static int axset_compare(const void *a, const void *b){
4256 struct axset *p1 = (struct axset*)a;
4257 struct axset *p2 = (struct axset*)b;
4258 int c;
4259 c = p2->nAction - p1->nAction;
4260 if( c==0 ){
4261 c = p1->iOrder - p2->iOrder;
4263 assert( c!=0 || p1==p2 );
4264 return c;
4268 ** Write text on "out" that describes the rule "rp".
4270 static void writeRuleText(FILE *out, struct rule *rp){
4271 int j;
4272 fprintf(out,"%s ::=", rp->lhs->name);
4273 for(j=0; j<rp->nrhs; j++){
4274 struct symbol *sp = rp->rhs[j];
4275 if( sp->type!=MULTITERMINAL ){
4276 fprintf(out," %s", sp->name);
4277 }else{
4278 int k;
4279 fprintf(out," %s", sp->subsym[0]->name);
4280 for(k=1; k<sp->nsubsym; k++){
4281 fprintf(out,"|%s",sp->subsym[k]->name);
4288 /* Generate C source code for the parser */
4289 void ReportTable(
4290 struct lemon *lemp,
4291 int mhflag, /* Output in makeheaders format if true */
4292 int sqlFlag /* Generate the *.sql file too */
4294 FILE *out, *in, *sql;
4295 int lineno;
4296 struct state *stp;
4297 struct action *ap;
4298 struct rule *rp;
4299 struct acttab *pActtab;
4300 int i, j, n, sz;
4301 int nLookAhead;
4302 int szActionType; /* sizeof(YYACTIONTYPE) */
4303 int szCodeType; /* sizeof(YYCODETYPE) */
4304 const char *name;
4305 int mnTknOfst, mxTknOfst;
4306 int mnNtOfst, mxNtOfst;
4307 struct axset *ax;
4308 char *prefix;
4310 lemp->minShiftReduce = lemp->nstate;
4311 lemp->errAction = lemp->minShiftReduce + lemp->nrule;
4312 lemp->accAction = lemp->errAction + 1;
4313 lemp->noAction = lemp->accAction + 1;
4314 lemp->minReduce = lemp->noAction + 1;
4315 lemp->maxAction = lemp->minReduce + lemp->nrule;
4317 in = tplt_open(lemp);
4318 if( in==0 ) return;
4319 out = file_open(lemp,".c","wb");
4320 if( out==0 ){
4321 fclose(in);
4322 return;
4324 if( sqlFlag==0 ){
4325 sql = 0;
4326 }else{
4327 sql = file_open(lemp, ".sql", "wb");
4328 if( sql==0 ){
4329 fclose(in);
4330 fclose(out);
4331 return;
4333 fprintf(sql,
4334 "BEGIN;\n"
4335 "CREATE TABLE symbol(\n"
4336 " id INTEGER PRIMARY KEY,\n"
4337 " name TEXT NOT NULL,\n"
4338 " isTerminal BOOLEAN NOT NULL,\n"
4339 " fallback INTEGER REFERENCES symbol"
4340 " DEFERRABLE INITIALLY DEFERRED\n"
4341 ");\n"
4343 for(i=0; i<lemp->nsymbol; i++){
4344 fprintf(sql,
4345 "INSERT INTO symbol(id,name,isTerminal,fallback)"
4346 "VALUES(%d,'%s',%s",
4347 i, lemp->symbols[i]->name,
4348 i<lemp->nterminal ? "TRUE" : "FALSE"
4350 if( lemp->symbols[i]->fallback ){
4351 fprintf(sql, ",%d);\n", lemp->symbols[i]->fallback->index);
4352 }else{
4353 fprintf(sql, ",NULL);\n");
4356 fprintf(sql,
4357 "CREATE TABLE rule(\n"
4358 " ruleid INTEGER PRIMARY KEY,\n"
4359 " lhs INTEGER REFERENCES symbol(id),\n"
4360 " txt TEXT\n"
4361 ");\n"
4362 "CREATE TABLE rulerhs(\n"
4363 " ruleid INTEGER REFERENCES rule(ruleid),\n"
4364 " pos INTEGER,\n"
4365 " sym INTEGER REFERENCES symbol(id)\n"
4366 ");\n"
4368 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4369 assert( i==rp->iRule );
4370 fprintf(sql,
4371 "INSERT INTO rule(ruleid,lhs,txt)VALUES(%d,%d,'",
4372 rp->iRule, rp->lhs->index
4374 writeRuleText(sql, rp);
4375 fprintf(sql,"');\n");
4376 for(j=0; j<rp->nrhs; j++){
4377 struct symbol *sp = rp->rhs[j];
4378 if( sp->type!=MULTITERMINAL ){
4379 fprintf(sql,
4380 "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n",
4381 i,j,sp->index
4383 }else{
4384 int k;
4385 for(k=0; k<sp->nsubsym; k++){
4386 fprintf(sql,
4387 "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n",
4388 i,j,sp->subsym[k]->index
4394 fprintf(sql, "COMMIT;\n");
4396 lineno = 1;
4398 fprintf(out,
4399 "/* This file is automatically generated by Lemon from input grammar\n"
4400 "** source file \"%s\". */\n", lemp->filename); lineno += 2;
4402 /* The first %include directive begins with a C-language comment,
4403 ** then skip over the header comment of the template file
4405 if( lemp->include==0 ) lemp->include = "";
4406 for(i=0; ISSPACE(lemp->include[i]); i++){
4407 if( lemp->include[i]=='\n' ){
4408 lemp->include += i+1;
4409 i = -1;
4412 if( lemp->include[0]=='/' ){
4413 tplt_skip_header(in,&lineno);
4414 }else{
4415 tplt_xfer(lemp->name,in,out,&lineno);
4418 /* Generate the include code, if any */
4419 tplt_print(out,lemp,lemp->include,&lineno);
4420 if( mhflag ){
4421 char *incName = file_makename(lemp, ".h");
4422 fprintf(out,"#include \"%s\"\n", incName); lineno++;
4423 free(incName);
4425 tplt_xfer(lemp->name,in,out,&lineno);
4427 /* Generate #defines for all tokens */
4428 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4429 else prefix = "";
4430 if( mhflag ){
4431 fprintf(out,"#if INTERFACE\n"); lineno++;
4432 }else{
4433 fprintf(out,"#ifndef %s%s\n", prefix, lemp->symbols[1]->name);
4435 for(i=1; i<lemp->nterminal; i++){
4436 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
4437 lineno++;
4439 fprintf(out,"#endif\n"); lineno++;
4440 tplt_xfer(lemp->name,in,out,&lineno);
4442 /* Generate the defines */
4443 fprintf(out,"#define YYCODETYPE %s\n",
4444 minimum_size_type(0, lemp->nsymbol, &szCodeType)); lineno++;
4445 fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol); lineno++;
4446 fprintf(out,"#define YYACTIONTYPE %s\n",
4447 minimum_size_type(0,lemp->maxAction,&szActionType)); lineno++;
4448 if( lemp->wildcard ){
4449 fprintf(out,"#define YYWILDCARD %d\n",
4450 lemp->wildcard->index); lineno++;
4452 print_stack_union(out,lemp,&lineno,mhflag);
4453 fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
4454 if( lemp->stacksize ){
4455 fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++;
4456 }else{
4457 fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++;
4459 fprintf(out, "#endif\n"); lineno++;
4460 if( mhflag ){
4461 fprintf(out,"#if INTERFACE\n"); lineno++;
4463 name = lemp->name ? lemp->name : "Parse";
4464 if( lemp->arg && lemp->arg[0] ){
4465 i = lemonStrlen(lemp->arg);
4466 while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--;
4467 while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
4468 fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
4469 fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
4470 fprintf(out,"#define %sARG_PARAM ,%s\n",name,&lemp->arg[i]); lineno++;
4471 fprintf(out,"#define %sARG_FETCH %s=yypParser->%s;\n",
4472 name,lemp->arg,&lemp->arg[i]); lineno++;
4473 fprintf(out,"#define %sARG_STORE yypParser->%s=%s;\n",
4474 name,&lemp->arg[i],&lemp->arg[i]); lineno++;
4475 }else{
4476 fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
4477 fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
4478 fprintf(out,"#define %sARG_PARAM\n",name); lineno++;
4479 fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
4480 fprintf(out,"#define %sARG_STORE\n",name); lineno++;
4482 if( lemp->ctx && lemp->ctx[0] ){
4483 i = lemonStrlen(lemp->ctx);
4484 while( i>=1 && ISSPACE(lemp->ctx[i-1]) ) i--;
4485 while( i>=1 && (ISALNUM(lemp->ctx[i-1]) || lemp->ctx[i-1]=='_') ) i--;
4486 fprintf(out,"#define %sCTX_SDECL %s;\n",name,lemp->ctx); lineno++;
4487 fprintf(out,"#define %sCTX_PDECL ,%s\n",name,lemp->ctx); lineno++;
4488 fprintf(out,"#define %sCTX_PARAM ,%s\n",name,&lemp->ctx[i]); lineno++;
4489 fprintf(out,"#define %sCTX_FETCH %s=yypParser->%s;\n",
4490 name,lemp->ctx,&lemp->ctx[i]); lineno++;
4491 fprintf(out,"#define %sCTX_STORE yypParser->%s=%s;\n",
4492 name,&lemp->ctx[i],&lemp->ctx[i]); lineno++;
4493 }else{
4494 fprintf(out,"#define %sCTX_SDECL\n",name); lineno++;
4495 fprintf(out,"#define %sCTX_PDECL\n",name); lineno++;
4496 fprintf(out,"#define %sCTX_PARAM\n",name); lineno++;
4497 fprintf(out,"#define %sCTX_FETCH\n",name); lineno++;
4498 fprintf(out,"#define %sCTX_STORE\n",name); lineno++;
4500 if( mhflag ){
4501 fprintf(out,"#endif\n"); lineno++;
4503 if( lemp->errsym && lemp->errsym->useCnt ){
4504 fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
4505 fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
4507 if( lemp->has_fallback ){
4508 fprintf(out,"#define YYFALLBACK 1\n"); lineno++;
4511 /* Compute the action table, but do not output it yet. The action
4512 ** table must be computed before generating the YYNSTATE macro because
4513 ** we need to know how many states can be eliminated.
4515 ax = (struct axset *) calloc(lemp->nxstate*2, sizeof(ax[0]));
4516 if( ax==0 ){
4517 fprintf(stderr,"malloc failed\n");
4518 exit(1);
4520 for(i=0; i<lemp->nxstate; i++){
4521 stp = lemp->sorted[i];
4522 ax[i*2].stp = stp;
4523 ax[i*2].isTkn = 1;
4524 ax[i*2].nAction = stp->nTknAct;
4525 ax[i*2+1].stp = stp;
4526 ax[i*2+1].isTkn = 0;
4527 ax[i*2+1].nAction = stp->nNtAct;
4529 mxTknOfst = mnTknOfst = 0;
4530 mxNtOfst = mnNtOfst = 0;
4531 /* In an effort to minimize the action table size, use the heuristic
4532 ** of placing the largest action sets first */
4533 for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i;
4534 qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare);
4535 pActtab = acttab_alloc(lemp->nsymbol, lemp->nterminal);
4536 for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){
4537 stp = ax[i].stp;
4538 if( ax[i].isTkn ){
4539 for(ap=stp->ap; ap; ap=ap->next){
4540 int action;
4541 if( ap->sp->index>=lemp->nterminal ) continue;
4542 action = compute_action(lemp, ap);
4543 if( action<0 ) continue;
4544 acttab_action(pActtab, ap->sp->index, action);
4546 stp->iTknOfst = acttab_insert(pActtab, 1);
4547 if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
4548 if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
4549 }else{
4550 for(ap=stp->ap; ap; ap=ap->next){
4551 int action;
4552 if( ap->sp->index<lemp->nterminal ) continue;
4553 if( ap->sp->index==lemp->nsymbol ) continue;
4554 action = compute_action(lemp, ap);
4555 if( action<0 ) continue;
4556 acttab_action(pActtab, ap->sp->index, action);
4558 stp->iNtOfst = acttab_insert(pActtab, 0);
4559 if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
4560 if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
4562 #if 0 /* Uncomment for a trace of how the yy_action[] table fills out */
4563 { int jj, nn;
4564 for(jj=nn=0; jj<pActtab->nAction; jj++){
4565 if( pActtab->aAction[jj].action<0 ) nn++;
4567 printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n",
4568 i, stp->statenum, ax[i].isTkn ? "Token" : "Var ",
4569 ax[i].nAction, pActtab->nAction, nn);
4571 #endif
4573 free(ax);
4575 /* Mark rules that are actually used for reduce actions after all
4576 ** optimizations have been applied
4578 for(rp=lemp->rule; rp; rp=rp->next) rp->doesReduce = LEMON_FALSE;
4579 for(i=0; i<lemp->nxstate; i++){
4580 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
4581 if( ap->type==REDUCE || ap->type==SHIFTREDUCE ){
4582 ap->x.rp->doesReduce = 1;
4587 /* Finish rendering the constants now that the action table has
4588 ** been computed */
4589 fprintf(out,"#define YYNSTATE %d\n",lemp->nxstate); lineno++;
4590 fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++;
4591 fprintf(out,"#define YYNRULE_WITH_ACTION %d\n",lemp->nruleWithAction);
4592 lineno++;
4593 fprintf(out,"#define YYNTOKEN %d\n",lemp->nterminal); lineno++;
4594 fprintf(out,"#define YY_MAX_SHIFT %d\n",lemp->nxstate-1); lineno++;
4595 i = lemp->minShiftReduce;
4596 fprintf(out,"#define YY_MIN_SHIFTREDUCE %d\n",i); lineno++;
4597 i += lemp->nrule;
4598 fprintf(out,"#define YY_MAX_SHIFTREDUCE %d\n", i-1); lineno++;
4599 fprintf(out,"#define YY_ERROR_ACTION %d\n", lemp->errAction); lineno++;
4600 fprintf(out,"#define YY_ACCEPT_ACTION %d\n", lemp->accAction); lineno++;
4601 fprintf(out,"#define YY_NO_ACTION %d\n", lemp->noAction); lineno++;
4602 fprintf(out,"#define YY_MIN_REDUCE %d\n", lemp->minReduce); lineno++;
4603 i = lemp->minReduce + lemp->nrule;
4604 fprintf(out,"#define YY_MAX_REDUCE %d\n", i-1); lineno++;
4605 tplt_xfer(lemp->name,in,out,&lineno);
4607 /* Now output the action table and its associates:
4609 ** yy_action[] A single table containing all actions.
4610 ** yy_lookahead[] A table containing the lookahead for each entry in
4611 ** yy_action. Used to detect hash collisions.
4612 ** yy_shift_ofst[] For each state, the offset into yy_action for
4613 ** shifting terminals.
4614 ** yy_reduce_ofst[] For each state, the offset into yy_action for
4615 ** shifting non-terminals after a reduce.
4616 ** yy_default[] Default action for each state.
4619 /* Output the yy_action table */
4620 lemp->nactiontab = n = acttab_action_size(pActtab);
4621 lemp->tablesize += n*szActionType;
4622 fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
4623 fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
4624 for(i=j=0; i<n; i++){
4625 int action = acttab_yyaction(pActtab, i);
4626 if( action<0 ) action = lemp->noAction;
4627 if( j==0 ) fprintf(out," /* %5d */ ", i);
4628 fprintf(out, " %4d,", action);
4629 if( j==9 || i==n-1 ){
4630 fprintf(out, "\n"); lineno++;
4631 j = 0;
4632 }else{
4633 j++;
4636 fprintf(out, "};\n"); lineno++;
4638 /* Output the yy_lookahead table */
4639 lemp->nlookaheadtab = n = acttab_lookahead_size(pActtab);
4640 lemp->tablesize += n*szCodeType;
4641 fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
4642 for(i=j=0; i<n; i++){
4643 int la = acttab_yylookahead(pActtab, i);
4644 if( la<0 ) la = lemp->nsymbol;
4645 if( j==0 ) fprintf(out," /* %5d */ ", i);
4646 fprintf(out, " %4d,", la);
4647 if( j==9 ){
4648 fprintf(out, "\n"); lineno++;
4649 j = 0;
4650 }else{
4651 j++;
4654 /* Add extra entries to the end of the yy_lookahead[] table so that
4655 ** yy_shift_ofst[]+iToken will always be a valid index into the array,
4656 ** even for the largest possible value of yy_shift_ofst[] and iToken. */
4657 nLookAhead = lemp->nterminal + lemp->nactiontab;
4658 while( i<nLookAhead ){
4659 if( j==0 ) fprintf(out," /* %5d */ ", i);
4660 fprintf(out, " %4d,", lemp->nterminal);
4661 if( j==9 ){
4662 fprintf(out, "\n"); lineno++;
4663 j = 0;
4664 }else{
4665 j++;
4667 i++;
4669 if( j>0 ){ fprintf(out, "\n"); lineno++; }
4670 fprintf(out, "};\n"); lineno++;
4672 /* Output the yy_shift_ofst[] table */
4673 n = lemp->nxstate;
4674 while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
4675 fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++;
4676 fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++;
4677 fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++;
4678 fprintf(out, "static const %s yy_shift_ofst[] = {\n",
4679 minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz));
4680 lineno++;
4681 lemp->tablesize += n*sz;
4682 for(i=j=0; i<n; i++){
4683 int ofst;
4684 stp = lemp->sorted[i];
4685 ofst = stp->iTknOfst;
4686 if( ofst==NO_OFFSET ) ofst = lemp->nactiontab;
4687 if( j==0 ) fprintf(out," /* %5d */ ", i);
4688 fprintf(out, " %4d,", ofst);
4689 if( j==9 || i==n-1 ){
4690 fprintf(out, "\n"); lineno++;
4691 j = 0;
4692 }else{
4693 j++;
4696 fprintf(out, "};\n"); lineno++;
4698 /* Output the yy_reduce_ofst[] table */
4699 n = lemp->nxstate;
4700 while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
4701 fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
4702 fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++;
4703 fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++;
4704 fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
4705 minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++;
4706 lemp->tablesize += n*sz;
4707 for(i=j=0; i<n; i++){
4708 int ofst;
4709 stp = lemp->sorted[i];
4710 ofst = stp->iNtOfst;
4711 if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
4712 if( j==0 ) fprintf(out," /* %5d */ ", i);
4713 fprintf(out, " %4d,", ofst);
4714 if( j==9 || i==n-1 ){
4715 fprintf(out, "\n"); lineno++;
4716 j = 0;
4717 }else{
4718 j++;
4721 fprintf(out, "};\n"); lineno++;
4723 /* Output the default action table */
4724 fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
4725 n = lemp->nxstate;
4726 lemp->tablesize += n*szActionType;
4727 for(i=j=0; i<n; i++){
4728 stp = lemp->sorted[i];
4729 if( j==0 ) fprintf(out," /* %5d */ ", i);
4730 if( stp->iDfltReduce<0 ){
4731 fprintf(out, " %4d,", lemp->errAction);
4732 }else{
4733 fprintf(out, " %4d,", stp->iDfltReduce + lemp->minReduce);
4735 if( j==9 || i==n-1 ){
4736 fprintf(out, "\n"); lineno++;
4737 j = 0;
4738 }else{
4739 j++;
4742 fprintf(out, "};\n"); lineno++;
4743 tplt_xfer(lemp->name,in,out,&lineno);
4745 /* Generate the table of fallback tokens.
4747 if( lemp->has_fallback ){
4748 int mx = lemp->nterminal - 1;
4749 /* 2019-08-28: Generate fallback entries for every token to avoid
4750 ** having to do a range check on the index */
4751 /* while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } */
4752 lemp->tablesize += (mx+1)*szCodeType;
4753 for(i=0; i<=mx; i++){
4754 struct symbol *p = lemp->symbols[i];
4755 if( p->fallback==0 ){
4756 fprintf(out, " 0, /* %10s => nothing */\n", p->name);
4757 }else{
4758 fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
4759 p->name, p->fallback->name);
4761 lineno++;
4764 tplt_xfer(lemp->name, in, out, &lineno);
4766 /* Generate a table containing the symbolic name of every symbol
4768 for(i=0; i<lemp->nsymbol; i++){
4769 fprintf(out," /* %4d */ \"%s\",\n",i, lemp->symbols[i]->name); lineno++;
4771 tplt_xfer(lemp->name,in,out,&lineno);
4773 /* Generate a table containing a text string that describes every
4774 ** rule in the rule set of the grammar. This information is used
4775 ** when tracing REDUCE actions.
4777 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4778 assert( rp->iRule==i );
4779 fprintf(out," /* %3d */ \"", i);
4780 writeRuleText(out, rp);
4781 fprintf(out,"\",\n"); lineno++;
4783 tplt_xfer(lemp->name,in,out,&lineno);
4785 /* Generate code which executes every time a symbol is popped from
4786 ** the stack while processing errors or while destroying the parser.
4787 ** (In other words, generate the %destructor actions)
4789 if( lemp->tokendest ){
4790 int once = 1;
4791 for(i=0; i<lemp->nsymbol; i++){
4792 struct symbol *sp = lemp->symbols[i];
4793 if( sp==0 || sp->type!=TERMINAL ) continue;
4794 if( once ){
4795 fprintf(out, " /* TERMINAL Destructor */\n"); lineno++;
4796 once = 0;
4798 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
4800 for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
4801 if( i<lemp->nsymbol ){
4802 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
4803 fprintf(out," break;\n"); lineno++;
4806 if( lemp->vardest ){
4807 struct symbol *dflt_sp = 0;
4808 int once = 1;
4809 for(i=0; i<lemp->nsymbol; i++){
4810 struct symbol *sp = lemp->symbols[i];
4811 if( sp==0 || sp->type==TERMINAL ||
4812 sp->index<=0 || sp->destructor!=0 ) continue;
4813 if( once ){
4814 fprintf(out, " /* Default NON-TERMINAL Destructor */\n");lineno++;
4815 once = 0;
4817 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
4818 dflt_sp = sp;
4820 if( dflt_sp!=0 ){
4821 emit_destructor_code(out,dflt_sp,lemp,&lineno);
4823 fprintf(out," break;\n"); lineno++;
4825 for(i=0; i<lemp->nsymbol; i++){
4826 struct symbol *sp = lemp->symbols[i];
4827 if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
4828 if( sp->destLineno<0 ) continue; /* Already emitted */
4829 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
4831 /* Combine duplicate destructors into a single case */
4832 for(j=i+1; j<lemp->nsymbol; j++){
4833 struct symbol *sp2 = lemp->symbols[j];
4834 if( sp2 && sp2->type!=TERMINAL && sp2->destructor
4835 && sp2->dtnum==sp->dtnum
4836 && strcmp(sp->destructor,sp2->destructor)==0 ){
4837 fprintf(out," case %d: /* %s */\n",
4838 sp2->index, sp2->name); lineno++;
4839 sp2->destLineno = -1; /* Avoid emitting this destructor again */
4843 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
4844 fprintf(out," break;\n"); lineno++;
4846 tplt_xfer(lemp->name,in,out,&lineno);
4848 /* Generate code which executes whenever the parser stack overflows */
4849 tplt_print(out,lemp,lemp->overflow,&lineno);
4850 tplt_xfer(lemp->name,in,out,&lineno);
4852 /* Generate the tables of rule information. yyRuleInfoLhs[] and
4853 ** yyRuleInfoNRhs[].
4855 ** Note: This code depends on the fact that rules are number
4856 ** sequentially beginning with 0.
4858 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4859 fprintf(out," %4d, /* (%d) ", rp->lhs->index, i);
4860 rule_print(out, rp);
4861 fprintf(out," */\n"); lineno++;
4863 tplt_xfer(lemp->name,in,out,&lineno);
4864 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4865 fprintf(out," %3d, /* (%d) ", -rp->nrhs, i);
4866 rule_print(out, rp);
4867 fprintf(out," */\n"); lineno++;
4869 tplt_xfer(lemp->name,in,out,&lineno);
4871 /* Generate code which execution during each REDUCE action */
4872 i = 0;
4873 for(rp=lemp->rule; rp; rp=rp->next){
4874 i += translate_code(lemp, rp);
4876 if( i ){
4877 fprintf(out," YYMINORTYPE yylhsminor;\n"); lineno++;
4879 /* First output rules other than the default: rule */
4880 for(rp=lemp->rule; rp; rp=rp->next){
4881 struct rule *rp2; /* Other rules with the same action */
4882 if( rp->codeEmitted ) continue;
4883 if( rp->noCode ){
4884 /* No C code actions, so this will be part of the "default:" rule */
4885 continue;
4887 fprintf(out," case %d: /* ", rp->iRule);
4888 writeRuleText(out, rp);
4889 fprintf(out, " */\n"); lineno++;
4890 for(rp2=rp->next; rp2; rp2=rp2->next){
4891 if( rp2->code==rp->code && rp2->codePrefix==rp->codePrefix
4892 && rp2->codeSuffix==rp->codeSuffix ){
4893 fprintf(out," case %d: /* ", rp2->iRule);
4894 writeRuleText(out, rp2);
4895 fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->iRule); lineno++;
4896 rp2->codeEmitted = 1;
4899 emit_code(out,rp,lemp,&lineno);
4900 fprintf(out," break;\n"); lineno++;
4901 rp->codeEmitted = 1;
4903 /* Finally, output the default: rule. We choose as the default: all
4904 ** empty actions. */
4905 fprintf(out," default:\n"); lineno++;
4906 for(rp=lemp->rule; rp; rp=rp->next){
4907 if( rp->codeEmitted ) continue;
4908 assert( rp->noCode );
4909 fprintf(out," /* (%d) ", rp->iRule);
4910 writeRuleText(out, rp);
4911 if( rp->neverReduce ){
4912 fprintf(out, " (NEVER REDUCES) */ assert(yyruleno!=%d);\n",
4913 rp->iRule); lineno++;
4914 }else if( rp->doesReduce ){
4915 fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->iRule); lineno++;
4916 }else{
4917 fprintf(out, " (OPTIMIZED OUT) */ assert(yyruleno!=%d);\n",
4918 rp->iRule); lineno++;
4921 fprintf(out," break;\n"); lineno++;
4922 tplt_xfer(lemp->name,in,out,&lineno);
4924 /* Generate code which executes if a parse fails */
4925 tplt_print(out,lemp,lemp->failure,&lineno);
4926 tplt_xfer(lemp->name,in,out,&lineno);
4928 /* Generate code which executes when a syntax error occurs */
4929 tplt_print(out,lemp,lemp->error,&lineno);
4930 tplt_xfer(lemp->name,in,out,&lineno);
4932 /* Generate code which executes when the parser accepts its input */
4933 tplt_print(out,lemp,lemp->accept,&lineno);
4934 tplt_xfer(lemp->name,in,out,&lineno);
4936 /* Append any addition code the user desires */
4937 tplt_print(out,lemp,lemp->extracode,&lineno);
4939 acttab_free(pActtab);
4940 fclose(in);
4941 fclose(out);
4942 if( sql ) fclose(sql);
4943 return;
4946 /* Generate a header file for the parser */
4947 void ReportHeader(struct lemon *lemp)
4949 FILE *out, *in;
4950 const char *prefix;
4951 char line[LINESIZE];
4952 char pattern[LINESIZE];
4953 int i;
4955 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4956 else prefix = "";
4957 in = file_open(lemp,".h","rb");
4958 if( in ){
4959 int nextChar;
4960 for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
4961 lemon_sprintf(pattern,"#define %s%-30s %3d\n",
4962 prefix,lemp->symbols[i]->name,i);
4963 if( strcmp(line,pattern) ) break;
4965 nextChar = fgetc(in);
4966 fclose(in);
4967 if( i==lemp->nterminal && nextChar==EOF ){
4968 /* No change in the file. Don't rewrite it. */
4969 return;
4972 out = file_open(lemp,".h","wb");
4973 if( out ){
4974 for(i=1; i<lemp->nterminal; i++){
4975 fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i);
4977 fclose(out);
4979 return;
4982 /* Reduce the size of the action tables, if possible, by making use
4983 ** of defaults.
4985 ** In this version, we take the most frequent REDUCE action and make
4986 ** it the default. Except, there is no default if the wildcard token
4987 ** is a possible look-ahead.
4989 void CompressTables(struct lemon *lemp)
4991 struct state *stp;
4992 struct action *ap, *ap2, *nextap;
4993 struct rule *rp, *rp2, *rbest;
4994 int nbest, n;
4995 int i;
4996 int usesWildcard;
4998 for(i=0; i<lemp->nstate; i++){
4999 stp = lemp->sorted[i];
5000 nbest = 0;
5001 rbest = 0;
5002 usesWildcard = 0;
5004 for(ap=stp->ap; ap; ap=ap->next){
5005 if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
5006 usesWildcard = 1;
5008 if( ap->type!=REDUCE ) continue;
5009 rp = ap->x.rp;
5010 if( rp->lhsStart ) continue;
5011 if( rp==rbest ) continue;
5012 n = 1;
5013 for(ap2=ap->next; ap2; ap2=ap2->next){
5014 if( ap2->type!=REDUCE ) continue;
5015 rp2 = ap2->x.rp;
5016 if( rp2==rbest ) continue;
5017 if( rp2==rp ) n++;
5019 if( n>nbest ){
5020 nbest = n;
5021 rbest = rp;
5025 /* Do not make a default if the number of rules to default
5026 ** is not at least 1 or if the wildcard token is a possible
5027 ** lookahead.
5029 if( nbest<1 || usesWildcard ) continue;
5032 /* Combine matching REDUCE actions into a single default */
5033 for(ap=stp->ap; ap; ap=ap->next){
5034 if( ap->type==REDUCE && ap->x.rp==rbest ) break;
5036 assert( ap );
5037 ap->sp = Symbol_new("{default}");
5038 for(ap=ap->next; ap; ap=ap->next){
5039 if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
5041 stp->ap = Action_sort(stp->ap);
5043 for(ap=stp->ap; ap; ap=ap->next){
5044 if( ap->type==SHIFT ) break;
5045 if( ap->type==REDUCE && ap->x.rp!=rbest ) break;
5047 if( ap==0 ){
5048 stp->autoReduce = 1;
5049 stp->pDfltReduce = rbest;
5053 /* Make a second pass over all states and actions. Convert
5054 ** every action that is a SHIFT to an autoReduce state into
5055 ** a SHIFTREDUCE action.
5057 for(i=0; i<lemp->nstate; i++){
5058 stp = lemp->sorted[i];
5059 for(ap=stp->ap; ap; ap=ap->next){
5060 struct state *pNextState;
5061 if( ap->type!=SHIFT ) continue;
5062 pNextState = ap->x.stp;
5063 if( pNextState->autoReduce && pNextState->pDfltReduce!=0 ){
5064 ap->type = SHIFTREDUCE;
5065 ap->x.rp = pNextState->pDfltReduce;
5070 /* If a SHIFTREDUCE action specifies a rule that has a single RHS term
5071 ** (meaning that the SHIFTREDUCE will land back in the state where it
5072 ** started) and if there is no C-code associated with the reduce action,
5073 ** then we can go ahead and convert the action to be the same as the
5074 ** action for the RHS of the rule.
5076 for(i=0; i<lemp->nstate; i++){
5077 stp = lemp->sorted[i];
5078 for(ap=stp->ap; ap; ap=nextap){
5079 nextap = ap->next;
5080 if( ap->type!=SHIFTREDUCE ) continue;
5081 rp = ap->x.rp;
5082 if( rp->noCode==0 ) continue;
5083 if( rp->nrhs!=1 ) continue;
5084 #if 1
5085 /* Only apply this optimization to non-terminals. It would be OK to
5086 ** apply it to terminal symbols too, but that makes the parser tables
5087 ** larger. */
5088 if( ap->sp->index<lemp->nterminal ) continue;
5089 #endif
5090 /* If we reach this point, it means the optimization can be applied */
5091 nextap = ap;
5092 for(ap2=stp->ap; ap2 && (ap2==ap || ap2->sp!=rp->lhs); ap2=ap2->next){}
5093 assert( ap2!=0 );
5094 ap->spOpt = ap2->sp;
5095 ap->type = ap2->type;
5096 ap->x = ap2->x;
5103 ** Compare two states for sorting purposes. The smaller state is the
5104 ** one with the most non-terminal actions. If they have the same number
5105 ** of non-terminal actions, then the smaller is the one with the most
5106 ** token actions.
5108 static int stateResortCompare(const void *a, const void *b){
5109 const struct state *pA = *(const struct state**)a;
5110 const struct state *pB = *(const struct state**)b;
5111 int n;
5113 n = pB->nNtAct - pA->nNtAct;
5114 if( n==0 ){
5115 n = pB->nTknAct - pA->nTknAct;
5116 if( n==0 ){
5117 n = pB->statenum - pA->statenum;
5120 assert( n!=0 );
5121 return n;
5126 ** Renumber and resort states so that states with fewer choices
5127 ** occur at the end. Except, keep state 0 as the first state.
5129 void ResortStates(struct lemon *lemp)
5131 int i;
5132 struct state *stp;
5133 struct action *ap;
5135 for(i=0; i<lemp->nstate; i++){
5136 stp = lemp->sorted[i];
5137 stp->nTknAct = stp->nNtAct = 0;
5138 stp->iDfltReduce = -1; /* Init dflt action to "syntax error" */
5139 stp->iTknOfst = NO_OFFSET;
5140 stp->iNtOfst = NO_OFFSET;
5141 for(ap=stp->ap; ap; ap=ap->next){
5142 int iAction = compute_action(lemp,ap);
5143 if( iAction>=0 ){
5144 if( ap->sp->index<lemp->nterminal ){
5145 stp->nTknAct++;
5146 }else if( ap->sp->index<lemp->nsymbol ){
5147 stp->nNtAct++;
5148 }else{
5149 assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp );
5150 stp->iDfltReduce = iAction;
5155 qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
5156 stateResortCompare);
5157 for(i=0; i<lemp->nstate; i++){
5158 lemp->sorted[i]->statenum = i;
5160 lemp->nxstate = lemp->nstate;
5161 while( lemp->nxstate>1 && lemp->sorted[lemp->nxstate-1]->autoReduce ){
5162 lemp->nxstate--;
5167 /***************** From the file "set.c" ************************************/
5169 ** Set manipulation routines for the LEMON parser generator.
5172 static int size = 0;
5174 /* Set the set size */
5175 void SetSize(int n)
5177 size = n+1;
5180 /* Allocate a new set */
5181 char *SetNew(void){
5182 char *s;
5183 s = (char*)calloc( size, 1);
5184 if( s==0 ){
5185 memory_error();
5187 return s;
5190 /* Deallocate a set */
5191 void SetFree(char *s)
5193 free(s);
5196 /* Add a new element to the set. Return TRUE if the element was added
5197 ** and FALSE if it was already there. */
5198 int SetAdd(char *s, int e)
5200 int rv;
5201 assert( e>=0 && e<size );
5202 rv = s[e];
5203 s[e] = 1;
5204 return !rv;
5207 /* Add every element of s2 to s1. Return TRUE if s1 changes. */
5208 int SetUnion(char *s1, char *s2)
5210 int i, progress;
5211 progress = 0;
5212 for(i=0; i<size; i++){
5213 if( s2[i]==0 ) continue;
5214 if( s1[i]==0 ){
5215 progress = 1;
5216 s1[i] = 1;
5219 return progress;
5221 /********************** From the file "table.c" ****************************/
5223 ** All code in this file has been automatically generated
5224 ** from a specification in the file
5225 ** "table.q"
5226 ** by the associative array code building program "aagen".
5227 ** Do not edit this file! Instead, edit the specification
5228 ** file, then rerun aagen.
5231 ** Code for processing tables in the LEMON parser generator.
5234 PRIVATE unsigned strhash(const char *x)
5236 unsigned h = 0;
5237 while( *x ) h = h*13 + *(x++);
5238 return h;
5241 /* Works like strdup, sort of. Save a string in malloced memory, but
5242 ** keep strings in a table so that the same string is not in more
5243 ** than one place.
5245 const char *Strsafe(const char *y)
5247 const char *z;
5248 char *cpy;
5250 if( y==0 ) return 0;
5251 z = Strsafe_find(y);
5252 if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
5253 lemon_strcpy(cpy,y);
5254 z = cpy;
5255 Strsafe_insert(z);
5257 MemoryCheck(z);
5258 return z;
5261 /* There is one instance of the following structure for each
5262 ** associative array of type "x1".
5264 struct s_x1 {
5265 int size; /* The number of available slots. */
5266 /* Must be a power of 2 greater than or */
5267 /* equal to 1 */
5268 int count; /* Number of currently slots filled */
5269 struct s_x1node *tbl; /* The data stored here */
5270 struct s_x1node **ht; /* Hash table for lookups */
5273 /* There is one instance of this structure for every data element
5274 ** in an associative array of type "x1".
5276 typedef struct s_x1node {
5277 const char *data; /* The data */
5278 struct s_x1node *next; /* Next entry with the same hash */
5279 struct s_x1node **from; /* Previous link */
5280 } x1node;
5282 /* There is only one instance of the array, which is the following */
5283 static struct s_x1 *x1a;
5285 /* Allocate a new associative array */
5286 void Strsafe_init(void){
5287 if( x1a ) return;
5288 x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
5289 if( x1a ){
5290 x1a->size = 1024;
5291 x1a->count = 0;
5292 x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*));
5293 if( x1a->tbl==0 ){
5294 free(x1a);
5295 x1a = 0;
5296 }else{
5297 int i;
5298 x1a->ht = (x1node**)&(x1a->tbl[1024]);
5299 for(i=0; i<1024; i++) x1a->ht[i] = 0;
5303 /* Insert a new record into the array. Return TRUE if successful.
5304 ** Prior data with the same key is NOT overwritten */
5305 int Strsafe_insert(const char *data)
5307 x1node *np;
5308 unsigned h;
5309 unsigned ph;
5311 if( x1a==0 ) return 0;
5312 ph = strhash(data);
5313 h = ph & (x1a->size-1);
5314 np = x1a->ht[h];
5315 while( np ){
5316 if( strcmp(np->data,data)==0 ){
5317 /* An existing entry with the same key is found. */
5318 /* Fail because overwrite is not allows. */
5319 return 0;
5321 np = np->next;
5323 if( x1a->count>=x1a->size ){
5324 /* Need to make the hash table bigger */
5325 int i,arrSize;
5326 struct s_x1 array;
5327 array.size = arrSize = x1a->size*2;
5328 array.count = x1a->count;
5329 array.tbl = (x1node*)calloc(arrSize, sizeof(x1node) + sizeof(x1node*));
5330 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
5331 array.ht = (x1node**)&(array.tbl[arrSize]);
5332 for(i=0; i<arrSize; i++) array.ht[i] = 0;
5333 for(i=0; i<x1a->count; i++){
5334 x1node *oldnp, *newnp;
5335 oldnp = &(x1a->tbl[i]);
5336 h = strhash(oldnp->data) & (arrSize-1);
5337 newnp = &(array.tbl[i]);
5338 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5339 newnp->next = array.ht[h];
5340 newnp->data = oldnp->data;
5341 newnp->from = &(array.ht[h]);
5342 array.ht[h] = newnp;
5344 /* free(x1a->tbl); // This program was originally for 16-bit machines.
5345 ** Don't worry about freeing memory on modern platforms. */
5346 *x1a = array;
5348 /* Insert the new data */
5349 h = ph & (x1a->size-1);
5350 np = &(x1a->tbl[x1a->count++]);
5351 np->data = data;
5352 if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
5353 np->next = x1a->ht[h];
5354 x1a->ht[h] = np;
5355 np->from = &(x1a->ht[h]);
5356 return 1;
5359 /* Return a pointer to data assigned to the given key. Return NULL
5360 ** if no such key. */
5361 const char *Strsafe_find(const char *key)
5363 unsigned h;
5364 x1node *np;
5366 if( x1a==0 ) return 0;
5367 h = strhash(key) & (x1a->size-1);
5368 np = x1a->ht[h];
5369 while( np ){
5370 if( strcmp(np->data,key)==0 ) break;
5371 np = np->next;
5373 return np ? np->data : 0;
5376 /* Return a pointer to the (terminal or nonterminal) symbol "x".
5377 ** Create a new symbol if this is the first time "x" has been seen.
5379 struct symbol *Symbol_new(const char *x)
5381 struct symbol *sp;
5383 sp = Symbol_find(x);
5384 if( sp==0 ){
5385 sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
5386 MemoryCheck(sp);
5387 sp->name = Strsafe(x);
5388 sp->type = ISUPPER(*x) ? TERMINAL : NONTERMINAL;
5389 sp->rule = 0;
5390 sp->fallback = 0;
5391 sp->prec = -1;
5392 sp->assoc = UNK;
5393 sp->firstset = 0;
5394 sp->lambda = LEMON_FALSE;
5395 sp->destructor = 0;
5396 sp->destLineno = 0;
5397 sp->datatype = 0;
5398 sp->useCnt = 0;
5399 Symbol_insert(sp,sp->name);
5401 sp->useCnt++;
5402 return sp;
5405 /* Compare two symbols for sorting purposes. Return negative,
5406 ** zero, or positive if a is less then, equal to, or greater
5407 ** than b.
5409 ** Symbols that begin with upper case letters (terminals or tokens)
5410 ** must sort before symbols that begin with lower case letters
5411 ** (non-terminals). And MULTITERMINAL symbols (created using the
5412 ** %token_class directive) must sort at the very end. Other than
5413 ** that, the order does not matter.
5415 ** We find experimentally that leaving the symbols in their original
5416 ** order (the order they appeared in the grammar file) gives the
5417 ** smallest parser tables in SQLite.
5419 int Symbolcmpp(const void *_a, const void *_b)
5421 const struct symbol *a = *(const struct symbol **) _a;
5422 const struct symbol *b = *(const struct symbol **) _b;
5423 int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1;
5424 int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1;
5425 return i1==i2 ? a->index - b->index : i1 - i2;
5428 /* There is one instance of the following structure for each
5429 ** associative array of type "x2".
5431 struct s_x2 {
5432 int size; /* The number of available slots. */
5433 /* Must be a power of 2 greater than or */
5434 /* equal to 1 */
5435 int count; /* Number of currently slots filled */
5436 struct s_x2node *tbl; /* The data stored here */
5437 struct s_x2node **ht; /* Hash table for lookups */
5440 /* There is one instance of this structure for every data element
5441 ** in an associative array of type "x2".
5443 typedef struct s_x2node {
5444 struct symbol *data; /* The data */
5445 const char *key; /* The key */
5446 struct s_x2node *next; /* Next entry with the same hash */
5447 struct s_x2node **from; /* Previous link */
5448 } x2node;
5450 /* There is only one instance of the array, which is the following */
5451 static struct s_x2 *x2a;
5453 /* Allocate a new associative array */
5454 void Symbol_init(void){
5455 if( x2a ) return;
5456 x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
5457 if( x2a ){
5458 x2a->size = 128;
5459 x2a->count = 0;
5460 x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*));
5461 if( x2a->tbl==0 ){
5462 free(x2a);
5463 x2a = 0;
5464 }else{
5465 int i;
5466 x2a->ht = (x2node**)&(x2a->tbl[128]);
5467 for(i=0; i<128; i++) x2a->ht[i] = 0;
5471 /* Insert a new record into the array. Return TRUE if successful.
5472 ** Prior data with the same key is NOT overwritten */
5473 int Symbol_insert(struct symbol *data, const char *key)
5475 x2node *np;
5476 unsigned h;
5477 unsigned ph;
5479 if( x2a==0 ) return 0;
5480 ph = strhash(key);
5481 h = ph & (x2a->size-1);
5482 np = x2a->ht[h];
5483 while( np ){
5484 if( strcmp(np->key,key)==0 ){
5485 /* An existing entry with the same key is found. */
5486 /* Fail because overwrite is not allows. */
5487 return 0;
5489 np = np->next;
5491 if( x2a->count>=x2a->size ){
5492 /* Need to make the hash table bigger */
5493 int i,arrSize;
5494 struct s_x2 array;
5495 array.size = arrSize = x2a->size*2;
5496 array.count = x2a->count;
5497 array.tbl = (x2node*)calloc(arrSize, sizeof(x2node) + sizeof(x2node*));
5498 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
5499 array.ht = (x2node**)&(array.tbl[arrSize]);
5500 for(i=0; i<arrSize; i++) array.ht[i] = 0;
5501 for(i=0; i<x2a->count; i++){
5502 x2node *oldnp, *newnp;
5503 oldnp = &(x2a->tbl[i]);
5504 h = strhash(oldnp->key) & (arrSize-1);
5505 newnp = &(array.tbl[i]);
5506 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5507 newnp->next = array.ht[h];
5508 newnp->key = oldnp->key;
5509 newnp->data = oldnp->data;
5510 newnp->from = &(array.ht[h]);
5511 array.ht[h] = newnp;
5513 /* free(x2a->tbl); // This program was originally written for 16-bit
5514 ** machines. Don't worry about freeing this trivial amount of memory
5515 ** on modern platforms. Just leak it. */
5516 *x2a = array;
5518 /* Insert the new data */
5519 h = ph & (x2a->size-1);
5520 np = &(x2a->tbl[x2a->count++]);
5521 np->key = key;
5522 np->data = data;
5523 if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
5524 np->next = x2a->ht[h];
5525 x2a->ht[h] = np;
5526 np->from = &(x2a->ht[h]);
5527 return 1;
5530 /* Return a pointer to data assigned to the given key. Return NULL
5531 ** if no such key. */
5532 struct symbol *Symbol_find(const char *key)
5534 unsigned h;
5535 x2node *np;
5537 if( x2a==0 ) return 0;
5538 h = strhash(key) & (x2a->size-1);
5539 np = x2a->ht[h];
5540 while( np ){
5541 if( strcmp(np->key,key)==0 ) break;
5542 np = np->next;
5544 return np ? np->data : 0;
5547 /* Return the n-th data. Return NULL if n is out of range. */
5548 struct symbol *Symbol_Nth(int n)
5550 struct symbol *data;
5551 if( x2a && n>0 && n<=x2a->count ){
5552 data = x2a->tbl[n-1].data;
5553 }else{
5554 data = 0;
5556 return data;
5559 /* Return the size of the array */
5560 int Symbol_count()
5562 return x2a ? x2a->count : 0;
5565 /* Return an array of pointers to all data in the table.
5566 ** The array is obtained from malloc. Return NULL if memory allocation
5567 ** problems, or if the array is empty. */
5568 struct symbol **Symbol_arrayof()
5570 struct symbol **array;
5571 int i,arrSize;
5572 if( x2a==0 ) return 0;
5573 arrSize = x2a->count;
5574 array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *));
5575 if( array ){
5576 for(i=0; i<arrSize; i++) array[i] = x2a->tbl[i].data;
5578 return array;
5581 /* Compare two configurations */
5582 int Configcmp(const char *_a,const char *_b)
5584 const struct config *a = (struct config *) _a;
5585 const struct config *b = (struct config *) _b;
5586 int x;
5587 x = a->rp->index - b->rp->index;
5588 if( x==0 ) x = a->dot - b->dot;
5589 return x;
5592 /* Compare two states */
5593 PRIVATE int statecmp(struct config *a, struct config *b)
5595 int rc;
5596 for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
5597 rc = a->rp->index - b->rp->index;
5598 if( rc==0 ) rc = a->dot - b->dot;
5600 if( rc==0 ){
5601 if( a ) rc = 1;
5602 if( b ) rc = -1;
5604 return rc;
5607 /* Hash a state */
5608 PRIVATE unsigned statehash(struct config *a)
5610 unsigned h=0;
5611 while( a ){
5612 h = h*571 + a->rp->index*37 + a->dot;
5613 a = a->bp;
5615 return h;
5618 /* Allocate a new state structure */
5619 struct state *State_new()
5621 struct state *newstate;
5622 newstate = (struct state *)calloc(1, sizeof(struct state) );
5623 MemoryCheck(newstate);
5624 return newstate;
5627 /* There is one instance of the following structure for each
5628 ** associative array of type "x3".
5630 struct s_x3 {
5631 int size; /* The number of available slots. */
5632 /* Must be a power of 2 greater than or */
5633 /* equal to 1 */
5634 int count; /* Number of currently slots filled */
5635 struct s_x3node *tbl; /* The data stored here */
5636 struct s_x3node **ht; /* Hash table for lookups */
5639 /* There is one instance of this structure for every data element
5640 ** in an associative array of type "x3".
5642 typedef struct s_x3node {
5643 struct state *data; /* The data */
5644 struct config *key; /* The key */
5645 struct s_x3node *next; /* Next entry with the same hash */
5646 struct s_x3node **from; /* Previous link */
5647 } x3node;
5649 /* There is only one instance of the array, which is the following */
5650 static struct s_x3 *x3a;
5652 /* Allocate a new associative array */
5653 void State_init(void){
5654 if( x3a ) return;
5655 x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
5656 if( x3a ){
5657 x3a->size = 128;
5658 x3a->count = 0;
5659 x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*));
5660 if( x3a->tbl==0 ){
5661 free(x3a);
5662 x3a = 0;
5663 }else{
5664 int i;
5665 x3a->ht = (x3node**)&(x3a->tbl[128]);
5666 for(i=0; i<128; i++) x3a->ht[i] = 0;
5670 /* Insert a new record into the array. Return TRUE if successful.
5671 ** Prior data with the same key is NOT overwritten */
5672 int State_insert(struct state *data, struct config *key)
5674 x3node *np;
5675 unsigned h;
5676 unsigned ph;
5678 if( x3a==0 ) return 0;
5679 ph = statehash(key);
5680 h = ph & (x3a->size-1);
5681 np = x3a->ht[h];
5682 while( np ){
5683 if( statecmp(np->key,key)==0 ){
5684 /* An existing entry with the same key is found. */
5685 /* Fail because overwrite is not allows. */
5686 return 0;
5688 np = np->next;
5690 if( x3a->count>=x3a->size ){
5691 /* Need to make the hash table bigger */
5692 int i,arrSize;
5693 struct s_x3 array;
5694 array.size = arrSize = x3a->size*2;
5695 array.count = x3a->count;
5696 array.tbl = (x3node*)calloc(arrSize, sizeof(x3node) + sizeof(x3node*));
5697 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
5698 array.ht = (x3node**)&(array.tbl[arrSize]);
5699 for(i=0; i<arrSize; i++) array.ht[i] = 0;
5700 for(i=0; i<x3a->count; i++){
5701 x3node *oldnp, *newnp;
5702 oldnp = &(x3a->tbl[i]);
5703 h = statehash(oldnp->key) & (arrSize-1);
5704 newnp = &(array.tbl[i]);
5705 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5706 newnp->next = array.ht[h];
5707 newnp->key = oldnp->key;
5708 newnp->data = oldnp->data;
5709 newnp->from = &(array.ht[h]);
5710 array.ht[h] = newnp;
5712 free(x3a->tbl);
5713 *x3a = array;
5715 /* Insert the new data */
5716 h = ph & (x3a->size-1);
5717 np = &(x3a->tbl[x3a->count++]);
5718 np->key = key;
5719 np->data = data;
5720 if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
5721 np->next = x3a->ht[h];
5722 x3a->ht[h] = np;
5723 np->from = &(x3a->ht[h]);
5724 return 1;
5727 /* Return a pointer to data assigned to the given key. Return NULL
5728 ** if no such key. */
5729 struct state *State_find(struct config *key)
5731 unsigned h;
5732 x3node *np;
5734 if( x3a==0 ) return 0;
5735 h = statehash(key) & (x3a->size-1);
5736 np = x3a->ht[h];
5737 while( np ){
5738 if( statecmp(np->key,key)==0 ) break;
5739 np = np->next;
5741 return np ? np->data : 0;
5744 /* Return an array of pointers to all data in the table.
5745 ** The array is obtained from malloc. Return NULL if memory allocation
5746 ** problems, or if the array is empty. */
5747 struct state **State_arrayof(void)
5749 struct state **array;
5750 int i,arrSize;
5751 if( x3a==0 ) return 0;
5752 arrSize = x3a->count;
5753 array = (struct state **)calloc(arrSize, sizeof(struct state *));
5754 if( array ){
5755 for(i=0; i<arrSize; i++) array[i] = x3a->tbl[i].data;
5757 return array;
5760 /* Hash a configuration */
5761 PRIVATE unsigned confighash(struct config *a)
5763 unsigned h=0;
5764 h = h*571 + a->rp->index*37 + a->dot;
5765 return h;
5768 /* There is one instance of the following structure for each
5769 ** associative array of type "x4".
5771 struct s_x4 {
5772 int size; /* The number of available slots. */
5773 /* Must be a power of 2 greater than or */
5774 /* equal to 1 */
5775 int count; /* Number of currently slots filled */
5776 struct s_x4node *tbl; /* The data stored here */
5777 struct s_x4node **ht; /* Hash table for lookups */
5780 /* There is one instance of this structure for every data element
5781 ** in an associative array of type "x4".
5783 typedef struct s_x4node {
5784 struct config *data; /* The data */
5785 struct s_x4node *next; /* Next entry with the same hash */
5786 struct s_x4node **from; /* Previous link */
5787 } x4node;
5789 /* There is only one instance of the array, which is the following */
5790 static struct s_x4 *x4a;
5792 /* Allocate a new associative array */
5793 void Configtable_init(void){
5794 if( x4a ) return;
5795 x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
5796 if( x4a ){
5797 x4a->size = 64;
5798 x4a->count = 0;
5799 x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*));
5800 if( x4a->tbl==0 ){
5801 free(x4a);
5802 x4a = 0;
5803 }else{
5804 int i;
5805 x4a->ht = (x4node**)&(x4a->tbl[64]);
5806 for(i=0; i<64; i++) x4a->ht[i] = 0;
5810 /* Insert a new record into the array. Return TRUE if successful.
5811 ** Prior data with the same key is NOT overwritten */
5812 int Configtable_insert(struct config *data)
5814 x4node *np;
5815 unsigned h;
5816 unsigned ph;
5818 if( x4a==0 ) return 0;
5819 ph = confighash(data);
5820 h = ph & (x4a->size-1);
5821 np = x4a->ht[h];
5822 while( np ){
5823 if( Configcmp((const char *) np->data,(const char *) data)==0 ){
5824 /* An existing entry with the same key is found. */
5825 /* Fail because overwrite is not allows. */
5826 return 0;
5828 np = np->next;
5830 if( x4a->count>=x4a->size ){
5831 /* Need to make the hash table bigger */
5832 int i,arrSize;
5833 struct s_x4 array;
5834 array.size = arrSize = x4a->size*2;
5835 array.count = x4a->count;
5836 array.tbl = (x4node*)calloc(arrSize, sizeof(x4node) + sizeof(x4node*));
5837 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
5838 array.ht = (x4node**)&(array.tbl[arrSize]);
5839 for(i=0; i<arrSize; i++) array.ht[i] = 0;
5840 for(i=0; i<x4a->count; i++){
5841 x4node *oldnp, *newnp;
5842 oldnp = &(x4a->tbl[i]);
5843 h = confighash(oldnp->data) & (arrSize-1);
5844 newnp = &(array.tbl[i]);
5845 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5846 newnp->next = array.ht[h];
5847 newnp->data = oldnp->data;
5848 newnp->from = &(array.ht[h]);
5849 array.ht[h] = newnp;
5851 /* free(x4a->tbl); // This code was originally written for 16-bit machines.
5852 ** on modern machines, don't worry about freeing this trival amount of
5853 ** memory. */
5854 *x4a = array;
5856 /* Insert the new data */
5857 h = ph & (x4a->size-1);
5858 np = &(x4a->tbl[x4a->count++]);
5859 np->data = data;
5860 if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
5861 np->next = x4a->ht[h];
5862 x4a->ht[h] = np;
5863 np->from = &(x4a->ht[h]);
5864 return 1;
5867 /* Return a pointer to data assigned to the given key. Return NULL
5868 ** if no such key. */
5869 struct config *Configtable_find(struct config *key)
5871 int h;
5872 x4node *np;
5874 if( x4a==0 ) return 0;
5875 h = confighash(key) & (x4a->size-1);
5876 np = x4a->ht[h];
5877 while( np ){
5878 if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
5879 np = np->next;
5881 return np ? np->data : 0;
5884 /* Remove all data from the table. Pass each data to the function "f"
5885 ** as it is removed. ("f" may be null to avoid this step.) */
5886 void Configtable_clear(int(*f)(struct config *))
5888 int i;
5889 if( x4a==0 || x4a->count==0 ) return;
5890 if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
5891 for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
5892 x4a->count = 0;
5893 return;