Revert "TODO epan/dissectors/asn1/kerberos/packet-kerberos-template.c new GSS flags"
[wireshark-sm.git] / epan / dissectors / packet-cipmotion.c
blob0dacd947742f09d301e5339498fc25e9b09c6454
1 /* packet-cipmotion.c
2 * Routines for CIP (Common Industrial Protocol) Motion dissection
3 * CIP Motion Home: www.odva.org
5 * This dissector includes items from:
6 * CIP Volume 9: CIP Motion, Edition 1.7
8 * Copyright 2006-2007
9 * Benjamin M. Stocks <bmstocks@ra.rockwell.com>
11 * Wireshark - Network traffic analyzer
12 * By Gerald Combs <gerald@wireshark.org>
13 * Copyright 1998 Gerald Combs
15 * SPDX-License-Identifier: GPL-2.0-or-later
18 #include "config.h"
20 #include <epan/packet.h>
21 #include <epan/expert.h>
22 #include <epan/unit_strings.h>
24 #include "packet-cipmotion.h"
26 #include "packet-cip.h"
27 #include "packet-enip.h"
29 void proto_register_cipmotion(void);
30 /* The entry point to the actual dissection is: dissect_cipmotion */
31 void proto_reg_handoff_cipmotion(void);
33 /* Protocol handle for CIP Motion */
34 static int proto_cipmotion;
35 static int proto_cipmotion3;
37 /* Header field identifiers, these are registered in the
38 * proto_register_cipmotion function along with the bites/bytes
39 * they represent */
40 static int hf_cip_format;
41 static int hf_cip_revision;
42 static int hf_cip_class1_seqnum;
43 static int hf_configuration_block_format_rev;
44 static int hf_configuration_block_drive_power_struct_id;
45 static int hf_cip_updateid;
46 static int hf_cip_instance_cnt;
47 static int hf_cip_last_update;
48 static int hf_cip_node_status;
49 static int hf_cip_node_control;
50 static int hf_cip_node_control_remote;
51 static int hf_cip_node_control_sync;
52 static int hf_cip_node_data_valid;
53 static int hf_cip_node_fault_reset;
54 static int hf_cip_node_device_faulted;
55 static int hf_cip_time_data_set;
56 static int hf_cip_time_data_stamp;
57 static int hf_cip_time_data_offset;
58 static int hf_cip_time_data_diag;
59 static int hf_cip_time_data_time_diag;
60 static int hf_cip_cont_time_stamp;
61 static int hf_cip_cont_time_offset;
62 static int hf_cip_devc_time_stamp;
63 static int hf_cip_devc_time_offset;
64 static int hf_cip_lost_update;
65 static int hf_cip_late_update;
66 static int hf_cip_data_rx_time_stamp;
67 static int hf_cip_data_tx_time_stamp;
68 static int hf_cip_node_fltalarms;
69 static int hf_cip_motor_cntrl;
70 static int hf_cip_feedback;
71 static int hf_cip_feedback_mode;
72 static int hf_cip_feedback_data_type;
74 static int hf_connection_configuration_bits;
75 static int hf_connection_configuration_bits_power;
76 static int hf_connection_configuration_bits_safety_bit_valid;
77 static int hf_connection_configuration_bits_allow_network_safety;
79 static int hf_cip_axis_control;
80 static int hf_cip_control_status;
81 static int hf_cip_control_status_complete;
82 static int hf_cip_control_status_bus_up;
83 static int hf_cip_control_status_bus_unload;
84 static int hf_cip_control_status_power_loss;
85 static int hf_cip_axis_response;
86 static int hf_cip_axis_resp_stat;
87 static int hf_cip_cmd_data_pos_cmd;
88 static int hf_cip_cmd_data_vel_cmd;
89 static int hf_cip_cmd_data_acc_cmd;
90 static int hf_cip_cmd_data_trq_cmd;
91 static int hf_cip_cmd_data_unwind_cycle_count;
92 static int hf_cip_cmd_data_pos_displacement;
93 static int hf_cip_act_data_pos;
94 static int hf_cip_act_data_vel;
95 static int hf_cip_act_data_acc;
96 static int hf_cip_act_unwind_cycle_count;
97 static int hf_cip_act_pos_displacement;
98 static int hf_cip_sts_flt;
99 static int hf_cip_sts_alrm;
100 static int hf_cip_sts_sts;
101 static int hf_cip_sts_iosts;
102 static int hf_cip_sts_axis_safety;
103 static int hf_cip_intrp;
104 static int hf_cip_position_data_type;
105 static int hf_cip_axis_state;
106 static int hf_cip_evnt_ctrl_reg1_pos;
107 static int hf_cip_evnt_ctrl_reg1_neg;
108 static int hf_cip_evnt_ctrl_reg2_pos;
109 static int hf_cip_evnt_ctrl_reg2_neg;
110 static int hf_cip_evnt_ctrl_reg1_posrearm;
111 static int hf_cip_evnt_ctrl_reg1_negrearm;
112 static int hf_cip_evnt_ctrl_reg2_posrearm;
113 static int hf_cip_evnt_ctrl_reg2_negrearm;
114 static int hf_cip_evnt_ctrl_marker_pos;
115 static int hf_cip_evnt_ctrl_marker_neg;
116 static int hf_cip_evnt_ctrl_home_pos;
117 static int hf_cip_evnt_ctrl_home_neg;
118 static int hf_cip_evnt_ctrl_home_pp;
119 static int hf_cip_evnt_ctrl_home_pm;
120 static int hf_cip_evnt_ctrl_home_mp;
121 static int hf_cip_evnt_ctrl_home_mm;
122 static int hf_cip_evnt_ctrl_acks;
123 static int hf_cip_evnt_extend_format;
124 static int hf_cip_evnt_sts_reg1_pos;
125 static int hf_cip_evnt_sts_reg1_neg;
126 static int hf_cip_evnt_sts_reg2_pos;
127 static int hf_cip_evnt_sts_reg2_neg;
128 static int hf_cip_evnt_sts_reg1_posrearm;
129 static int hf_cip_evnt_sts_reg1_negrearm;
130 static int hf_cip_evnt_sts_reg2_posrearm;
131 static int hf_cip_evnt_sts_reg2_negrearm;
132 static int hf_cip_evnt_sts_marker_pos;
133 static int hf_cip_evnt_sts_marker_neg;
134 static int hf_cip_evnt_sts_home_pos;
135 static int hf_cip_evnt_sts_home_neg;
136 static int hf_cip_evnt_sts_home_pp;
137 static int hf_cip_evnt_sts_home_pm;
138 static int hf_cip_evnt_sts_home_mp;
139 static int hf_cip_evnt_sts_home_mm;
140 static int hf_cip_evnt_sts_nfs;
141 static int hf_cip_evnt_sts_stat;
142 static int hf_cip_evnt_type;
143 static int hf_cip_svc_code;
144 static int hf_cip_svc_sts;
145 static int hf_cip_svc_set_axis_attr_sts;
146 static int hf_cip_svc_get_axis_attr_sts;
147 static int hf_cip_svc_transction;
148 static int hf_cip_svc_ext_status;
149 static int hf_cip_svc_data;
150 static int hf_cip_ptp_grandmaster;
151 static int hf_cip_axis_alarm;
152 static int hf_cip_axis_fault;
153 static int hf_cip_axis_sts_local_ctrl;
154 static int hf_cip_axis_sts_alarm;
155 static int hf_cip_axis_sts_dc_bus;
156 static int hf_cip_axis_sts_pwr_struct;
157 static int hf_cip_axis_sts_flux_up;
158 static int hf_cip_axis_sts_tracking;
159 static int hf_cip_axis_sts_pos_lock;
160 static int hf_cip_axis_sts_vel_lock;
161 static int hf_cip_axis_sts_vel_standstill;
162 static int hf_cip_axis_sts_vel_threshold;
163 static int hf_cip_axis_sts_vel_limit;
164 static int hf_cip_axis_sts_acc_limit;
165 static int hf_cip_axis_sts_dec_limit;
166 static int hf_cip_axis_sts_torque_threshold;
167 static int hf_cip_axis_sts_torque_limit;
168 static int hf_cip_axis_sts_cur_limit;
169 static int hf_cip_axis_sts_therm_limit;
170 static int hf_cip_axis_sts_feedback_integ;
171 static int hf_cip_axis_sts_shutdown;
172 static int hf_cip_axis_sts_in_process;
173 static int hf_cip_axis_sts_dc_bus_unload;
174 static int hf_cip_axis_sts_ac_pwr_loss;
175 static int hf_cip_axis_sts_pos_cntrl_mode;
176 static int hf_cip_axis_sts_vel_cntrl_mode;
177 static int hf_cip_axis_sts_trq_cntrl_mode;
179 static int hf_cip_axis_status2;
180 static int hf_cip_axis_sts2_motor;
181 static int hf_cip_axis_sts2_regenerate;
182 static int hf_cip_axis_sts2_ride_thru;
183 static int hf_cip_axis_sts2_ac_line_sync;
184 static int hf_cip_axis_sts2_bus_volt_lock;
185 static int hf_cip_axis_sts2_react_pwr_only;
186 static int hf_cip_axis_sts2_volt_ctrl_mode;
187 static int hf_cip_axis_sts2_pwr_loss;
188 static int hf_cip_axis_sts2_ac_volt_sag;
189 static int hf_cip_axis_sts2_ac_phase_loss;
190 static int hf_cip_axis_sts2_ac_freq_change;
191 static int hf_cip_axis_sts2_ac_sync_loss;
192 static int hf_cip_axis_sts2_single_phase;
193 static int hf_cip_axis_sts2_bus_volt_limit;
194 static int hf_cip_axis_sts2_bus_volt_rate_limit;
195 static int hf_cip_axis_sts2_active_current_rate_limit;
196 static int hf_cip_axis_sts2_reactive_current_rate_limit;
197 static int hf_cip_axis_sts2_reactive_pwr_limit;
198 static int hf_cip_axis_sts2_reactive_pwr_rate_limit;
199 static int hf_cip_axis_sts2_active_current_limit;
200 static int hf_cip_axis_sts2_reactive_current_limit;
201 static int hf_cip_axis_sts2_motor_pwr_limit;
202 static int hf_cip_axis_sts2_regen_pwr_limit;
203 static int hf_cip_axis_sts2_convert_therm_limit;
205 static int hf_cip_cyclic_wrt_data;
206 static int hf_cip_cyclic_rd_data;
207 static int hf_cip_cyclic_write_blk;
208 static int hf_cip_cyclic_read_blk;
209 static int hf_cip_cyclic_write_sts;
210 static int hf_cip_cyclic_read_sts;
211 static int hf_cip_attribute_data;
212 static int hf_cip_event_checking;
213 static int hf_cip_event_ack;
214 static int hf_cip_event_status;
215 static int hf_cip_event_id;
216 static int hf_cip_event_pos;
217 static int hf_cip_event_ts;
218 static int hf_cip_pos_cmd;
219 static int hf_cip_pos_cmd_int;
220 static int hf_cip_vel_cmd;
221 static int hf_cip_accel_cmd;
222 static int hf_cip_trq_cmd;
223 static int hf_cip_pos_trim;
224 static int hf_cip_vel_trim;
225 static int hf_cip_accel_trim;
226 static int hf_cip_trq_trim;
227 static int hf_cip_act_pos;
228 static int hf_cip_act_pos_64;
229 static int hf_cip_act_vel;
230 static int hf_cip_act_accel;
231 static int hf_cip_fault_type;
232 static int hf_cip_fault_sub_code;
233 static int hf_cip_fault_action;
234 static int hf_cip_fault_time_stamp;
235 static int hf_cip_alarm_type;
236 static int hf_cip_alarm_sub_code;
237 static int hf_cip_alarm_state;
238 static int hf_cip_alarm_time_stamp;
239 static int hf_cip_axis_status;
240 static int hf_cip_axis_status_mfg;
241 static int hf_cip_axis_io_status;
242 static int hf_cip_axis_io_status_mfg;
243 static int hf_cip_axis_safety_status;
244 static int hf_cip_axis_safety_status_mfg;
245 static int hf_cip_axis_safety_state;
246 static int hf_cip_cmd_data_set;
247 static int hf_cip_act_data_set;
248 static int hf_cip_sts_data_set;
249 static int hf_cip_group_sync;
250 static int hf_cip_command_control;
252 static int hf_get_axis_attr_list_attribute_cnt;
253 static int hf_get_axis_attr_list_attribute_id;
254 static int hf_get_axis_attr_list_dimension;
255 static int hf_get_axis_attr_list_element_size;
256 static int hf_get_axis_attr_list_start_index;
257 static int hf_get_axis_attr_list_data_elements;
258 static int hf_set_axis_attr_list_attribute_cnt;
259 static int hf_set_axis_attr_list_attribute_id;
260 static int hf_set_axis_attr_list_dimension;
261 static int hf_set_axis_attr_list_element_size;
262 static int hf_set_axis_attr_list_start_index;
263 static int hf_set_axis_attr_list_data_elements;
264 static int hf_set_cyclic_list_attribute_cnt;
265 static int hf_set_cyclic_list_attribute_id;
266 static int hf_set_cyclic_list_read_block_id;
267 static int hf_set_cyclic_list_attr_sts;
268 static int hf_var_devce_instance;
269 static int hf_var_devce_instance_block_size;
270 static int hf_var_devce_cyclic_block_size;
271 static int hf_var_devce_cyclic_data_block_size;
272 static int hf_var_devce_cyclic_rw_block_size;
273 static int hf_var_devce_event_block_size;
274 static int hf_var_devce_service_block_size;
275 static int hf_cip_data;
277 /* Subtree pointers for the dissection */
278 static int ett_cipmotion;
279 static int ett_cont_dev_header;
280 static int ett_control_status;
281 static int ett_node_control;
282 static int ett_node_status;
283 static int ett_time_data_set;
284 static int ett_inst_data_header;
285 static int ett_cyclic_data_block;
286 static int ett_cyclic_command_data;
287 static int ett_feedback_mode;
288 static int ett_connection_configuration_bits;
289 static int ett_control_mode;
290 static int ett_feedback_config;
291 static int ett_command_data_set;
292 static int ett_actual_data_set;
293 static int ett_status_data_set;
294 static int ett_interp_control;
295 static int ett_cyclic_rd_wt;
296 static int ett_event;
297 static int ett_event_check_ctrl;
298 static int ett_event_check_sts;
299 static int ett_service;
300 static int ett_get_axis_attribute;
301 static int ett_set_axis_attribute;
302 static int ett_get_axis_attr_list;
303 static int ett_set_axis_attr_list;
304 static int ett_set_cyclic_list;
305 static int ett_group_sync;
306 static int ett_axis_status_set;
307 static int ett_command_control;
308 static int ett_configuration_block;
310 static expert_field ei_format_rev_conn_pt;
312 static dissector_handle_t cipmotion_handle;
313 static dissector_handle_t cipmotion3_handle;
315 static bool display_full_attribute_data;
317 /* These are the BITMASKS for the Time Data Set header field */
318 #define TIME_DATA_SET_TIME_STAMP 0x1
319 #define TIME_DATA_SET_TIME_OFFSET 0x2
320 #define TIME_DATA_SET_UPDATE_DIAGNOSTICS 0x4
321 #define TIME_DATA_SET_TIME_DIAGNOSTICS 0x8
323 /* These are the BITMASKS for the Command Data Set cyclic field */
324 #define COMMAND_DATA_SET_POSITION 0x01
325 #define COMMAND_DATA_SET_VELOCITY 0x02
326 #define COMMAND_DATA_SET_ACCELERATION 0x04
327 #define COMMAND_DATA_SET_TORQUE 0x08
328 #define COMMAND_DATA_SET_UNWIND_CYCLE_COUNT 0x40
329 #define COMMAND_DATA_SET_POSITION_DISPLACE 0x80
331 /* These are the BITMASKS for the Actual Data Set cyclic field */
332 #define ACTUAL_DATA_SET_POSITION 0x01
333 #define ACTUAL_DATA_SET_VELOCITY 0x02
334 #define ACTUAL_DATA_SET_ACCELERATION 0x04
335 #define ACTUAL_DATA_SET_UNWIND_CYCLE_COUNT 0x40
336 #define ACTUAL_DATA_SET_POSITION_DISPLACE 0x80
338 /* These are the BITMASKS for the Status Data Set cyclic field */
339 #define STATUS_DATA_SET_AXIS_FAULT 0x01
340 #define STATUS_DATA_SET_AXIS_ALARM 0x02
341 #define STATUS_DATA_SET_AXIS_STATUS 0x04
342 #define STATUS_DATA_SET_AXIS_IO_STATUS 0x08
343 #define STATUS_DATA_SET_AXIS_SAFETY 0x10
345 /* These are the BITMASKS for the Command Control cyclic field */
346 #define COMMAND_CONTROL_TARGET_UPDATE 0x03
347 #define COMMAND_CONTROL_POSITION_DATA_TYPE 0x0C
349 /* These are the VALUES of the connection format header field of the
350 * CIP Motion protocol */
351 #define FORMAT_FIXED_CONTROL_TO_DEVICE 2
352 #define FORMAT_FIXED_DEVICE_TO_CONTROL 3
353 #define FORMAT_VAR_CONTROL_TO_DEVICE 6
354 #define FORMAT_VAR_DEVICE_TO_CONTROL 7
356 #define FEEDBACK_MODE_BITS 0x0F
357 #define FEEDBACK_DATA_TYPE_BITS 0x30
359 /* Translate function to string - connection format values */
360 static const value_string cip_con_format_vals[] = {
361 { FORMAT_FIXED_CONTROL_TO_DEVICE, "Fixed Controller-to-Device" },
362 { FORMAT_FIXED_DEVICE_TO_CONTROL, "Fixed Device-to-Controller" },
363 { FORMAT_VAR_CONTROL_TO_DEVICE, "Variable Controller-to-Device" },
364 { FORMAT_VAR_DEVICE_TO_CONTROL, "Variable Device-to-Controller" },
365 { 0, NULL }
368 /* Translate function to string - motor control mode values */
369 static const value_string cip_motor_control_vals[] = {
370 { 0, "No Control" },
371 { 1, "Position Control" },
372 { 2, "Velocity Control" },
373 { 3, "Acceleration Control" },
374 { 4, "Torque Control" },
375 { 0, NULL }
378 /* Translate function to string - feedback mode values */
379 static const value_string cip_feedback_mode_vals[] = {
380 { 0, "No Feedback" },
381 { 1, "Master Feedback" },
382 { 2, "Motor Feedback" },
383 { 3, "Load Feedback" },
384 { 4, "Dual Feedback" },
385 { 0, NULL }
388 static const value_string cip_feedback_type_vals[] = {
389 { 0, "DINT" },
390 { 1, "LINT" },
391 { 0, NULL }
394 /* Translate function to string - axis control values */
395 static const value_string cip_axis_control_vals[] =
397 { 0, "No Request" },
398 { 1, "Enable Request" },
399 { 2, "Disable Request" },
400 { 3, "Shutdown Request" },
401 { 4, "Shutdown Reset Request" },
402 { 5, "Abort Request" },
403 { 6, "Fault Reset Request" },
404 { 7, "Stop Process" },
405 { 8, "Change Actual Pos" },
406 { 9, "Change Command Pos Ref" },
407 { 127, "Cancel Request" },
408 { 0, NULL }
411 /* Translate function to string - group sync Status */
412 static const value_string cip_sync_status_vals[] =
414 { 0, "Synchronized" },
415 { 1, "Not Synchronized" },
416 { 2, "Wrong Grandmaster" },
417 { 3, "Clock Skew Detected" },
418 { 0, NULL }
421 /* Translate function to string - command target update */
422 static const value_string cip_interpolation_vals[] = {
423 { 0, "Immediate" },
424 { 1, "Extrapolate (+1)" },
425 { 2, "Interpolate (+2)" },
426 { 0, NULL }
429 /* These are the VALUES for the Command Position Data Type */
430 #define POSITION_DATA_LREAL 0x00
431 #define POSITION_DATA_DINT 0x01
433 /* Translate function to string - position data type */
434 static const value_string cip_pos_data_type_vals[] = {
435 { POSITION_DATA_LREAL, "LREAL (64-bit Float)" },
436 { POSITION_DATA_DINT, "DINT (32-bit Integer)" },
437 { 0, NULL }
440 /* Translate function to string - axis response values */
441 static const value_string cip_axis_response_vals[] = {
442 { 0, "No Acknowledge" },
443 { 1, "Enable Acknowledge" },
444 { 2, "Disable Acknowledge" },
445 { 3, "Shutdown Acknowledge" },
446 { 4, "Shutdown Reset Acknowledge" },
447 { 5, "Abort Acknowledge" },
448 { 6, "Fault Reset Acknowledge" },
449 { 7, "Stop Process Acknowledge" },
450 { 8, "Change Actual Position Reference Acknowledge" },
451 { 9, "Change Command Position Reference Acknowledge" },
452 { 127, "Cancel Acknowledge" },
453 { 0, NULL }
456 /* Translate function to string - axis state values */
457 static const value_string cip_axis_state_vals[] = {
458 { 0, "Initializing" },
459 { 1, "Pre-Charge" },
460 { 2, "Stopped" },
461 { 3, "Starting" },
462 { 4, "Running" },
463 { 5, "Testing" },
464 { 6, "Stopping" },
465 { 7, "Aborting" },
466 { 8, "Major Faulted" },
467 { 9, "Start Inhibited" },
468 { 10, "Shutdown" },
469 { 0, NULL }
472 /* Translate function to string - event type values */
473 static const value_string cip_event_type_vals[] = {
474 { 0, "Registration 1 Positive Edge" },
475 { 1, "Registration 1 Negative Edge" },
476 { 2, "Registration 2 Positive Edge" },
477 { 3, "Registration 2 Negative Edge" },
478 { 4, "Marker Positive Edge" },
479 { 5, "Marker Negative Edge" },
480 { 6, "Home Switch Positive Edge" },
481 { 7, "Home Switch Negative Edge" },
482 { 8, "Home Switch Marker ++" },
483 { 9, "Home Switch Marker +-" },
484 { 10, "Home Switch Marker -+" },
485 { 11, "Home Switch Marker --" },
486 { 0, NULL }
489 #define SC_GET_AXIS_ATTRIBUTE_LIST 0x4B
490 #define SC_SET_AXIS_ATTRIBUTE_LIST 0x4C
491 #define SC_SET_CYCLIC_WRITE_LIST 0x4D
492 #define SC_SET_CYCLIC_READ_LIST 0x4E
493 #define SC_RUN_MOTOR_TEST 0x4F
494 #define SC_GET_MOTOR_TEST_DATA 0x50
495 #define SC_RUN_INERTIA_TEST 0x51
496 #define SC_GET_INERTIA_TEST_DATA 0x52
497 #define SC_RUN_HOOKUP_TEST 0x53
498 #define SC_GET_HOOKUP_TEST_DATA 0x54
500 /* Translate function to string - CIP Service codes */
501 static const value_string cip_sc_vals[] = {
502 GENERIC_SC_LIST
503 { SC_GET_AXIS_ATTRIBUTE_LIST, "Get Axis Attribute List" },
504 { SC_SET_AXIS_ATTRIBUTE_LIST, "Set Axis Attribute List" },
505 { SC_SET_CYCLIC_WRITE_LIST, "Set Cyclic Write List" },
506 { SC_SET_CYCLIC_READ_LIST, "Set Cyclic Read List" },
507 { SC_RUN_MOTOR_TEST, "Run Motor Test" },
508 { SC_GET_MOTOR_TEST_DATA, "Get Motor Test Data" },
509 { SC_RUN_INERTIA_TEST, "Run Inertia Test" },
510 { SC_GET_INERTIA_TEST_DATA, "Get Inertia Test Data" },
511 { SC_RUN_HOOKUP_TEST, "Run Hookup Test" },
512 { SC_GET_HOOKUP_TEST_DATA, "Get Hookup Test Data" },
513 { 0, NULL }
516 static int dissect_axis_status(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
517 int offset, int total_len _U_)
519 static int* const bits[] = {
520 &hf_cip_axis_sts_local_ctrl,
521 &hf_cip_axis_sts_alarm,
522 &hf_cip_axis_sts_dc_bus,
523 &hf_cip_axis_sts_pwr_struct,
524 &hf_cip_axis_sts_flux_up,
525 &hf_cip_axis_sts_tracking,
526 &hf_cip_axis_sts_pos_lock,
527 &hf_cip_axis_sts_vel_lock,
528 &hf_cip_axis_sts_vel_standstill,
529 &hf_cip_axis_sts_vel_threshold,
530 &hf_cip_axis_sts_vel_limit,
531 &hf_cip_axis_sts_acc_limit,
532 &hf_cip_axis_sts_dec_limit,
533 &hf_cip_axis_sts_torque_threshold,
534 &hf_cip_axis_sts_torque_limit,
535 &hf_cip_axis_sts_cur_limit,
536 &hf_cip_axis_sts_therm_limit,
537 &hf_cip_axis_sts_feedback_integ,
538 &hf_cip_axis_sts_shutdown,
539 &hf_cip_axis_sts_in_process,
540 &hf_cip_axis_sts_dc_bus_unload,
541 &hf_cip_axis_sts_ac_pwr_loss,
542 &hf_cip_axis_sts_pos_cntrl_mode,
543 &hf_cip_axis_sts_vel_cntrl_mode,
544 &hf_cip_axis_sts_trq_cntrl_mode,
545 NULL
548 proto_tree_add_bitmask(tree, tvb, offset, hf_cip_axis_status, ett_axis_status_set, bits, ENC_LITTLE_ENDIAN);
550 return 4;
553 static int dissect_axis_status2(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
554 int offset, int total_len _U_)
556 static int* const bits[] = {
557 &hf_cip_axis_sts2_motor,
558 &hf_cip_axis_sts2_regenerate,
559 &hf_cip_axis_sts2_ride_thru,
560 &hf_cip_axis_sts2_ac_line_sync,
561 &hf_cip_axis_sts2_bus_volt_lock,
562 &hf_cip_axis_sts2_react_pwr_only,
563 &hf_cip_axis_sts2_volt_ctrl_mode,
564 &hf_cip_axis_sts2_pwr_loss,
565 &hf_cip_axis_sts2_ac_volt_sag,
566 &hf_cip_axis_sts2_ac_phase_loss,
567 &hf_cip_axis_sts2_ac_freq_change,
568 &hf_cip_axis_sts2_ac_sync_loss,
569 &hf_cip_axis_sts2_single_phase,
570 &hf_cip_axis_sts2_bus_volt_limit,
571 &hf_cip_axis_sts2_bus_volt_rate_limit,
572 &hf_cip_axis_sts2_active_current_rate_limit,
573 &hf_cip_axis_sts2_reactive_current_rate_limit,
574 &hf_cip_axis_sts2_reactive_pwr_limit,
575 &hf_cip_axis_sts2_reactive_pwr_rate_limit,
576 &hf_cip_axis_sts2_active_current_limit,
577 &hf_cip_axis_sts2_reactive_current_limit,
578 &hf_cip_axis_sts2_motor_pwr_limit,
579 &hf_cip_axis_sts2_regen_pwr_limit,
580 &hf_cip_axis_sts2_convert_therm_limit,
581 NULL
584 proto_tree_add_bitmask(tree, tvb, offset, hf_cip_axis_status2, ett_axis_status_set, bits, ENC_LITTLE_ENDIAN);
586 return 4;
589 static int dissect_event_checking_control(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
590 int offset, int total_len _U_)
592 static int* const bits[] = {
593 &hf_cip_evnt_ctrl_reg1_pos,
594 &hf_cip_evnt_ctrl_reg1_neg,
595 &hf_cip_evnt_ctrl_reg2_pos,
596 &hf_cip_evnt_ctrl_reg2_neg,
597 &hf_cip_evnt_ctrl_reg1_posrearm,
598 &hf_cip_evnt_ctrl_reg1_negrearm,
599 &hf_cip_evnt_ctrl_reg2_posrearm,
600 &hf_cip_evnt_ctrl_reg2_negrearm,
601 &hf_cip_evnt_ctrl_marker_pos,
602 &hf_cip_evnt_ctrl_marker_neg,
603 &hf_cip_evnt_ctrl_home_pos,
604 &hf_cip_evnt_ctrl_home_neg,
605 &hf_cip_evnt_ctrl_home_pp,
606 &hf_cip_evnt_ctrl_home_pm,
607 &hf_cip_evnt_ctrl_home_mp,
608 &hf_cip_evnt_ctrl_home_mm,
609 &hf_cip_evnt_ctrl_acks,
610 // The dissector will indicate if the protocol is requesting an extended event format but will not dissect it.
611 &hf_cip_evnt_extend_format,
612 NULL
615 proto_tree_add_bitmask(tree, tvb, offset, hf_cip_event_checking, ett_event_check_ctrl, bits, ENC_LITTLE_ENDIAN);
617 return 4;
620 static int dissect_event_checking_status(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
621 int offset, int total_len _U_)
623 static int* const bits[] = {
624 &hf_cip_evnt_sts_reg1_pos,
625 &hf_cip_evnt_sts_reg1_neg,
626 &hf_cip_evnt_sts_reg2_pos,
627 &hf_cip_evnt_sts_reg2_neg,
628 &hf_cip_evnt_sts_reg1_posrearm,
629 &hf_cip_evnt_sts_reg1_negrearm,
630 &hf_cip_evnt_sts_reg2_posrearm,
631 &hf_cip_evnt_sts_reg2_negrearm,
632 &hf_cip_evnt_sts_marker_pos,
633 &hf_cip_evnt_sts_marker_neg,
634 &hf_cip_evnt_sts_home_pos,
635 &hf_cip_evnt_sts_home_neg,
636 &hf_cip_evnt_sts_home_pp,
637 &hf_cip_evnt_sts_home_pm,
638 &hf_cip_evnt_sts_home_mp,
639 &hf_cip_evnt_sts_home_mm,
640 &hf_cip_evnt_sts_nfs,
641 // The dissector will indicate if the protocol is requesting an extended event format but will not dissect it.
642 &hf_cip_evnt_extend_format,
643 NULL
646 proto_tree_add_bitmask(tree, tvb, offset, hf_cip_event_status, ett_event_check_sts, bits, ENC_LITTLE_ENDIAN);
648 return 4;
651 static int dissect_actual_data_set_bits(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
652 int offset, int total_len _U_)
654 static int* const bits[] = {
655 &hf_cip_act_data_pos,
656 &hf_cip_act_data_vel,
657 &hf_cip_act_data_acc,
658 &hf_cip_act_unwind_cycle_count,
659 &hf_cip_act_pos_displacement,
660 NULL
663 proto_tree_add_bitmask(tree, tvb, offset, hf_cip_act_data_set, ett_actual_data_set, bits, ENC_LITTLE_ENDIAN);
665 return 1;
668 static int dissect_command_data_set_bits(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
669 int offset, int total_len _U_)
671 static int* const bits[] = {
672 &hf_cip_cmd_data_pos_cmd,
673 &hf_cip_cmd_data_vel_cmd,
674 &hf_cip_cmd_data_acc_cmd,
675 &hf_cip_cmd_data_trq_cmd,
676 &hf_cip_cmd_data_unwind_cycle_count,
677 &hf_cip_cmd_data_pos_displacement,
678 NULL
681 proto_tree_add_bitmask(tree, tvb, offset, hf_cip_cmd_data_set, ett_command_data_set, bits, ENC_LITTLE_ENDIAN);
683 return 1;
686 static int dissect_command_control(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
687 int offset, int total_len _U_)
689 static int* const bits[] = {
690 &hf_cip_intrp,
691 &hf_cip_position_data_type,
692 NULL
695 proto_tree_add_bitmask(tree, tvb, offset, hf_cip_command_control, ett_command_control, bits, ENC_LITTLE_ENDIAN);
697 return 1;
700 static int dissect_status_data_set_bits(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
701 int offset, int total_len _U_)
703 static int* const bits[] = {
704 &hf_cip_sts_flt,
705 &hf_cip_sts_alrm,
706 &hf_cip_sts_sts,
707 &hf_cip_sts_iosts,
708 &hf_cip_sts_axis_safety,
709 NULL
712 proto_tree_add_bitmask(tree, tvb, offset, hf_cip_sts_data_set, ett_status_data_set, bits, ENC_LITTLE_ENDIAN);
714 return 1;
717 static int dissect_node_control(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
718 int offset, int total_len _U_)
720 static int* const bits[] = {
721 &hf_cip_node_control_remote,
722 &hf_cip_node_control_sync,
723 &hf_cip_node_data_valid,
724 &hf_cip_node_fault_reset,
725 NULL
728 proto_tree_add_bitmask(tree, tvb, offset, hf_cip_node_control, ett_node_control, bits, ENC_LITTLE_ENDIAN);
730 return 1;
733 static int dissect_node_status(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
734 int offset, int total_len _U_)
736 static int* const bits[] = {
737 &hf_cip_node_control_remote,
738 &hf_cip_node_control_sync,
739 &hf_cip_node_data_valid,
740 &hf_cip_node_device_faulted,
741 NULL
744 proto_tree_add_bitmask(tree, tvb, offset, hf_cip_node_status, ett_node_status, bits, ENC_LITTLE_ENDIAN);
746 return 1;
749 static int dissect_time_data_set(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
750 int offset, int total_len _U_)
752 static int* const bits[] = {
753 &hf_cip_time_data_stamp,
754 &hf_cip_time_data_offset,
755 &hf_cip_time_data_diag,
756 &hf_cip_time_data_time_diag,
757 NULL
760 proto_tree_add_bitmask(tree, tvb, offset, hf_cip_time_data_set, ett_time_data_set, bits, ENC_LITTLE_ENDIAN);
762 return 1;
765 static int dissect_control_status(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
766 int offset, int total_len _U_)
768 static int* const bits[] = {
769 &hf_cip_control_status_complete,
770 &hf_cip_control_status_bus_up,
771 &hf_cip_control_status_bus_unload,
772 &hf_cip_control_status_power_loss,
773 NULL
776 proto_tree_add_bitmask(tree, tvb, offset, hf_cip_control_status, ett_control_status, bits, ENC_LITTLE_ENDIAN);
778 return 1;
781 static int dissect_feedback_mode(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
782 int offset, int total_len _U_)
784 static int* const bits[] = {
785 &hf_cip_feedback_mode,
786 &hf_cip_feedback_data_type,
787 NULL
790 proto_tree_add_bitmask(tree, tvb, offset, hf_cip_feedback, ett_feedback_mode, bits, ENC_LITTLE_ENDIAN);
792 return 1;
795 static int dissect_connection_configuration_bits(packet_info* pinfo _U_, proto_tree* tree, proto_item* item _U_, tvbuff_t* tvb,
796 int offset, int total_len _U_)
798 static int* const bits[] = {
799 &hf_connection_configuration_bits_power,
800 &hf_connection_configuration_bits_safety_bit_valid,
801 &hf_connection_configuration_bits_allow_network_safety,
802 NULL
805 proto_tree_add_bitmask(tree, tvb, offset, hf_connection_configuration_bits, ett_connection_configuration_bits, bits, ENC_LITTLE_ENDIAN);
807 return 1;
810 const attribute_info_t cip_motion_attribute_vals[] = {
811 { CI_CLS_MOTION, CIP_ATTR_CLASS, 14, -1, "Node Control", cip_dissector_func, NULL, dissect_node_control },
812 { CI_CLS_MOTION, CIP_ATTR_CLASS, 15, -1, "Node Status", cip_dissector_func, NULL, dissect_node_status },
813 { CI_CLS_MOTION, CIP_ATTR_CLASS, 31, -1, "Time Data Set", cip_dissector_func, NULL, dissect_time_data_set },
814 { CI_CLS_MOTION, CIP_ATTR_CLASS, 34, -1, "Drive Power Structure Class ID", cip_udint, &hf_configuration_block_drive_power_struct_id, NULL },
815 { CI_CLS_MOTION, CIP_ATTR_CLASS, 36, -1, "Connection Configuration Bits", cip_dissector_func, NULL, dissect_connection_configuration_bits },
816 { CI_CLS_MOTION, CIP_ATTR_INSTANCE, 40, -1, "Control Mode", cip_usint, &hf_cip_motor_cntrl, NULL },
817 { CI_CLS_MOTION, CIP_ATTR_INSTANCE, 42, -1, "Feedback Mode", cip_dissector_func, NULL, dissect_feedback_mode },
818 { CI_CLS_MOTION, CIP_ATTR_INSTANCE, 60, -1, "Event Checking Control", cip_dissector_func, NULL, dissect_event_checking_control },
819 { CI_CLS_MOTION, CIP_ATTR_INSTANCE, 61, -1, "Event Checking Status", cip_dissector_func, NULL, dissect_event_checking_status },
820 { CI_CLS_MOTION, CIP_ATTR_INSTANCE, 89, -1, "Control Status", cip_dissector_func, NULL, dissect_control_status },
821 { CI_CLS_MOTION, CIP_ATTR_INSTANCE, 90, -1, "Actual Data Set", cip_dissector_func, NULL, dissect_actual_data_set_bits },
822 { CI_CLS_MOTION, CIP_ATTR_INSTANCE, 91, -1, "Command Data Set", cip_dissector_func, NULL, dissect_command_data_set_bits },
823 { CI_CLS_MOTION, CIP_ATTR_INSTANCE, 92, -1, "Command Control", cip_dissector_func, NULL, dissect_command_control },
824 { CI_CLS_MOTION, CIP_ATTR_INSTANCE, 94, -1, "Status Data Set", cip_dissector_func, NULL, dissect_status_data_set_bits },
825 { CI_CLS_MOTION, CIP_ATTR_INSTANCE, 431, -1, "Position Trim", cip_dint, &hf_cip_pos_trim, NULL },
826 { CI_CLS_MOTION, CIP_ATTR_INSTANCE, 451, -1, "Velocity Trim", cip_real, &hf_cip_vel_trim, NULL },
827 { CI_CLS_MOTION, CIP_ATTR_INSTANCE, 481, -1, "Acceleration Trim", cip_real, &hf_cip_accel_trim, NULL },
828 { CI_CLS_MOTION, CIP_ATTR_INSTANCE, 491, -1, "Torque Trim", cip_real, &hf_cip_trq_trim, NULL },
829 { CI_CLS_MOTION, CIP_ATTR_INSTANCE, 651, -1, "Axis Status", cip_dissector_func, NULL, dissect_axis_status },
830 { CI_CLS_MOTION, CIP_ATTR_INSTANCE, 740, -1, "Axis Status 2", cip_dissector_func, NULL, dissect_axis_status2 },
834 * Function name: dissect_cmd_data_set
836 * Purpose: Dissect the "Cyclic Command Data" of a Controller-to-Device format message
838 * Based on the Command Data Set bits of the Cyclic Command Data Block header, display
839 * any of those command values.
841 * Returns: The number of bytes in the cyclic data used
843 static uint32_t
844 dissect_cmd_data_set(uint32_t cmd_data_set, proto_tree* parent_tree, tvbuff_t* tvb, uint32_t offset, bool lreal_pos)
846 // If no Command Data Set bits are set, then we don't need to display any additional data.
847 if (cmd_data_set == 0)
849 return 0;
852 uint32_t bytes_used = 0;
854 proto_item* item;
855 proto_tree* tree = proto_tree_add_subtree(parent_tree, tvb, offset, 0, ett_cyclic_command_data, &item, "Cyclic Command Data");
857 /* The order of these if statements is VERY important, this is the order the values will
858 * appear in the cyclic data */
859 if ( (cmd_data_set & COMMAND_DATA_SET_POSITION) == COMMAND_DATA_SET_POSITION )
861 /* Based on the Command Position Data Type value embedded in the Command Control
862 * header field the position is either 64-bit floating or 32-bit integer */
863 if (lreal_pos)
865 /* Display the command data set position command value */
866 proto_tree_add_item(tree, hf_cip_pos_cmd, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN );
867 bytes_used += 8;
869 else
871 /* Display the command data set position command value */
872 proto_tree_add_item(tree, hf_cip_pos_cmd_int, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
873 bytes_used += 4;
877 if ( (cmd_data_set & COMMAND_DATA_SET_VELOCITY) == COMMAND_DATA_SET_VELOCITY )
879 /* Display the command data set velocity command value */
880 proto_tree_add_item(tree, hf_cip_vel_cmd, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
881 bytes_used += 4;
884 if ( (cmd_data_set & COMMAND_DATA_SET_ACCELERATION) == COMMAND_DATA_SET_ACCELERATION )
886 /* Display the command data set acceleration command value */
887 proto_tree_add_item(tree, hf_cip_accel_cmd, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
888 bytes_used += 4;
891 if ( (cmd_data_set & COMMAND_DATA_SET_TORQUE) == COMMAND_DATA_SET_TORQUE )
893 /* Display the command data set torque command value */
894 proto_tree_add_item(tree, hf_cip_trq_cmd, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
895 bytes_used += 4;
898 proto_item_set_len(item, bytes_used);
900 return bytes_used;
905 * Function name: dissect_act_data_set
907 * Purpose: Dissect the "Cyclic Actual Data" of a Device-to-Controller format message
909 * Based on the Actual Data Set bits of the "Cyclic Actual Data Block" header, display
910 * any of those feedback values.
912 * Returns: The number of bytes in the cyclic data used
914 static uint32_t
915 dissect_act_data_set(uint32_t act_data_set, proto_tree* parent_tree, tvbuff_t* tvb, uint32_t offset, uint8_t feedback_mode)
917 // If no Actual Data Set bits are set, then we don't need to display any additional data.
918 if (act_data_set == 0)
920 return 0;
923 uint32_t bytes_used = 0;
925 proto_item* item;
926 proto_tree* tree = proto_tree_add_subtree(parent_tree, tvb, offset, 0, ett_cyclic_command_data, &item, "Cyclic Actual Data");
928 /* The order of these if statements is VERY important, this is the order the values will
929 * appear in the cyclic data */
930 if ( (act_data_set & ACTUAL_DATA_SET_POSITION) == ACTUAL_DATA_SET_POSITION )
932 /* Display the actual data set position feedback value in either 32 or 64 bit */
933 bool is_64_bit_position = (feedback_mode & FEEDBACK_DATA_TYPE_BITS) == 0x10;
934 if (is_64_bit_position)
936 proto_tree_add_item(tree, hf_cip_act_pos_64, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN);
937 bytes_used += 8;
939 else
941 proto_tree_add_item(tree, hf_cip_act_pos, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
942 bytes_used += 4;
946 if ( (act_data_set & ACTUAL_DATA_SET_VELOCITY) == ACTUAL_DATA_SET_VELOCITY )
948 /* Display the actual data set velocity feedback value */
949 proto_tree_add_item(tree, hf_cip_act_vel, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
950 bytes_used += 4;
953 if ( (act_data_set & ACTUAL_DATA_SET_ACCELERATION) == ACTUAL_DATA_SET_ACCELERATION )
955 /* Display the actual data set acceleration feedback value */
956 proto_tree_add_item(tree, hf_cip_act_accel, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
957 bytes_used += 4;
961 proto_item_set_len(item, bytes_used);
963 return bytes_used;
967 * Function name: dissect_status_data_set
969 * Purpose: Dissect the "Cyclic Status Data" of a Device-to-Controller format message
971 * Based on the Status Data Set bits of the "Cyclic Actual Data Block" header, display
972 * any of those status values.
974 * Returns: The number of bytes in the cyclic data used
976 static uint32_t
977 dissect_status_data_set(uint32_t status_data_set, proto_tree* parent_tree, tvbuff_t* tvb, uint32_t offset)
979 // If no Status Data Set bits are set, then we don't need to display any additional data.
980 if (status_data_set == 0)
982 return 0;
985 uint32_t bytes_used = 0;
987 proto_item* item;
988 proto_tree* tree = proto_tree_add_subtree(parent_tree, tvb, offset, 0, ett_cyclic_command_data, &item, "Cyclic Status Data");
990 /* The order of these if statements is VERY important, this is the order the values will
991 * appear in the cyclic data */
992 if ( (status_data_set & STATUS_DATA_SET_AXIS_FAULT) == STATUS_DATA_SET_AXIS_FAULT )
994 /* Display the various fault codes from the device */
995 proto_tree_add_item(tree, hf_cip_fault_type, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
996 bytes_used += 1;
998 proto_tree_add_item(tree, hf_cip_axis_fault, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
999 bytes_used += 1;
1001 proto_tree_add_item(tree, hf_cip_fault_sub_code, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
1002 bytes_used += 1;
1004 proto_tree_add_item(tree, hf_cip_fault_action, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
1005 bytes_used += 1;
1007 proto_tree_add_item(tree, hf_cip_fault_time_stamp, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN);
1008 bytes_used += 8;
1011 if ( (status_data_set & STATUS_DATA_SET_AXIS_ALARM) == STATUS_DATA_SET_AXIS_ALARM )
1013 /* Display the various alarm codes from the device */
1014 proto_tree_add_item(tree, hf_cip_alarm_type, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
1015 bytes_used += 1;
1017 proto_tree_add_item(tree, hf_cip_axis_alarm, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
1018 bytes_used += 1;
1020 proto_tree_add_item(tree, hf_cip_alarm_sub_code, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
1021 bytes_used += 1;
1023 proto_tree_add_item(tree, hf_cip_alarm_state, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
1024 bytes_used += 1;
1026 proto_tree_add_item(tree, hf_cip_alarm_time_stamp, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN);
1027 bytes_used += 8;
1030 if ( (status_data_set & STATUS_DATA_SET_AXIS_STATUS) == STATUS_DATA_SET_AXIS_STATUS )
1032 /* Display the various axis state values from the device */
1033 bytes_used += dissect_axis_status(NULL, tree, NULL, tvb, offset + bytes_used, 4);
1035 proto_tree_add_item(tree, hf_cip_axis_status_mfg, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
1036 bytes_used += 4;
1039 if ( (status_data_set & STATUS_DATA_SET_AXIS_IO_STATUS) == STATUS_DATA_SET_AXIS_IO_STATUS )
1041 proto_tree_add_item(tree, hf_cip_axis_io_status, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
1042 bytes_used += 4;
1044 proto_tree_add_item(tree, hf_cip_axis_io_status_mfg, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
1045 bytes_used += 4;
1048 if ( (status_data_set & STATUS_DATA_SET_AXIS_SAFETY) == STATUS_DATA_SET_AXIS_SAFETY )
1050 proto_tree_add_item(tree, hf_cip_axis_safety_status, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
1051 bytes_used += 4;
1052 proto_tree_add_item(tree, hf_cip_axis_safety_status_mfg, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
1053 bytes_used += 4;
1054 proto_tree_add_item(tree, hf_cip_axis_safety_state, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
1055 bytes_used += 4;
1058 proto_item_set_len(item, bytes_used);
1060 return bytes_used;
1064 * Function name: dissect_cntr_cyclic
1066 * Purpose: Dissect the "Cyclic Command Data Block" of a Controller-to-Device format message
1068 * Returns: The new offset into the message that follow on dissections should use
1069 * as their starting offset
1071 static uint32_t
1072 dissect_cntr_cyclic(tvbuff_t* tvb, proto_tree* tree, uint32_t offset, uint32_t size)
1074 /* Create the tree for the entire instance data header */
1075 proto_tree* header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_cyclic_data_block, NULL, "Cyclic Command Data Block");
1077 proto_tree_add_item(header_tree, hf_cip_motor_cntrl, tvb, offset, 1, ENC_LITTLE_ENDIAN);
1078 dissect_feedback_mode(NULL, header_tree, NULL, tvb, offset + 1, 1);
1079 proto_tree_add_item(header_tree, hf_cip_axis_control, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
1080 dissect_control_status(NULL, header_tree, NULL, tvb, offset + 3, 1);
1082 dissect_command_data_set_bits(NULL, header_tree, NULL, tvb, offset + 4, 1);
1083 dissect_actual_data_set_bits(NULL, header_tree, NULL, tvb, offset + 5, 1);
1084 dissect_status_data_set_bits(NULL, header_tree, NULL, tvb, offset + 6, 1);
1085 dissect_command_control(NULL, header_tree, NULL, tvb, offset + 7, 1);
1087 uint32_t bytes_used = 8;
1089 /* Determine if the dissector should be using an LREAL or DINT for position */
1090 uint8_t command_control = tvb_get_uint8(tvb, offset + 7);
1091 bool lreal_pos = ((command_control & COMMAND_CONTROL_POSITION_DATA_TYPE) == POSITION_DATA_LREAL);
1093 /* Cyclic Command Data: Display the command data values from the cyclic data payload, the
1094 * cyclic data starts immediately after the interpolation control field in the controller to device
1095 * direction */
1096 uint32_t command_data_set = tvb_get_uint8(tvb, offset + 4);
1097 bytes_used += dissect_cmd_data_set(command_data_set, header_tree, tvb, offset + bytes_used, lreal_pos);
1099 /* Return the offset to the next byte in the message */
1100 return offset + bytes_used;
1104 * Function name: dissect_device_cyclic
1106 * Purpose: Dissect the "Cyclic Actual Data Block" of a Device-to-Controller format message
1108 * Returns: The new offset into the message that follow on dissections should use
1109 * as their starting offset
1111 static uint32_t
1112 dissect_device_cyclic(tvbuff_t* tvb, proto_tree* tree, uint32_t offset, uint32_t size)
1114 /* Create the tree for the entire instance data header */
1115 proto_tree* header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_cyclic_data_block, NULL, "Cyclic Actual Data Block");
1117 proto_tree_add_item(header_tree, hf_cip_motor_cntrl, tvb, offset, 1, ENC_LITTLE_ENDIAN);
1118 dissect_feedback_mode(NULL, header_tree, NULL, tvb, offset + 1, 1);
1119 proto_tree_add_item(header_tree, hf_cip_axis_response, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
1120 proto_tree_add_item(header_tree, hf_cip_axis_resp_stat, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
1122 dissect_actual_data_set_bits(NULL, header_tree, NULL, tvb, offset + 5, 1);
1123 dissect_status_data_set_bits(NULL, header_tree, NULL, tvb, offset + 6, 1);
1124 proto_tree_add_item(header_tree, hf_cip_axis_state, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
1126 uint32_t bytes_used = 8;
1128 /* Display the "Cyclic Actual Data" values from the cyclic data payload. */
1129 uint8_t feedback_mode = tvb_get_uint8(tvb, offset + 1);
1130 uint8_t actual_data_set = tvb_get_uint8(tvb, offset + 5);
1131 bytes_used += dissect_act_data_set(actual_data_set, header_tree, tvb, offset + bytes_used, feedback_mode);
1133 /* Display the "Cyclic Status Data" values from the cyclic data payload. */
1134 uint8_t status_data_set = tvb_get_uint8(tvb, offset + 6);
1135 bytes_used += dissect_status_data_set(status_data_set, header_tree, tvb, offset + bytes_used);
1137 /* Return the offset to the next byte in the message */
1138 return offset + bytes_used;
1142 * Function name: dissect_cyclic_wt
1144 * Purpose: Dissect the "Cyclic Write Data Block" in a Controller-to-Device message
1146 * Returns: The new offset into the message that follow on dissections should use
1147 * as their starting offset
1149 static uint32_t
1150 dissect_cyclic_wt(tvbuff_t* tvb, proto_tree* tree, uint32_t offset, uint32_t size)
1152 proto_tree *header_tree;
1154 /* Create the tree for the entire cyclic write data block */
1155 header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_cyclic_rd_wt, NULL, "Cyclic Write Data Block");
1157 /* Display the cyclic write block id value */
1158 proto_tree_add_item(header_tree, hf_cip_cyclic_write_blk, tvb, offset, 1, ENC_LITTLE_ENDIAN);
1160 /* Display the cyclic read block id value */
1161 proto_tree_add_item(header_tree, hf_cip_cyclic_read_blk, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
1163 /* Display the remainder of the cyclic write data if there is any */
1164 if ( (size - 4) > 0 )
1166 proto_tree_add_item(header_tree, hf_cip_cyclic_wrt_data, tvb, offset + 4, size - 4, ENC_NA);
1169 return offset + size;
1173 * Function name: dissect_cyclic_rd
1175 * Purpose: Dissect the "Cyclic Read Data Block" in a Device-to-Controller message
1177 * Returns: The new offset into the message that follow on dissections should use
1178 * as their starting offset
1180 static uint32_t
1181 dissect_cyclic_rd(tvbuff_t* tvb, proto_tree* tree, uint32_t offset, uint32_t size)
1183 proto_tree *header_tree;
1185 /* Create the tree for the entire cyclic write data block */
1186 header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_cyclic_rd_wt, NULL, "Cyclic Read Data Block");
1188 /* Display the cyclic write block id value */
1189 proto_tree_add_item(header_tree, hf_cip_cyclic_write_blk, tvb, offset, 1, ENC_LITTLE_ENDIAN);
1191 /* Display the cyclic write status value */
1192 proto_tree_add_item(header_tree, hf_cip_cyclic_write_sts, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
1194 /* Display the cyclic read block id value */
1195 proto_tree_add_item(header_tree, hf_cip_cyclic_read_blk, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
1197 /* Display the cyclic read status value */
1198 proto_tree_add_item(header_tree, hf_cip_cyclic_read_sts, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
1200 /* Display the remainder of the cyclic read data if there is any*/
1201 if ( size > 4 )
1203 proto_tree_add_item(header_tree, hf_cip_cyclic_rd_data, tvb, offset + 4, size - 4, ENC_NA);
1206 return offset + size;
1210 * Function name: dissect_cntr_event
1212 * Purpose: Dissect the "Event Data Block" in a Controller-to-Device message
1214 * Returns: The new offset into the message that follow on dissections should use
1215 * as their starting offset
1217 static uint32_t
1218 dissect_cntr_event(tvbuff_t* tvb, proto_tree* tree, uint32_t offset, uint32_t size)
1220 proto_tree *header_tree;
1221 uint32_t acks, cur_ack;
1222 uint32_t bytes_used = 0;
1224 /* Create the tree for the entire cyclic write data block */
1225 header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_event, NULL, "Event Data Block");
1227 uint32_t event_checking_control = tvb_get_letohl(tvb, offset);
1228 dissect_event_checking_control(NULL, header_tree, NULL, tvb, offset, 4);
1230 /* The event checking control value is 4 bytes long */
1231 bytes_used = 4;
1233 /* The final 4 bits of the event checking control value are the number of acknowledgements in the message */
1234 acks = (event_checking_control >> 28) & 0x0F;
1236 /* Each acknowledgement contains and id and a status value */
1237 for (cur_ack = 0; cur_ack < acks; cur_ack++)
1239 /* Display the current acknowledgement id */
1240 proto_tree_add_item(header_tree, hf_cip_event_ack, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
1241 bytes_used += 1;
1243 /* Display the current event status */
1244 proto_tree_add_item(header_tree, hf_cip_evnt_sts_stat, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
1245 bytes_used += 1;
1248 return offset + size;
1252 * Function name: dissect_devce_event
1254 * Purpose: Dissect the "Event Data Block" in a Device-to-Controller message
1256 * Returns: The new offset into the message that follow on dissections should use
1257 * as their starting offset
1259 static uint32_t
1260 dissect_devce_event(tvbuff_t* tvb, proto_tree* tree, uint32_t offset, uint32_t size)
1262 proto_tree *header_tree;
1263 uint64_t nots, cur_not;
1264 uint32_t bytes_used = 0;
1266 /* Create the tree for the entire cyclic write data block */
1267 header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_event, NULL, "Event Data Block");
1269 uint32_t event_checking_status = tvb_get_letohl(tvb, offset);
1270 dissect_event_checking_status(NULL, header_tree, NULL, tvb, offset, 4);
1272 /* The event status control value is 4 bytes long */
1273 bytes_used = 4;
1275 /* The final 4 bits of the event status control value are the number of notifications in the message */
1276 nots = (event_checking_status >> 28) & 0x0F;
1278 /* Each notification contains and id, status value, event type, position and time stamp */
1279 for (cur_not = 0; cur_not < nots; cur_not++)
1281 /* Display the current event id */
1282 proto_tree_add_item(header_tree, hf_cip_event_id, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
1283 bytes_used += 1;
1285 /* Display the current event status */
1286 proto_tree_add_item(header_tree, hf_cip_evnt_sts_stat, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
1287 bytes_used += 1;
1289 /* Display the current event type */
1290 proto_tree_add_item(header_tree, hf_cip_evnt_type, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
1291 bytes_used += 2; /* Increment by 2 to jump the reserved byte */
1293 /* Display the event position value */
1294 proto_tree_add_item(header_tree, hf_cip_event_pos, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
1295 bytes_used += 4;
1297 /* Display the event time stamp value */
1298 proto_tree_add_item(header_tree, hf_cip_event_ts, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN);
1299 bytes_used += 8;
1302 return size + offset;
1306 * Function name: dissect_get_axis_attr_list_request
1308 * Purpose: Dissect the get axis attribute list service request
1310 * Returns: None
1312 static void
1313 dissect_get_axis_attr_list_request(tvbuff_t* tvb, proto_tree* tree, uint32_t offset, uint32_t size, uint32_t instance_id)
1315 proto_item *attr_item;
1316 proto_tree *header_tree, *attr_tree;
1317 uint32_t local_offset;
1319 /* Create the tree for the get axis attribute list request */
1320 header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_get_axis_attribute, NULL, "Get Axis Attribute List Request");
1322 /* Read the number of attributes that are contained within the request */
1323 uint32_t attribute_cnt;
1324 proto_tree_add_item_ret_uint(header_tree, hf_get_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN, &attribute_cnt);
1326 /* Start the attribute loop at the beginning of the first attribute in the list */
1327 local_offset = offset + 4;
1329 /* For each attribute display the associated fields */
1330 for (uint32_t attribute = 0; attribute < attribute_cnt; attribute++)
1332 /* At a minimum the local offset needs will need to be incremented by 4 bytes to reach the next attribute */
1333 uint8_t increment_size = 4;
1335 /* Create the tree for this attribute within the request */
1336 uint32_t attribute_id;
1337 attr_item = proto_tree_add_item_ret_uint(header_tree, hf_get_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN, &attribute_id);
1338 attr_tree = proto_item_add_subtree(attr_item, ett_get_axis_attr_list);
1340 uint32_t dimension;
1341 proto_tree_add_item_ret_uint(attr_tree, hf_get_axis_attr_list_dimension, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN, &dimension);
1342 proto_tree_add_item(attr_tree, hf_get_axis_attr_list_element_size, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN);
1344 if (dimension == 1)
1346 /* Display the start index and start index from the request */
1347 proto_tree_add_item(attr_tree, hf_get_axis_attr_list_start_index, tvb, local_offset + 4, 2, ENC_LITTLE_ENDIAN);
1348 proto_tree_add_item(attr_tree, hf_get_axis_attr_list_data_elements, tvb, local_offset + 6, 2, ENC_LITTLE_ENDIAN);
1350 /* Modify the amount to update the local offset by and the start of the data to include the index and elements field */
1351 increment_size += 4;
1354 const attribute_info_t* pattribute = cip_get_attribute(CI_CLS_MOTION, instance_id, attribute_id);
1355 if (pattribute != NULL)
1357 proto_item_append_text(attr_item, " (%s)", pattribute->text);
1360 /* Move the local offset to the next attribute */
1361 local_offset += increment_size;
1365 static int dissect_motion_attribute(packet_info *pinfo, tvbuff_t* tvb, int offset, uint32_t attribute_id,
1366 uint32_t instance_id, proto_item* attr_item, proto_tree* attr_tree, uint8_t dimension, uint32_t attribute_size)
1368 const attribute_info_t* pattribute = cip_get_attribute(CI_CLS_MOTION, instance_id, attribute_id);
1369 int parsed_len = 0;
1371 if (pattribute != NULL)
1373 proto_item_append_text(attr_item, " (%s)", pattribute->text);
1375 // TODO: Handle more dimensions. Unsure about the format when there is more than 1 item.
1376 if (dimension <= 1)
1378 parsed_len = dissect_cip_attribute(pinfo, attr_tree, attr_item, tvb, pattribute, offset, attribute_size);
1382 return parsed_len;
1386 * Function name: dissect_set_axis_attr_list_request
1388 * Purpose: Dissect the set axis attribute list service request
1390 * Returns: None
1392 static void
1393 dissect_set_axis_attr_list_request(packet_info *pinfo, tvbuff_t* tvb, proto_tree* tree, uint32_t offset, uint32_t size, uint32_t instance_id)
1395 proto_item *attr_item;
1396 proto_tree *header_tree, *attr_tree;
1397 uint32_t local_offset;
1399 /* Create the tree for the set axis attribute list request */
1400 header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_set_axis_attribute, NULL, "Set Axis Attribute List Request");
1402 /* Read the number of attributes that are contained within the request */
1403 uint32_t attribute_cnt;
1404 proto_tree_add_item_ret_uint(header_tree, hf_set_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN, &attribute_cnt);
1406 /* Start the attribute loop at the beginning of the first attribute in the list */
1407 local_offset = offset + 4;
1409 /* For each attribute display the associated fields */
1410 for (uint32_t attribute = 0; attribute < attribute_cnt; attribute++)
1412 /* At a minimum the local offset needs to be incremented by 4 bytes to reach the next attribute */
1413 uint8_t increment_size = 4;
1415 /* Pull the fields for this attribute from the payload, all fields are needed to make some calculations before
1416 * properly displaying of the attribute is possible */
1417 uint8_t attribute_start = 4;
1419 /* Create the tree for this attribute in the get axis attribute list request */
1420 uint32_t attribute_id;
1421 attr_item = proto_tree_add_item_ret_uint(header_tree, hf_set_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN, &attribute_id);
1422 attr_tree = proto_item_add_subtree(attr_item, ett_set_axis_attr_list);
1424 uint32_t dimension;
1425 proto_tree_add_item_ret_uint(attr_tree, hf_set_axis_attr_list_dimension, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN, &dimension);
1427 uint32_t attribute_size;
1428 proto_tree_add_item_ret_uint(attr_tree, hf_set_axis_attr_list_element_size, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN, &attribute_size);
1430 if (dimension == 1)
1432 uint32_t data_elements;
1434 /* Display the start index and start index from the request if the request is an array */
1435 proto_tree_add_item(attr_tree, hf_set_axis_attr_list_start_index, tvb, local_offset + 4, 2, ENC_LITTLE_ENDIAN);
1436 proto_tree_add_item_ret_uint(attr_tree, hf_set_axis_attr_list_data_elements, tvb, local_offset + 6, 2, ENC_LITTLE_ENDIAN, &data_elements);
1438 /* Modify the size of the attribute data by the number of elements if the request is an array request */
1439 attribute_size *= data_elements;
1441 /* Modify the amount to update the local offset by and the start of the data to include the index and elements field */
1442 increment_size += 4;
1443 attribute_start += 4;
1446 int parsed_len = dissect_motion_attribute(pinfo, tvb, local_offset + attribute_start, attribute_id,
1447 instance_id, attr_item, attr_tree, dimension, attribute_size);
1449 // Display the raw attribute data if configured. Otherwise, just show the remaining unparsed data.
1450 if (display_full_attribute_data)
1452 proto_tree_add_item(attr_tree, hf_cip_attribute_data, tvb, local_offset + attribute_start, attribute_size, ENC_NA);
1454 else if ((attribute_size - parsed_len) > 0)
1456 proto_tree_add_item(attr_tree, hf_cip_attribute_data, tvb, local_offset + attribute_start + parsed_len, attribute_size - parsed_len, ENC_NA);
1459 /* Round the attribute size up so the next attribute lines up on a 32-bit boundary */
1460 if (attribute_size % 4 != 0)
1462 attribute_size = attribute_size + (4 - (attribute_size % 4));
1465 /* Move the local offset to the next attribute */
1466 local_offset += (attribute_size + increment_size);
1471 * Function name: dissect_group_sync_request
1473 * Purpose: Dissect the group sync service request
1475 * Returns: None
1477 static void
1478 dissect_group_sync_request (tvbuff_t* tvb, proto_tree* tree, uint32_t offset, uint32_t size)
1480 proto_tree *header_tree;
1482 /* Create the tree for the group sync request */
1483 header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_group_sync, NULL, "Group Sync Request");
1485 /* Read the grandmaster id from the payload */
1486 proto_tree_add_item(header_tree, hf_cip_ptp_grandmaster, tvb, offset, 8, ENC_LITTLE_ENDIAN);
1489 static void dissect_set_cyclic_list_request(tvbuff_t* tvb, proto_tree* tree, uint32_t offset, uint32_t size, uint32_t instance_id, const char* service_name)
1491 proto_tree* header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_set_cyclic_list, NULL, service_name);
1493 uint32_t attribute_cnt;
1494 proto_tree_add_item_ret_uint(header_tree, hf_set_cyclic_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN, &attribute_cnt);
1496 // Skip Number of Attributes and Reserved field.
1497 offset += 4;
1499 for (uint32_t attribute = 0; attribute < attribute_cnt; attribute++)
1501 uint32_t attribute_id;
1502 proto_item* attr_item = proto_tree_add_item_ret_uint(header_tree, hf_set_cyclic_list_attribute_id, tvb, offset, 2, ENC_LITTLE_ENDIAN, &attribute_id);
1504 const attribute_info_t* pattribute = cip_get_attribute(CI_CLS_MOTION, instance_id, attribute_id);
1505 if (pattribute != NULL)
1507 proto_item_append_text(attr_item, " (%s)", pattribute->text);
1510 offset += 2;
1514 static void dissect_set_cyclic_list_respone(tvbuff_t* tvb, proto_tree* tree, uint32_t offset, uint32_t size, uint32_t instance_id, const char* service_name)
1516 proto_tree* header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_set_cyclic_list, NULL, service_name);
1518 uint32_t attribute_cnt;
1519 proto_tree_add_item_ret_uint(header_tree, hf_set_cyclic_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN, &attribute_cnt);
1521 proto_tree_add_item(header_tree, hf_set_cyclic_list_read_block_id, tvb, offset + 2, 2, ENC_LITTLE_ENDIAN);
1523 // Skip Number of Attributes and Cyclic Read Block ID field.
1524 offset += 4;
1526 for (uint32_t attribute = 0; attribute < attribute_cnt; attribute++)
1528 uint32_t attribute_id;
1529 proto_item* attr_item = proto_tree_add_item_ret_uint(header_tree, hf_set_cyclic_list_attribute_id, tvb, offset, 2, ENC_LITTLE_ENDIAN, &attribute_id);
1531 const attribute_info_t* pattribute = cip_get_attribute(CI_CLS_MOTION, instance_id, attribute_id);
1532 if (pattribute != NULL)
1534 proto_item_append_text(attr_item, " (%s)", pattribute->text);
1537 offset += 2;
1539 proto_tree_add_item(header_tree, hf_set_cyclic_list_attr_sts, tvb, offset, 1, ENC_LITTLE_ENDIAN);
1541 // Skip over Attribute Status and Reserved field.
1542 offset += 2;
1547 * Function name: dissect_cntr_service
1549 * Purpose: Dissect the "Service Data Block" in a Controller-to-Device message
1551 * Returns: The new offset into the message that follow on dissections should use
1552 * as their starting offset
1554 static uint32_t
1555 dissect_cntr_service(tvbuff_t* tvb, packet_info* pinfo, proto_tree* tree, uint32_t offset, uint32_t size, uint32_t instance_id)
1557 proto_tree *header_tree;
1558 uint32_t service;
1560 /* Create the tree for the entire service data block */
1561 proto_item *item;
1562 header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_service, &item, "Service Data Block");
1564 /* Display the transaction id value */
1565 proto_tree_add_item(header_tree, hf_cip_svc_transction, tvb, offset, 1, ENC_LITTLE_ENDIAN);
1567 /* Display the service code */
1568 proto_tree_add_item_ret_uint(header_tree, hf_cip_svc_code, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN, &service);
1570 /* If the service is a set axis, get axis attribute or group sync request dissect it as well */
1571 if (size > 4)
1573 switch (service)
1575 case SC_GET_AXIS_ATTRIBUTE_LIST:
1576 dissect_get_axis_attr_list_request(tvb, header_tree, offset + 4, size - 4, instance_id);
1577 break;
1578 case SC_SET_AXIS_ATTRIBUTE_LIST:
1579 dissect_set_axis_attr_list_request(pinfo, tvb, header_tree, offset + 4, size - 4, instance_id);
1580 break;
1581 case SC_GROUP_SYNC:
1582 dissect_group_sync_request(tvb, header_tree, offset + 4, size - 4);
1583 break;
1584 case SC_SET_CYCLIC_WRITE_LIST:
1585 dissect_set_cyclic_list_request(tvb, header_tree, offset + 4, size - 4, instance_id, "Set Cyclic Write List Request");
1586 break;
1587 case SC_SET_CYCLIC_READ_LIST:
1588 dissect_set_cyclic_list_request(tvb, header_tree, offset + 4, size - 4, instance_id, "Set Cyclic Read List Request");
1589 break;
1590 case SC_SET_ATT_LIST:
1592 cip_simple_request_info_t motion_path;
1593 motion_path.iClass = CI_CLS_MOTION;
1594 motion_path.iInstance = instance_id;
1596 tvbuff_t* tvb_set_attr = tvb_new_subset_length(tvb, offset + 4, size - 4);
1597 int parsed_len = dissect_cip_set_attribute_list_req(tvb_set_attr, pinfo, header_tree, item, 0, &motion_path);
1599 // Display any remaining unparsed data.
1600 int remain_len = tvb_reported_length_remaining(tvb, offset + 4 + parsed_len);
1601 if (remain_len > 0)
1603 proto_tree_add_item(header_tree, hf_cip_attribute_data, tvb, offset + 4 + parsed_len, size - 4 - parsed_len, ENC_NA);
1606 break;
1608 default:
1609 /* Display the remainder of the service channel data */
1610 proto_tree_add_item(header_tree, hf_cip_svc_data, tvb, offset + 4, size - 4, ENC_NA);
1614 return offset + size;
1618 * Function name: dissect_set_axis_attr_list_response
1620 * Purpose: Dissect the set axis attribute list service response
1622 * Returns: None
1624 static void
1625 dissect_set_axis_attr_list_response(tvbuff_t* tvb, proto_tree* tree, uint32_t offset, uint32_t size, uint32_t instance_id)
1627 proto_item *attr_item;
1628 proto_tree *header_tree, *attr_tree;
1629 uint32_t local_offset;
1631 /* Create the tree for the set axis attribute list response */
1632 header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_get_axis_attribute, NULL, "Set Axis Attribute List Response");
1634 /* Read the number of attributes that are contained within the response */
1635 uint32_t attribute_cnt;
1636 proto_tree_add_item_ret_uint(header_tree, hf_set_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN, &attribute_cnt);
1638 /* Start the attribute loop at the beginning of the first attribute in the list */
1639 local_offset = offset + 4;
1641 /* For each attribute display the associated fields */
1642 for (uint32_t attribute = 0; attribute < attribute_cnt; attribute++)
1644 /* Create the tree for the current attribute in the set axis attribute list response */
1645 uint32_t attribute_id;
1646 attr_item = proto_tree_add_item_ret_uint(header_tree, hf_set_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN, &attribute_id);
1647 attr_tree = proto_item_add_subtree(attr_item, ett_get_axis_attr_list);
1649 /* Add the response status to the tree */
1650 proto_tree_add_item(attr_tree, hf_cip_svc_set_axis_attr_sts, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN);
1652 const attribute_info_t* pattribute = cip_get_attribute(CI_CLS_MOTION, instance_id, attribute_id);
1653 if (pattribute != NULL)
1655 proto_item_append_text(attr_item, " (%s)", pattribute->text);
1658 /* Move the local offset to the next attribute */
1659 local_offset += 4;
1664 * Function name: dissect_get_axis_attr_list_response
1666 * Purpose: Dissect the get axis attribute list service response
1668 * Returns: None
1670 static void
1671 dissect_get_axis_attr_list_response(packet_info* pinfo, tvbuff_t* tvb, proto_tree* tree, uint32_t offset, uint32_t size, uint32_t instance_id)
1673 proto_item *attr_item;
1674 proto_tree *header_tree, *attr_tree;
1675 uint32_t local_offset;
1677 /* Create the tree for the get axis attribute list response */
1678 header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_get_axis_attribute, NULL, "Get Axis Attribute List Response");
1680 /* Read the number of attributes that are contained within the request */
1681 uint32_t attribute_cnt;
1682 proto_tree_add_item_ret_uint(header_tree, hf_get_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN, &attribute_cnt);
1684 /* Start the attribute loop at the beginning of the first attribute in the list */
1685 local_offset = offset + 4;
1687 /* For each attribute display the associated fields */
1688 for (uint32_t attribute = 0; attribute < attribute_cnt; attribute++)
1690 /* At a minimum the local offset needs to be incremented by 4 bytes to reach the next attribute */
1691 uint8_t increment_size = 4;
1693 /* Pull the fields for this attribute from the payload, all fields are needed to make some calculations before
1694 * properly displaying of the attribute is possible */
1695 uint8_t dimension = tvb_get_uint8(tvb, local_offset + 2);
1696 uint32_t attribute_size = tvb_get_uint8(tvb, local_offset + 3);
1697 uint8_t attribute_start = 4;
1699 if (dimension == 1)
1701 uint16_t data_elements = tvb_get_letohs(tvb, local_offset + 6);
1703 /* Modify the size of the attribute data by the number of elements if the request is an array request */
1704 attribute_size *= data_elements;
1706 /* Modify the amount to update the local offset by and the start of the data to include the index and elements field */
1707 increment_size += 4;
1708 attribute_start += 4;
1711 /* Display the fields associated with the get axis attribute list response */
1712 uint32_t attribute_id;
1713 attr_item = proto_tree_add_item_ret_uint(header_tree, hf_get_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN, &attribute_id);
1714 attr_tree = proto_item_add_subtree(attr_item, ett_get_axis_attr_list);
1716 if (dimension == 0xFF)
1718 /* Display the element size as an error code if the dimension field indicates an error */
1719 proto_tree_add_item(attr_tree, hf_cip_svc_get_axis_attr_sts, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN);
1721 /* No attribute data so no attribute size */
1722 attribute_size = 0;
1724 else
1726 proto_tree_add_item(attr_tree, hf_get_axis_attr_list_dimension, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN);
1727 proto_tree_add_item(attr_tree, hf_get_axis_attr_list_element_size, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN);
1729 if (dimension == 1)
1731 /* Display the start index and start index from the request */
1732 proto_tree_add_item(attr_tree, hf_get_axis_attr_list_start_index, tvb, local_offset + 4, 2, ENC_LITTLE_ENDIAN);
1733 proto_tree_add_item(attr_tree, hf_get_axis_attr_list_data_elements, tvb, local_offset + 6, 2, ENC_LITTLE_ENDIAN);
1736 int parsed_len = dissect_motion_attribute(pinfo, tvb, local_offset + attribute_start, attribute_id,
1737 instance_id, attr_item, attr_tree, dimension, attribute_size);
1739 // Display the raw attribute data if configured. Otherwise, just show the remaining unparsed data
1740 if (display_full_attribute_data)
1742 proto_tree_add_item(attr_tree, hf_cip_attribute_data, tvb, local_offset + attribute_start, attribute_size, ENC_NA);
1744 else if ((attribute_size - parsed_len) > 0)
1746 proto_tree_add_item(attr_tree, hf_cip_attribute_data, tvb, local_offset + attribute_start + parsed_len, attribute_size - parsed_len, ENC_NA);
1749 /* Round the attribute size up so the next attribute lines up on a 32-bit boundary */
1750 if (attribute_size % 4 != 0)
1752 attribute_size = attribute_size + (4 - (attribute_size % 4));
1756 /* Move the local offset to the next attribute */
1757 local_offset += (attribute_size + increment_size);
1762 * Function name: dissect_group_sync_response
1764 * Purpose: Dissect the group sync service response
1766 * Returns: None
1768 static void
1769 dissect_group_sync_response (tvbuff_t* tvb, proto_tree* tree, uint32_t offset)
1771 proto_tree_add_item(tree, hf_cip_group_sync, tvb, offset, 1, ENC_LITTLE_ENDIAN);
1775 * Function name: dissect_devce_service
1777 * Purpose: Dissect the "Service Data Block" in a Device-to-Controller message
1779 * Returns: The new offset into the message that follow on dissections should use
1780 * as their starting offset
1782 static uint32_t
1783 dissect_devce_service(tvbuff_t* tvb, packet_info* pinfo, proto_tree* tree, uint32_t offset, uint32_t size, uint32_t instance_id)
1785 proto_tree *header_tree;
1787 /* Create the tree for the entire service data block */
1788 proto_item* item;
1789 header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_service, &item, "Service Data Block");
1791 /* Display the transaction id value */
1792 proto_tree_add_item(header_tree, hf_cip_svc_transction, tvb, offset, 1, ENC_LITTLE_ENDIAN);
1794 /* Display the service code */
1795 uint32_t service_code;
1796 proto_tree_add_item_ret_uint(header_tree, hf_cip_svc_code, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN, &service_code);
1798 /* Display the general status code */
1799 proto_tree_add_item(header_tree, hf_cip_svc_sts, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
1801 /* Display the extended status code */
1802 proto_tree_add_item(header_tree, hf_cip_svc_ext_status, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
1804 /* If the service is a set axis, get axis attribute response or group sync dissect it as well */
1805 if (size > 4)
1807 switch (service_code)
1809 case SC_GET_AXIS_ATTRIBUTE_LIST:
1810 dissect_get_axis_attr_list_response(pinfo, tvb, header_tree, offset + 4, size - 4, instance_id);
1811 break;
1812 case SC_SET_AXIS_ATTRIBUTE_LIST:
1813 dissect_set_axis_attr_list_response(tvb, header_tree, offset + 4, size - 4, instance_id);
1814 break;
1815 case SC_GROUP_SYNC:
1816 dissect_group_sync_response(tvb, header_tree, offset + 4);
1817 break;
1818 case SC_SET_CYCLIC_WRITE_LIST:
1819 dissect_set_cyclic_list_respone(tvb, header_tree, offset + 4, size - 4, instance_id, "Set Cyclic Write List Response");
1820 break;
1821 case SC_SET_CYCLIC_READ_LIST:
1822 dissect_set_cyclic_list_respone(tvb, header_tree, offset + 4, size - 4, instance_id, "Set Cyclic Read List Response");
1823 break;
1824 case SC_SET_ATT_LIST:
1826 cip_simple_request_info_t motion_path;
1827 motion_path.iClass = CI_CLS_MOTION;
1828 motion_path.iInstance = instance_id;
1830 tvbuff_t* tvb_set_attr = tvb_new_subset_length(tvb, offset + 4, size - 4);
1831 dissect_cip_set_attribute_list_rsp(tvb_set_attr, pinfo, header_tree, item, 0, &motion_path);
1832 break;
1834 default:
1835 /* Display the remainder of the service channel data */
1836 proto_tree_add_item(header_tree, hf_cip_svc_data, tvb, offset + 4, size - 4, ENC_NA);
1837 break;
1841 return offset + size;
1845 * Function name: dissect_var_inst_header
1847 * Purpose: Dissect the instance data header of a variable controller to device or
1848 * device to controller message
1850 * Returns: void
1852 static void
1853 dissect_var_inst_header(tvbuff_t* tvb, proto_tree* tree, uint32_t offset, uint8_t* inst_number, uint32_t* cyc_size,
1854 uint32_t* cyc_blk_size, uint32_t* evnt_size, uint32_t* servc_size)
1856 proto_tree *header_tree;
1858 /* Create the tree for the entire instance data header */
1859 *inst_number = tvb_get_uint8(tvb, offset);
1861 header_tree = proto_tree_add_subtree_format(tree, tvb, offset, 8, ett_inst_data_header, NULL,
1862 "Instance Data Header - Instance: %d", *inst_number);
1864 /* Read the instance number field from the instance data header */
1865 proto_tree_add_item(header_tree, hf_var_devce_instance, tvb, offset, 1, ENC_LITTLE_ENDIAN);
1867 /* The "size" fields in the instance data block header are all stored as number of 32-bit words the
1868 * block uses since all blocks should pad up to 32-bits so to convert to bytes each is multiplied by 4 */
1870 /* Read the instance block size field in bytes from the instance data header */
1871 proto_tree_add_item(header_tree, hf_var_devce_instance_block_size, tvb, offset + 2, 1, ENC_NA);
1873 /* Read the cyclic block size field in bytes from the instance data header */
1874 proto_tree_add_item(header_tree, hf_var_devce_cyclic_block_size, tvb, offset + 3, 1, ENC_NA);
1876 /* Read the cyclic command block size field in bytes from the instance data header */
1877 *cyc_size = (tvb_get_uint8(tvb, offset + 4) * 4);
1878 proto_tree_add_item(header_tree, hf_var_devce_cyclic_data_block_size, tvb, offset + 4, 1, ENC_NA);
1880 /* Read the cyclic write block size field in bytes from the instance data header */
1881 *cyc_blk_size = (tvb_get_uint8(tvb, offset + 5) * 4);
1882 proto_tree_add_item(header_tree, hf_var_devce_cyclic_rw_block_size, tvb, offset + 5, 1, ENC_NA);
1884 /* Read the event block size in bytes from the instance data header */
1885 *evnt_size = (tvb_get_uint8(tvb, offset + 6) * 4);
1886 proto_tree_add_item(header_tree, hf_var_devce_event_block_size, tvb, offset + 6, 1, ENC_NA);
1888 /* Read the service block size in bytes from the instance data header */
1889 *servc_size = (tvb_get_uint8(tvb, offset + 7) * 4);
1890 proto_tree_add_item(header_tree, hf_var_devce_service_block_size, tvb, offset + 7, 1, ENC_NA);
1894 * Function name: dissect_var_cont_conn_header
1896 * Purpose: Dissect the connection header of a variable controller to device message
1898 * Returns: Offset to the start of the instance data block
1900 static uint32_t
1901 dissect_var_cont_conn_header(tvbuff_t* tvb, proto_tree* tree, uint32_t* inst_count, uint32_t offset)
1903 uint32_t header_size;
1904 proto_tree *header_tree;
1906 /* Calculate the header size, start with the basic header size */
1907 header_size = 8;
1909 uint32_t time_data_set = tvb_get_uint8(tvb, offset + 7);
1911 /* Check the time data set field for enabled bits. If either update period or
1912 * update time stamp fields are set, bump the header size by the appropriate size */
1913 if ( (time_data_set & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP )
1915 header_size += 8;
1917 if ( (time_data_set & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET )
1919 header_size += 8;
1922 /* Create the tree for the entire connection header */
1923 header_tree = proto_tree_add_subtree(tree, tvb, offset, header_size, ett_cont_dev_header, NULL, "Connection Header");
1925 /* Add the connection header fields that are common to all types of messages */
1926 proto_tree_add_item(header_tree, hf_cip_format, tvb, offset, 1, ENC_LITTLE_ENDIAN);
1927 proto_tree_add_item(header_tree, hf_cip_revision, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
1928 proto_tree_add_item(header_tree, hf_cip_updateid, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
1930 dissect_node_control(NULL, header_tree, NULL, tvb, offset + 3, 1);
1932 /* Add the instance count and last update id to the connection header tree */
1933 proto_tree_add_item_ret_uint(header_tree, hf_cip_instance_cnt, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN, inst_count);
1934 proto_tree_add_item(header_tree, hf_cip_last_update, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
1936 dissect_time_data_set(NULL, header_tree, NULL, tvb, offset + 7, 1);
1938 /* Move the offset to the byte just beyond the time data set field */
1939 offset = (offset + 7 + 1);
1941 /* Add the time values if they are present in the time data set header field */
1942 if ( (time_data_set & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP )
1944 proto_tree_add_item(header_tree, hf_cip_cont_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN);
1945 offset = (offset + 8);
1948 if ( (time_data_set & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET )
1950 proto_tree_add_item(header_tree, hf_cip_cont_time_offset, tvb, offset, 8, ENC_LITTLE_ENDIAN);
1951 offset = (offset + 8);
1954 /* Return the number of bytes used so it can be used as an offset in the following dissections */
1955 return offset;
1959 * Function name: dissect_var_devce_conn_header
1961 * Purpose: Dissect the connection header of a variable device to controller message
1963 * Returns: Offset to the start of the instance data block
1965 static uint32_t
1966 dissect_var_devce_conn_header(tvbuff_t* tvb, proto_tree* tree, uint32_t* inst_count, uint32_t offset)
1968 uint32_t header_size;
1969 proto_tree *header_tree;
1971 /* Calculate the header size, start with the basic header size */
1972 header_size = 8;
1974 uint32_t time_data_set = tvb_get_uint8(tvb, offset + 7);
1975 if ( (time_data_set & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP )
1977 header_size += 8;
1979 if ( (time_data_set & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET )
1981 header_size += 8;
1983 if ( (time_data_set & TIME_DATA_SET_UPDATE_DIAGNOSTICS) == TIME_DATA_SET_UPDATE_DIAGNOSTICS )
1985 header_size += 4;
1987 if ( (time_data_set & TIME_DATA_SET_TIME_DIAGNOSTICS) == TIME_DATA_SET_TIME_DIAGNOSTICS )
1989 header_size += 16;
1992 /* Create the tree for the entire connection header */
1993 header_tree = proto_tree_add_subtree(tree, tvb, offset, header_size, ett_cont_dev_header, NULL, "Connection Header");
1995 /* Add the connection header fields that are common to all types of messages */
1996 proto_tree_add_item(header_tree, hf_cip_format, tvb, offset, 1, ENC_LITTLE_ENDIAN);
1997 proto_tree_add_item(header_tree, hf_cip_revision, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
1998 proto_tree_add_item(header_tree, hf_cip_updateid, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
2000 dissect_node_status(NULL, header_tree, NULL, tvb, offset + 3, 1);
2002 /* Add the instance count to the connection header tree */
2003 proto_tree_add_item_ret_uint(header_tree, hf_cip_instance_cnt, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN, inst_count);
2005 /* The device to controller header contains the node alarms and node faults fields as well. */
2006 proto_tree_add_item(header_tree, hf_cip_node_fltalarms, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
2008 /* Add the last update id to the connection header tree */
2009 proto_tree_add_item(header_tree, hf_cip_last_update, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
2011 dissect_time_data_set(NULL, header_tree, NULL, tvb, offset + 7, 1);
2013 /* Move the offset to the byte just beyond the time data set field */
2014 offset = (offset + 7 + 1);
2016 /* Add the time values if they are present in the time data set header field */
2017 if ( (time_data_set & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP )
2019 proto_tree_add_item(header_tree, hf_cip_devc_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN);
2020 offset = (offset + 8);
2023 if ( (time_data_set & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET )
2025 proto_tree_add_item(header_tree, hf_cip_devc_time_offset, tvb, offset, 8, ENC_LITTLE_ENDIAN);
2026 offset = (offset + 8);
2029 if ( (time_data_set & TIME_DATA_SET_UPDATE_DIAGNOSTICS) == TIME_DATA_SET_UPDATE_DIAGNOSTICS )
2031 /* If the time diagnostic bit is set then the header contains the count of lost updates, late updates, data
2032 * received time stamp and data transmit time stamp */
2033 proto_tree_add_item(header_tree, hf_cip_lost_update, tvb, offset, 1, ENC_LITTLE_ENDIAN);
2034 offset = (offset + 1);
2036 /* Add the reserved bytes to the offset after adding the late updates to the display */
2037 proto_tree_add_item(header_tree, hf_cip_late_update, tvb, offset, 1, ENC_LITTLE_ENDIAN);
2038 offset = (offset + 3);
2041 if ( (time_data_set & TIME_DATA_SET_TIME_DIAGNOSTICS) == TIME_DATA_SET_TIME_DIAGNOSTICS )
2043 proto_tree_add_item(header_tree, hf_cip_data_rx_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN);
2044 offset += 8;
2046 proto_tree_add_item(header_tree, hf_cip_data_tx_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN);
2047 offset += 8;
2050 /* Return the number of bytes used so it can be used as an offset in the following dissections */
2051 return offset;
2056 * Function name: dissect_cipmotion
2058 * Purpose: Perform the top level dissection of the CIP Motion datagram, it is called by
2059 * Wireshark when the dissection rule registered in proto_reg_handoff_cipmotion is fired
2061 * Returns: void
2063 static int
2064 dissect_cipmotion(tvbuff_t* tvb, packet_info* pinfo, proto_tree* tree, void* data)
2066 cip_io_data_input* io_data_input = (cip_io_data_input*)data;
2068 uint32_t con_format;
2069 uint32_t update_id;
2070 proto_item *proto_item_top;
2071 proto_tree *proto_tree_top;
2072 uint32_t offset = 0;
2074 uint8_t ConnPoint = 2;
2075 if (io_data_input && io_data_input->conn_info)
2077 ConnPoint = io_data_input->conn_info->connection_path.iConnPoint;
2080 /* Create display subtree for the protocol by creating an item and then
2081 * creating a subtree from the item, the subtree must have been registered
2082 * in proto_register_cipmotion already */
2083 proto_item_top = proto_tree_add_item(tree, proto_cipmotion, tvb, 0, -1, ENC_NA);
2084 proto_tree_top = proto_item_add_subtree(proto_item_top, ett_cipmotion);
2086 /* Add the CIP class 1 sequence number to the tree */
2087 proto_tree_add_item(proto_tree_top, hf_cip_class1_seqnum, tvb, offset, 2, ENC_LITTLE_ENDIAN);
2088 offset = (offset + 2);
2090 if (ConnPoint >= 3)
2092 dissect_cip_run_idle(tvb, offset, proto_tree_top);
2093 offset += 4;
2096 /* Pull the actual values for the connection format and update id from the
2097 * incoming message to be used in the column info */
2098 con_format = tvb_get_uint8(tvb, offset);
2099 update_id = tvb_get_uint8(tvb, offset + 2);
2101 /* Make entries in Protocol column and Info column on summary display */
2102 col_set_str(pinfo->cinfo, COL_PROTOCOL, "CIP Motion");
2104 /* Add connection format and update number to the info column */
2105 col_add_fstr( pinfo->cinfo, COL_INFO, "%s, Update Id: %d",
2106 val_to_str(con_format, cip_con_format_vals, "Unknown connection format (%x)"), update_id );
2108 /* Attempt to classify the incoming header */
2109 if (( con_format == FORMAT_VAR_CONTROL_TO_DEVICE ) ||
2110 ( con_format == FORMAT_VAR_DEVICE_TO_CONTROL ))
2112 /* Sizes of the individual channels within the connection */
2113 uint32_t cyc_size, cyc_blk_size, evnt_size, servc_size;
2114 uint32_t inst_count = 0, inst;
2115 uint32_t format_rev = 0;
2117 /* Dissect the header fields */
2118 switch(con_format)
2120 case FORMAT_VAR_CONTROL_TO_DEVICE:
2121 format_rev = tvb_get_uint8(tvb, offset + 1);
2122 offset = dissect_var_cont_conn_header(tvb, proto_tree_top, &inst_count, offset);
2123 break;
2124 case FORMAT_VAR_DEVICE_TO_CONTROL:
2125 format_rev = tvb_get_uint8(tvb, offset + 1);
2126 offset = dissect_var_devce_conn_header(tvb, proto_tree_top, &inst_count, offset);
2127 break;
2130 if (format_rev != ConnPoint)
2132 expert_add_info(pinfo, proto_item_top, &ei_format_rev_conn_pt);
2135 /* Repeat the following dissections for each instance within the payload */
2136 for( inst = 0; inst < inst_count; inst++ )
2138 /* Actual instance number from header field */
2139 uint8_t instance;
2141 /* Dissect the instance data header */
2142 dissect_var_inst_header( tvb, proto_tree_top, offset, &instance,
2143 &cyc_size, &cyc_blk_size, &evnt_size, &servc_size );
2145 /* Increment the offset to just beyond the instance header */
2146 offset += 8;
2148 /* Dissect the cyclic command (actual) data if any exists */
2149 /* Dissect the cyclic write (read) data if any exists */
2150 /* Dissect the event data block if there is any event data */
2151 switch(con_format)
2153 case FORMAT_VAR_CONTROL_TO_DEVICE:
2154 if ( cyc_size > 0 )
2155 offset = dissect_cntr_cyclic(tvb, proto_tree_top, offset, cyc_size);
2156 if ( cyc_blk_size > 0 )
2157 offset = dissect_cyclic_wt(tvb, proto_tree_top, offset, cyc_blk_size);
2158 if ( evnt_size > 0 )
2159 offset = dissect_cntr_event(tvb, proto_tree_top, offset, evnt_size);
2160 if ( servc_size > 0 )
2161 offset = dissect_cntr_service(tvb, pinfo, proto_tree_top, offset, servc_size, instance);
2162 break;
2163 case FORMAT_VAR_DEVICE_TO_CONTROL:
2164 if ( cyc_size > 0 )
2165 offset = dissect_device_cyclic(tvb, proto_tree_top, offset, cyc_size);
2166 if ( cyc_blk_size > 0 )
2167 offset = dissect_cyclic_rd( tvb, proto_tree_top, offset, cyc_blk_size );
2168 if ( evnt_size > 0 )
2169 offset = dissect_devce_event(tvb, proto_tree_top, offset, evnt_size);
2170 if ( servc_size > 0 )
2171 offset = dissect_devce_service(tvb, pinfo, proto_tree_top, offset, servc_size, instance);
2172 break;
2175 } /* End of instance for( ) loop */
2178 // Display any remaining unparsed data.
2179 int remain_len = tvb_reported_length_remaining(tvb, offset);
2180 if (remain_len > 0)
2182 proto_tree_add_item(proto_tree_top, hf_cip_data, tvb, offset, remain_len, ENC_NA);
2185 return tvb_captured_length(tvb);
2188 static int dissect_cipmotion3(tvbuff_t* tvb, packet_info* pinfo, proto_tree* tree, void* data _U_)
2190 cip_conn_info_t conn_info;
2191 memset(&conn_info, 0, sizeof(conn_info));
2192 conn_info.connection_path.iConnPoint = 3;
2194 cip_io_data_input io_data_input;
2195 io_data_input.conn_info = &conn_info;
2197 return dissect_cipmotion(tvb, pinfo, tree, &io_data_input);
2200 int dissect_motion_configuration_block(tvbuff_t* tvb, packet_info* pinfo, proto_tree* tree, proto_item* item, int offset)
2202 proto_item* config_item;
2203 proto_tree* config_tree = proto_tree_add_subtree(tree, tvb, offset, 0, ett_configuration_block, &config_item, "Motion Configuration Block");
2205 proto_tree_add_item(config_tree, hf_configuration_block_format_rev, tvb, offset, 1, ENC_LITTLE_ENDIAN);
2206 int parsed_len = 1;
2208 parsed_len += dissect_connection_configuration_bits(pinfo, config_tree, item, tvb, offset + parsed_len, 1);
2210 // 2 reserved bytes
2211 parsed_len += 2;
2213 proto_tree_add_item(config_tree, hf_configuration_block_drive_power_struct_id, tvb, offset + parsed_len, 4, ENC_LITTLE_ENDIAN);
2214 parsed_len += 4;
2216 proto_item_set_len(config_item, parsed_len);
2218 return parsed_len;
2222 * Function name: proto_register_cipmotion
2224 * Purpose: Register the protocol with Wireshark, a script will add this protocol
2225 * to the list of protocols during the build process. This function is where the
2226 * header fields and subtree identifiers are registered.
2228 * Returns: void
2230 void
2231 proto_register_cipmotion(void)
2233 /* This is a list of header fields that can be used in the dissection or
2234 * to use in a filter expression */
2235 static hf_register_info hf[] =
2237 /* Connection format header field, the first byte in the message which
2238 * determines if the message is fixed or variable, controller to device,
2239 * device to controller, etc. */
2240 { &hf_cip_format,
2241 { "Connection Format", "cipm.format",
2242 FT_UINT8, BASE_DEC, VALS(cip_con_format_vals), 0,
2243 "Message connection format", HFILL }
2246 /* Connection format revision header field */
2247 { &hf_cip_revision,
2248 { "Format Revision", "cipm.revision",
2249 FT_UINT8, BASE_DEC, NULL, 0,
2250 "Message format revision", HFILL }
2253 { &hf_cip_class1_seqnum,
2254 { "CIP Class 1 Sequence Count", "cipm.class1seqnum",
2255 FT_UINT16, BASE_DEC, NULL, 0,
2256 NULL, HFILL }
2259 { &hf_configuration_block_format_rev,
2260 { "Format Revision", "cipm.config.format_rev",
2261 FT_UINT8, BASE_DEC, NULL, 0,
2262 NULL, HFILL }
2265 { &hf_configuration_block_drive_power_struct_id,
2266 { "Drive Power Structure Class ID", "cipm.config.drive_class_id",
2267 FT_UINT32, BASE_DEC, NULL, 0,
2268 NULL, HFILL }
2271 { &hf_cip_updateid,
2272 { "Update Id", "cipm.updateid",
2273 FT_UINT8, BASE_DEC, NULL, 0,
2274 "Cyclic Transaction Number", HFILL }
2276 { &hf_cip_instance_cnt,
2277 { "Instance Count", "cipm.instancecount",
2278 FT_UINT8, BASE_DEC, NULL, 0,
2279 NULL, HFILL }
2281 { &hf_cip_last_update,
2282 { "Last Update Id", "cipm.lastupdate",
2283 FT_UINT8, BASE_DEC, NULL, 0,
2284 NULL, HFILL }
2286 { &hf_cip_node_status,
2287 { "Node Status", "cipm.nodestatus",
2288 FT_UINT8, BASE_HEX, NULL, 0,
2289 NULL, HFILL}
2291 { &hf_cip_node_control,
2292 { "Node Control", "cipm.nodecontrol",
2293 FT_UINT8, BASE_HEX, NULL, 0,
2294 NULL, HFILL}
2296 { &hf_cip_node_control_remote,
2297 { "Remote Control", "cipm.remote",
2298 FT_BOOLEAN, 8, NULL, 0x01,
2299 "Node Control: Remote Control", HFILL}
2301 { &hf_cip_node_control_sync,
2302 { "Sync Control", "cipm.sync",
2303 FT_BOOLEAN, 8, NULL, 0x02,
2304 "Node Control: Synchronous Operation", HFILL}
2306 { &hf_cip_node_data_valid,
2307 { "Data Valid", "cipm.valid",
2308 FT_BOOLEAN, 8, NULL, 0x04,
2309 "Node Control: Data Valid", HFILL}
2311 { &hf_cip_node_fault_reset,
2312 { "Node Fault Reset", "cipm.fltrst",
2313 FT_BOOLEAN, 8, NULL, 0x08,
2314 "Node Control: Node Fault Reset", HFILL}
2316 { &hf_cip_node_device_faulted,
2317 { "Faulted", "cipm.flt",
2318 FT_BOOLEAN, 8, NULL, 0x08,
2319 "Node Control: Device Faulted", HFILL}
2321 { &hf_cip_node_fltalarms,
2322 { "Node Faults and Alarms", "cipm.fltalarms",
2323 FT_UINT8, BASE_DEC, NULL, 0,
2324 NULL, HFILL }
2326 { &hf_cip_time_data_set,
2327 { "Time Data Set", "cipm.timedataset",
2328 FT_UINT8, BASE_HEX, NULL, 0,
2329 NULL, HFILL}
2331 { &hf_cip_time_data_stamp,
2332 { "Time Stamp", "cipm.time.stamp",
2333 FT_BOOLEAN, 8, NULL, TIME_DATA_SET_TIME_STAMP,
2334 "Time Data Set: Time Stamp", HFILL}
2336 { &hf_cip_time_data_offset,
2337 { "Time Offset", "cipm.time.offset",
2338 FT_BOOLEAN, 8, NULL, TIME_DATA_SET_TIME_OFFSET,
2339 "Time Data Set: Time Offset", HFILL}
2341 { &hf_cip_time_data_diag,
2342 { "Update Diagnostics", "cipm.time.update",
2343 FT_BOOLEAN, 8, NULL, TIME_DATA_SET_UPDATE_DIAGNOSTICS,
2344 "Time Data Set: Update Diagnostics", HFILL}
2346 { &hf_cip_time_data_time_diag,
2347 { "Time Diagnostics", "cipm.time.diag",
2348 FT_BOOLEAN, 8, NULL, TIME_DATA_SET_TIME_DIAGNOSTICS,
2349 "Time Data Set: Time Diagnostics", HFILL}
2352 { &hf_cip_cont_time_stamp,
2353 { "Controller Time Stamp", "cipm.ctrltimestamp",
2354 FT_UINT64, BASE_DEC, NULL, 0,
2355 "Time Data Set: Controller Time Stamp", HFILL}
2357 { &hf_cip_cont_time_offset,
2358 { "Controller Time Offset", "cipm.ctrltimeoffser",
2359 FT_UINT64, BASE_DEC, NULL, 0,
2360 "Time Data Set: Controller Time Offset", HFILL}
2362 { &hf_cip_data_rx_time_stamp,
2363 { "Data Received Time Stamp", "cipm.rxtimestamp",
2364 FT_UINT64, BASE_DEC, NULL, 0,
2365 "Time Data Set: Data Received Time Stamp", HFILL}
2367 { &hf_cip_data_tx_time_stamp,
2368 { "Data Transmit Time Stamp", "cipm.txtimestamp",
2369 FT_UINT64, BASE_DEC, NULL, 0,
2370 "Time Data Set: Data Transmit Time Offset", HFILL}
2372 { &hf_cip_devc_time_stamp,
2373 { "Device Time Stamp", "cipm.devctimestamp",
2374 FT_UINT64, BASE_DEC|BASE_UNIT_STRING, UNS(&units_nanosecond_nanoseconds), 0,
2375 "Time Data Set: Device Time Stamp", HFILL}
2377 { &hf_cip_devc_time_offset,
2378 { "Device Time Offset", "cipm.devctimeoffser",
2379 FT_UINT64, BASE_DEC, NULL, 0,
2380 "Time Data Set: Device Time Offset", HFILL}
2382 { &hf_cip_lost_update,
2383 { "Lost Updates", "cipm.lostupdates",
2384 FT_UINT8, BASE_DEC, NULL, 0,
2385 "Time Data Set: Lost Updates", HFILL}
2387 { &hf_cip_late_update,
2388 { "Lost Updates", "cipm.lateupdates",
2389 FT_UINT8, BASE_DEC, NULL, 0,
2390 "Time Data Set: Late Updates", HFILL}
2393 { &hf_cip_motor_cntrl,
2394 { "Control Mode", "cipm.ctrlmode",
2395 FT_UINT8, BASE_DEC, VALS(cip_motor_control_vals), 0,
2396 "Cyclic Data Block: Motor Control Mode", HFILL }
2399 { &hf_cip_feedback,
2400 { "Feedback Information", "cipm.feedback",
2401 FT_UINT8, BASE_HEX, NULL, 0,
2402 NULL, HFILL }
2404 { &hf_cip_feedback_mode,
2405 { "Feedback Mode", "cipm.feedback_mode",
2406 FT_UINT8, BASE_DEC, VALS(cip_feedback_mode_vals), FEEDBACK_MODE_BITS,
2407 NULL, HFILL }
2409 { &hf_cip_feedback_data_type,
2410 { "Feedback Data Type", "cipm.feedback_data_type",
2411 FT_UINT8, BASE_DEC, VALS(cip_feedback_type_vals), FEEDBACK_DATA_TYPE_BITS,
2412 NULL, HFILL }
2415 { &hf_connection_configuration_bits,
2416 { "Connection Configuration Bits", "cipm.ccb",
2417 FT_UINT8, BASE_DEC, NULL, 0,
2418 NULL, HFILL }
2420 { &hf_connection_configuration_bits_power,
2421 { "Verify Power Ratings", "cipm.ccb.verify_power_ratings",
2422 FT_BOOLEAN, 8, NULL, 0x01,
2423 NULL, HFILL } },
2424 { &hf_connection_configuration_bits_safety_bit_valid,
2425 { "Networked Safety Bit Valid", "cipm.ccb.networked_safety_bit_valid",
2426 FT_BOOLEAN, 8, NULL, 0x02,
2427 NULL, HFILL } },
2428 { &hf_connection_configuration_bits_allow_network_safety,
2429 { "Allow Networked Safety", "cipm.ccb.allow_networked_safety",
2430 FT_BOOLEAN, 8, NULL, 0x04,
2431 NULL, HFILL } },
2433 { &hf_cip_axis_control,
2434 { "Axis Control", "cipm.axisctrl",
2435 FT_UINT8, BASE_DEC, VALS(cip_axis_control_vals), 0,
2436 "Cyclic Data Block: Axis Control", HFILL }
2438 { &hf_cip_control_status,
2439 { "Control Status", "cipm.csts",
2440 FT_UINT8, BASE_DEC, NULL, 0,
2441 "Cyclic Data Block: Axis Control Status", HFILL }
2443 { &hf_cip_control_status_complete,
2444 { "Configuration Complete", "cipm.control_status.complete",
2445 FT_BOOLEAN, 8, NULL, 0x01,
2446 NULL, HFILL } },
2447 { &hf_cip_control_status_bus_up,
2448 { "Converter Bus Up", "cipm.control_status.bus_up",
2449 FT_BOOLEAN, 8, NULL, 0x04,
2450 NULL, HFILL } },
2451 { &hf_cip_control_status_bus_unload,
2452 { "Converter Bus Unload", "cipm.control_status.bus_unload",
2453 FT_BOOLEAN, 8, NULL, 0x08,
2454 NULL, HFILL } },
2455 { &hf_cip_control_status_power_loss,
2456 { "Converter AC Power Loss", "cipm.control_status.power_loss",
2457 FT_BOOLEAN, 8, NULL, 0x10,
2458 NULL, HFILL } },
2459 { &hf_cip_axis_response,
2460 { "Axis Response", "cipm.axisresp",
2461 FT_UINT8, BASE_DEC, VALS(cip_axis_response_vals), 0,
2462 "Cyclic Data Block: Axis Response", HFILL }
2464 { &hf_cip_axis_resp_stat,
2465 { "Response Status", "cipm.respstat",
2466 FT_UINT8, BASE_DEC|BASE_EXT_STRING, &cip_gs_vals_ext, 0,
2467 "Cyclic Data Block: Axis Response Status", HFILL }
2469 { &hf_cip_group_sync,
2470 { "Group Sync Status", "cipm.syncstatus",
2471 FT_UINT8, BASE_HEX, VALS(cip_sync_status_vals), 0,
2472 NULL, HFILL }
2474 { &hf_cip_cmd_data_set,
2475 { "Command Data Set", "cipm.cmdset",
2476 FT_UINT8, BASE_HEX, NULL, 0,
2477 NULL, HFILL}
2479 { &hf_cip_act_data_set,
2480 { "Actual Data Set", "cipm.actset",
2481 FT_UINT8, BASE_HEX, NULL, 0,
2482 NULL, HFILL}
2484 { &hf_cip_sts_data_set,
2485 { "Status Data Set", "cipm.stsset",
2486 FT_UINT8, BASE_HEX, NULL, 0,
2487 NULL, HFILL}
2490 // Command Data Set
2491 { &hf_cip_cmd_data_pos_cmd,
2492 { "Command Position", "cipm.cmd.pos",
2493 FT_BOOLEAN, 8, NULL, COMMAND_DATA_SET_POSITION,
2494 "Command Data Set: Command Position", HFILL}
2496 { &hf_cip_cmd_data_vel_cmd,
2497 { "Command Velocity", "cipm.cmd.vel",
2498 FT_BOOLEAN, 8, NULL, COMMAND_DATA_SET_VELOCITY,
2499 "Command Data Set: Command Velocity", HFILL}
2501 { &hf_cip_cmd_data_acc_cmd,
2502 { "Command Acceleration", "cipm.cmd.acc",
2503 FT_BOOLEAN, 8, NULL, COMMAND_DATA_SET_ACCELERATION,
2504 "Command Data Set: Command Acceleration", HFILL}
2506 { &hf_cip_cmd_data_trq_cmd,
2507 { "Command Torque", "cipm.cmd.trq",
2508 FT_BOOLEAN, 8, NULL, COMMAND_DATA_SET_TORQUE,
2509 "Command Data Set: Command Torque", HFILL}
2511 { &hf_cip_cmd_data_unwind_cycle_count,
2512 { "Unwind Cycle Count", "cipm.cmd.unwind",
2513 FT_BOOLEAN, 8, NULL, COMMAND_DATA_SET_UNWIND_CYCLE_COUNT,
2514 "Command Data Set: Unwind Cycle Count", HFILL}
2516 { &hf_cip_cmd_data_pos_displacement,
2517 { "Position Displacement", "cipm.cmd.pos_displacement",
2518 FT_BOOLEAN, 8, NULL, COMMAND_DATA_SET_POSITION_DISPLACE,
2519 "Command Data Set: Position Displacement", HFILL}
2522 // Actual Data Set
2523 { &hf_cip_act_data_pos,
2524 { "Actual Position", "cipm.act.pos",
2525 FT_BOOLEAN, 8, NULL, ACTUAL_DATA_SET_POSITION,
2526 "Actual Data Set: Actual Position", HFILL}
2528 { &hf_cip_act_data_vel,
2529 { "Actual Velocity", "cipm.act.vel",
2530 FT_BOOLEAN, 8, NULL, ACTUAL_DATA_SET_VELOCITY,
2531 "Actual Data Set: Actual Velocity", HFILL}
2533 { &hf_cip_act_data_acc,
2534 { "Actual Acceleration", "cipm.act.acc",
2535 FT_BOOLEAN, 8, NULL, ACTUAL_DATA_SET_ACCELERATION,
2536 "Actual Data Set: Actual Acceleration", HFILL}
2538 { &hf_cip_act_unwind_cycle_count,
2539 { "Unwind Cycle Count", "cipm.act.unwind",
2540 FT_BOOLEAN, 8, NULL, ACTUAL_DATA_SET_UNWIND_CYCLE_COUNT,
2541 "Actual Data Set: Unwind Cycle Count", HFILL}
2543 { &hf_cip_act_pos_displacement,
2544 { "Position Displacement", "cipm.act.pos_displacement",
2545 FT_BOOLEAN, 8, NULL, ACTUAL_DATA_SET_POSITION_DISPLACE,
2546 "Actual Data Set: Position Displacement", HFILL}
2549 { &hf_cip_axis_fault,
2550 { "Axis Fault Code", "cipm.fault.code",
2551 FT_UINT8, BASE_DEC, NULL, 0,
2552 "Status Data Set: Fault Code", HFILL }
2554 { &hf_cip_fault_type,
2555 { "Axis Fault Type", "cipm.flttype",
2556 FT_UINT8, BASE_DEC, NULL, 0,
2557 "Axis Status: Axis Fault Type", HFILL}
2559 { &hf_cip_fault_sub_code,
2560 { "Axis Fault Sub Code", "cipm.fltsubcode",
2561 FT_UINT8, BASE_DEC, NULL, 0,
2562 "Axis Status: Axis Fault Sub Code", HFILL}
2564 { &hf_cip_fault_action,
2565 { "Axis Fault Action", "cipm.fltaction",
2566 FT_UINT8, BASE_DEC, NULL, 0,
2567 "Axis Status: Axis Fault Action", HFILL}
2569 { &hf_cip_fault_time_stamp,
2570 { "Axis Fault Time Stamp", "cipm.flttimestamp",
2571 FT_UINT64, BASE_DEC, NULL, 0,
2572 "Axis Status: Axis Fault Time Stamp", HFILL}
2574 { &hf_cip_alarm_type,
2575 { "Axis Fault Type", "cipm.alarmtype",
2576 FT_UINT8, BASE_DEC, NULL, 0,
2577 "Axis Status: Axis Alarm Type", HFILL}
2579 { &hf_cip_alarm_sub_code,
2580 { "Axis Alarm Sub Code", "cipm.alarmsubcode",
2581 FT_UINT8, BASE_DEC, NULL, 0,
2582 "Axis Status: Axis Alarm Sub Code", HFILL}
2584 { &hf_cip_alarm_state,
2585 { "Axis Alarm State", "cipm.alarmstate",
2586 FT_UINT8, BASE_DEC, NULL, 0,
2587 "Axis Status: Axis Alarm State", HFILL }
2589 { &hf_cip_alarm_time_stamp,
2590 { "Axis Fault Time Stamp", "cipm.alarmtimestamp",
2591 FT_UINT64, BASE_DEC, NULL, 0,
2592 "Axis Status: Axis Alarm Time Stamp", HFILL}
2594 { &hf_cip_axis_status,
2595 { "Axis Status", "cipm.axisstatus",
2596 FT_UINT32, BASE_HEX, NULL, 0,
2597 NULL, HFILL}
2599 { &hf_cip_axis_status_mfg,
2600 { "Axis Status Mfg", "cipm.axisstatusmfg",
2601 FT_UINT32, BASE_HEX, NULL, 0,
2602 "Axis Status, Manufacturer Specific", HFILL}
2604 { &hf_cip_axis_io_status,
2605 { "Axis I/O Status", "cipm.axisiostatus",
2606 FT_UINT32, BASE_HEX, NULL, 0,
2607 NULL, HFILL}
2609 { &hf_cip_axis_io_status_mfg,
2610 { "Axis I/O Status Mfg", "cipm.axisiostatusmfg",
2611 FT_UINT32, BASE_HEX, NULL, 0,
2612 "Axis I/O Status, Manufacturer Specific", HFILL}
2614 { &hf_cip_axis_safety_status,
2615 { "Axis Safety Status", "cipm.safetystatus",
2616 FT_UINT32, BASE_HEX, NULL, 0,
2617 NULL, HFILL}
2619 { &hf_cip_axis_safety_status_mfg,
2620 { "Axis Safety Status Mfg", "cipm.safetystatusmfg",
2621 FT_UINT32, BASE_HEX, NULL, 0,
2622 "Axis Safety Status, Manufacturer Specific", HFILL}
2624 { &hf_cip_axis_safety_state,
2625 { "Axis Safety State", "cipm.safetystate",
2626 FT_UINT8, BASE_HEX, NULL, 0,
2627 "Axis Safety Sate", HFILL}
2629 { &hf_cip_sts_flt,
2630 { "Axis Fault Codes", "cipm.sts.flt",
2631 FT_BOOLEAN, 8, NULL, STATUS_DATA_SET_AXIS_FAULT,
2632 "Status Data Set: Axis Fault Codes", HFILL}
2634 { &hf_cip_sts_alrm,
2635 { "Axis Alarm Codes", "cipm.sts.alarm",
2636 FT_BOOLEAN, 8, NULL, STATUS_DATA_SET_AXIS_ALARM,
2637 "Status Data Set: Axis Alarm Codes", HFILL}
2639 { &hf_cip_sts_sts,
2640 { "Axis Status", "cipm.sts.sts",
2641 FT_BOOLEAN, 8, NULL, STATUS_DATA_SET_AXIS_STATUS,
2642 "Status Data Set: Axis Status", HFILL}
2644 { &hf_cip_sts_iosts,
2645 { "Axis I/O Status", "cipm.sts.iosts",
2646 FT_BOOLEAN, 8, NULL, STATUS_DATA_SET_AXIS_IO_STATUS,
2647 "Status Data Set: Axis I/O Status", HFILL}
2649 { &hf_cip_sts_axis_safety,
2650 { "Axis Safety Status", "cipm.sts.safety",
2651 FT_BOOLEAN, 8, NULL, STATUS_DATA_SET_AXIS_SAFETY,
2652 "Status Data Set: Axis Safety Status", HFILL}
2654 { &hf_cip_intrp,
2655 { "Command Target Update", "cipm.intrp",
2656 FT_UINT8, BASE_DEC, VALS(cip_interpolation_vals), COMMAND_CONTROL_TARGET_UPDATE,
2657 "Cyclic Data Block: Command Target Update", HFILL}
2659 { &hf_cip_position_data_type,
2660 { "Command Position Data Type", "cipm.posdatatype",
2661 FT_UINT8, BASE_DEC, VALS(cip_pos_data_type_vals), COMMAND_CONTROL_POSITION_DATA_TYPE,
2662 "Cyclic Data Block: Command Position Data Type", HFILL }
2664 { &hf_cip_axis_state,
2665 { "Axis State", "cipm.axste",
2666 FT_UINT8, BASE_DEC, VALS(cip_axis_state_vals), 0,
2667 "Cyclic Data Block: Axis State", HFILL}
2669 { &hf_cip_command_control,
2670 { "Command Control", "cipm.cmdcontrol",
2671 FT_UINT8, BASE_DEC, NULL, 0,
2672 "Cyclic Data Block: Command Control", HFILL }
2674 { &hf_cip_cyclic_wrt_data,
2675 { "Write Data", "cipm.writedata",
2676 FT_BYTES, BASE_NONE, NULL, 0,
2677 "Cyclic Write: Data", HFILL }
2679 { &hf_cip_cyclic_rd_data,
2680 { "Read Data", "cipm.readdata",
2681 FT_BYTES, BASE_NONE, NULL, 0,
2682 "Cyclic Read: Data", HFILL }
2684 { &hf_cip_cyclic_write_blk,
2685 { "Write Block", "cipm.writeblk",
2686 FT_UINT8, BASE_DEC, NULL, 0,
2687 "Cyclic Data Block: Write Block Id", HFILL }
2689 { &hf_cip_cyclic_read_blk,
2690 { "Read Block", "cipm.readblk",
2691 FT_UINT8, BASE_DEC, NULL, 0,
2692 "Cyclic Data Block: Read Block Id", HFILL}
2694 { &hf_cip_cyclic_write_sts,
2695 { "Write Status", "cipm.writests",
2696 FT_UINT8, BASE_DEC, NULL, 0,
2697 "Cyclic Data Block: Write Status", HFILL }
2699 { &hf_cip_cyclic_read_sts,
2700 { "Read Status", "cipm.readsts",
2701 FT_UINT8, BASE_DEC, NULL, 0,
2702 "Cyclic Data Block: Read Status", HFILL }
2704 { &hf_cip_event_checking,
2705 { "Event Checking Control", "cipm.evntchkcontrol",
2706 FT_UINT32, BASE_HEX, NULL, 0,
2707 "Event Channel: Event Checking Control", HFILL}
2709 { &hf_cip_event_ack,
2710 { "Event Acknowledgement", "cipm.evntack",
2711 FT_UINT8, BASE_DEC, NULL, 0,
2712 "Event Channel: Event Acknowledgement", HFILL}
2714 { &hf_cip_event_status,
2715 { "Event Checking Status", "cipm.evntchkstatus",
2716 FT_UINT32, BASE_HEX, NULL, 0,
2717 "Event Channel: Event Checking Status", HFILL}
2719 { &hf_cip_event_id,
2720 { "Event Id", "cipm.evntid",
2721 FT_UINT8, BASE_DEC, NULL, 0,
2722 "Event Channel: Event Id", HFILL }
2724 { &hf_cip_event_pos,
2725 { "Event Position", "cipm.evntpos",
2726 FT_INT32, BASE_DEC, NULL, 0,
2727 "Event Channel: Event Position", HFILL}
2729 { &hf_cip_event_ts,
2730 { "Event Time Stamp", "cipm.evntimestamp",
2731 FT_UINT64, BASE_DEC|BASE_UNIT_STRING, UNS(&units_nanosecond_nanoseconds), 0,
2732 "Event Channel: Time Stamp", HFILL}
2735 { &hf_cip_evnt_ctrl_reg1_pos,
2736 { "Reg 1 Pos Edge", "cipm.evnt.ctrl.reg1posedge",
2737 FT_BOOLEAN, 32, NULL, 0x00000001,
2738 "Event Checking Control: Reg 1 Pos Edge", HFILL}
2740 { &hf_cip_evnt_ctrl_reg1_neg,
2741 { "Reg 1 Neg Edge", "cipm.evnt.ctrl.reg1negedge",
2742 FT_BOOLEAN, 32, NULL, 0x00000002,
2743 "Event Checking Control: Reg 1 Neg Edge", HFILL}
2745 { &hf_cip_evnt_ctrl_reg2_pos,
2746 { "Reg 2 Pos Edge", "cipm.evnt.ctrl.reg2posedge",
2747 FT_BOOLEAN, 32, NULL, 0x00000004,
2748 "Event Checking Control: Reg 2 Pos Edge", HFILL}
2750 { &hf_cip_evnt_ctrl_reg2_neg,
2751 { "Reg 2 Neg Edge", "cipm.evnt.ctrl.reg2negedge",
2752 FT_BOOLEAN, 32, NULL, 0x00000008,
2753 "Event Checking Control: Reg 2 Neg Edge", HFILL}
2755 { &hf_cip_evnt_ctrl_reg1_posrearm,
2756 { "Reg 1 Pos Rearm", "cipm.evnt.ctrl.reg1posrearm",
2757 FT_BOOLEAN, 32, NULL, 0x00000100,
2758 "Event Checking Control: Reg 1 Pos Rearm", HFILL}
2760 { &hf_cip_evnt_ctrl_reg1_negrearm,
2761 { "Reg 1 Neg Rearm", "cipm.evnt.ctrl.reg1negrearm",
2762 FT_BOOLEAN, 32, NULL, 0x00000200,
2763 "Event Checking Control: Reg 1 Neg Rearm", HFILL}
2765 { &hf_cip_evnt_ctrl_reg2_posrearm,
2766 { "Reg 2 Pos Rearm", "cipm.evnt.ctrl.reg2posrearm",
2767 FT_BOOLEAN, 32, NULL, 0x00000400,
2768 "Event Checking Control: Reg 2 Pos Rearm", HFILL}
2770 { &hf_cip_evnt_ctrl_reg2_negrearm,
2771 { "Reg 2 Neg Rearm", "cipm.evnt.ctrl.reg2negrearm",
2772 FT_BOOLEAN, 32, NULL, 0x00000800,
2773 "Event Checking Control: Reg 2 Neg Rearm", HFILL}
2775 { &hf_cip_evnt_ctrl_marker_pos,
2776 { "Marker Pos Edge", "cipm.evnt.ctrl.mrkrpos",
2777 FT_BOOLEAN, 32, NULL, 0x00010000,
2778 "Event Checking Control: Marker Pos Edge", HFILL}
2780 { &hf_cip_evnt_ctrl_marker_neg,
2781 { "Marker Neg Edge", "cipm.evnt.ctrl.mrkrneg",
2782 FT_BOOLEAN, 32, NULL, 0x00020000,
2783 "Event Checking Control: Marker Neg Edge", HFILL}
2785 { &hf_cip_evnt_ctrl_home_pos,
2786 { "Home Pos Edge", "cipm.evnt.ctrl.homepos",
2787 FT_BOOLEAN, 32, NULL, 0x00040000,
2788 "Event Checking Control: Home Pos Edge", HFILL}
2790 { &hf_cip_evnt_ctrl_home_neg,
2791 { "Home Neg Edge", "cipm.evnt.ctrl.homeneg",
2792 FT_BOOLEAN, 32, NULL, 0x00080000,
2793 "Event Checking Control: Home Neg Edge", HFILL}
2795 { &hf_cip_evnt_ctrl_home_pp,
2796 { "Home-Switch-Marker Plus Plus", "cipm.evnt.ctrl.homepp",
2797 FT_BOOLEAN, 32, NULL, 0x00100000,
2798 "Event Checking Control: Home-Switch-Marker Plus Plus", HFILL}
2800 { &hf_cip_evnt_ctrl_home_pm,
2801 { "Home-Switch-Marker Plus Minus", "cipm.evnt.ctrl.homepm",
2802 FT_BOOLEAN, 32, NULL, 0x00200000,
2803 "Event Checking Control: Home-Switch-Marker Plus Minus", HFILL}
2805 { &hf_cip_evnt_ctrl_home_mp,
2806 { "Home-Switch-Marker Minus Plus", "cipm.evnt.ctrl.homemp",
2807 FT_BOOLEAN, 32, NULL, 0x00400000,
2808 "Event Checking Control: Home-Switch-Marker Minus Plus", HFILL}
2810 { &hf_cip_evnt_ctrl_home_mm,
2811 { "Home-Switch-Marker Minus Minus", "cipm.evnt.ctrl.homemm",
2812 FT_BOOLEAN, 32, NULL, 0x00800000,
2813 "Event Checking Control: Home-Switch-Marker Minus Minus", HFILL}
2815 { &hf_cip_evnt_ctrl_acks,
2816 { "Event Block Count", "cipm.evnt.ctrl.acks",
2817 FT_UINT32, BASE_DEC, NULL, 0x70000000,
2818 "Event Checking Control: Event Block Count", HFILL}
2820 { &hf_cip_evnt_extend_format,
2821 { "Extended Event Format", "cipm.evnt.extend",
2822 FT_BOOLEAN, 32, NULL, 0x80000000,
2823 "Event Checking Control: Extended Event Format", HFILL}
2826 { &hf_cip_evnt_sts_reg1_pos,
2827 { "Reg 1 Pos Edge", "cipm.evnt.sts.reg1posedge",
2828 FT_BOOLEAN, 32, NULL, 0x00000001,
2829 "Event Checking Status: Reg 1 Pos Edge", HFILL}
2831 { &hf_cip_evnt_sts_reg1_neg,
2832 { "Reg 1 Neg Edge", "cipm.evnt.sts.reg1negedge",
2833 FT_BOOLEAN, 32, NULL, 0x00000002,
2834 "Event Checking Status: Reg 1 Neg Edge", HFILL }
2836 { &hf_cip_evnt_sts_reg2_pos,
2837 { "Reg 2 Pos Edge", "cipm.evnt.sts.reg2posedge",
2838 FT_BOOLEAN, 32, NULL, 0x00000004,
2839 "Event Checking Status: Reg 2 Pos Edge", HFILL}
2841 { &hf_cip_evnt_sts_reg2_neg,
2842 { "Reg 2 Neg Edge", "cipm.evnt.sts.reg2negedge",
2843 FT_BOOLEAN, 32, NULL, 0x00000008,
2844 "Event Checking Status: Reg 2 Neg Edge", HFILL}
2846 { &hf_cip_evnt_sts_reg1_posrearm,
2847 { "Reg 1 Pos Rearm", "cipm.evnt.sts.reg1posrearm",
2848 FT_BOOLEAN, 32, NULL, 0x00000100,
2849 "Event Checking Status: Reg 1 Pos Rearm", HFILL}
2851 { &hf_cip_evnt_sts_reg1_negrearm,
2852 { "Reg 1 Neg Rearm", "cipm.evnt.sts.reg1negrearm",
2853 FT_BOOLEAN, 32, NULL, 0x00000200,
2854 "Event Checking Status: Reg 1 Neg Rearm", HFILL}
2856 { &hf_cip_evnt_sts_reg2_posrearm,
2857 { "Reg 2 Pos Rearm", "cipm.evnt.sts.reg2posrearm",
2858 FT_BOOLEAN, 32, NULL, 0x00000400,
2859 "Event Checking Status: Reg 2 Pos Rearm", HFILL}
2861 { &hf_cip_evnt_sts_reg2_negrearm,
2862 { "Reg 2 Neg Rearm", "cipm.evnt.sts.reg2negrearm",
2863 FT_BOOLEAN, 32, NULL, 0x00000800,
2864 "Event Checking Status: Reg 2 Neg Rearm", HFILL}
2866 { &hf_cip_evnt_sts_marker_pos,
2867 { "Marker Pos Edge", "cipm.evnt.sts.mrkrpos",
2868 FT_BOOLEAN, 32, NULL, 0x00010000,
2869 "Event Checking Status: Marker Pos Edge", HFILL}
2871 { &hf_cip_evnt_sts_marker_neg,
2872 { "Marker Neg Edge", "cipm.evnt.sts.mrkrneg",
2873 FT_BOOLEAN, 32, NULL, 0x00020000,
2874 "Event Checking Status: Marker Neg Edge", HFILL }
2876 { &hf_cip_evnt_sts_home_pos,
2877 { "Home Pos Edge", "cipm.evnt.sts.homepos",
2878 FT_BOOLEAN, 32, NULL, 0x00040000,
2879 "Event Checking Status: Home Pos Edge", HFILL}
2881 { &hf_cip_evnt_sts_home_neg,
2882 { "Home Neg Edge", "cipm.evnt.sts.homeneg",
2883 FT_BOOLEAN, 32, NULL, 0x00080000,
2884 "Event Checking Status: Home Neg Edge", HFILL }
2886 { &hf_cip_evnt_sts_home_pp,
2887 { "Home-Switch-Marker Plus Plus", "cipm.evnt.sts.homepp",
2888 FT_BOOLEAN, 32, NULL, 0x00100000,
2889 "Event Checking Status: Home-Switch-Marker Plus Plus", HFILL}
2891 { &hf_cip_evnt_sts_home_pm,
2892 { "Home-Switch-Marker Plus Minus", "cipm.evnt.sts.homepm",
2893 FT_BOOLEAN, 32, NULL, 0x00200000,
2894 "Event Checking Status: Home-Switch-Marker Plus Minus", HFILL}
2896 { &hf_cip_evnt_sts_home_mp,
2897 { "Home-Switch-Marker Minus Plus", "cipm.evnt.sts.homemp",
2898 FT_BOOLEAN, 32, NULL, 0x00400000,
2899 "Event Checking Status: Home-Switch-Marker Minus Plus", HFILL}
2901 { &hf_cip_evnt_sts_home_mm,
2902 { "Home-Switch-Marker Minus Minus", "cipm.evnt.sts.homemm",
2903 FT_BOOLEAN, 32, NULL, 0x00800000,
2904 "Event Checking Status: Home-Switch-Marker Minus Minus", HFILL}
2906 { &hf_cip_evnt_sts_nfs,
2907 { "Event Block Count", "cipm.evnt.sts.nfs",
2908 FT_UINT32, BASE_DEC, NULL, 0x70000000,
2909 "Event Checking Status: Event Block Count", HFILL}
2912 { &hf_cip_evnt_sts_stat,
2913 { "Event Status", "cipm.evnt.stat",
2914 FT_UINT8, BASE_DEC|BASE_EXT_STRING, &cip_gs_vals_ext, 0,
2915 "Event Data Block: Event Status", HFILL }
2917 { &hf_cip_evnt_type,
2918 { "Event Type", "cipm.evnt.type",
2919 FT_UINT8, BASE_DEC, VALS(cip_event_type_vals), 0,
2920 "Event Data Block: Event Type", HFILL}
2922 { &hf_cip_svc_code,
2923 { "Service Code", "cipm.svc.code",
2924 FT_UINT8, BASE_HEX, VALS(cip_sc_vals), 0,
2925 "Service Data Block: Service Code", HFILL}
2927 { &hf_cip_svc_sts,
2928 { "General Status", "cipm.svc.sts",
2929 FT_UINT8, BASE_DEC|BASE_EXT_STRING, &cip_gs_vals_ext, 0,
2930 "Service Data Block: General Status", HFILL }
2932 { &hf_cip_svc_transction,
2933 { "Transaction Id", "cipm.svc.tranid",
2934 FT_UINT8, BASE_DEC, NULL, 0,
2935 "Service Data Block: Transaction Id", HFILL }
2937 { &hf_cip_svc_ext_status,
2938 { "Extended Status", "cipm.svc.extstatus",
2939 FT_UINT8, BASE_DEC, NULL, 0,
2940 "Service Data Block: Extended Status", HFILL }
2942 { &hf_cip_svc_data,
2943 { "Service Data", "cipm.svc.data",
2944 FT_BYTES, BASE_NONE, NULL, 0,
2945 "Service Data Block: Data", HFILL }
2947 { &hf_cip_attribute_data,
2948 { "Attribute Data", "cipm.attrdata",
2949 FT_BYTES, BASE_NONE, NULL, 0,
2950 "Attribute Service: Data", HFILL }
2952 { &hf_cip_ptp_grandmaster,
2953 { "Grandmaster", "cipm.grandmaster",
2954 FT_UINT64, BASE_HEX, NULL, 0,
2955 "Group Sync: Grandmaster Id", HFILL}
2958 { &hf_cip_svc_get_axis_attr_sts,
2959 { "Attribute Status", "cipm.getaxisattr.sts",
2960 FT_UINT8, BASE_DEC|BASE_EXT_STRING, &cip_gs_vals_ext, 0,
2961 "Service Channel: Get Axis Attribute List Response Status", HFILL }
2963 { &hf_get_axis_attr_list_attribute_cnt,
2964 { "Number of attributes", "cipm.getaxisattr.cnt",
2965 FT_UINT16, BASE_DEC, NULL, 0,
2966 "Service Channel: Get Axis Attribute List Attribute Count", HFILL}
2968 { &hf_get_axis_attr_list_attribute_id,
2969 { "Attribute ID", "cipm.getaxisattr.id",
2970 FT_UINT16, BASE_DEC, NULL, 0,
2971 "Service Channel: Get Axis Attribute List Attribute ID", HFILL}
2973 { &hf_get_axis_attr_list_dimension,
2974 { "Dimension", "cipm.getaxisattr.dimension",
2975 FT_UINT8, BASE_DEC, NULL, 0,
2976 "Service Channel: Get Axis Attribute List Dimension", HFILL}
2978 { &hf_get_axis_attr_list_element_size,
2979 { "Element size", "cipm.getaxisattr.element_size",
2980 FT_UINT8, BASE_DEC, NULL, 0,
2981 "Service Channel: Get Axis Attribute List Element Size", HFILL}
2983 { &hf_get_axis_attr_list_start_index,
2984 { "Start index", "cipm.getaxisattr.start_index",
2985 FT_UINT16, BASE_DEC, NULL, 0,
2986 "Service Channel: Get Axis Attribute List Start index", HFILL}
2988 { &hf_get_axis_attr_list_data_elements,
2989 { "Data elements", "cipm.getaxisattr.data_elements",
2990 FT_UINT16, BASE_DEC, NULL, 0,
2991 "Service Channel: Get Axis Attribute List Data elements", HFILL}
2994 { &hf_cip_svc_set_axis_attr_sts,
2995 { "Attribute Status", "cipm.setaxisattr.sts",
2996 FT_UINT8, BASE_DEC|BASE_EXT_STRING, &cip_gs_vals_ext, 0,
2997 "Service Channel: Set Axis Attribute List Response Status", HFILL }
2999 { &hf_set_axis_attr_list_attribute_cnt,
3000 { "Number of attributes", "cipm.setaxisattr.cnt",
3001 FT_UINT16, BASE_DEC, NULL, 0,
3002 "Service Channel: Set Axis Attribute List Attribute Count", HFILL}
3004 { &hf_set_axis_attr_list_attribute_id,
3005 { "Attribute ID", "cipm.setaxisattr.id",
3006 FT_UINT16, BASE_DEC, NULL, 0,
3007 "Service Channel: Set Axis Attribute List Attribute ID", HFILL}
3009 { &hf_set_axis_attr_list_dimension,
3010 { "Dimension", "cipm.setaxisattr.dimension",
3011 FT_UINT8, BASE_DEC, NULL, 0,
3012 "Service Channel: Set Axis Attribute List Dimension", HFILL}
3014 { &hf_set_axis_attr_list_element_size,
3015 { "Element size", "cipm.setaxisattr.element_size",
3016 FT_UINT8, BASE_DEC, NULL, 0,
3017 "Service Channel: Set Axis Attribute List Element Size", HFILL}
3019 { &hf_set_axis_attr_list_start_index,
3020 { "Start index", "cipm.setaxisattr.start_index",
3021 FT_UINT16, BASE_DEC, NULL, 0,
3022 "Service Channel: Set Axis Attribute List Start index", HFILL}
3024 { &hf_set_axis_attr_list_data_elements,
3025 { "Data elements", "cipm.setaxisattr.data_elements",
3026 FT_UINT16, BASE_DEC, NULL, 0,
3027 "Service Channel: Set Axis Attribute List Data elements", HFILL}
3030 { &hf_set_cyclic_list_attribute_cnt,
3031 { "Number of attributes", "cipm.set_cyclic.cnt",
3032 FT_UINT16, BASE_DEC, NULL, 0,
3033 NULL, HFILL}
3035 { &hf_set_cyclic_list_attribute_id,
3036 { "Attribute ID", "cipm.set_cyclic.id",
3037 FT_UINT16, BASE_DEC, NULL, 0,
3038 NULL, HFILL}
3040 { &hf_set_cyclic_list_read_block_id,
3041 { "Cyclic Read Block ID", "cipm.set_cyclic.read_block_id",
3042 FT_UINT16, BASE_DEC, NULL, 0,
3043 NULL, HFILL}
3045 { &hf_set_cyclic_list_attr_sts,
3046 { "Attribute Status", "cipm.set_cyclic.sts",
3047 FT_UINT8, BASE_DEC | BASE_EXT_STRING, &cip_gs_vals_ext, 0,
3048 NULL, HFILL }
3051 { &hf_var_devce_instance,
3052 { "Instance Number", "cipm.var_devce.header.instance",
3053 FT_UINT8, BASE_DEC, NULL, 0,
3054 "Variable Device Header: Instance Number", HFILL}
3056 { &hf_var_devce_instance_block_size,
3057 { "Instance Block Size", "cipm.var_devce.header.instance_block_size",
3058 FT_UINT8, BASE_DEC|BASE_UNIT_STRING, UNS(&units_word_words), 0,
3059 "Variable Device Header: Instance Block Size", HFILL}
3061 { &hf_var_devce_cyclic_block_size,
3062 { "Cyclic Block Size", "cipm.var_devce.header.cyclic_block_size",
3063 FT_UINT8, BASE_DEC|BASE_UNIT_STRING, UNS(&units_word_words), 0,
3064 "Variable Device Header: Cyclic Block Size", HFILL}
3066 { &hf_var_devce_cyclic_data_block_size,
3067 { "Cyclic Data Block Size", "cipm.var_devce.header.cyclic_data_block_size",
3068 FT_UINT8, BASE_DEC|BASE_UNIT_STRING, UNS(&units_word_words), 0,
3069 "Variable Device Header: Cyclic Data Block Size", HFILL}
3071 { &hf_var_devce_cyclic_rw_block_size,
3072 { "Cyclic Read/Write Block Size", "cipm.var_devce.header.cyclic_rw_block_size",
3073 FT_UINT8, BASE_DEC|BASE_UNIT_STRING, UNS(&units_word_words), 0,
3074 "Variable Device Header: Cyclic Read/Write Block Size", HFILL}
3076 { &hf_var_devce_event_block_size,
3077 { "Event Block Size", "cipm.var_devce.header.event_block_size",
3078 FT_UINT8, BASE_DEC|BASE_UNIT_STRING, UNS(&units_word_words), 0,
3079 "Variable Device Header: Event Block Size", HFILL}
3081 { &hf_var_devce_service_block_size,
3082 { "Service Block Size", "cipm.var_devce.header.service_block_size",
3083 FT_UINT8, BASE_DEC|BASE_UNIT_STRING, UNS(&units_word_words), 0,
3084 "Variable Device Header: Service Block Size", HFILL}
3087 { &hf_cip_axis_alarm,
3088 { "Axis Alarm Code", "cipm.alarm.code",
3089 FT_UINT8, BASE_DEC, NULL, 0,
3090 "Status Data Set: Alarm Code", HFILL }
3092 { &hf_cip_axis_sts_local_ctrl,
3093 { "Local Control", "cipm.axis.local",
3094 FT_BOOLEAN, 32, NULL, 0x00000001,
3095 "Axis Status Data Set: Local Control", HFILL }
3097 { &hf_cip_axis_sts_alarm,
3098 { "Alarm", "cipm.axis.alarm",
3099 FT_BOOLEAN, 32, NULL, 0x00000002,
3100 "Axis Status Data Set: Alarm", HFILL }
3102 { &hf_cip_axis_sts_dc_bus,
3103 { "DC Bus", "cipm.axis.bus",
3104 FT_BOOLEAN, 32, NULL, 0x00000004,
3105 "Axis Status Data Set: DC Bus", HFILL }
3107 { &hf_cip_axis_sts_pwr_struct,
3108 { "Power Struct", "cipm.axis.pwr",
3109 FT_BOOLEAN, 32, NULL, 0x00000008,
3110 "Axis Status Data Set: Power Struct", HFILL }
3112 { &hf_cip_axis_sts_flux_up,
3113 { "Motor Flux Up", "cipm.axis.flx",
3114 FT_BOOLEAN, 32, NULL, 0x00000010,
3115 "Axis Status Data Set: Motor Flux Up", HFILL }
3117 { &hf_cip_axis_sts_tracking,
3118 { "Tracking", "cipm.axis.track",
3119 FT_BOOLEAN, 32, NULL, 0x00000020,
3120 "Axis Status Data Set: Tracking", HFILL }
3122 { &hf_cip_axis_sts_pos_lock,
3123 { "Pos Lock", "cipm.axis.poslock",
3124 FT_BOOLEAN, 32, NULL, 0x00000040,
3125 "Axis Status Data Set: Pos Lock", HFILL }
3127 { &hf_cip_axis_sts_vel_lock,
3128 { "Vel Lock", "cipm.axis.vellock",
3129 FT_BOOLEAN, 32, NULL, 0x00000080,
3130 "Axis Status Data Set: Vel Lock", HFILL }
3132 { &hf_cip_axis_sts_vel_standstill,
3133 { "Vel Standstill", "cipm.axis.nomo",
3134 FT_BOOLEAN, 32, NULL, 0x00000100,
3135 "Axis Status Data Set: Vel Standstill", HFILL }
3137 { &hf_cip_axis_sts_vel_threshold,
3138 { "Vel Threshold", "cipm.axis.vthresh",
3139 FT_BOOLEAN, 32, NULL, 0x00000200,
3140 "Axis Status Data Set: Vel Threshold", HFILL }
3142 { &hf_cip_axis_sts_vel_limit,
3143 { "Vel Limit", "cipm.axis.vlim",
3144 FT_BOOLEAN, 32, NULL, 0x00000400,
3145 "Axis Status Data Set: Vel Limit", HFILL }
3147 { &hf_cip_axis_sts_acc_limit,
3148 { "Acc Limit", "cipm.axis.alim",
3149 FT_BOOLEAN, 32, NULL, 0x00000800,
3150 "Axis Status Data Set: Acc Limit", HFILL }
3152 { &hf_cip_axis_sts_dec_limit,
3153 { "Decel Limit", "cipm.axis.dlim",
3154 FT_BOOLEAN, 32, NULL, 0x00001000,
3155 "Axis Status Data Set: Decel Limit", HFILL }
3157 { &hf_cip_axis_sts_torque_threshold,
3158 { "Torque Threshold", "cipm.axis.tthresh",
3159 FT_BOOLEAN, 32, NULL, 0x00002000,
3160 "Axis Status Data Set: Torque Threshold", HFILL }
3162 { &hf_cip_axis_sts_torque_limit,
3163 { "Torque Limit", "cipm.axis.tlim",
3164 FT_BOOLEAN, 32, NULL, 0x00004000,
3165 "Axis Status Data Set: Torque Limit", HFILL }
3167 { &hf_cip_axis_sts_cur_limit,
3168 { "Current Limit", "cipm.axis.ilim",
3169 FT_BOOLEAN, 32, NULL, 0x00008000,
3170 "Axis Status Data Set: Current Limit", HFILL }
3172 { &hf_cip_axis_sts_therm_limit,
3173 { "Thermal Limit", "cipm.axis.hot",
3174 FT_BOOLEAN, 32, NULL, 0x00010000,
3175 "Axis Status Data Set: Thermal Limit", HFILL }
3177 { &hf_cip_axis_sts_feedback_integ,
3178 { "Feedback Integrity", "cipm.axis.fgood",
3179 FT_BOOLEAN, 32, NULL, 0x00020000,
3180 "Axis Status Data Set: Feedback Integrity", HFILL }
3182 { &hf_cip_axis_sts_shutdown,
3183 { "Shutdown", "cipm.axis.sdwn",
3184 FT_BOOLEAN, 32, NULL, 0x00040000,
3185 "Axis Status Data Set: Shutdown", HFILL }
3187 { &hf_cip_axis_sts_in_process,
3188 { "In Process", "cipm.axis.inp",
3189 FT_BOOLEAN, 32, NULL, 0x00080000,
3190 "Axis Status Data Set: In Process", HFILL }
3192 { &hf_cip_axis_sts_dc_bus_unload,
3193 { "DC Bus Unload", "cipm.axis.dcunload",
3194 FT_BOOLEAN, 32, NULL, 0x00100000,
3195 "Axis Status Data Set: DC Bus Unload", HFILL }
3197 { &hf_cip_axis_sts_ac_pwr_loss,
3198 { "AC Power Loss", "cipm.axis.acpwrloss",
3199 FT_BOOLEAN, 32, NULL, 0x00200000,
3200 "Axis Status Data Set: AC Power Loss", HFILL }
3202 { &hf_cip_axis_sts_pos_cntrl_mode,
3203 { "Pos Control Mode", "cipm.axis.poscntrl",
3204 FT_BOOLEAN, 32, NULL, 0x00400000,
3205 "Axis Status Data Set: Position Control Mode", HFILL }
3207 { &hf_cip_axis_sts_vel_cntrl_mode,
3208 { "Vel Control Mode", "cipm.axis.velcntrl",
3209 FT_BOOLEAN, 32, NULL, 0x00800000,
3210 "Axis Status Data Set: Velocity Control Mode", HFILL }
3212 { &hf_cip_axis_sts_trq_cntrl_mode,
3213 { "Torque Control Mode", "cipm.axis.trqcntrl",
3214 FT_BOOLEAN, 32, NULL, 0x01000000,
3215 "Axis Status Data Set: Torque Control Mode", HFILL }
3218 // Attribute #740 - Axis Status 2.
3219 { &hf_cip_axis_status2,
3220 { "Axis Status 2", "cipm.axisstatus2",
3221 FT_UINT32, BASE_HEX, NULL, 0,
3222 NULL, HFILL }
3224 { &hf_cip_axis_sts2_motor,
3225 { "Motoring", "cipm.axis2.motor",
3226 FT_BOOLEAN, 32, NULL, 0x00000001,
3227 NULL, HFILL }
3229 { &hf_cip_axis_sts2_regenerate,
3230 { "Regenerating", "cipm.axis2.regen",
3231 FT_BOOLEAN, 32, NULL, 0x00000002,
3232 NULL, HFILL }
3234 { &hf_cip_axis_sts2_ride_thru,
3235 { "Ride Thru", "cipm.axis2.ridethru",
3236 FT_BOOLEAN, 32, NULL, 0x00000004,
3237 NULL, HFILL }
3239 { &hf_cip_axis_sts2_ac_line_sync,
3240 { "AC Line Sync", "cipm.axis2.acsync",
3241 FT_BOOLEAN, 32, NULL, 0x00000008,
3242 NULL, HFILL }
3244 { &hf_cip_axis_sts2_bus_volt_lock,
3245 { "Bus Voltage Lock", "cipm.axis2.voltlock",
3246 FT_BOOLEAN, 32, NULL, 0x00000010,
3247 NULL, HFILL }
3249 { &hf_cip_axis_sts2_react_pwr_only,
3250 { "Reactive Power Only Mode", "cipm.axis2.reactpwr",
3251 FT_BOOLEAN, 32, NULL, 0x00000020,
3252 NULL, HFILL }
3254 { &hf_cip_axis_sts2_volt_ctrl_mode,
3255 { "Voltage Control Mode", "cipm.axis2.voltmode",
3256 FT_BOOLEAN, 32, NULL, 0x00000040,
3257 NULL, HFILL }
3259 { &hf_cip_axis_sts2_pwr_loss,
3260 { "Power Loss", "cipm.axis2.pwrloss",
3261 FT_BOOLEAN, 32, NULL, 0x00000080,
3262 NULL, HFILL }
3264 { &hf_cip_axis_sts2_ac_volt_sag,
3265 { "AC Line Voltage Sag", "cipm.axis2.voltsag",
3266 FT_BOOLEAN, 32, NULL, 0x00000100,
3267 NULL, HFILL }
3269 { &hf_cip_axis_sts2_ac_phase_loss,
3270 { "AC Line Phase Loss", "cipm.axis2.phaseloss",
3271 FT_BOOLEAN, 32, NULL, 0x00000200,
3272 NULL, HFILL }
3274 { &hf_cip_axis_sts2_ac_freq_change,
3275 { "AC Line Frequency Change", "cipm.axis2.freqchange",
3276 FT_BOOLEAN, 32, NULL, 0x00000400,
3277 NULL, HFILL }
3279 { &hf_cip_axis_sts2_ac_sync_loss,
3280 { "AC Line Sync Loss", "cipm.axis2.syncloss",
3281 FT_BOOLEAN, 32, NULL, 0x00000800,
3282 NULL, HFILL }
3284 { &hf_cip_axis_sts2_single_phase,
3285 { "Single Phase", "cipm.axis2.singlephase",
3286 FT_BOOLEAN, 32, NULL, 0x00001000,
3287 NULL, HFILL }
3290 { &hf_cip_axis_sts2_bus_volt_limit,
3291 { "Bus Voltage Limit", "cipm.axis2.bus_volt_limit",
3292 FT_BOOLEAN, 32, NULL, 0x00002000,
3293 NULL, HFILL }
3295 { &hf_cip_axis_sts2_bus_volt_rate_limit,
3296 { "Bus Voltage Rate Limit", "cipm.axis2.bus_volt_rate_limit",
3297 FT_BOOLEAN, 32, NULL, 0x00004000,
3298 NULL, HFILL }
3300 { &hf_cip_axis_sts2_active_current_rate_limit,
3301 { "Active Current Rate Limit", "cipm.axis2.active_current_rate_limit",
3302 FT_BOOLEAN, 32, NULL, 0x00008000,
3303 NULL, HFILL }
3305 { &hf_cip_axis_sts2_reactive_current_rate_limit,
3306 { "Reactive Current Rate Limit", "cipm.axis2.reactive_current_rate_limit",
3307 FT_BOOLEAN, 32, NULL, 0x00010000,
3308 NULL, HFILL }
3310 { &hf_cip_axis_sts2_reactive_pwr_limit,
3311 { "Reactive Power Limit", "cipm.axis2.reactive_pwr_limit",
3312 FT_BOOLEAN, 32, NULL, 0x00020000,
3313 NULL, HFILL }
3315 { &hf_cip_axis_sts2_reactive_pwr_rate_limit,
3316 { "Reactive Power Rate Limit", "cipm.axis2.reactive_pwr_rate_limit",
3317 FT_BOOLEAN, 32, NULL, 0x00040000,
3318 NULL, HFILL }
3320 { &hf_cip_axis_sts2_active_current_limit,
3321 { "Active Current Limit", "cipm.axis2.active_current_limit",
3322 FT_BOOLEAN, 32, NULL, 0x00080000,
3323 NULL, HFILL }
3325 { &hf_cip_axis_sts2_reactive_current_limit,
3326 { "Reactive Current Limit", "cipm.axis2.reactive_current_limit",
3327 FT_BOOLEAN, 32, NULL, 0x00100000,
3328 NULL, HFILL }
3330 { &hf_cip_axis_sts2_motor_pwr_limit,
3331 { "Motoring Power Limit", "cipm.axis2.motor_pwr_limit",
3332 FT_BOOLEAN, 32, NULL, 0x00200000,
3333 NULL, HFILL }
3335 { &hf_cip_axis_sts2_regen_pwr_limit,
3336 { "Regenerative Power Limit", "cipm.axis2.regen_pwr_limit",
3337 FT_BOOLEAN, 32, NULL, 0x00400000,
3338 NULL, HFILL }
3340 { &hf_cip_axis_sts2_convert_therm_limit,
3341 { "Converter Thermal Limit", "cipm.axis2.convert_therm_limit",
3342 FT_BOOLEAN, 32, NULL, 0x00800000,
3343 NULL, HFILL }
3346 { &hf_cip_act_pos,
3347 { "Actual Position", "cipm.actpos",
3348 FT_INT32, BASE_DEC, NULL, 0,
3349 "Cyclic Data Set: Actual Position", HFILL }
3351 { &hf_cip_act_pos_64,
3352 { "Actual Position", "cipm.actpos_64",
3353 FT_INT64, BASE_DEC, NULL, 0,
3354 "Cyclic Data Set: Actual Position", HFILL }
3356 { &hf_cip_act_vel,
3357 { "Actual Velocity", "cipm.actvel",
3358 FT_FLOAT, BASE_NONE, NULL, 0,
3359 "Cyclic Data Set: Actual Velocity", HFILL }
3361 { &hf_cip_act_accel,
3362 { "Actual Acceleration", "cipm.actaccel",
3363 FT_FLOAT, BASE_NONE, NULL, 0,
3364 "Cyclic Data Set: Actual Acceleration", HFILL }
3366 { &hf_cip_pos_cmd,
3367 { "Position Command", "cipm.posfcmd",
3368 FT_DOUBLE, BASE_NONE, NULL, 0,
3369 "Cyclic Data Set: Position Command (LREAL)", HFILL }
3371 { &hf_cip_pos_cmd_int,
3372 { "Position Command", "cipm.posicmd",
3373 FT_INT32, BASE_DEC, NULL, 0,
3374 "Cyclic Data Set: Position Command (DINT)", HFILL }
3376 { &hf_cip_vel_cmd,
3377 { "Velocity Command", "cipm.velcmd",
3378 FT_FLOAT, BASE_NONE, NULL, 0,
3379 "Cyclic Data Set: Velocity Command", HFILL }
3381 { &hf_cip_accel_cmd,
3382 { "Acceleration Command", "cipm.accelcmd",
3383 FT_FLOAT, BASE_NONE, NULL, 0,
3384 "Cyclic Data Set: Acceleration Command", HFILL }
3386 { &hf_cip_trq_cmd,
3387 { "Torque Command", "cipm.torquecmd",
3388 FT_FLOAT, BASE_NONE, NULL, 0,
3389 "Cyclic Data Set: Torque Command", HFILL }
3391 { &hf_cip_pos_trim,
3392 { "Position Trim", "cipm.postrim",
3393 FT_INT32, BASE_DEC, NULL, 0,
3394 NULL, HFILL }
3396 { &hf_cip_vel_trim,
3397 { "Velocity Trim", "cipm.veltrim",
3398 FT_FLOAT, BASE_NONE, NULL, 0,
3399 NULL, HFILL }
3401 { &hf_cip_accel_trim,
3402 { "Acceleration Trim", "cipm.acceltrim",
3403 FT_FLOAT, BASE_NONE, NULL, 0,
3404 NULL, HFILL }
3406 { &hf_cip_trq_trim,
3407 { "Torque Trim", "cipm.trqtrim",
3408 FT_FLOAT, BASE_NONE, NULL, 0,
3409 NULL, HFILL }
3411 { &hf_cip_data,
3412 { "Data", "cipm.data",
3413 FT_BYTES, BASE_NONE, NULL, 0,
3414 NULL, HFILL }
3418 /* Setup protocol subtree array, these will help Wireshark remember
3419 * if the subtree should be expanded as the user moves through packets */
3420 static int *ett[] = {
3421 &ett_cipmotion,
3422 &ett_cont_dev_header,
3423 &ett_control_status,
3424 &ett_node_control,
3425 &ett_node_status,
3426 &ett_time_data_set,
3427 &ett_inst_data_header,
3428 &ett_cyclic_data_block,
3429 &ett_cyclic_command_data,
3430 &ett_feedback_mode,
3431 &ett_connection_configuration_bits,
3432 &ett_control_mode,
3433 &ett_feedback_config,
3434 &ett_command_data_set,
3435 &ett_actual_data_set,
3436 &ett_status_data_set,
3437 &ett_interp_control,
3438 &ett_cyclic_rd_wt,
3439 &ett_event,
3440 &ett_event_check_ctrl,
3441 &ett_event_check_sts,
3442 &ett_service,
3443 &ett_get_axis_attribute,
3444 &ett_set_axis_attribute,
3445 &ett_get_axis_attr_list,
3446 &ett_set_axis_attr_list,
3447 &ett_set_cyclic_list,
3448 &ett_group_sync,
3449 &ett_axis_status_set,
3450 &ett_command_control,
3451 &ett_configuration_block
3454 static ei_register_info ei[] = {
3455 { &ei_format_rev_conn_pt, { "cipm.malformed.format_revision_mismatch", PI_MALFORMED, PI_WARN, "Format Revision does not match Connection Point", EXPFILL } },
3458 /* Create a CIP Motion protocol handle */
3459 proto_cipmotion = proto_register_protocol("Common Industrial Protocol, Motion", "CIP Motion", "cipm");
3461 proto_cipmotion3 = proto_register_protocol_in_name_only(
3462 "Common Industrial Protocol, Motion - Rev 3",
3463 "CIP Motion - Rev 3",
3464 "cipm3",
3465 proto_cipmotion,
3466 FT_PROTOCOL);
3468 /* Register the header fields with the protocol */
3469 proto_register_field_array(proto_cipmotion, hf, array_length(hf));
3471 /* Register the subtrees for the protocol dissection */
3472 proto_register_subtree_array(ett, array_length(ett));
3474 expert_module_t* expert_cipm = expert_register_protocol(proto_cipmotion);
3475 expert_register_field_array(expert_cipm, ei, array_length(ei));
3477 module_t* cipm_module = prefs_register_protocol(proto_cipmotion, NULL);
3478 prefs_register_bool_preference(cipm_module, "display_full_attribute_data",
3479 "Display full attribute data in the Service Data Block",
3480 "Whether the CIP Motion dissector always display the full raw attribute data bytes",
3481 &display_full_attribute_data);
3483 cipmotion_handle = register_dissector("cipmotion", dissect_cipmotion, proto_cipmotion);
3484 cipmotion3_handle = register_dissector("cipmotion3", dissect_cipmotion3, proto_cipmotion3);
3487 void proto_reg_handoff_cipmotion(void)
3489 dissector_add_for_decode_as("cip.io", cipmotion_handle);
3490 dissector_add_for_decode_as("cip.io", cipmotion3_handle);
3492 dissector_add_uint("cip.io.iface", CI_CLS_MOTION, cipmotion_handle);
3496 * Editor modelines - https://www.wireshark.org/tools/modelines.html
3498 * Local variables:
3499 * c-basic-offset: 3
3500 * tab-width: 8
3501 * indent-tabs-mode: nil
3502 * End:
3504 * ex: set shiftwidth=3 tabstop=8 expandtab:
3505 * :indentSize=3:tabSize=8:noTabs=true: