3 * Gilbert Ramirez <gram@alumni.rice.edu>
4 * Jochen Friedrich <jochen@scram.de>
6 * Wireshark - Network traffic analyzer
7 * By Gerald Combs <gerald@wireshark.org>
8 * Copyright 1998 Gerald Combs
10 * SPDX-License-Identifier: GPL-2.0-or-later
15 #include <epan/packet.h>
16 #include <epan/llcsaps.h>
17 #include <epan/ppptypes.h>
18 #include <epan/address_types.h>
19 #include <epan/prefs.h>
20 #include <epan/reassemble.h>
21 #include <epan/to_str.h>
23 #include <wsutil/array.h>
24 #include "wsutil/pint.h"
29 * http://web.archive.org/web/20020206033700/http://www.wanresources.com/snacell.html
31 * http://web.archive.org/web/20150522015710/http://www.protocols.com/pbook/sna.htm
33 * Systems Network Architecture Formats, GA27-3136-20:
34 * https://publibfp.dhe.ibm.com/epubs/pdf/d50a5007.pdf
36 * Systems Network Architecture Management Services Formats, GC31-8302-03:
37 * https://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/d50x4002/CCONTENTS
39 void proto_register_sna(void);
40 void proto_reg_handoff_sna(void);
43 static int proto_sna_xid
;
45 static int hf_sna_th_0
;
46 static int hf_sna_th_fid
;
47 static int hf_sna_th_mpf
;
48 static int hf_sna_th_odai
;
49 static int hf_sna_th_efi
;
50 static int hf_sna_th_daf
;
51 static int hf_sna_th_oaf
;
52 static int hf_sna_th_snf
;
53 static int hf_sna_th_dcf
;
54 static int hf_sna_th_lsid
;
55 static int hf_sna_th_tg_sweep
;
56 static int hf_sna_th_er_vr_supp_ind
;
57 static int hf_sna_th_vr_pac_cnt_ind
;
58 static int hf_sna_th_ntwk_prty
;
59 static int hf_sna_th_tgsf
;
60 static int hf_sna_th_mft
;
61 static int hf_sna_th_piubf
;
62 static int hf_sna_th_iern
;
63 static int hf_sna_th_nlpoi
;
64 static int hf_sna_th_nlp_cp
;
65 static int hf_sna_th_ern
;
66 static int hf_sna_th_vrn
;
67 static int hf_sna_th_tpf
;
68 static int hf_sna_th_vr_cwi
;
69 static int hf_sna_th_tg_nonfifo_ind
;
70 static int hf_sna_th_vr_sqti
;
71 static int hf_sna_th_tg_snf
;
72 static int hf_sna_th_vrprq
;
73 static int hf_sna_th_vrprs
;
74 static int hf_sna_th_vr_cwri
;
75 static int hf_sna_th_vr_rwi
;
76 static int hf_sna_th_vr_snf_send
;
77 static int hf_sna_th_dsaf
;
78 static int hf_sna_th_osaf
;
79 static int hf_sna_th_snai
;
80 static int hf_sna_th_def
;
81 static int hf_sna_th_oef
;
82 static int hf_sna_th_sa
;
83 static int hf_sna_th_cmd_fmt
;
84 static int hf_sna_th_cmd_type
;
85 static int hf_sna_th_cmd_sn
;
86 static int hf_sna_th_byte1
;
87 static int hf_sna_th_byte2
;
88 static int hf_sna_th_byte3
;
89 static int hf_sna_th_byte4
;
90 static int hf_sna_th_byte6
;
91 static int hf_sna_th_byte16
;
93 static int hf_sna_nlp_nhdr
;
94 static int hf_sna_nlp_nhdr_0
;
95 static int hf_sna_nlp_sm
;
96 static int hf_sna_nlp_tpf
;
97 static int hf_sna_nlp_nhdr_1
;
98 static int hf_sna_nlp_ft
;
99 static int hf_sna_nlp_tspi
;
100 static int hf_sna_nlp_slowdn1
;
101 static int hf_sna_nlp_slowdn2
;
102 static int hf_sna_nlp_fra
;
103 static int hf_sna_nlp_anr
;
104 static int hf_sna_nlp_frh
;
105 static int hf_sna_nlp_thdr
;
106 static int hf_sna_nlp_tcid
;
107 static int hf_sna_nlp_thdr_8
;
108 static int hf_sna_nlp_setupi
;
109 static int hf_sna_nlp_somi
;
110 static int hf_sna_nlp_eomi
;
111 static int hf_sna_nlp_sri
;
112 static int hf_sna_nlp_rasapi
;
113 static int hf_sna_nlp_retryi
;
114 static int hf_sna_nlp_thdr_9
;
115 static int hf_sna_nlp_lmi
;
116 static int hf_sna_nlp_cqfi
;
117 static int hf_sna_nlp_osi
;
118 static int hf_sna_nlp_offset
;
119 static int hf_sna_nlp_dlf
;
120 static int hf_sna_nlp_bsn
;
121 static int hf_sna_nlp_opti_len
;
122 static int hf_sna_nlp_opti_type
;
123 static int hf_sna_nlp_opti_0d_version
;
124 static int hf_sna_nlp_opti_0d_4
;
125 static int hf_sna_nlp_opti_0d_target
;
126 static int hf_sna_nlp_opti_0d_arb
;
127 static int hf_sna_nlp_opti_0d_reliable
;
128 static int hf_sna_nlp_opti_0d_dedicated
;
129 static int hf_sna_nlp_opti_0e_stat
;
130 static int hf_sna_nlp_opti_0e_gap
;
131 static int hf_sna_nlp_opti_0e_idle
;
132 static int hf_sna_nlp_opti_0e_nabsp
;
133 static int hf_sna_nlp_opti_0e_sync
;
134 static int hf_sna_nlp_opti_0e_echo
;
135 static int hf_sna_nlp_opti_0e_rseq
;
136 /* static int hf_sna_nlp_opti_0e_abspbeg; */
137 /* static int hf_sna_nlp_opti_0e_abspend; */
138 static int hf_sna_nlp_opti_0f_bits
;
139 static int hf_sna_nlp_opti_10_tcid
;
140 static int hf_sna_nlp_opti_12_sense
;
141 static int hf_sna_nlp_opti_14_si_len
;
142 static int hf_sna_nlp_opti_14_si_key
;
143 static int hf_sna_nlp_opti_14_si_2
;
144 static int hf_sna_nlp_opti_14_si_refifo
;
145 static int hf_sna_nlp_opti_14_si_mobility
;
146 static int hf_sna_nlp_opti_14_si_dirsearch
;
147 static int hf_sna_nlp_opti_14_si_limitres
;
148 static int hf_sna_nlp_opti_14_si_ncescope
;
149 static int hf_sna_nlp_opti_14_si_mnpsrscv
;
150 static int hf_sna_nlp_opti_14_si_maxpsize
;
151 static int hf_sna_nlp_opti_14_si_switch
;
152 static int hf_sna_nlp_opti_14_si_alive
;
153 static int hf_sna_nlp_opti_14_rr_len
;
154 static int hf_sna_nlp_opti_14_rr_key
;
155 static int hf_sna_nlp_opti_14_rr_2
;
156 static int hf_sna_nlp_opti_14_rr_bfe
;
157 static int hf_sna_nlp_opti_14_rr_num
;
158 static int hf_sna_nlp_opti_22_2
;
159 static int hf_sna_nlp_opti_22_type
;
160 static int hf_sna_nlp_opti_22_raa
;
161 static int hf_sna_nlp_opti_22_parity
;
162 static int hf_sna_nlp_opti_22_arb
;
163 static int hf_sna_nlp_opti_22_3
;
164 static int hf_sna_nlp_opti_22_ratereq
;
165 static int hf_sna_nlp_opti_22_raterep
;
166 static int hf_sna_nlp_opti_22_field1
;
167 static int hf_sna_nlp_opti_22_field2
;
168 static int hf_sna_nlp_opti_22_field3
;
169 static int hf_sna_nlp_opti_22_field4
;
171 static int hf_sna_rh
;
172 static int hf_sna_rh_0
;
173 static int hf_sna_rh_1
;
174 static int hf_sna_rh_2
;
175 static int hf_sna_rh_rri
;
176 static int hf_sna_rh_ru_category
;
177 static int hf_sna_rh_fi
;
178 static int hf_sna_rh_sdi
;
179 static int hf_sna_rh_bci
;
180 static int hf_sna_rh_eci
;
181 static int hf_sna_rh_dr1
;
182 static int hf_sna_rh_lcci
;
183 static int hf_sna_rh_dr2
;
184 static int hf_sna_rh_eri
;
185 static int hf_sna_rh_rti
;
186 static int hf_sna_rh_rlwi
;
187 static int hf_sna_rh_qri
;
188 static int hf_sna_rh_pi
;
189 static int hf_sna_rh_bbi
;
190 static int hf_sna_rh_ebi
;
191 static int hf_sna_rh_cdi
;
192 static int hf_sna_rh_csi
;
193 static int hf_sna_rh_edi
;
194 static int hf_sna_rh_pdi
;
195 static int hf_sna_rh_cebi
;
196 /*static int hf_sna_ru;*/
198 static int hf_sna_gds
;
199 static int hf_sna_gds_len
;
200 static int hf_sna_gds_type
;
201 static int hf_sna_gds_cont
;
202 static int hf_sna_gds_info
;
204 /* static int hf_sna_xid; */
205 static int hf_sna_xid_0
;
206 static int hf_sna_xid_id
;
207 static int hf_sna_xid_format
;
208 static int hf_sna_xid_type
;
209 static int hf_sna_xid_len
;
210 static int hf_sna_xid_idblock
;
211 static int hf_sna_xid_idnum
;
212 static int hf_sna_xid_3_8
;
213 static int hf_sna_xid_3_init_self
;
214 static int hf_sna_xid_3_stand_bind
;
215 static int hf_sna_xid_3_gener_bind
;
216 static int hf_sna_xid_3_recve_bind
;
217 static int hf_sna_xid_3_actpu
;
218 static int hf_sna_xid_3_nwnode
;
219 static int hf_sna_xid_3_cp
;
220 static int hf_sna_xid_3_cpcp
;
221 static int hf_sna_xid_3_state
;
222 static int hf_sna_xid_3_nonact
;
223 static int hf_sna_xid_3_cpchange
;
224 static int hf_sna_xid_3_10
;
225 static int hf_sna_xid_3_asend_bind
;
226 static int hf_sna_xid_3_arecv_bind
;
227 static int hf_sna_xid_3_quiesce
;
228 static int hf_sna_xid_3_pucap
;
229 static int hf_sna_xid_3_pbn
;
230 static int hf_sna_xid_3_pacing
;
231 static int hf_sna_xid_3_11
;
232 static int hf_sna_xid_3_tgshare
;
233 static int hf_sna_xid_3_dedsvc
;
234 static int hf_sna_xid_3_12
;
235 static int hf_sna_xid_3_negcsup
;
236 static int hf_sna_xid_3_negcomp
;
237 static int hf_sna_xid_3_15
;
238 static int hf_sna_xid_3_partg
;
239 static int hf_sna_xid_3_dlur
;
240 static int hf_sna_xid_3_dlus
;
241 static int hf_sna_xid_3_exbn
;
242 static int hf_sna_xid_3_genodai
;
243 static int hf_sna_xid_3_branch
;
244 static int hf_sna_xid_3_brnn
;
245 static int hf_sna_xid_3_tg
;
246 static int hf_sna_xid_3_dlc
;
247 static int hf_sna_xid_3_dlen
;
249 static int hf_sna_control_len
;
250 static int hf_sna_control_key
;
251 static int hf_sna_control_hprkey
;
252 static int hf_sna_control_05_delay
;
253 static int hf_sna_control_05_type
;
254 static int hf_sna_control_05_ptp
;
255 static int hf_sna_control_0e_type
;
256 static int hf_sna_control_0e_value
;
257 static int hf_sna_padding
;
258 static int hf_sna_reserved
;
259 static int hf_sna_biu_segment_data
;
262 static int ett_sna_th
;
263 static int ett_sna_th_fid
;
264 static int ett_sna_nlp_nhdr
;
265 static int ett_sna_nlp_nhdr_0
;
266 static int ett_sna_nlp_nhdr_1
;
267 static int ett_sna_nlp_thdr
;
268 static int ett_sna_nlp_thdr_8
;
269 static int ett_sna_nlp_thdr_9
;
270 static int ett_sna_nlp_opti_un
;
271 static int ett_sna_nlp_opti_0d
;
272 static int ett_sna_nlp_opti_0d_4
;
273 static int ett_sna_nlp_opti_0e
;
274 static int ett_sna_nlp_opti_0e_stat
;
275 static int ett_sna_nlp_opti_0e_absp
;
276 static int ett_sna_nlp_opti_0f
;
277 static int ett_sna_nlp_opti_10
;
278 static int ett_sna_nlp_opti_12
;
279 static int ett_sna_nlp_opti_14
;
280 static int ett_sna_nlp_opti_14_si
;
281 static int ett_sna_nlp_opti_14_si_2
;
282 static int ett_sna_nlp_opti_14_rr
;
283 static int ett_sna_nlp_opti_14_rr_2
;
284 static int ett_sna_nlp_opti_22
;
285 static int ett_sna_nlp_opti_22_2
;
286 static int ett_sna_nlp_opti_22_3
;
287 static int ett_sna_rh
;
288 static int ett_sna_rh_0
;
289 static int ett_sna_rh_1
;
290 static int ett_sna_rh_2
;
291 static int ett_sna_gds
;
292 static int ett_sna_xid_0
;
293 static int ett_sna_xid_id
;
294 static int ett_sna_xid_3_8
;
295 static int ett_sna_xid_3_10
;
296 static int ett_sna_xid_3_11
;
297 static int ett_sna_xid_3_12
;
298 static int ett_sna_xid_3_15
;
299 static int ett_sna_control_un
;
300 static int ett_sna_control_05
;
301 static int ett_sna_control_05hpr
;
302 static int ett_sna_control_05hpr_type
;
303 static int ett_sna_control_0e
;
305 static dissector_handle_t sna_handle
;
306 static dissector_handle_t sna_xid_handle
;
308 static int sna_address_type
= -1;
310 /* Defragment fragmented SNA BIUs*/
311 static bool sna_defragment
= true;
312 static reassembly_table sna_reassembly_table
;
314 /* Format Identifier */
315 static const value_string sna_th_fid_vals
[] = {
316 { 0x0, "SNA device <--> Non-SNA Device" },
317 { 0x1, "Subarea Nodes, without ER or VR" },
318 { 0x2, "Subarea Node <--> PU2" },
319 { 0x3, "Subarea Node or SNA host <--> Subarea Node" },
320 { 0x4, "Subarea Nodes, supporting ER and VR" },
321 { 0x5, "HPR RTP endpoint nodes" },
322 { 0xa, "HPR NLP Frame Routing" },
323 { 0xb, "HPR NLP Frame Routing" },
324 { 0xc, "HPR NLP Automatic Network Routing" },
325 { 0xd, "HPR NLP Automatic Network Routing" },
326 { 0xf, "Adjacent Subarea Nodes, supporting ER and VR" },
331 #define MPF_MIDDLE_SEGMENT 0
332 #define MPF_LAST_SEGMENT 1
333 #define MPF_FIRST_SEGMENT 2
334 #define MPF_WHOLE_BIU 3
336 static const value_string sna_th_mpf_vals
[] = {
337 { MPF_MIDDLE_SEGMENT
, "Middle segment of a BIU" },
338 { MPF_LAST_SEGMENT
, "Last segment of a BIU" },
339 { MPF_FIRST_SEGMENT
, "First segment of a BIU" },
340 { MPF_WHOLE_BIU
, "Whole BIU" },
344 /* Expedited Flow Indicator */
345 static const value_string sna_th_efi_vals
[] = {
346 { 0, "Normal Flow" },
347 { 1, "Expedited Flow" },
351 /* Request/Response Unit Category */
352 static const value_string sna_rh_ru_category_vals
[] = {
353 { 0, "Function Management Data (FMD)" },
354 { 1, "Network Control (NC)" },
355 { 2, "Data Flow Control (DFC)" },
356 { 3, "Session Control (SC)" },
360 /* Format Indicator */
361 static const true_false_string sna_rh_fi_truth
=
362 { "FM Header", "No FM Header" };
364 /* Begin Chain Indicator */
365 static const true_false_string sna_rh_bci_truth
=
366 { "First in Chain", "Not First in Chain" };
368 /* End Chain Indicator */
369 static const true_false_string sna_rh_eci_truth
=
370 { "Last in Chain", "Not Last in Chain" };
372 /* Lengith-Checked Compression Indicator */
373 static const true_false_string sna_rh_lcci_truth
=
374 { "Compressed", "Not Compressed" };
376 /* Response Type Indicator */
377 static const true_false_string sna_rh_rti_truth
=
378 { "Negative", "Positive" };
380 /* Queued Response Indicator */
381 static const true_false_string sna_rh_qri_truth
=
382 { "Enqueue response in TC queues", "Response bypasses TC queues" };
384 /* Code Selection Indicator */
385 static const value_string sna_rh_csi_vals
[] = {
392 static const value_string sna_th_tg_sweep_vals
[] = {
393 { 0, "This PIU may overtake any PU ahead of it." },
394 { 1, "This PIU does not overtake any PIU ahead of it." },
399 static const value_string sna_th_er_vr_supp_ind_vals
[] = {
400 { 0, "Each node supports ER and VR protocols" },
401 { 1, "Includes at least one node that does not support ER and VR"
407 static const value_string sna_th_vr_pac_cnt_ind_vals
[] = {
408 { 0, "Pacing count on the VR has not reached 0" },
409 { 1, "Pacing count on the VR has reached 0" },
414 static const value_string sna_th_ntwk_prty_vals
[] = {
415 { 0, "PIU flows at a lower priority" },
416 { 1, "PIU flows at network priority (highest transmission priority)" },
421 static const value_string sna_th_tgsf_vals
[] = {
422 { 0, "Not segmented" },
423 { 1, "Last segment" },
424 { 2, "First segment" },
425 { 3, "Middle segment" },
430 static const value_string sna_th_piubf_vals
[] = {
431 { 0, "Single PIU frame" },
432 { 1, "Last PIU of a multiple PIU frame" },
433 { 2, "First PIU of a multiple PIU frame" },
434 { 3, "Middle PIU of a multiple PIU frame" },
439 static const value_string sna_th_nlpoi_vals
[] = {
440 { 0, "NLP starts within this FID4 TH" },
441 { 1, "NLP byte 0 starts after RH byte 0 following NLP C/P pad" },
446 static const value_string sna_th_tpf_vals
[] = {
447 { 0, "Low Priority" },
448 { 1, "Medium Priority" },
449 { 2, "High Priority" },
450 { 3, "Network Priority" },
455 static const value_string sna_th_vr_cwi_vals
[] = {
456 { 0, "Increment window size" },
457 { 1, "Decrement window size" },
462 static const true_false_string sna_th_tg_nonfifo_ind_truth
=
463 { "TG FIFO is not required", "TG FIFO is required" };
466 static const value_string sna_th_vr_sqti_vals
[] = {
467 { 0, "Non-sequenced, Non-supervisory" },
468 { 1, "Non-sequenced, Supervisory" },
469 { 2, "Singly-sequenced" },
474 static const true_false_string sna_th_vrprq_truth
= {
475 "VR pacing request is sent asking for a VR pacing response",
476 "No VR pacing response is requested",
480 static const true_false_string sna_th_vrprs_truth
= {
481 "VR pacing response is sent in response to a VRPRQ bit set",
482 "No pacing response sent",
486 static const value_string sna_th_vr_cwri_vals
[] = {
487 { 0, "Increment window size by 1" },
488 { 1, "Decrement window size by 1" },
493 static const true_false_string sna_th_vr_rwi_truth
= {
494 "Reset window size to the minimum specified in NC_ACTVR",
495 "Do not reset window size",
499 static const value_string sna_nlp_sm_vals
[] = {
500 { 5, "Function routing" },
501 { 6, "Automatic network routing" },
505 static const true_false_string sna_nlp_tspi_truth
=
506 { "Time sensitive", "Not time sensitive" };
508 static const true_false_string sna_nlp_slowdn1_truth
=
509 { "Minor congestion", "No minor congestion" };
511 static const true_false_string sna_nlp_slowdn2_truth
=
512 { "Major congestion", "No major congestion" };
515 static const value_string sna_nlp_ft_vals
[] = {
520 static const value_string sna_nlp_frh_vals
[] = {
521 { 0x03, "XID complete request" },
522 { 0x04, "XID complete response" },
526 static const true_false_string sna_nlp_setupi_truth
=
527 { "Connection setup segment present", "Connection setup segment not"
530 static const true_false_string sna_nlp_somi_truth
=
531 { "Start of message", "Not start of message" };
533 static const true_false_string sna_nlp_eomi_truth
=
534 { "End of message", "Not end of message" };
536 static const true_false_string sna_nlp_sri_truth
=
537 { "Status requested", "No status requested" };
539 static const true_false_string sna_nlp_rasapi_truth
=
540 { "Reply as soon as possible", "No need to reply as soon as possible" };
542 static const true_false_string sna_nlp_retryi_truth
=
543 { "Undefined", "Sender will retransmit" };
545 static const true_false_string sna_nlp_lmi_truth
=
546 { "Last message", "Not last message" };
548 static const true_false_string sna_nlp_cqfi_truth
=
549 { "CQFI included", "CQFI not included" };
551 static const true_false_string sna_nlp_osi_truth
=
552 { "Optional segments present", "No optional segments present" };
554 static const value_string sna_xid_3_state_vals
[] = {
555 { 0x00, "Exchange state indicators not supported" },
556 { 0x01, "Negotiation-proceeding exchange" },
557 { 0x02, "Prenegotiation exchange" },
558 { 0x03, "Nonactivation exchange" },
562 static const value_string sna_xid_3_branch_vals
[] = {
563 { 0x00, "Sender does not support branch extender" },
564 { 0x01, "TG is branch uplink" },
565 { 0x02, "TG is branch downlink" },
566 { 0x03, "TG is neither uplink nor downlink" },
570 static const value_string sna_xid_type_vals
[] = {
572 { 0x02, "T2.0 or T2.1 node" },
573 { 0x03, "Reserved" },
574 { 0x04, "T4 or T5 node" },
578 static const value_string sna_nlp_opti_vals
[] = {
579 { 0x0d, "Connection Setup Segment" },
580 { 0x0e, "Status Segment" },
581 { 0x0f, "Client Out Of Band Bits Segment" },
582 { 0x10, "Connection Identifier Exchange Segment" },
583 { 0x12, "Connection Fault Segment" },
584 { 0x14, "Switching Information Segment" },
585 { 0x22, "Adaptive Rate-Based Segment" },
589 static const value_string sna_nlp_opti_0d_version_vals
[] = {
590 { 0x0101, "Version 1.1" },
594 static const value_string sna_nlp_opti_0f_bits_vals
[] = {
595 { 0x0001, "Request Deactivation" },
596 { 0x8000, "Reply - OK" },
597 { 0x8004, "Reply - Reject" },
601 static const value_string sna_nlp_opti_22_type_vals
[] = {
603 { 0x01, "Rate Reply" },
604 { 0x02, "Rate Request" },
605 { 0x03, "Rate Request/Rate Reply" },
609 static const value_string sna_nlp_opti_22_raa_vals
[] = {
611 { 0x01, "Restraint" },
612 { 0x02, "Slowdown1" },
613 { 0x03, "Slowdown2" },
614 { 0x04, "Critical" },
618 static const value_string sna_nlp_opti_22_arb_vals
[] = {
619 { 0x00, "Base Mode ARB" },
620 { 0x01, "Responsive Mode ARB" },
624 /* GDS Variable Type */
625 static const value_string sna_gds_var_vals
[] = {
626 { 0x1210, "Change Number Of Sessions" },
627 { 0x1211, "Exchange Log Name" },
628 { 0x1212, "Control Point Management Services Unit" },
629 { 0x1213, "Compare States" },
630 { 0x1214, "LU Names Position" },
631 { 0x1215, "LU Name" },
632 { 0x1217, "Do Know" },
633 { 0x1218, "Partner Restart" },
634 { 0x1219, "Don't Know" },
635 { 0x1220, "Sign-Off" },
636 { 0x1221, "Sign-On" },
637 { 0x1222, "SNMP-over-SNA" },
638 { 0x1223, "Node Address Service" },
639 { 0x12C1, "CP Capabilities" },
640 { 0x12C2, "Topology Database Update" },
641 { 0x12C3, "Register Resource" },
642 { 0x12C4, "Locate" },
643 { 0x12C5, "Cross-Domain Initiate" },
644 { 0x12C9, "Delete Resource" },
645 { 0x12CA, "Find Resource" },
646 { 0x12CB, "Found Resource" },
647 { 0x12CC, "Notify" },
648 { 0x12CD, "Initiate-Other Cross-Domain" },
649 { 0x12CE, "Route Setup" },
650 { 0x12E1, "Error Log" },
651 { 0x12F1, "Null Data" },
652 { 0x12F2, "User Control Date" },
653 { 0x12F3, "Map Name" },
654 { 0x12F4, "Error Data" },
655 { 0x12F6, "Authentication Token Data" },
656 { 0x12F8, "Service Flow Authentication Token Data" },
657 { 0x12FF, "Application Data" },
658 { 0x1310, "MDS Message Unit" },
659 { 0x1311, "MDS Routing Information" },
660 { 0x1500, "FID2 Encapsulation" },
664 /* Control Vector Type */
665 static const value_string sna_control_vals
[] = {
666 { 0x00, "SSCP-LU Session Capabilities Control Vector" },
667 { 0x01, "Date-Time Control Vector" },
668 { 0x02, "Subarea Routing Control Vector" },
669 { 0x03, "SDLC Secondary Station Control Vector" },
670 { 0x04, "LU Control Vector" },
671 { 0x05, "Channel Control Vector" },
672 { 0x06, "Cross-Domain Resource Manager (CDRM) Control Vector" },
673 { 0x07, "PU FMD-RU-Usage Control Vector" },
674 { 0x08, "Intensive Mode Control Vector" },
675 { 0x09, "Activation Request / Response Sequence Identifier Control"
677 { 0x0a, "User Request Correlator Control Vector" },
678 { 0x0b, "SSCP-PU Session Capabilities Control Vector" },
679 { 0x0c, "LU-LU Session Capabilities Control Vector" },
680 { 0x0d, "Mode / Class-of-Service / Virtual-Route-Identifier List"
682 { 0x0e, "Network Name Control Vector" },
683 { 0x0f, "Link Capabilities and Status Control Vector" },
684 { 0x10, "Product Set ID Control Vector" },
685 { 0x11, "Load Module Correlation Control Vector" },
686 { 0x12, "Network Identifier Control Vector" },
687 { 0x13, "Gateway Support Capabilities Control Vector" },
688 { 0x14, "Session Initiation Control Vector" },
689 { 0x15, "Network-Qualified Address Pair Control Vector" },
690 { 0x16, "Names Substitution Control Vector" },
691 { 0x17, "SSCP Identifier Control Vector" },
692 { 0x18, "SSCP Name Control Vector" },
693 { 0x19, "Resource Identifier Control Vector" },
694 { 0x1a, "NAU Address Control Vector" },
695 { 0x1b, "VRID List Control Vector" },
696 { 0x1c, "Network-Qualified Name Pair Control Vector" },
697 { 0x1e, "VR-ER Mapping Data Control Vector" },
698 { 0x1f, "ER Configuration Control Vector" },
699 { 0x23, "Local-Form Session Identifier Control Vector" },
700 { 0x24, "IPL Load Module Request Control Vector" },
701 { 0x25, "Security ID Control Control Vector" },
702 { 0x26, "Network Connection Endpoint Identifier Control Vector" },
703 { 0x27, "XRF Session Activation Control Vector" },
704 { 0x28, "Related Session Identifier Control Vector" },
705 { 0x29, "Session State Data Control Vector" },
706 { 0x2a, "Session Information Control Vector" },
707 { 0x2b, "Route Selection Control Vector" },
708 { 0x2c, "COS/TPF Control Vector" },
709 { 0x2d, "Mode Control Vector" },
710 { 0x2f, "LU Definition Control Vector" },
711 { 0x30, "Assign LU Characteristics Control Vector" },
712 { 0x31, "BIND Image Control Vector" },
713 { 0x32, "Short-Hold Mode Control Vector" },
714 { 0x33, "ENCP Search Control Control Vector" },
715 { 0x34, "LU Definition Override Control Vector" },
716 { 0x35, "Extended Sense Data Control Vector" },
717 { 0x36, "Directory Error Control Vector" },
718 { 0x37, "Directory Entry Correlator Control Vector" },
719 { 0x38, "Short-Hold Mode Emulation Control Vector" },
720 { 0x39, "Network Connection Endpoint (NCE) Instance Identifier"
722 { 0x3a, "Route Status Data Control Vector" },
723 { 0x3b, "VR Congestion Data Control Vector" },
724 { 0x3c, "Associated Resource Entry Control Vector" },
725 { 0x3d, "Directory Entry Control Vector" },
726 { 0x3e, "Directory Entry Characteristic Control Vector" },
727 { 0x3f, "SSCP (SLU) Capabilities Control Vector" },
728 { 0x40, "Real Associated Resource Control Vector" },
729 { 0x41, "Station Parameters Control Vector" },
730 { 0x42, "Dynamic Path Update Data Control Vector" },
731 { 0x43, "Extended SDLC Station Control Vector" },
732 { 0x44, "Node Descriptor Control Vector" },
733 { 0x45, "Node Characteristics Control Vector" },
734 { 0x46, "TG Descriptor Control Vector" },
735 { 0x47, "TG Characteristics Control Vector" },
736 { 0x48, "Topology Resource Descriptor Control Vector" },
737 { 0x49, "Multinode Persistent Sessions (MNPS) LU Names Control"
739 { 0x4a, "Real Owning Control Point Control Vector" },
740 { 0x4b, "RTP Transport Connection Identifier Control Vector" },
741 { 0x51, "DLUR/S Capabilities Control Vector" },
742 { 0x52, "Primary Send Pacing Window Size Control Vector" },
743 { 0x56, "Call Security Verification Control Vector" },
744 { 0x57, "DLC Connection Data Control Vector" },
745 { 0x59, "Installation-Defined CDINIT Data Control Vector" },
746 { 0x5a, "Session Services Extension Support Control Vector" },
747 { 0x5b, "Interchange Node Support Control Vector" },
748 { 0x5c, "APPN Message Transport Control Vector" },
749 { 0x5d, "Subarea Message Transport Control Vector" },
750 { 0x5e, "Related Request Control Vector" },
751 { 0x5f, "Extended Fully Qualified PCID Control Vector" },
752 { 0x60, "Fully Qualified PCID Control Vector" },
753 { 0x61, "HPR Capabilities Control Vector" },
754 { 0x62, "Session Address Control Vector" },
755 { 0x63, "Cryptographic Key Distribution Control Vector" },
756 { 0x64, "TCP/IP Information Control Vector" },
757 { 0x65, "Device Characteristics Control Vector" },
758 { 0x66, "Length-Checked Compression Control Vector" },
759 { 0x67, "Automatic Network Routing (ANR) Path Control Vector" },
760 { 0x68, "XRF/Session Cryptography Control Vector" },
761 { 0x69, "Switched Parameters Control Vector" },
762 { 0x6a, "ER Congestion Data Control Vector" },
763 { 0x71, "Triple DES Cryptography Key Continuation Control Vector" },
764 { 0xfe, "Control Vector Keys Not Recognized" },
768 static const value_string sna_control_hpr_vals
[] = {
769 { 0x00, "Node Identifier Control Vector" },
770 { 0x03, "Network ID Control Vector" },
771 { 0x05, "Network Address Control Vector" },
775 static const value_string sna_control_0e_type_vals
[] = {
779 { 0xF5, "SSCP Name" },
780 { 0xF6, "NNCP Name" },
781 { 0xF7, "Link Station Name" },
782 { 0xF8, "CP Name of CP(PLU)" },
783 { 0xF9, "CP Name of CP(SLU)" },
784 { 0xFA, "Generic Name" },
788 /* Values to direct the top-most dissector what to dissect
790 enum next_dissection_enum
{
802 * Structure used to represent an FID Type 4 address; gives the layout of the
803 * data pointed to by an AT_SNA "address" structure if the size is
804 * SNA_FID_TYPE_4_ADDR_LEN.
806 #define SNA_FID_TYPE_4_ADDR_LEN 6
807 struct sna_fid_type_4_addr
{
812 typedef enum next_dissection_enum next_dissection_t
;
814 static void dissect_xid (tvbuff_t
*, packet_info
*, proto_tree
*, proto_tree
*);
815 static void dissect_fid (tvbuff_t
*, packet_info
*, proto_tree
*, proto_tree
*);
816 static void dissect_nlp (tvbuff_t
*, packet_info
*, proto_tree
*, proto_tree
*);
817 static void dissect_gds (tvbuff_t
*, packet_info
*, proto_tree
*, proto_tree
*);
818 static void dissect_rh (tvbuff_t
*, int, proto_tree
*);
819 static void dissect_sna_control(tvbuff_t
* parent_tvb
, int offset
, int control_len
, proto_tree
* tree
, int hpr
, enum parse parse
);
821 static int sna_fid_to_str_buf(const address
*addr
, char *buf
, int buf_len _U_
)
823 const uint8_t *addrdata
;
824 struct sna_fid_type_4_addr sna_fid_type_4_addr
;
830 addrdata
= (const uint8_t *)addr
->data
;
831 word_to_hex(buf
, addrdata
[0]);
836 addrdata
= (const uint8_t *)addr
->data
;
837 word_to_hex(buf
, pntoh16(&addrdata
[0]));
841 case SNA_FID_TYPE_4_ADDR_LEN
:
843 memcpy(&sna_fid_type_4_addr
, addr
->data
, SNA_FID_TYPE_4_ADDR_LEN
);
845 bufp
= dword_to_hex(bufp
, sna_fid_type_4_addr
.saf
);
847 bufp
= word_to_hex(bufp
, sna_fid_type_4_addr
.ef
);
848 *bufp
++ = '\0'; /* NULL terminate */
855 return (int)strlen(buf
)+1;
859 static int sna_address_str_len(const address
* addr _U_
)
861 /* We could do this based on address length, but 14 bytes isn't THAT much space */
866 /* --------------------------------------------------------------------
867 * Chapter 2 High-Performance Routing (HPR) Headers
868 * --------------------------------------------------------------------
872 dissect_optional_0d(tvbuff_t
*tvb
, proto_tree
*tree
)
874 int offset
, len
, pad
;
875 static int * const fields
[] = {
876 &hf_sna_nlp_opti_0d_target
,
877 &hf_sna_nlp_opti_0d_arb
,
878 &hf_sna_nlp_opti_0d_reliable
,
879 &hf_sna_nlp_opti_0d_dedicated
,
886 proto_tree_add_item(tree
, hf_sna_nlp_opti_0d_version
, tvb
, 2, 2, ENC_BIG_ENDIAN
);
888 proto_tree_add_bitmask(tree
, tvb
, 4, hf_sna_nlp_opti_0d_4
,
889 ett_sna_nlp_opti_0d_4
, fields
, ENC_NA
);
891 proto_tree_add_item(tree
, hf_sna_reserved
, tvb
, 5, 3, ENC_NA
);
895 while (tvb_offset_exists(tvb
, offset
)) {
896 len
= tvb_get_uint8(tvb
, offset
+0);
898 dissect_sna_control(tvb
, offset
, len
, tree
, 1, LT
);
899 pad
= (len
+3) & 0xfffc;
901 proto_tree_add_item(tree
, hf_sna_padding
, tvb
, offset
+len
, pad
-len
, ENC_NA
);
904 /* Avoid endless loop */
911 dissect_optional_0e(tvbuff_t
*tvb
, packet_info
*pinfo
, proto_tree
*tree
)
914 static int * const fields
[] = {
915 &hf_sna_nlp_opti_0e_gap
,
916 &hf_sna_nlp_opti_0e_idle
,
920 bits
= tvb_get_uint8(tvb
, 2);
923 proto_tree_add_bitmask(tree
, tvb
, 2, hf_sna_nlp_opti_0e_stat
,
924 ett_sna_nlp_opti_0e_stat
, fields
, ENC_NA
);
926 proto_tree_add_item(tree
, hf_sna_nlp_opti_0e_nabsp
,
927 tvb
, 3, 1, ENC_BIG_ENDIAN
);
928 proto_tree_add_item(tree
, hf_sna_nlp_opti_0e_sync
,
929 tvb
, 4, 2, ENC_BIG_ENDIAN
);
930 proto_tree_add_item(tree
, hf_sna_nlp_opti_0e_echo
,
931 tvb
, 6, 2, ENC_BIG_ENDIAN
);
932 proto_tree_add_item(tree
, hf_sna_nlp_opti_0e_rseq
,
933 tvb
, 8, 4, ENC_BIG_ENDIAN
);
934 proto_tree_add_item(tree
, hf_sna_reserved
, tvb
, 12, 8, ENC_NA
);
936 if (tvb_offset_exists(tvb
, offset
))
937 call_data_dissector(tvb_new_subset_remaining(tvb
, 4), pinfo
, tree
);
940 col_set_str(pinfo
->cinfo
, COL_INFO
, "HPR Idle Message");
942 col_set_str(pinfo
->cinfo
, COL_INFO
, "HPR Status Message");
947 dissect_optional_0f(tvbuff_t
*tvb
, packet_info
*pinfo
, proto_tree
*tree
)
949 proto_tree_add_item(tree
, hf_sna_nlp_opti_0f_bits
, tvb
, 2, 2, ENC_BIG_ENDIAN
);
950 if (tvb_offset_exists(tvb
, 4))
951 call_data_dissector(tvb_new_subset_remaining(tvb
, 4), pinfo
, tree
);
955 dissect_optional_10(tvbuff_t
*tvb
, packet_info
*pinfo
, proto_tree
*tree
)
957 proto_tree_add_item(tree
, hf_sna_reserved
, tvb
, 2, 2, ENC_NA
);
958 proto_tree_add_item(tree
, hf_sna_nlp_opti_10_tcid
, tvb
, 4, 8, ENC_NA
);
959 if (tvb_offset_exists(tvb
, 12))
960 call_data_dissector(tvb_new_subset_remaining(tvb
, 12), pinfo
, tree
);
964 dissect_optional_12(tvbuff_t
*tvb
, proto_tree
*tree
)
966 proto_tree_add_item(tree
, hf_sna_reserved
, tvb
, 2, 2, ENC_NA
);
967 proto_tree_add_item(tree
, hf_sna_nlp_opti_12_sense
, tvb
, 4, -1, ENC_NA
);
971 dissect_optional_14(tvbuff_t
*tvb
, packet_info
*pinfo
, proto_tree
*tree
)
973 proto_tree
*sub_tree
;
974 int len
, pad
, type
, offset
, num
, sublen
;
975 static int * const opti_14_si_fields
[] = {
976 &hf_sna_nlp_opti_14_si_refifo
,
977 &hf_sna_nlp_opti_14_si_mobility
,
978 &hf_sna_nlp_opti_14_si_dirsearch
,
979 &hf_sna_nlp_opti_14_si_limitres
,
980 &hf_sna_nlp_opti_14_si_ncescope
,
981 &hf_sna_nlp_opti_14_si_mnpsrscv
,
984 static int * const opti_14_rr_fields
[] = {
985 &hf_sna_nlp_opti_14_rr_bfe
,
989 proto_tree_add_item(tree
, hf_sna_reserved
, tvb
, 2, 2, ENC_NA
);
993 len
= tvb_get_uint8(tvb
, offset
);
994 type
= tvb_get_uint8(tvb
, offset
+1);
996 if ((type
!= 0x83) || (len
<= 16)) {
998 call_data_dissector(tvb_new_subset_remaining(tvb
, offset
), pinfo
, tree
);
1001 sub_tree
= proto_tree_add_subtree(tree
, tvb
, offset
, len
,
1002 ett_sna_nlp_opti_14_si
, NULL
, "Switching Information Control Vector");
1004 proto_tree_add_uint(sub_tree
, hf_sna_nlp_opti_14_si_len
,
1005 tvb
, offset
, 1, len
);
1006 proto_tree_add_uint(sub_tree
, hf_sna_nlp_opti_14_si_key
,
1007 tvb
, offset
+1, 1, type
);
1009 proto_tree_add_bitmask(tree
, tvb
, offset
+2, hf_sna_nlp_opti_14_si_2
,
1010 ett_sna_nlp_opti_14_si_2
, opti_14_si_fields
, ENC_NA
);
1012 proto_tree_add_item(sub_tree
, hf_sna_reserved
, tvb
, offset
+3, 1, ENC_NA
);
1013 proto_tree_add_item(sub_tree
, hf_sna_nlp_opti_14_si_maxpsize
,
1014 tvb
, offset
+4, 4, ENC_BIG_ENDIAN
);
1015 proto_tree_add_item(sub_tree
, hf_sna_nlp_opti_14_si_switch
,
1016 tvb
, offset
+8, 4, ENC_BIG_ENDIAN
);
1017 proto_tree_add_item(sub_tree
, hf_sna_nlp_opti_14_si_alive
,
1018 tvb
, offset
+12, 4, ENC_BIG_ENDIAN
);
1020 dissect_sna_control(tvb
, offset
+16, len
-16, sub_tree
, 1, LT
);
1022 pad
= (len
+3) & 0xfffc;
1024 proto_tree_add_item(sub_tree
, hf_sna_padding
, tvb
, offset
+len
, pad
-len
, ENC_NA
);
1027 len
= tvb_get_uint8(tvb
, offset
);
1028 type
= tvb_get_uint8(tvb
, offset
+1);
1030 if ((type
!= 0x85) || ( len
< 4)) {
1032 call_data_dissector(tvb_new_subset_remaining(tvb
, offset
), pinfo
, tree
);
1035 sub_tree
= proto_tree_add_subtree(tree
, tvb
, offset
, len
,
1036 ett_sna_nlp_opti_14_rr
, NULL
, "Return Route TG Descriptor Control Vector");
1038 proto_tree_add_uint(sub_tree
, hf_sna_nlp_opti_14_rr_len
,
1039 tvb
, offset
, 1, len
);
1040 proto_tree_add_uint(sub_tree
, hf_sna_nlp_opti_14_rr_key
,
1041 tvb
, offset
+1, 1, type
);
1043 proto_tree_add_bitmask(tree
, tvb
, offset
+2, hf_sna_nlp_opti_14_rr_2
,
1044 ett_sna_nlp_opti_14_rr_2
, opti_14_rr_fields
, ENC_NA
);
1046 num
= tvb_get_uint8(tvb
, offset
+3);
1048 proto_tree_add_uint(sub_tree
, hf_sna_nlp_opti_14_rr_num
,
1049 tvb
, offset
+3, 1, num
);
1054 sublen
= tvb_get_uint8(tvb
, offset
);
1056 dissect_sna_control(tvb
, offset
, sublen
, sub_tree
, 1, LT
);
1059 call_data_dissector(tvb_new_subset_remaining(tvb
, offset
), pinfo
, tree
);
1062 /* No padding here */
1069 dissect_optional_22(tvbuff_t
*tvb
, packet_info
*pinfo
, proto_tree
*tree
)
1072 static int * const opti_22_2_fields
[] = {
1073 &hf_sna_nlp_opti_22_type
,
1074 &hf_sna_nlp_opti_22_raa
,
1075 &hf_sna_nlp_opti_22_parity
,
1076 &hf_sna_nlp_opti_22_arb
,
1079 static int * const opti_22_3_fields
[] = {
1080 &hf_sna_nlp_opti_22_ratereq
,
1081 &hf_sna_nlp_opti_22_raterep
,
1085 bits
= tvb_get_uint8(tvb
, 2);
1086 type
= (bits
& 0xc0) >> 6;
1088 proto_tree_add_bitmask(tree
, tvb
, 2, hf_sna_nlp_opti_22_2
,
1089 ett_sna_nlp_opti_22_2
, opti_22_2_fields
, ENC_NA
);
1091 proto_tree_add_bitmask(tree
, tvb
, 3, hf_sna_nlp_opti_22_3
,
1092 ett_sna_nlp_opti_22_3
, opti_22_3_fields
, ENC_NA
);
1094 proto_tree_add_item(tree
, hf_sna_nlp_opti_22_field1
,
1095 tvb
, 4, 4, ENC_BIG_ENDIAN
);
1096 proto_tree_add_item(tree
, hf_sna_nlp_opti_22_field2
,
1097 tvb
, 8, 4, ENC_BIG_ENDIAN
);
1100 proto_tree_add_item(tree
, hf_sna_nlp_opti_22_field3
,
1101 tvb
, 12, 4, ENC_BIG_ENDIAN
);
1102 proto_tree_add_item(tree
, hf_sna_nlp_opti_22_field4
,
1103 tvb
, 16, 4, ENC_BIG_ENDIAN
);
1105 if (tvb_offset_exists(tvb
, 20))
1106 call_data_dissector(tvb_new_subset_remaining(tvb
, 20), pinfo
, tree
);
1108 if (tvb_offset_exists(tvb
, 12))
1109 call_data_dissector(tvb_new_subset_remaining(tvb
, 12), pinfo
, tree
);
1114 dissect_optional(tvbuff_t
*tvb
, packet_info
*pinfo
, proto_tree
*tree
)
1116 proto_tree
*sub_tree
;
1117 int offset
, type
, len
;
1124 while (tvb_offset_exists(tvb
, offset
)) {
1125 len
= tvb_get_uint8(tvb
, offset
);
1126 type
= tvb_get_uint8(tvb
, offset
+1);
1128 /* Prevent loop for invalid crap in packet */
1130 call_data_dissector(tvb_new_subset_remaining(tvb
, offset
), pinfo
, tree
);
1134 ett
= ett_sna_nlp_opti_un
;
1135 if(type
== 0x0d) ett
= ett_sna_nlp_opti_0d
;
1136 if(type
== 0x0e) ett
= ett_sna_nlp_opti_0e
;
1137 if(type
== 0x0f) ett
= ett_sna_nlp_opti_0f
;
1138 if(type
== 0x10) ett
= ett_sna_nlp_opti_10
;
1139 if(type
== 0x12) ett
= ett_sna_nlp_opti_12
;
1140 if(type
== 0x14) ett
= ett_sna_nlp_opti_14
;
1141 if(type
== 0x22) ett
= ett_sna_nlp_opti_22
;
1143 sub_tree
= proto_tree_add_subtree(tree
, tvb
,
1144 offset
, len
<< 2, ett
, NULL
,
1145 val_to_str_const(type
, sna_nlp_opti_vals
, "Unknown Segment Type"));
1146 proto_tree_add_uint(sub_tree
, hf_sna_nlp_opti_len
,
1147 tvb
, offset
, 1, len
);
1148 proto_tree_add_uint(sub_tree
, hf_sna_nlp_opti_type
,
1149 tvb
, offset
+1, 1, type
);
1153 dissect_optional_0d(tvb_new_subset_length_caplen(tvb
, offset
,
1154 len
<< 2, -1), sub_tree
);
1157 dissect_optional_0e(tvb_new_subset_length_caplen(tvb
, offset
,
1158 len
<< 2, -1), pinfo
, sub_tree
);
1161 dissect_optional_0f(tvb_new_subset_length_caplen(tvb
, offset
,
1162 len
<< 2, -1), pinfo
, sub_tree
);
1165 dissect_optional_10(tvb_new_subset_length_caplen(tvb
, offset
,
1166 len
<< 2, -1), pinfo
, sub_tree
);
1169 dissect_optional_12(tvb_new_subset_length_caplen(tvb
, offset
,
1170 len
<< 2, -1), sub_tree
);
1173 dissect_optional_14(tvb_new_subset_length_caplen(tvb
, offset
,
1174 len
<< 2, -1), pinfo
, sub_tree
);
1177 dissect_optional_22(tvb_new_subset_length_caplen(tvb
, offset
,
1178 len
<< 2, -1), pinfo
, sub_tree
);
1181 call_data_dissector(tvb_new_subset_length_caplen(tvb
, offset
,
1182 len
<< 2, -1), pinfo
, sub_tree
);
1184 offset
+= (len
<< 2);
1189 dissect_nlp(tvbuff_t
*tvb
, packet_info
*pinfo
, proto_tree
*tree
,
1190 proto_tree
*parent_tree
)
1192 proto_tree
*nlp_tree
;
1193 proto_item
*nlp_item
;
1194 uint8_t nhdr_0
, nhdr_1
, nhdr_x
, thdr_8
, thdr_9
, fid
;
1195 uint32_t thdr_len
, thdr_dlf
;
1197 static int * const nlp_nhdr_0_fields
[] = {
1202 static int * const nlp_nhdr_1_fields
[] = {
1205 &hf_sna_nlp_slowdn1
,
1206 &hf_sna_nlp_slowdn2
,
1209 static int * const nlp_nhdr_8_fields
[] = {
1218 static int * const nlp_nhdr_9_fields
[] = {
1225 int indx
= 0, counter
= 0;
1230 nhdr_0
= tvb_get_uint8(tvb
, indx
);
1231 nhdr_1
= tvb_get_uint8(tvb
, indx
+1);
1233 col_set_str(pinfo
->cinfo
, COL_INFO
, "HPR NLP Packet");
1236 /* Don't bother setting length. We'll set it later after we
1237 * find the lengths of NHDR */
1238 nlp_item
= proto_tree_add_item(tree
, hf_sna_nlp_nhdr
, tvb
,
1240 nlp_tree
= proto_item_add_subtree(nlp_item
, ett_sna_nlp_nhdr
);
1242 proto_tree_add_bitmask(nlp_tree
, tvb
, indx
, hf_sna_nlp_nhdr_0
,
1243 ett_sna_nlp_nhdr_0
, nlp_nhdr_0_fields
, ENC_NA
);
1245 proto_tree_add_bitmask(nlp_tree
, tvb
, indx
+1, hf_sna_nlp_nhdr_1
,
1246 ett_sna_nlp_nhdr_1
, nlp_nhdr_1_fields
, ENC_NA
);
1248 /* ANR or FR lists */
1253 if ((nhdr_0
& 0xe0) == 0xa0) {
1255 nhdr_x
= tvb_get_uint8(tvb
, indx
+ counter
);
1257 } while (nhdr_x
!= 0xff);
1258 proto_tree_add_item(nlp_tree
,
1259 hf_sna_nlp_fra
, tvb
, indx
, counter
, ENC_NA
);
1261 proto_tree_add_item(nlp_tree
, hf_sna_reserved
, tvb
, indx
, 1, ENC_NA
);
1265 proto_item_set_len(nlp_item
, indx
);
1267 if ((nhdr_1
& 0xf0) == 0x10) {
1268 proto_tree_add_item(tree
, hf_sna_nlp_frh
,
1269 tvb
, indx
, 1, ENC_BIG_ENDIAN
);
1272 if (tvb_offset_exists(tvb
, indx
))
1273 call_data_dissector(tvb_new_subset_remaining(tvb
, indx
),
1274 pinfo
, parent_tree
);
1278 if ((nhdr_0
& 0xe0) == 0xc0) {
1280 nhdr_x
= tvb_get_uint8(tvb
, indx
+ counter
);
1282 } while (nhdr_x
!= 0xff);
1283 proto_tree_add_item(nlp_tree
, hf_sna_nlp_anr
,
1284 tvb
, indx
, counter
, ENC_NA
);
1287 proto_tree_add_item(nlp_tree
, hf_sna_reserved
, tvb
, indx
, 1, ENC_NA
);
1291 proto_item_set_len(nlp_item
, indx
);
1294 thdr_8
= tvb_get_uint8(tvb
, indx
+8);
1295 thdr_9
= tvb_get_uint8(tvb
, indx
+9);
1296 thdr_len
= tvb_get_ntohs(tvb
, indx
+10);
1297 thdr_dlf
= tvb_get_ntohl(tvb
, indx
+12);
1300 nlp_item
= proto_tree_add_item(tree
, hf_sna_nlp_thdr
, tvb
,
1301 indx
, thdr_len
<< 2, ENC_NA
);
1302 nlp_tree
= proto_item_add_subtree(nlp_item
, ett_sna_nlp_thdr
);
1304 proto_tree_add_item(nlp_tree
, hf_sna_nlp_tcid
, tvb
,
1307 proto_tree_add_bitmask(nlp_tree
, tvb
, indx
+8, hf_sna_nlp_thdr_8
,
1308 ett_sna_nlp_thdr_8
, nlp_nhdr_8_fields
, ENC_NA
);
1310 proto_tree_add_bitmask(nlp_tree
, tvb
, indx
+9, hf_sna_nlp_thdr_9
,
1311 ett_sna_nlp_thdr_9
, nlp_nhdr_9_fields
, ENC_NA
);
1313 proto_tree_add_uint(nlp_tree
, hf_sna_nlp_offset
, tvb
, indx
+10,
1315 proto_tree_add_uint(nlp_tree
, hf_sna_nlp_dlf
, tvb
, indx
+12,
1317 proto_tree_add_item(nlp_tree
, hf_sna_nlp_bsn
, tvb
, indx
+16,
1322 if (((thdr_9
& 0x18) == 0x08) && ((thdr_len
<< 2) > subindx
)) {
1323 counter
= tvb_get_uint8(tvb
, indx
+ subindx
);
1324 if (tvb_get_uint8(tvb
, indx
+subindx
+1) == 5)
1325 dissect_sna_control(tvb
, indx
+ subindx
, counter
+2, nlp_tree
, 1, LT
);
1327 call_data_dissector(tvb_new_subset_length_caplen(tvb
, indx
+ subindx
, counter
+2,
1328 -1), pinfo
, nlp_tree
);
1330 subindx
+= (counter
+2);
1332 if ((thdr_9
& 0x04) && ((thdr_len
<< 2) > subindx
))
1334 tvb_new_subset_length_caplen(tvb
, indx
+ subindx
,
1335 (thdr_len
<< 2) - subindx
, -1),
1338 indx
+= (thdr_len
<< 2);
1339 if (((thdr_8
& 0x20) == 0) && thdr_dlf
) {
1340 col_set_str(pinfo
->cinfo
, COL_INFO
, "HPR Fragment");
1341 if (tvb_offset_exists(tvb
, indx
)) {
1342 call_data_dissector(tvb_new_subset_remaining(tvb
, indx
), pinfo
,
1347 if (tvb_offset_exists(tvb
, indx
)) {
1348 /* Transmission Header Format Identifier */
1349 fid
= hi_nibble(tvb_get_uint8(tvb
, indx
));
1350 if (fid
== 5) /* Only FID5 allowed for HPR */
1351 dissect_fid(tvb_new_subset_remaining(tvb
, indx
), pinfo
,
1354 if (tvb_get_ntohs(tvb
, indx
+2) == 0x12ce) {
1356 col_set_str(pinfo
->cinfo
, COL_INFO
, "HPR Route Setup");
1357 dissect_gds(tvb_new_subset_remaining(tvb
, indx
),
1358 pinfo
, tree
, parent_tree
);
1360 call_data_dissector(tvb_new_subset_remaining(tvb
, indx
),
1361 pinfo
, parent_tree
);
1366 /* --------------------------------------------------------------------
1367 * Chapter 3 Exchange Identification (XID) Information Fields
1368 * --------------------------------------------------------------------
1372 dissect_xid1(tvbuff_t
*tvb
, proto_tree
*tree
)
1374 proto_tree_add_item(tree
, hf_sna_reserved
, tvb
, 0, 2, ENC_NA
);
1379 dissect_xid2(tvbuff_t
*tvb
, proto_tree
*tree
)
1381 unsigned dlen
, offset
;
1386 dlen
= tvb_get_uint8(tvb
, 0);
1390 while (tvb_offset_exists(tvb
, offset
)) {
1391 dlen
= tvb_get_uint8(tvb
, offset
+1);
1392 dissect_sna_control(tvb
, offset
, dlen
+2, tree
, 0, KL
);
1393 offset
+= (dlen
+ 2);
1398 dissect_xid3(tvbuff_t
*tvb
, proto_tree
*tree
)
1400 unsigned dlen
, offset
;
1401 static int * const sna_xid_3_fields
[] = {
1402 &hf_sna_xid_3_init_self
,
1403 &hf_sna_xid_3_stand_bind
,
1404 &hf_sna_xid_3_gener_bind
,
1405 &hf_sna_xid_3_recve_bind
,
1406 &hf_sna_xid_3_actpu
,
1407 &hf_sna_xid_3_nwnode
,
1410 &hf_sna_xid_3_state
,
1411 &hf_sna_xid_3_nonact
,
1412 &hf_sna_xid_3_cpchange
,
1415 static int * const sna_xid_10_fields
[] = {
1416 &hf_sna_xid_3_asend_bind
,
1417 &hf_sna_xid_3_arecv_bind
,
1418 &hf_sna_xid_3_quiesce
,
1419 &hf_sna_xid_3_pucap
,
1421 &hf_sna_xid_3_pacing
,
1424 static int * const sna_xid_11_fields
[] = {
1425 &hf_sna_xid_3_tgshare
,
1426 &hf_sna_xid_3_dedsvc
,
1429 static int * const sna_xid_12_fields
[] = {
1430 &hf_sna_xid_3_negcsup
,
1431 &hf_sna_xid_3_negcomp
,
1434 static int * const sna_xid_15_fields
[] = {
1435 &hf_sna_xid_3_partg
,
1439 &hf_sna_xid_3_genodai
,
1440 &hf_sna_xid_3_branch
,
1448 proto_tree_add_item(tree
, hf_sna_reserved
, tvb
, 0, 2, ENC_NA
);
1450 proto_tree_add_bitmask(tree
, tvb
, 2, hf_sna_xid_3_8
,
1451 ett_sna_xid_3_8
, sna_xid_3_fields
, ENC_BIG_ENDIAN
);
1453 proto_tree_add_bitmask(tree
, tvb
, 4, hf_sna_xid_3_10
,
1454 ett_sna_xid_3_10
, sna_xid_10_fields
, ENC_BIG_ENDIAN
);
1456 proto_tree_add_bitmask(tree
, tvb
, 5, hf_sna_xid_3_11
,
1457 ett_sna_xid_3_11
, sna_xid_11_fields
, ENC_BIG_ENDIAN
);
1459 proto_tree_add_bitmask(tree
, tvb
, 6, hf_sna_xid_3_12
,
1460 ett_sna_xid_3_12
, sna_xid_12_fields
, ENC_BIG_ENDIAN
);
1462 proto_tree_add_item(tree
, hf_sna_reserved
, tvb
, 7, 2, ENC_NA
);
1464 proto_tree_add_bitmask(tree
, tvb
, 9, hf_sna_xid_3_15
,
1465 ett_sna_xid_3_15
, sna_xid_15_fields
, ENC_BIG_ENDIAN
);
1467 proto_tree_add_item(tree
, hf_sna_xid_3_tg
, tvb
, 10, 1, ENC_BIG_ENDIAN
);
1468 proto_tree_add_item(tree
, hf_sna_xid_3_dlc
, tvb
, 11, 1, ENC_BIG_ENDIAN
);
1470 dlen
= tvb_get_uint8(tvb
, 12);
1472 proto_tree_add_uint(tree
, hf_sna_xid_3_dlen
, tvb
, 12, 1, dlen
);
1474 /* FIXME: DLC Dependent Data Go Here */
1478 while (tvb_offset_exists(tvb
, offset
)) {
1479 dlen
= tvb_get_uint8(tvb
, offset
+1);
1480 dissect_sna_control(tvb
, offset
, dlen
+2, tree
, 0, KL
);
1486 dissect_xid(tvbuff_t
*tvb
, packet_info
*pinfo
, proto_tree
*tree
,
1487 proto_tree
*parent_tree
)
1489 proto_tree
*sub_tree
;
1490 proto_item
*sub_ti
= NULL
;
1491 int format
, type
, len
;
1494 len
= tvb_get_uint8(tvb
, 1);
1495 type
= tvb_get_uint8(tvb
, 0);
1496 id
= tvb_get_ntohl(tvb
, 2);
1497 format
= hi_nibble(type
);
1499 /* Summary information */
1500 col_add_fstr(pinfo
->cinfo
, COL_INFO
,
1501 "SNA XID Format:%d Type:%s", format
,
1502 val_to_str_const(lo_nibble(type
), sna_xid_type_vals
,
1506 sub_ti
= proto_tree_add_item(tree
, hf_sna_xid_0
, tvb
,
1507 0, 1, ENC_BIG_ENDIAN
);
1508 sub_tree
= proto_item_add_subtree(sub_ti
, ett_sna_xid_0
);
1510 proto_tree_add_uint(sub_tree
, hf_sna_xid_format
, tvb
, 0, 1,
1512 proto_tree_add_uint(sub_tree
, hf_sna_xid_type
, tvb
, 0, 1,
1515 proto_tree_add_uint(tree
, hf_sna_xid_len
, tvb
, 1, 1, len
);
1517 sub_ti
= proto_tree_add_item(tree
, hf_sna_xid_id
, tvb
,
1518 2, 4, ENC_BIG_ENDIAN
);
1519 sub_tree
= proto_item_add_subtree(sub_ti
, ett_sna_xid_id
);
1521 proto_tree_add_uint(sub_tree
, hf_sna_xid_idblock
, tvb
, 2, 4,
1523 proto_tree_add_uint(sub_tree
, hf_sna_xid_idnum
, tvb
, 2, 4,
1530 dissect_xid1(tvb_new_subset_length_caplen(tvb
, 6, len
-6, -1),
1534 dissect_xid2(tvb_new_subset_length_caplen(tvb
, 6, len
-6, -1),
1538 dissect_xid3(tvb_new_subset_length_caplen(tvb
, 6, len
-6, -1),
1542 /* external standards organizations */
1543 call_data_dissector(tvb_new_subset_length_caplen(tvb
, 6, len
-6, -1),
1551 if (tvb_offset_exists(tvb
, len
))
1552 call_data_dissector(tvb_new_subset_remaining(tvb
, len
), pinfo
, parent_tree
);
1555 /* --------------------------------------------------------------------
1556 * Chapter 4 Transmission Headers (THs)
1557 * --------------------------------------------------------------------
1563 mpf_value(uint8_t th_byte
)
1565 return (th_byte
& 0x0c) >> 2;
1568 #define FIRST_FRAG_NUMBER 0
1569 #define MIDDLE_FRAG_NUMBER 1
1570 #define LAST_FRAG_NUMBER 2
1572 /* FID2 is defragged by sequence. The weird thing is that we have neither
1573 * absolute sequence numbers, nor byte offets. Other FIDs have byte offsets
1574 * (the DCF field), but not FID2. The only thing we have to go with is "FIRST",
1575 * "MIDDLE", or "LAST". If the BIU is split into 3 frames, then everything is
1576 * fine, * "FIRST", "MIDDLE", and "LAST" map nicely onto frag-number 0, 1,
1577 * and 2. However, if the BIU is split into 2 frames, then we only have
1578 * "FIRST" and "LAST", and the mapping *should* be frag-number 0 and 1,
1581 * The SNA docs say "FID2 PIUs cannot be blocked because there is no DCF in the
1582 * TH format for deblocking" (note on Figure 4-2 in the IBM SNA documention,
1583 * see the FTP URL in the comment near the top of this file). I *think*
1584 * this means that the fragmented frames cannot arrive out of order.
1585 * Well, I *want* it to mean this, because w/o this limitation, if you
1586 * get a "FIRST" frame and a "LAST" frame, how long should you wait to
1587 * see if a "MIDDLE" frame every arrives????? Thus, if frames *have* to
1588 * arrive in order, then we're saved.
1590 * The problem then boils down to figuring out if "LAST" means frag-number 1
1591 * (in the case of a BIU split into 2 frames) or frag-number 2
1592 * (in the case of a BIU split into 3 frames).
1594 * Assuming fragmented FID2 BIU frames *do* arrive in order, the obvious
1595 * way to handle the mapping of "LAST" to either frag-number 1 or
1596 * frag-number 2 is to keep a hash which tracks the frames seen, etc.
1597 * This consumes resources. A trickier way, but a way which works, is to
1598 * always map the "LAST" BIU segment to frag-number 2. Here's the trickery:
1599 * if we add frag-number 2, which we know to be the "LAST" BIU segment,
1600 * and the reassembly code tells us that the BIU is still not reassmebled,
1601 * then, owing to the, ahem, /fact/, that fragmented BIU segments arrive
1602 * in order :), we know that 1) "FIRST" did come, and 2) there's no "MIDDLE",
1603 * because this BIU was fragmented into 2 frames, not 3. So, we'll be
1604 * tricky and add a zero-length "MIDDLE" BIU frame (i.e, frag-number 1)
1605 * to complete the reassembly.
1608 defragment_by_sequence(packet_info
*pinfo
, tvbuff_t
*tvb
, int offset
, int mpf
,
1611 fragment_head
*fd_head
;
1612 int frag_number
= -1;
1613 bool more_frags
= true;
1614 tvbuff_t
*rh_tvb
= NULL
;
1617 /* Determine frag_number and more_frags */
1622 case MPF_FIRST_SEGMENT
:
1623 frag_number
= FIRST_FRAG_NUMBER
;
1625 case MPF_MIDDLE_SEGMENT
:
1626 frag_number
= MIDDLE_FRAG_NUMBER
;
1628 case MPF_LAST_SEGMENT
:
1629 frag_number
= LAST_FRAG_NUMBER
;
1633 DISSECTOR_ASSERT_NOT_REACHED();
1636 /* If sna_defragment is on, and this is a fragment.. */
1637 if (frag_number
> -1) {
1638 /* XXX - check length ??? */
1639 frag_len
= tvb_reported_length_remaining(tvb
, offset
);
1640 if (tvb_bytes_exist(tvb
, offset
, frag_len
)) {
1641 fd_head
= fragment_add_seq(&sna_reassembly_table
,
1642 tvb
, offset
, pinfo
, id
, NULL
,
1643 frag_number
, frag_len
, more_frags
, 0);
1645 /* We added the LAST segment and reassembly didn't
1646 * complete. Insert a zero-length MIDDLE segment to
1647 * turn a 2-frame BIU-fragmentation into a 3-frame
1648 * BIU-fragmentation (empty middle frag).
1649 * See above long comment about this trickery. */
1651 if (mpf
== MPF_LAST_SEGMENT
&& !fd_head
) {
1652 fd_head
= fragment_add_seq(&sna_reassembly_table
,
1653 tvb
, offset
, pinfo
, id
, NULL
,
1654 MIDDLE_FRAG_NUMBER
, 0, true, 0);
1657 if (fd_head
!= NULL
) {
1658 /* We have the complete reassembled payload. */
1659 rh_tvb
= tvb_new_chain(tvb
, fd_head
->tvb_data
);
1661 /* Add the defragmented data to the data
1663 add_new_data_source(pinfo
, rh_tvb
,
1664 "Reassembled SNA BIU");
1671 #define SNA_FID01_ADDR_LEN 2
1673 /* FID Types 0 and 1 */
1675 dissect_fid0_1(tvbuff_t
*tvb
, packet_info
*pinfo
, proto_tree
*tree
)
1677 proto_tree
*bf_tree
;
1678 proto_item
*bf_item
;
1681 const int bytes_in_header
= 10;
1685 th_0
= tvb_get_uint8(tvb
, 0);
1686 bf_item
= proto_tree_add_uint(tree
, hf_sna_th_0
, tvb
, 0, 1,
1688 bf_tree
= proto_item_add_subtree(bf_item
, ett_sna_th_fid
);
1690 proto_tree_add_uint(bf_tree
, hf_sna_th_fid
, tvb
, 0, 1, th_0
);
1691 proto_tree_add_uint(bf_tree
, hf_sna_th_mpf
, tvb
, 0, 1, th_0
);
1692 proto_tree_add_uint(bf_tree
, hf_sna_th_efi
, tvb
, 0, 1, th_0
);
1695 proto_tree_add_item(tree
, hf_sna_reserved
, tvb
, 1, 1, ENC_NA
);
1698 proto_tree_add_item(tree
, hf_sna_th_daf
, tvb
, 2, 2, ENC_BIG_ENDIAN
);
1702 set_address_tvb(&pinfo
->net_dst
, sna_address_type
, SNA_FID01_ADDR_LEN
, tvb
, 2);
1703 copy_address_shallow(&pinfo
->dst
, &pinfo
->net_dst
);
1705 proto_tree_add_item(tree
, hf_sna_th_oaf
, tvb
, 4, 2, ENC_BIG_ENDIAN
);
1708 set_address_tvb(&pinfo
->net_src
, sna_address_type
, SNA_FID01_ADDR_LEN
, tvb
, 4);
1709 copy_address_shallow(&pinfo
->src
, &pinfo
->net_src
);
1711 proto_tree_add_item(tree
, hf_sna_th_snf
, tvb
, 6, 2, ENC_BIG_ENDIAN
);
1712 proto_tree_add_item(tree
, hf_sna_th_dcf
, tvb
, 8, 2, ENC_BIG_ENDIAN
);
1714 return bytes_in_header
;
1717 #define SNA_FID2_ADDR_LEN 1
1721 dissect_fid2(tvbuff_t
*tvb
, packet_info
*pinfo
, proto_tree
*tree
,
1722 tvbuff_t
**rh_tvb_ptr
, next_dissection_t
*continue_dissecting
)
1724 proto_tree
*bf_tree
;
1725 proto_item
*bf_item
;
1727 unsigned int mpf
, id
;
1729 const int bytes_in_header
= 6;
1731 th_0
= tvb_get_uint8(tvb
, 0);
1732 mpf
= mpf_value(th_0
);
1737 bf_item
= proto_tree_add_item(tree
, hf_sna_th_0
, tvb
, 0, 1, ENC_BIG_ENDIAN
);
1738 bf_tree
= proto_item_add_subtree(bf_item
, ett_sna_th_fid
);
1740 proto_tree_add_item(bf_tree
, hf_sna_th_fid
, tvb
, 0, 1, ENC_BIG_ENDIAN
);
1741 proto_tree_add_item(bf_tree
, hf_sna_th_mpf
, tvb
, 0, 1, ENC_BIG_ENDIAN
);
1742 proto_tree_add_item(bf_tree
, hf_sna_th_odai
,tvb
, 0, 1, ENC_BIG_ENDIAN
);
1743 proto_tree_add_item(bf_tree
, hf_sna_th_efi
, tvb
, 0, 1, ENC_BIG_ENDIAN
);
1747 proto_tree_add_item(tree
, hf_sna_reserved
, tvb
, 1, 1, ENC_NA
);
1750 proto_tree_add_item(tree
, hf_sna_th_daf
, tvb
, 2, 1, ENC_BIG_ENDIAN
);
1754 set_address_tvb(&pinfo
->net_dst
, sna_address_type
, SNA_FID2_ADDR_LEN
, tvb
, 2);
1755 copy_address_shallow(&pinfo
->dst
, &pinfo
->net_dst
);
1758 proto_tree_add_item(tree
, hf_sna_th_oaf
, tvb
, 3, 1, ENC_BIG_ENDIAN
);
1761 set_address_tvb(&pinfo
->net_src
, sna_address_type
, SNA_FID2_ADDR_LEN
, tvb
, 3);
1762 copy_address_shallow(&pinfo
->src
, &pinfo
->net_src
);
1764 id
= tvb_get_ntohs(tvb
, 4);
1765 proto_tree_add_item(tree
, hf_sna_th_snf
, tvb
, 4, 2, ENC_BIG_ENDIAN
);
1767 if (mpf
!= MPF_WHOLE_BIU
&& !sna_defragment
) {
1768 if (mpf
== MPF_FIRST_SEGMENT
) {
1769 *continue_dissecting
= rh_only
;
1771 *continue_dissecting
= stop_here
;
1775 else if (sna_defragment
) {
1776 *rh_tvb_ptr
= defragment_by_sequence(pinfo
, tvb
,
1777 bytes_in_header
, mpf
, id
);
1780 return bytes_in_header
;
1785 dissect_fid3(tvbuff_t
*tvb
, proto_tree
*tree
)
1787 proto_tree
*bf_tree
;
1788 proto_item
*bf_item
;
1791 const int bytes_in_header
= 2;
1793 /* If we're not filling a proto_tree, return now */
1795 return bytes_in_header
;
1797 th_0
= tvb_get_uint8(tvb
, 0);
1799 /* Create the bitfield tree */
1800 bf_item
= proto_tree_add_uint(tree
, hf_sna_th_0
, tvb
, 0, 1, th_0
);
1801 bf_tree
= proto_item_add_subtree(bf_item
, ett_sna_th_fid
);
1803 proto_tree_add_uint(bf_tree
, hf_sna_th_fid
, tvb
, 0, 1, th_0
);
1804 proto_tree_add_uint(bf_tree
, hf_sna_th_mpf
, tvb
, 0, 1, th_0
);
1805 proto_tree_add_uint(bf_tree
, hf_sna_th_efi
, tvb
, 0, 1, th_0
);
1807 proto_tree_add_item(tree
, hf_sna_th_lsid
, tvb
, 1, 1, ENC_BIG_ENDIAN
);
1809 return bytes_in_header
;
1813 dissect_fid4(tvbuff_t
*tvb
, packet_info
*pinfo
, proto_tree
*tree
)
1816 uint8_t th_byte
, mft
;
1818 uint32_t dsaf
, osaf
;
1819 static int * const byte0_fields
[] = {
1821 &hf_sna_th_tg_sweep
,
1822 &hf_sna_th_er_vr_supp_ind
,
1823 &hf_sna_th_vr_pac_cnt_ind
,
1824 &hf_sna_th_ntwk_prty
,
1827 static int * const byte1_fields
[] = {
1833 static int * const byte2_mft_fields
[] = {
1839 static int * const byte2_fields
[] = {
1844 static int * const byte3_fields
[] = {
1849 static int * const byte4_fields
[] = {
1851 &hf_sna_th_tg_nonfifo_ind
,
1853 /* I'm not sure about byte-order on this one... */
1857 static int * const byte6_fields
[] = {
1862 /* I'm not sure about byte-order on this one... */
1863 &hf_sna_th_vr_snf_send
,
1866 static int * const byte16_fields
[] = {
1868 /* We luck out here because in their infinite wisdom the SNA
1869 * architects placed the MPF and EFI fields in the same bitfield
1870 * locations, even though for FID4 they're not in byte 0.
1877 struct sna_fid_type_4_addr
*src
, *dst
;
1879 const int bytes_in_header
= 26;
1881 /* If we're not filling a proto_tree, return now */
1883 return bytes_in_header
;
1886 proto_tree_add_bitmask(tree
, tvb
, offset
, hf_sna_th_0
,
1887 ett_sna_th_fid
, byte0_fields
, ENC_NA
);
1890 th_byte
= tvb_get_uint8(tvb
, offset
);
1893 proto_tree_add_bitmask(tree
, tvb
, offset
, hf_sna_th_byte1
,
1894 ett_sna_th_fid
, byte1_fields
, ENC_NA
);
1896 mft
= th_byte
& 0x04;
1901 proto_tree_add_bitmask(tree
, tvb
, offset
, hf_sna_th_byte2
,
1902 ett_sna_th_fid
, byte2_mft_fields
, ENC_NA
);
1904 proto_tree_add_bitmask(tree
, tvb
, offset
, hf_sna_th_byte2
,
1905 ett_sna_th_fid
, byte2_fields
, ENC_NA
);
1911 proto_tree_add_bitmask(tree
, tvb
, offset
, hf_sna_th_byte3
,
1912 ett_sna_th_fid
, byte3_fields
, ENC_NA
);
1916 proto_tree_add_bitmask(tree
, tvb
, offset
, hf_sna_th_byte4
,
1917 ett_sna_th_fid
, byte4_fields
, ENC_BIG_ENDIAN
);
1920 /* Create the bitfield tree */
1921 proto_tree_add_bitmask(tree
, tvb
, offset
, hf_sna_th_byte6
,
1922 ett_sna_th_fid
, byte6_fields
, ENC_BIG_ENDIAN
);
1925 dsaf
= tvb_get_ntohl(tvb
, 8);
1927 proto_tree_add_uint(tree
, hf_sna_th_dsaf
, tvb
, offset
, 4, dsaf
);
1931 osaf
= tvb_get_ntohl(tvb
, 12);
1933 proto_tree_add_uint(tree
, hf_sna_th_osaf
, tvb
, offset
, 4, osaf
);
1938 proto_tree_add_bitmask(tree
, tvb
, offset
, hf_sna_th_byte16
,
1939 ett_sna_th_fid
, byte16_fields
, ENC_NA
);
1941 /* 1 for byte 16, 1 for byte 17 which is reserved */
1944 def
= tvb_get_ntohs(tvb
, 18);
1946 proto_tree_add_uint(tree
, hf_sna_th_def
, tvb
, offset
, 2, def
);
1948 /* Addresses in FID 4 are discontiguous, sigh */
1949 dst
= wmem_new0(pinfo
->pool
, struct sna_fid_type_4_addr
);
1952 set_address(&pinfo
->net_dst
, sna_address_type
, SNA_FID_TYPE_4_ADDR_LEN
, dst
);
1953 copy_address_shallow(&pinfo
->dst
, &pinfo
->net_dst
);
1955 oef
= tvb_get_ntohs(tvb
, 20);
1956 proto_tree_add_uint(tree
, hf_sna_th_oef
, tvb
, offset
+2, 2, oef
);
1958 /* Addresses in FID 4 are discontiguous, sigh */
1959 src
= wmem_new0(pinfo
->pool
, struct sna_fid_type_4_addr
);
1962 set_address(&pinfo
->net_src
, sna_address_type
, SNA_FID_TYPE_4_ADDR_LEN
, src
);
1963 copy_address_shallow(&pinfo
->src
, &pinfo
->net_src
);
1965 proto_tree_add_item(tree
, hf_sna_th_snf
, tvb
, offset
+4, 2, ENC_BIG_ENDIAN
);
1966 proto_tree_add_item(tree
, hf_sna_th_dcf
, tvb
, offset
+6, 2, ENC_BIG_ENDIAN
);
1968 return bytes_in_header
;
1973 dissect_fid5(tvbuff_t
*tvb
, proto_tree
*tree
)
1975 proto_tree
*bf_tree
;
1976 proto_item
*bf_item
;
1979 const int bytes_in_header
= 12;
1981 /* If we're not filling a proto_tree, return now */
1983 return bytes_in_header
;
1985 th_0
= tvb_get_uint8(tvb
, 0);
1987 /* Create the bitfield tree */
1988 bf_item
= proto_tree_add_uint(tree
, hf_sna_th_0
, tvb
, 0, 1, th_0
);
1989 bf_tree
= proto_item_add_subtree(bf_item
, ett_sna_th_fid
);
1991 proto_tree_add_uint(bf_tree
, hf_sna_th_fid
, tvb
, 0, 1, th_0
);
1992 proto_tree_add_uint(bf_tree
, hf_sna_th_mpf
, tvb
, 0, 1, th_0
);
1993 proto_tree_add_uint(bf_tree
, hf_sna_th_efi
, tvb
, 0, 1, th_0
);
1995 proto_tree_add_item(tree
, hf_sna_reserved
, tvb
, 1, 1, ENC_NA
);
1996 proto_tree_add_item(tree
, hf_sna_th_snf
, tvb
, 2, 2, ENC_BIG_ENDIAN
);
1998 proto_tree_add_item(tree
, hf_sna_th_sa
, tvb
, 4, 8, ENC_NA
);
2000 return bytes_in_header
;
2006 dissect_fidf(tvbuff_t
*tvb
, proto_tree
*tree
)
2008 proto_tree
*bf_tree
;
2009 proto_item
*bf_item
;
2012 const int bytes_in_header
= 26;
2014 /* If we're not filling a proto_tree, return now */
2016 return bytes_in_header
;
2018 th_0
= tvb_get_uint8(tvb
, 0);
2020 /* Create the bitfield tree */
2021 bf_item
= proto_tree_add_uint(tree
, hf_sna_th_0
, tvb
, 0, 1, th_0
);
2022 bf_tree
= proto_item_add_subtree(bf_item
, ett_sna_th_fid
);
2024 proto_tree_add_uint(bf_tree
, hf_sna_th_fid
, tvb
, 0, 1, th_0
);
2025 proto_tree_add_item(tree
, hf_sna_reserved
, tvb
, 1, 1, ENC_NA
);
2027 proto_tree_add_item(tree
, hf_sna_th_cmd_fmt
, tvb
, 2, 1, ENC_BIG_ENDIAN
);
2028 proto_tree_add_item(tree
, hf_sna_th_cmd_type
, tvb
, 3, 1, ENC_BIG_ENDIAN
);
2029 proto_tree_add_item(tree
, hf_sna_th_cmd_sn
, tvb
, 4, 2, ENC_BIG_ENDIAN
);
2031 /* Yup, bytes 6-23 are reserved! */
2032 proto_tree_add_item(tree
, hf_sna_reserved
, tvb
, 6, 18, ENC_NA
);
2034 proto_tree_add_item(tree
, hf_sna_th_dcf
, tvb
, 24, 2, ENC_BIG_ENDIAN
);
2036 return bytes_in_header
;
2040 dissect_fid(tvbuff_t
*tvb
, packet_info
*pinfo
, proto_tree
*tree
,
2041 proto_tree
*parent_tree
)
2044 proto_tree
*th_tree
= NULL
, *rh_tree
= NULL
;
2045 proto_item
*th_ti
= NULL
, *rh_ti
= NULL
;
2047 int th_header_len
= 0;
2048 int offset
, rh_offset
;
2049 tvbuff_t
*rh_tvb
= NULL
;
2050 next_dissection_t continue_dissecting
= everything
;
2052 /* Transmission Header Format Identifier */
2053 th_fid
= hi_nibble(tvb_get_uint8(tvb
, 0));
2055 /* Summary information */
2056 col_add_str(pinfo
->cinfo
, COL_INFO
,
2057 val_to_str(th_fid
, sna_th_fid_vals
, "Unknown FID: %01x"));
2061 /* Don't bother setting length. We'll set it later after we
2062 * find the length of TH */
2063 th_ti
= proto_tree_add_item(tree
, hf_sna_th
, tvb
, 0, -1,
2065 th_tree
= proto_item_add_subtree(th_ti
, ett_sna_th
);
2068 /* Get size of TH */
2072 th_header_len
= dissect_fid0_1(tvb
, pinfo
, th_tree
);
2075 th_header_len
= dissect_fid2(tvb
, pinfo
, th_tree
,
2076 &rh_tvb
, &continue_dissecting
);
2079 th_header_len
= dissect_fid3(tvb
, th_tree
);
2082 th_header_len
= dissect_fid4(tvb
, pinfo
, th_tree
);
2085 th_header_len
= dissect_fid5(tvb
, th_tree
);
2088 th_header_len
= dissect_fidf(tvb
, th_tree
);
2091 call_data_dissector(tvb_new_subset_remaining(tvb
, 1), pinfo
, parent_tree
);
2095 offset
= th_header_len
;
2097 /* Short-circuit ? */
2098 if (continue_dissecting
== stop_here
) {
2099 proto_tree_add_item(tree
, hf_sna_biu_segment_data
, tvb
, offset
, -1, ENC_NA
);
2103 /* If the FID dissector function didn't create an rh_tvb, then we just
2104 * use the rest of our tvbuff as the rh_tvb. */
2106 rh_tvb
= tvb_new_subset_remaining(tvb
, offset
);
2109 /* Process the rest of the SNA packet, starting with RH */
2111 proto_item_set_len(th_ti
, th_header_len
);
2114 rh_ti
= proto_tree_add_item(tree
, hf_sna_rh
, rh_tvb
, rh_offset
,
2116 rh_tree
= proto_item_add_subtree(rh_ti
, ett_sna_rh
);
2117 dissect_rh(rh_tvb
, rh_offset
, rh_tree
);
2120 rh_offset
+= RH_LEN
;
2122 if (tvb_offset_exists(rh_tvb
, rh_offset
)) {
2123 /* Short-circuit ? */
2124 if (continue_dissecting
== rh_only
) {
2125 proto_tree_add_item(tree
, hf_sna_biu_segment_data
, rh_tvb
, rh_offset
, -1, ENC_NA
);
2129 call_data_dissector(tvb_new_subset_remaining(rh_tvb
, rh_offset
),
2130 pinfo
, parent_tree
);
2134 /* --------------------------------------------------------------------
2135 * Chapter 5 Request/Response Headers (RHs)
2136 * --------------------------------------------------------------------
2140 dissect_rh(tvbuff_t
*tvb
, int offset
, proto_tree
*tree
)
2144 static int * const sna_rh_fields
[] = {
2146 &hf_sna_rh_ru_category
,
2153 static int * const sna_rh_1_req_fields
[] = {
2163 static int * const sna_rh_1_rsp_fields
[] = {
2171 static int * const sna_rh_2_req_fields
[] = {
2185 /* Create the bitfield tree for byte 0*/
2186 rh_0
= tvb_get_uint8(tvb
, offset
);
2187 is_response
= (rh_0
& 0x80);
2189 proto_tree_add_bitmask(tree
, tvb
, offset
, hf_sna_rh_0
,
2190 ett_sna_rh_0
, sna_rh_fields
, ENC_BIG_ENDIAN
);
2193 /* Create the bitfield tree for byte 1*/
2195 proto_tree_add_bitmask(tree
, tvb
, offset
, hf_sna_rh_1
,
2196 ett_sna_rh_1
, sna_rh_1_rsp_fields
, ENC_BIG_ENDIAN
);
2198 proto_tree_add_bitmask(tree
, tvb
, offset
, hf_sna_rh_1
,
2199 ett_sna_rh_1
, sna_rh_1_req_fields
, ENC_BIG_ENDIAN
);
2203 /* Create the bitfield tree for byte 2*/
2205 proto_tree_add_bitmask(tree
, tvb
, offset
, hf_sna_rh_2
,
2206 ett_sna_rh_2
, sna_rh_2_req_fields
, ENC_BIG_ENDIAN
);
2208 proto_tree_add_item(tree
, hf_sna_rh_2
, tvb
, offset
, 1, ENC_BIG_ENDIAN
);
2211 /* XXX - check for sdi. If true, the next 4 bytes will be sense data */
2214 /* --------------------------------------------------------------------
2215 * Chapter 6 Request/Response Units (RUs)
2216 * --------------------------------------------------------------------
2219 /* --------------------------------------------------------------------
2220 * Chapter 9 Common Fields
2221 * --------------------------------------------------------------------
2225 // NOLINTNEXTLINE(misc-no-recursion)
2226 dissect_control_05hpr(tvbuff_t
*tvb
, proto_tree
*tree
, int hpr
,
2229 uint16_t offset
, len
, pad
;
2230 static int * const sna_control_05hpr_fields
[] = {
2231 &hf_sna_control_05_ptp
,
2238 proto_tree_add_bitmask(tree
, tvb
, 2, hf_sna_control_05_type
,
2239 ett_sna_control_05hpr_type
, sna_control_05hpr_fields
, ENC_BIG_ENDIAN
);
2241 proto_tree_add_item(tree
, hf_sna_reserved
, tvb
, 3, 1, ENC_NA
);
2245 while (tvb_offset_exists(tvb
, offset
)) {
2247 len
= tvb_get_uint8(tvb
, offset
+0);
2249 len
= tvb_get_uint8(tvb
, offset
+1);
2252 // We recurse here, but we'll run out of packet before we run out of stack.
2253 dissect_sna_control(tvb
, offset
, len
, tree
, hpr
, parse
);
2254 pad
= (len
+3) & 0xfffc;
2256 proto_tree_add_item(tree
, hf_sna_padding
, tvb
, offset
+len
, pad
-len
, ENC_NA
);
2266 dissect_control_05(tvbuff_t
*tvb
, proto_tree
*tree
)
2271 proto_tree_add_item(tree
, hf_sna_control_05_delay
, tvb
, 2, 2, ENC_BIG_ENDIAN
);
2275 dissect_control_0e(tvbuff_t
*tvb
, proto_tree
*tree
)
2282 proto_tree_add_item(tree
, hf_sna_control_0e_type
, tvb
, 2, 1, ENC_BIG_ENDIAN
);
2284 len
= tvb_reported_length_remaining(tvb
, 3);
2288 proto_tree_add_item(tree
, hf_sna_control_0e_value
, tvb
, 3, len
, ENC_EBCDIC
);
2292 // NOLINTNEXTLINE(misc-no-recursion)
2293 dissect_sna_control(tvbuff_t
*parent_tvb
, int offset
, int control_len
,
2294 proto_tree
*tree
, int hpr
, enum parse parse
)
2297 int length
, reported_length
;
2298 proto_tree
*sub_tree
;
2302 length
= tvb_captured_length_remaining(parent_tvb
, offset
);
2303 reported_length
= tvb_reported_length_remaining(parent_tvb
, offset
);
2304 if (control_len
< length
)
2305 length
= control_len
;
2306 if (control_len
< reported_length
)
2307 reported_length
= control_len
;
2308 tvb
= tvb_new_subset_length_caplen(parent_tvb
, offset
, length
, reported_length
);
2313 len
= tvb_get_uint8(tvb
, 0);
2314 key
= tvb_get_uint8(tvb
, 1);
2316 key
= tvb_get_uint8(tvb
, 0);
2317 len
= tvb_get_uint8(tvb
, 1);
2319 ett
= ett_sna_control_un
;
2323 if (hpr
) ett
= ett_sna_control_05hpr
;
2324 else ett
= ett_sna_control_05
;
2326 if (key
== 0x0e) ett
= ett_sna_control_0e
;
2328 if (((key
== 0) || (key
== 3) || (key
== 5)) && hpr
)
2329 sub_tree
= proto_tree_add_subtree(tree
, tvb
, 0, -1, ett
, NULL
,
2330 val_to_str_const(key
, sna_control_hpr_vals
,
2331 "Unknown Control Vector"));
2333 sub_tree
= proto_tree_add_subtree(tree
, tvb
, 0, -1, ett
, NULL
,
2334 val_to_str_const(key
, sna_control_vals
,
2335 "Unknown Control Vector"));
2337 proto_tree_add_uint(sub_tree
, hf_sna_control_len
,
2339 if (((key
== 0) || (key
== 3) || (key
== 5)) && hpr
)
2340 proto_tree_add_uint(sub_tree
,
2341 hf_sna_control_hprkey
, tvb
, 1, 1, key
);
2343 proto_tree_add_uint(sub_tree
,
2344 hf_sna_control_key
, tvb
, 1, 1, key
);
2346 if (((key
== 0) || (key
== 3) || (key
== 5)) && hpr
)
2347 proto_tree_add_uint(sub_tree
,
2348 hf_sna_control_hprkey
, tvb
, 0, 1, key
);
2350 proto_tree_add_uint(sub_tree
,
2351 hf_sna_control_key
, tvb
, 0, 1, key
);
2352 proto_tree_add_uint(sub_tree
, hf_sna_control_len
,
2359 // We recurse here, but we'll run out of packet before we run out of stack.
2360 dissect_control_05hpr(tvb
, sub_tree
, hpr
,
2363 dissect_control_05(tvb
, sub_tree
);
2366 dissect_control_0e(tvb
, sub_tree
);
2371 /* --------------------------------------------------------------------
2372 * Chapter 11 Function Management (FM) Headers
2373 * --------------------------------------------------------------------
2376 /* --------------------------------------------------------------------
2377 * Chapter 12 Presentation Services (PS) Headers
2378 * --------------------------------------------------------------------
2381 /* --------------------------------------------------------------------
2382 * Chapter 13 GDS Variables
2383 * --------------------------------------------------------------------
2387 dissect_gds(tvbuff_t
*tvb
, packet_info
*pinfo
, proto_tree
*tree
,
2388 proto_tree
*parent_tree
)
2394 proto_tree
*subtree
;
2395 bool first_ll
= true;
2398 length
= tvb_get_ntohs(tvb
, offset
) & 0x7fff;
2399 cont
= (tvb_get_ntohs(tvb
, offset
) & 0x8000) ? 1 : 0;
2401 pi
= proto_tree_add_item(tree
, hf_sna_gds
, tvb
, offset
, -1, ENC_NA
);
2402 subtree
= proto_item_add_subtree(pi
, ett_sna_gds
);
2403 proto_tree_add_item(subtree
, hf_sna_gds_len
, tvb
, offset
, 2, ENC_BIG_ENDIAN
);
2404 proto_tree_add_item(subtree
, hf_sna_gds_cont
, tvb
, offset
, 2, ENC_BIG_ENDIAN
);
2405 if (length
< 2 ) /* escape sequence */
2410 proto_tree_add_item(subtree
, hf_sna_gds_type
, tvb
, offset
, 2, ENC_BIG_ENDIAN
);
2416 proto_tree_add_item(subtree
, hf_sna_gds_info
, tvb
, offset
, length
, ENC_NA
);
2420 proto_item_set_len(pi
, offset
);
2421 if (tvb_offset_exists(tvb
, offset
))
2422 call_data_dissector(tvb_new_subset_remaining(tvb
, offset
), pinfo
, parent_tree
);
2425 /* --------------------------------------------------------------------
2427 * --------------------------------------------------------------------
2431 dissect_sna(tvbuff_t
*tvb
, packet_info
*pinfo
, proto_tree
*tree
, void* data _U_
)
2434 proto_tree
*sna_tree
= NULL
;
2435 proto_item
*sna_ti
= NULL
;
2437 col_set_str(pinfo
->cinfo
, COL_PROTOCOL
, "SNA");
2438 col_clear(pinfo
->cinfo
, COL_INFO
);
2440 /* SNA data should be printed in EBCDIC, not ASCII */
2441 pinfo
->fd
->encoding
= PACKET_CHAR_ENC_CHAR_EBCDIC
;
2445 /* Don't bother setting length. We'll set it later after we find
2446 * the lengths of TH/RH/RU */
2447 sna_ti
= proto_tree_add_item(tree
, proto_sna
, tvb
, 0, -1,
2449 sna_tree
= proto_item_add_subtree(sna_ti
, ett_sna
);
2452 /* Transmission Header Format Identifier */
2453 fid
= hi_nibble(tvb_get_uint8(tvb
, 0));
2455 case 0xa: /* HPR Network Layer Packet */
2459 dissect_nlp(tvb
, pinfo
, sna_tree
, tree
);
2462 dissect_fid(tvb
, pinfo
, sna_tree
, tree
);
2464 return tvb_captured_length(tvb
);
2468 dissect_sna_xid(tvbuff_t
*tvb
, packet_info
*pinfo
, proto_tree
*tree
, void* data _U_
)
2470 proto_tree
*sna_tree
= NULL
;
2471 proto_item
*sna_ti
= NULL
;
2473 col_set_str(pinfo
->cinfo
, COL_PROTOCOL
, "SNA");
2474 col_clear(pinfo
->cinfo
, COL_INFO
);
2476 /* SNA data should be printed in EBCDIC, not ASCII */
2477 pinfo
->fd
->encoding
= PACKET_CHAR_ENC_CHAR_EBCDIC
;
2481 /* Don't bother setting length. We'll set it later after we find
2482 * the lengths of XID */
2483 sna_ti
= proto_tree_add_item(tree
, proto_sna_xid
, tvb
, 0, -1,
2485 sna_tree
= proto_item_add_subtree(sna_ti
, ett_sna
);
2487 dissect_xid(tvb
, pinfo
, sna_tree
, tree
);
2488 return tvb_captured_length(tvb
);
2493 proto_register_sna(void)
2495 static hf_register_info hf
[] = {
2497 { "Transmission Header", "sna.th", FT_NONE
, BASE_NONE
,
2498 NULL
, 0x0, NULL
, HFILL
}},
2501 { "Transmission Header Byte 0", "sna.th.0", FT_UINT8
, BASE_HEX
,
2503 "TH Byte 0", HFILL
}},
2506 { "Format Identifier", "sna.th.fid", FT_UINT8
, BASE_HEX
,
2507 VALS(sna_th_fid_vals
), 0xf0, NULL
, HFILL
}},
2510 { "Mapping Field", "sna.th.mpf", FT_UINT8
,
2511 BASE_DEC
, VALS(sna_th_mpf_vals
), 0x0c, NULL
, HFILL
}},
2514 { "ODAI Assignment Indicator", "sna.th.odai", FT_UINT8
,
2515 BASE_DEC
, NULL
, 0x02, NULL
, HFILL
}},
2518 { "Expedited Flow Indicator", "sna.th.efi", FT_UINT8
,
2519 BASE_DEC
, VALS(sna_th_efi_vals
), 0x01, NULL
, HFILL
}},
2522 { "Destination Address Field", "sna.th.daf", FT_UINT16
,
2523 BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2526 { "Origin Address Field", "sna.th.oaf", FT_UINT16
, BASE_HEX
,
2527 NULL
, 0x0, NULL
, HFILL
}},
2530 { "Sequence Number Field", "sna.th.snf", FT_UINT16
, BASE_DEC
,
2531 NULL
, 0x0, NULL
, HFILL
}},
2534 { "Data Count Field", "sna.th.dcf", FT_UINT16
, BASE_DEC
,
2535 NULL
, 0x0, NULL
, HFILL
}},
2538 { "Local Session Identification", "sna.th.lsid", FT_UINT8
,
2539 BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2541 { &hf_sna_th_tg_sweep
,
2542 { "Transmission Group Sweep", "sna.th.tg_sweep", FT_UINT8
,
2543 BASE_DEC
, VALS(sna_th_tg_sweep_vals
), 0x08, NULL
, HFILL
}},
2545 { &hf_sna_th_er_vr_supp_ind
,
2546 { "ER and VR Support Indicator", "sna.th.er_vr_supp_ind",
2547 FT_UINT8
, BASE_DEC
, VALS(sna_th_er_vr_supp_ind_vals
),
2548 0x04, NULL
, HFILL
}},
2550 { &hf_sna_th_vr_pac_cnt_ind
,
2551 { "Virtual Route Pacing Count Indicator",
2552 "sna.th.vr_pac_cnt_ind", FT_UINT8
, BASE_DEC
,
2553 VALS(sna_th_vr_pac_cnt_ind_vals
), 0x02, NULL
, HFILL
}},
2555 { &hf_sna_th_ntwk_prty
,
2556 { "Network Priority", "sna.th.ntwk_prty", FT_UINT8
, BASE_DEC
,
2557 VALS(sna_th_ntwk_prty_vals
), 0x01, NULL
, HFILL
}},
2560 { "Transmission Group Segmenting Field", "sna.th.tgsf",
2561 FT_UINT8
, BASE_HEX
, VALS(sna_th_tgsf_vals
), 0xc0,
2565 { "MPR FID4 Type", "sna.th.mft", FT_BOOLEAN
, 8,
2566 NULL
, 0x04, NULL
, HFILL
}},
2569 { "PIU Blocking Field", "sna.th.piubf", FT_UINT8
, BASE_HEX
,
2570 VALS(sna_th_piubf_vals
), 0x03, NULL
, HFILL
}},
2573 { "Initial Explicit Route Number", "sna.th.iern", FT_UINT8
,
2574 BASE_DEC
, NULL
, 0xf0, NULL
, HFILL
}},
2577 { "NLP Offset Indicator", "sna.th.nlpoi", FT_UINT8
, BASE_DEC
,
2578 VALS(sna_th_nlpoi_vals
), 0x80, NULL
, HFILL
}},
2580 { &hf_sna_th_nlp_cp
,
2581 { "NLP Count or Padding", "sna.th.nlp_cp", FT_UINT8
, BASE_DEC
,
2582 NULL
, 0x70, NULL
, HFILL
}},
2585 { "Explicit Route Number", "sna.th.ern", FT_UINT8
, BASE_DEC
,
2586 NULL
, 0x0f, NULL
, HFILL
}},
2589 { "Virtual Route Number", "sna.th.vrn", FT_UINT8
, BASE_DEC
,
2590 NULL
, 0xf0, NULL
, HFILL
}},
2593 { "Transmission Priority Field", "sna.th.tpf", FT_UINT8
,
2594 BASE_HEX
, VALS(sna_th_tpf_vals
), 0x03, NULL
, HFILL
}},
2596 { &hf_sna_th_vr_cwi
,
2597 { "Virtual Route Change Window Indicator", "sna.th.vr_cwi",
2598 FT_UINT16
, BASE_DEC
, VALS(sna_th_vr_cwi_vals
), 0x8000,
2601 { &hf_sna_th_tg_nonfifo_ind
,
2602 { "Transmission Group Non-FIFO Indicator",
2603 "sna.th.tg_nonfifo_ind", FT_BOOLEAN
, 16,
2604 TFS(&sna_th_tg_nonfifo_ind_truth
), 0x4000, NULL
, HFILL
}},
2606 { &hf_sna_th_vr_sqti
,
2607 { "Virtual Route Sequence and Type Indicator", "sna.th.vr_sqti",
2608 FT_UINT16
, BASE_HEX
, VALS(sna_th_vr_sqti_vals
), 0x3000,
2611 { &hf_sna_th_tg_snf
,
2612 { "Transmission Group Sequence Number Field", "sna.th.tg_snf",
2613 FT_UINT16
, BASE_DEC
, NULL
, 0x0fff, NULL
, HFILL
}},
2616 { "Virtual Route Pacing Request", "sna.th.vrprq", FT_BOOLEAN
,
2617 16, TFS(&sna_th_vrprq_truth
), 0x8000, NULL
, HFILL
}},
2620 { "Virtual Route Pacing Response", "sna.th.vrprs", FT_BOOLEAN
,
2621 16, TFS(&sna_th_vrprs_truth
), 0x4000, NULL
, HFILL
}},
2623 { &hf_sna_th_vr_cwri
,
2624 { "Virtual Route Change Window Reply Indicator",
2625 "sna.th.vr_cwri", FT_UINT16
, BASE_DEC
,
2626 VALS(sna_th_vr_cwri_vals
), 0x2000, NULL
, HFILL
}},
2628 { &hf_sna_th_vr_rwi
,
2629 { "Virtual Route Reset Window Indicator", "sna.th.vr_rwi",
2630 FT_BOOLEAN
, 16, TFS(&sna_th_vr_rwi_truth
), 0x1000,
2633 { &hf_sna_th_vr_snf_send
,
2634 { "Virtual Route Send Sequence Number Field",
2635 "sna.th.vr_snf_send", FT_UINT16
, BASE_DEC
, NULL
, 0x0fff,
2639 { "Destination Subarea Address Field", "sna.th.dsaf",
2640 FT_UINT32
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2643 { "Origin Subarea Address Field", "sna.th.osaf", FT_UINT32
,
2644 BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2647 { "SNA Indicator", "sna.th.snai", FT_BOOLEAN
, 8, NULL
, 0x10,
2648 "Used to identify whether the PIU originated or is destined for an SNA or non-SNA device.", HFILL
}},
2651 { "Destination Element Field", "sna.th.def", FT_UINT16
,
2652 BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2655 { "Origin Element Field", "sna.th.oef", FT_UINT16
, BASE_HEX
,
2656 NULL
, 0x0, NULL
, HFILL
}},
2659 { "Session Address", "sna.th.sa", FT_BYTES
, BASE_NONE
,
2660 NULL
, 0x0, NULL
, HFILL
}},
2662 { &hf_sna_th_cmd_fmt
,
2663 { "Command Format", "sna.th.cmd_fmt", FT_UINT8
, BASE_HEX
,
2664 NULL
, 0x0, NULL
, HFILL
}},
2666 { &hf_sna_th_cmd_type
,
2667 { "Command Type", "sna.th.cmd_type", FT_UINT8
, BASE_HEX
,
2668 NULL
, 0x0, NULL
, HFILL
}},
2670 { &hf_sna_th_cmd_sn
,
2671 { "Command Sequence Number", "sna.th.cmd_sn", FT_UINT16
,
2672 BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
2675 { "Transmission Header Bytes 1", "sna.th.byte1", FT_UINT8
,
2676 BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2679 { "Transmission Header Bytes 2", "sna.th.byte2", FT_UINT8
,
2680 BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2683 { "Transmission Header Bytes 3", "sna.th.byte3", FT_UINT8
,
2684 BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2687 { "Transmission Header Bytes 4-5", "sna.th.byte4", FT_UINT16
,
2688 BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2691 { "Transmission Header Bytes 6-7", "sna.th.byte6", FT_UINT16
,
2692 BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2694 { &hf_sna_th_byte16
,
2695 { "Transmission Header Bytes 16", "sna.th.byte16", FT_UINT8
,
2696 BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2699 { "Network Layer Packet Header", "sna.nlp.nhdr", FT_NONE
,
2700 BASE_NONE
, NULL
, 0x0, "NHDR", HFILL
}},
2702 { &hf_sna_nlp_nhdr_0
,
2703 { "Network Layer Packet Header Byte 0", "sna.nlp.nhdr.0",
2704 FT_UINT8
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2706 { &hf_sna_nlp_nhdr_1
,
2707 { "Network Layer Packet Header Byte 1", "sna.nlp.nhdr.1",
2708 FT_UINT8
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2711 { "Switching Mode Field", "sna.nlp.nhdr.sm", FT_UINT8
,
2712 BASE_HEX
, VALS(sna_nlp_sm_vals
), 0xe0, NULL
, HFILL
}},
2715 { "Transmission Priority Field", "sna.nlp.nhdr.tpf", FT_UINT8
,
2716 BASE_HEX
, VALS(sna_th_tpf_vals
), 0x06, NULL
, HFILL
}},
2719 { "Function Type", "sna.nlp.nhdr.ft", FT_UINT8
, BASE_HEX
,
2720 VALS(sna_nlp_ft_vals
), 0xF0, NULL
, HFILL
}},
2723 { "Time Sensitive Packet Indicator", "sna.nlp.nhdr.tspi",
2724 FT_BOOLEAN
, 8, TFS(&sna_nlp_tspi_truth
), 0x08, NULL
, HFILL
}},
2726 { &hf_sna_nlp_slowdn1
,
2727 { "Slowdown 1", "sna.nlp.nhdr.slowdn1", FT_BOOLEAN
, 8,
2728 TFS(&sna_nlp_slowdn1_truth
), 0x04, NULL
, HFILL
}},
2730 { &hf_sna_nlp_slowdn2
,
2731 { "Slowdown 2", "sna.nlp.nhdr.slowdn2", FT_BOOLEAN
, 8,
2732 TFS(&sna_nlp_slowdn2_truth
), 0x02, NULL
, HFILL
}},
2735 { "Function Routing Address Entry", "sna.nlp.nhdr.fra",
2736 FT_BYTES
, BASE_NONE
, NULL
, 0, NULL
, HFILL
}},
2739 { "Automatic Network Routing Entry", "sna.nlp.nhdr.anr",
2740 FT_BYTES
, BASE_NONE
, NULL
, 0, NULL
, HFILL
}},
2743 { "Transmission Priority Field", "sna.nlp.frh", FT_UINT8
,
2744 BASE_HEX
, VALS(sna_nlp_frh_vals
), 0, NULL
, HFILL
}},
2747 { "RTP Transport Header", "sna.nlp.thdr", FT_NONE
, BASE_NONE
,
2748 NULL
, 0x0, "THDR", HFILL
}},
2751 { "Transport Connection Identifier", "sna.nlp.thdr.tcid",
2752 FT_BYTES
, BASE_NONE
, NULL
, 0x0, "TCID", HFILL
}},
2754 { &hf_sna_nlp_thdr_8
,
2755 { "RTP Transport Packet Header Byte 8", "sna.nlp.thdr.8",
2756 FT_UINT8
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2758 { &hf_sna_nlp_setupi
,
2759 { "Setup Indicator", "sna.nlp.thdr.setupi", FT_BOOLEAN
, 8,
2760 TFS(&sna_nlp_setupi_truth
), 0x40, NULL
, HFILL
}},
2763 { "Start Of Message Indicator", "sna.nlp.thdr.somi",
2764 FT_BOOLEAN
, 8, TFS(&sna_nlp_somi_truth
), 0x20, NULL
, HFILL
}},
2767 { "End Of Message Indicator", "sna.nlp.thdr.eomi", FT_BOOLEAN
,
2768 8, TFS(&sna_nlp_eomi_truth
), 0x10, NULL
, HFILL
}},
2771 { "Session Request Indicator", "sna.nlp.thdr.sri", FT_BOOLEAN
,
2772 8, TFS(&sna_nlp_sri_truth
), 0x08, NULL
, HFILL
}},
2774 { &hf_sna_nlp_rasapi
,
2775 { "Reply ASAP Indicator", "sna.nlp.thdr.rasapi", FT_BOOLEAN
,
2776 8, TFS(&sna_nlp_rasapi_truth
), 0x04, NULL
, HFILL
}},
2778 { &hf_sna_nlp_retryi
,
2779 { "Retry Indicator", "sna.nlp.thdr.retryi", FT_BOOLEAN
,
2780 8, TFS(&sna_nlp_retryi_truth
), 0x02, NULL
, HFILL
}},
2782 { &hf_sna_nlp_thdr_9
,
2783 { "RTP Transport Packet Header Byte 9", "sna.nlp.thdr.9",
2784 FT_UINT8
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2787 { "Last Message Indicator", "sna.nlp.thdr.lmi", FT_BOOLEAN
,
2788 8, TFS(&sna_nlp_lmi_truth
), 0x80, NULL
, HFILL
}},
2791 { "Connection Qualifier Field Indicator", "sna.nlp.thdr.cqfi",
2792 FT_BOOLEAN
, 8, TFS(&sna_nlp_cqfi_truth
), 0x08, NULL
, HFILL
}},
2795 { "Optional Segments Present Indicator", "sna.nlp.thdr.osi",
2796 FT_BOOLEAN
, 8, TFS(&sna_nlp_osi_truth
), 0x04, NULL
, HFILL
}},
2798 { &hf_sna_nlp_offset
,
2799 { "Data Offset/4", "sna.nlp.thdr.offset", FT_UINT16
, BASE_HEX
,
2800 NULL
, 0x0, "Data Offset in Words", HFILL
}},
2803 { "Data Length Field", "sna.nlp.thdr.dlf", FT_UINT32
, BASE_HEX
,
2804 NULL
, 0x0, NULL
, HFILL
}},
2807 { "Byte Sequence Number", "sna.nlp.thdr.bsn", FT_UINT32
,
2808 BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2810 { &hf_sna_nlp_opti_len
,
2811 { "Optional Segment Length/4", "sna.nlp.thdr.optional.len",
2812 FT_UINT8
, BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
2814 { &hf_sna_nlp_opti_type
,
2815 { "Optional Segment Type", "sna.nlp.thdr.optional.type",
2816 FT_UINT8
, BASE_HEX
, VALS(sna_nlp_opti_vals
), 0x0, NULL
,
2819 { &hf_sna_nlp_opti_0d_version
,
2820 { "Version", "sna.nlp.thdr.optional.0d.version",
2821 FT_UINT16
, BASE_HEX
, VALS(sna_nlp_opti_0d_version_vals
),
2824 { &hf_sna_nlp_opti_0d_4
,
2825 { "Connection Setup Byte 4", "sna.nlp.thdr.optional.0e.4",
2826 FT_UINT8
, BASE_HEX
, NULL
, 0, NULL
, HFILL
}},
2828 { &hf_sna_nlp_opti_0d_target
,
2829 { "Target Resource ID Present",
2830 "sna.nlp.thdr.optional.0d.target",
2831 FT_BOOLEAN
, 8, NULL
, 0x80, NULL
, HFILL
}},
2833 { &hf_sna_nlp_opti_0d_arb
,
2834 { "ARB Flow Control", "sna.nlp.thdr.optional.0d.arb",
2835 FT_BOOLEAN
, 8, NULL
, 0x10, NULL
, HFILL
}},
2837 { &hf_sna_nlp_opti_0d_reliable
,
2838 { "Reliable Connection", "sna.nlp.thdr.optional.0d.reliable",
2839 FT_BOOLEAN
, 8, NULL
, 0x08, NULL
, HFILL
}},
2841 { &hf_sna_nlp_opti_0d_dedicated
,
2842 { "Dedicated RTP Connection",
2843 "sna.nlp.thdr.optional.0d.dedicated",
2844 FT_BOOLEAN
, 8, NULL
, 0x04, NULL
, HFILL
}},
2846 { &hf_sna_nlp_opti_0e_stat
,
2847 { "Status", "sna.nlp.thdr.optional.0e.stat",
2848 FT_UINT8
, BASE_HEX
, NULL
, 0, NULL
, HFILL
}},
2850 { &hf_sna_nlp_opti_0e_gap
,
2851 { "Gap Detected", "sna.nlp.thdr.optional.0e.gap",
2852 FT_BOOLEAN
, 8, NULL
, 0x80, NULL
, HFILL
}},
2854 { &hf_sna_nlp_opti_0e_idle
,
2855 { "RTP Idle Packet", "sna.nlp.thdr.optional.0e.idle",
2856 FT_BOOLEAN
, 8, NULL
, 0x40, NULL
, HFILL
}},
2858 { &hf_sna_nlp_opti_0e_nabsp
,
2859 { "Number Of ABSP", "sna.nlp.thdr.optional.0e.nabsp",
2860 FT_UINT8
, BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
2862 { &hf_sna_nlp_opti_0e_sync
,
2863 { "Status Report Number", "sna.nlp.thdr.optional.0e.sync",
2864 FT_UINT16
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2866 { &hf_sna_nlp_opti_0e_echo
,
2867 { "Status Acknowledge Number", "sna.nlp.thdr.optional.0e.echo",
2868 FT_UINT16
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2870 { &hf_sna_nlp_opti_0e_rseq
,
2871 { "Received Sequence Number", "sna.nlp.thdr.optional.0e.rseq",
2872 FT_UINT32
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2875 { &hf_sna_nlp_opti_0e_abspbeg
,
2876 { "ABSP Begin", "sna.nlp.thdr.optional.0e.abspbeg",
2877 FT_UINT32
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2881 { &hf_sna_nlp_opti_0e_abspend
,
2882 { "ABSP End", "sna.nlp.thdr.optional.0e.abspend",
2883 FT_UINT32
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2886 { &hf_sna_nlp_opti_0f_bits
,
2887 { "Client Bits", "sna.nlp.thdr.optional.0f.bits",
2888 FT_UINT16
, BASE_HEX
, VALS(sna_nlp_opti_0f_bits_vals
),
2889 0x0, NULL
, HFILL
}},
2891 { &hf_sna_nlp_opti_10_tcid
,
2892 { "Transport Connection Identifier",
2893 "sna.nlp.thdr.optional.10.tcid",
2894 FT_BYTES
, BASE_NONE
, NULL
, 0x0, "TCID", HFILL
}},
2896 { &hf_sna_nlp_opti_12_sense
,
2897 { "Sense Data", "sna.nlp.thdr.optional.12.sense",
2898 FT_BYTES
, BASE_NONE
, NULL
, 0x0, NULL
, HFILL
}},
2900 { &hf_sna_nlp_opti_14_si_len
,
2901 { "Length", "sna.nlp.thdr.optional.14.si.len",
2902 FT_UINT8
, BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
2904 { &hf_sna_nlp_opti_14_si_key
,
2905 { "Key", "sna.nlp.thdr.optional.14.si.key",
2906 FT_UINT8
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2908 { &hf_sna_nlp_opti_14_si_2
,
2909 { "Switching Information Byte 2",
2910 "sna.nlp.thdr.optional.14.si.2",
2911 FT_UINT8
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2913 { &hf_sna_nlp_opti_14_si_refifo
,
2914 { "Resequencing (REFIFO) Indicator",
2915 "sna.nlp.thdr.optional.14.si.refifo",
2916 FT_BOOLEAN
, 8, NULL
, 0x80, NULL
, HFILL
}},
2918 { &hf_sna_nlp_opti_14_si_mobility
,
2919 { "Mobility Indicator",
2920 "sna.nlp.thdr.optional.14.si.mobility",
2921 FT_BOOLEAN
, 8, NULL
, 0x40, NULL
, HFILL
}},
2923 { &hf_sna_nlp_opti_14_si_dirsearch
,
2924 { "Directory Search Required on Path Switch Indicator",
2925 "sna.nlp.thdr.optional.14.si.dirsearch",
2926 FT_BOOLEAN
, 8, NULL
, 0x20, NULL
, HFILL
}},
2928 { &hf_sna_nlp_opti_14_si_limitres
,
2929 { "Limited Resource Link Indicator",
2930 "sna.nlp.thdr.optional.14.si.limitres",
2931 FT_BOOLEAN
, 8, NULL
, 0x10, NULL
, HFILL
}},
2933 { &hf_sna_nlp_opti_14_si_ncescope
,
2934 { "NCE Scope Indicator",
2935 "sna.nlp.thdr.optional.14.si.ncescope",
2936 FT_BOOLEAN
, 8, NULL
, 0x08, NULL
, HFILL
}},
2938 { &hf_sna_nlp_opti_14_si_mnpsrscv
,
2939 { "MNPS RSCV Retention Indicator",
2940 "sna.nlp.thdr.optional.14.si.mnpsrscv",
2941 FT_BOOLEAN
, 8, NULL
, 0x04, NULL
, HFILL
}},
2943 { &hf_sna_nlp_opti_14_si_maxpsize
,
2944 { "Maximum Packet Size On Return Path",
2945 "sna.nlp.thdr.optional.14.si.maxpsize",
2946 FT_UINT32
, BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
2948 { &hf_sna_nlp_opti_14_si_switch
,
2949 { "Path Switch Time", "sna.nlp.thdr.optional.14.si.switch",
2950 FT_UINT32
, BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
2952 { &hf_sna_nlp_opti_14_si_alive
,
2953 { "RTP Alive Timer", "sna.nlp.thdr.optional.14.si.alive",
2954 FT_UINT32
, BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
2956 { &hf_sna_nlp_opti_14_rr_len
,
2957 { "Length", "sna.nlp.thdr.optional.14.rr.len",
2958 FT_UINT8
, BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
2960 { &hf_sna_nlp_opti_14_rr_key
,
2961 { "Key", "sna.nlp.thdr.optional.14.rr.key",
2962 FT_UINT8
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2964 { &hf_sna_nlp_opti_14_rr_2
,
2965 { "Return Route TG Descriptor Byte 2",
2966 "sna.nlp.thdr.optional.14.rr.2",
2967 FT_UINT8
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2969 { &hf_sna_nlp_opti_14_rr_bfe
,
2970 { "BF Entry Indicator",
2971 "sna.nlp.thdr.optional.14.rr.bfe",
2972 FT_BOOLEAN
, 8, NULL
, 0x80, NULL
, HFILL
}},
2974 { &hf_sna_nlp_opti_14_rr_num
,
2975 { "Number Of TG Control Vectors",
2976 "sna.nlp.thdr.optional.14.rr.num",
2977 FT_UINT8
, BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
2979 { &hf_sna_nlp_opti_22_2
,
2980 { "Adaptive Rate Based Segment Byte 2",
2981 "sna.nlp.thdr.optional.22.2",
2982 FT_UINT8
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
2984 { &hf_sna_nlp_opti_22_type
,
2986 "sna.nlp.thdr.optional.22.type",
2988 VALS(sna_nlp_opti_22_type_vals
), 0xc0, NULL
, HFILL
}},
2990 { &hf_sna_nlp_opti_22_raa
,
2991 { "Rate Adjustment Action",
2992 "sna.nlp.thdr.optional.22.raa",
2994 VALS(sna_nlp_opti_22_raa_vals
), 0x38, NULL
, HFILL
}},
2996 { &hf_sna_nlp_opti_22_parity
,
2997 { "Parity Indicator",
2998 "sna.nlp.thdr.optional.22.parity",
2999 FT_BOOLEAN
, 8, NULL
, 0x04, NULL
, HFILL
}},
3001 { &hf_sna_nlp_opti_22_arb
,
3003 "sna.nlp.thdr.optional.22.arb",
3005 VALS(sna_nlp_opti_22_arb_vals
), 0x03, NULL
, HFILL
}},
3007 { &hf_sna_nlp_opti_22_3
,
3008 { "Adaptive Rate Based Segment Byte 3",
3009 "sna.nlp.thdr.optional.22.3",
3010 FT_UINT8
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
3012 { &hf_sna_nlp_opti_22_ratereq
,
3013 { "Rate Request Correlator",
3014 "sna.nlp.thdr.optional.22.ratereq",
3015 FT_UINT8
, BASE_DEC
, NULL
, 0xf0, NULL
, HFILL
}},
3017 { &hf_sna_nlp_opti_22_raterep
,
3018 { "Rate Reply Correlator",
3019 "sna.nlp.thdr.optional.22.raterep",
3020 FT_UINT8
, BASE_DEC
, NULL
, 0x0f, NULL
, HFILL
}},
3022 { &hf_sna_nlp_opti_22_field1
,
3023 { "Field 1", "sna.nlp.thdr.optional.22.field1",
3024 FT_UINT32
, BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
3026 { &hf_sna_nlp_opti_22_field2
,
3027 { "Field 2", "sna.nlp.thdr.optional.22.field2",
3028 FT_UINT32
, BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
3030 { &hf_sna_nlp_opti_22_field3
,
3031 { "Field 3", "sna.nlp.thdr.optional.22.field3",
3032 FT_UINT32
, BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
3034 { &hf_sna_nlp_opti_22_field4
,
3035 { "Field 4", "sna.nlp.thdr.optional.22.field4",
3036 FT_UINT32
, BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
3039 { "Request/Response Header", "sna.rh", FT_NONE
, BASE_NONE
,
3040 NULL
, 0x0, NULL
, HFILL
}},
3043 { "Request/Response Header Byte 0", "sna.rh.0", FT_UINT8
,
3044 BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
3047 { "Request/Response Header Byte 1", "sna.rh.1", FT_UINT8
,
3048 BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
3051 { "Request/Response Header Byte 2", "sna.rh.2", FT_UINT8
,
3052 BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
3055 { "Request/Response Indicator", "sna.rh.rri", FT_BOOLEAN
,
3056 8, TFS(&tfs_response_request
), 0x80, NULL
, HFILL
}},
3058 { &hf_sna_rh_ru_category
,
3059 { "Request/Response Unit Category", "sna.rh.ru_category",
3060 FT_UINT8
, BASE_HEX
, VALS(sna_rh_ru_category_vals
), 0x60,
3064 { "Format Indicator", "sna.rh.fi", FT_BOOLEAN
, 8,
3065 TFS(&sna_rh_fi_truth
), 0x08, NULL
, HFILL
}},
3068 { "Sense Data Included", "sna.rh.sdi", FT_BOOLEAN
, 8,
3069 TFS(&tfs_included_not_included
), 0x04, NULL
, HFILL
}},
3072 { "Begin Chain Indicator", "sna.rh.bci", FT_BOOLEAN
, 8,
3073 TFS(&sna_rh_bci_truth
), 0x02, NULL
, HFILL
}},
3076 { "End Chain Indicator", "sna.rh.eci", FT_BOOLEAN
, 8,
3077 TFS(&sna_rh_eci_truth
), 0x01, NULL
, HFILL
}},
3080 { "Definite Response 1 Indicator", "sna.rh.dr1", FT_BOOLEAN
,
3081 8, NULL
, 0x80, NULL
, HFILL
}},
3084 { "Length-Checked Compression Indicator", "sna.rh.lcci",
3085 FT_BOOLEAN
, 8, TFS(&sna_rh_lcci_truth
), 0x40, NULL
, HFILL
}},
3088 { "Definite Response 2 Indicator", "sna.rh.dr2", FT_BOOLEAN
,
3089 8, NULL
, 0x20, NULL
, HFILL
}},
3092 { "Exception Response Indicator", "sna.rh.eri", FT_BOOLEAN
,
3093 8, NULL
, 0x10, NULL
, HFILL
}},
3096 { "Response Type Indicator", "sna.rh.rti", FT_BOOLEAN
,
3097 8, TFS(&sna_rh_rti_truth
), 0x10, NULL
, HFILL
}},
3100 { "Request Larger Window Indicator", "sna.rh.rlwi", FT_BOOLEAN
,
3101 8, NULL
, 0x04, NULL
, HFILL
}},
3104 { "Queued Response Indicator", "sna.rh.qri", FT_BOOLEAN
,
3105 8, TFS(&sna_rh_qri_truth
), 0x02, NULL
, HFILL
}},
3108 { "Pacing Indicator", "sna.rh.pi", FT_BOOLEAN
,
3109 8, NULL
, 0x01, NULL
, HFILL
}},
3112 { "Begin Bracket Indicator", "sna.rh.bbi", FT_BOOLEAN
,
3113 8, NULL
, 0x80, NULL
, HFILL
}},
3116 { "End Bracket Indicator", "sna.rh.ebi", FT_BOOLEAN
,
3117 8, NULL
, 0x40, NULL
, HFILL
}},
3120 { "Change Direction Indicator", "sna.rh.cdi", FT_BOOLEAN
,
3121 8, NULL
, 0x20, NULL
, HFILL
}},
3124 { "Code Selection Indicator", "sna.rh.csi", FT_UINT8
, BASE_DEC
,
3125 VALS(sna_rh_csi_vals
), 0x08, NULL
, HFILL
}},
3128 { "Enciphered Data Indicator", "sna.rh.edi", FT_BOOLEAN
, 8,
3129 NULL
, 0x04, NULL
, HFILL
}},
3132 { "Padded Data Indicator", "sna.rh.pdi", FT_BOOLEAN
, 8, NULL
,
3133 0x02, NULL
, HFILL
}},
3136 { "Conditional End Bracket Indicator", "sna.rh.cebi",
3137 FT_BOOLEAN
, 8, NULL
, 0x01, NULL
, HFILL
}},
3140 { "Request/Response Unit", "sna.ru", FT_NONE, BASE_NONE,
3141 NULL, 0x0, NULL, HFILL }},*/
3144 { "GDS Variable", "sna.gds", FT_NONE
, BASE_NONE
, NULL
, 0x0,
3148 { "GDS Variable Length", "sna.gds.len", FT_UINT16
, BASE_DEC
,
3149 NULL
, 0x7fff, NULL
, HFILL
}},
3152 { "Continuation Flag", "sna.gds.cont", FT_BOOLEAN
, 16, NULL
,
3153 0x8000, NULL
, HFILL
}},
3156 { "Type of Variable", "sna.gds.type", FT_UINT16
, BASE_HEX
,
3157 VALS(sna_gds_var_vals
), 0x0, NULL
, HFILL
}},
3160 { "Information", "sna.gds.info", FT_BYTES
, BASE_NONE
,
3161 NULL
, 0x0, NULL
, HFILL
}},
3165 { "XID", "sna.xid", FT_NONE
, BASE_NONE
, NULL
, 0x0,
3166 "XID Frame", HFILL
}},
3170 { "XID Byte 0", "sna.xid.0", FT_UINT8
, BASE_HEX
, NULL
, 0x0,
3173 { &hf_sna_xid_format
,
3174 { "XID Format", "sna.xid.format", FT_UINT8
, BASE_DEC
, NULL
,
3175 0xf0, NULL
, HFILL
}},
3178 { "XID Type", "sna.xid.type", FT_UINT8
, BASE_DEC
,
3179 VALS(sna_xid_type_vals
), 0x0f, NULL
, HFILL
}},
3182 { "XID Length", "sna.xid.len", FT_UINT8
, BASE_DEC
, NULL
, 0x0,
3186 { "Node Identification", "sna.xid.id", FT_UINT32
, BASE_HEX
,
3187 NULL
, 0x0, NULL
, HFILL
}},
3189 { &hf_sna_xid_idblock
,
3190 { "ID Block", "sna.xid.idblock", FT_UINT32
, BASE_HEX
, NULL
,
3191 0xfff00000, NULL
, HFILL
}},
3193 { &hf_sna_xid_idnum
,
3194 { "ID Number", "sna.xid.idnum", FT_UINT32
, BASE_HEX
, NULL
,
3195 0x0fffff, NULL
, HFILL
}},
3198 { "Characteristics of XID sender", "sna.xid.type3.8", FT_UINT16
,
3199 BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
3201 { &hf_sna_xid_3_init_self
,
3202 { "INIT-SELF support", "sna.xid.type3.initself",
3203 FT_BOOLEAN
, 16, NULL
, 0x8000, NULL
, HFILL
}},
3205 { &hf_sna_xid_3_stand_bind
,
3206 { "Stand-Alone BIND Support", "sna.xid.type3.stand_bind",
3207 FT_BOOLEAN
, 16, NULL
, 0x4000, NULL
, HFILL
}},
3209 { &hf_sna_xid_3_gener_bind
,
3210 { "Whole BIND PIU generated indicator",
3211 "sna.xid.type3.gener_bind", FT_BOOLEAN
, 16, NULL
, 0x2000,
3214 { &hf_sna_xid_3_recve_bind
,
3215 { "Whole BIND PIU required indicator",
3216 "sna.xid.type3.recve_bind", FT_BOOLEAN
, 16, NULL
, 0x1000,
3219 { &hf_sna_xid_3_actpu
,
3220 { "ACTPU suppression indicator", "sna.xid.type3.actpu",
3221 FT_BOOLEAN
, 16, NULL
, 0x0080, NULL
, HFILL
}},
3223 { &hf_sna_xid_3_nwnode
,
3224 { "Sender is network node", "sna.xid.type3.nwnode",
3225 FT_BOOLEAN
, 16, NULL
, 0x0040, NULL
, HFILL
}},
3228 { "Control Point Services", "sna.xid.type3.cp",
3229 FT_BOOLEAN
, 16, NULL
, 0x0020, NULL
, HFILL
}},
3231 { &hf_sna_xid_3_cpcp
,
3232 { "CP-CP session support", "sna.xid.type3.cpcp",
3233 FT_BOOLEAN
, 16, NULL
, 0x0010, NULL
, HFILL
}},
3235 { &hf_sna_xid_3_state
,
3236 { "XID exchange state indicator", "sna.xid.type3.state",
3237 FT_UINT16
, BASE_HEX
, VALS(sna_xid_3_state_vals
),
3238 0x000c, NULL
, HFILL
}},
3240 { &hf_sna_xid_3_nonact
,
3241 { "Nonactivation Exchange", "sna.xid.type3.nonact",
3242 FT_BOOLEAN
, 16, NULL
, 0x0002, NULL
, HFILL
}},
3244 { &hf_sna_xid_3_cpchange
,
3245 { "CP name change support", "sna.xid.type3.cpchange",
3246 FT_BOOLEAN
, 16, NULL
, 0x0001, NULL
, HFILL
}},
3249 { "XID Type 3 Byte 10", "sna.xid.type3.10", FT_UINT8
, BASE_HEX
,
3250 NULL
, 0x0, NULL
, HFILL
}},
3252 { &hf_sna_xid_3_asend_bind
,
3253 { "Adaptive BIND pacing support as sender",
3254 "sna.xid.type3.asend_bind", FT_BOOLEAN
, 8, NULL
, 0x80,
3257 { &hf_sna_xid_3_arecv_bind
,
3258 { "Adaptive BIND pacing support as receiver",
3259 "sna.xid.type3.asend_recv", FT_BOOLEAN
, 8, NULL
, 0x40,
3262 { &hf_sna_xid_3_quiesce
,
3263 { "Quiesce TG Request",
3264 "sna.xid.type3.quiesce", FT_BOOLEAN
, 8, NULL
, 0x20,
3267 { &hf_sna_xid_3_pucap
,
3268 { "PU Capabilities",
3269 "sna.xid.type3.pucap", FT_BOOLEAN
, 8, NULL
, 0x10,
3272 { &hf_sna_xid_3_pbn
,
3273 { "Peripheral Border Node",
3274 "sna.xid.type3.pbn", FT_BOOLEAN
, 8, NULL
, 0x08,
3277 { &hf_sna_xid_3_pacing
,
3278 { "Qualifier for adaptive BIND pacing support",
3279 "sna.xid.type3.pacing", FT_UINT8
, BASE_HEX
, NULL
, 0x03,
3283 { "XID Type 3 Byte 11", "sna.xid.type3.11", FT_UINT8
, BASE_HEX
,
3284 NULL
, 0x0, NULL
, HFILL
}},
3286 { &hf_sna_xid_3_tgshare
,
3287 { "TG Sharing Prohibited Indicator",
3288 "sna.xid.type3.tgshare", FT_BOOLEAN
, 8, NULL
, 0x40,
3291 { &hf_sna_xid_3_dedsvc
,
3292 { "Dedicated SVC Indicator",
3293 "sna.xid.type3.dedsvc", FT_BOOLEAN
, 8, NULL
, 0x20,
3297 { "XID Type 3 Byte 12", "sna.xid.type3.12", FT_UINT8
, BASE_HEX
,
3298 NULL
, 0x0, NULL
, HFILL
}},
3300 { &hf_sna_xid_3_negcsup
,
3301 { "Negotiation Complete Supported",
3302 "sna.xid.type3.negcsup", FT_BOOLEAN
, 8, NULL
, 0x80,
3305 { &hf_sna_xid_3_negcomp
,
3306 { "Negotiation Complete",
3307 "sna.xid.type3.negcomp", FT_BOOLEAN
, 8, NULL
, 0x40,
3311 { "XID Type 3 Byte 15", "sna.xid.type3.15", FT_UINT8
, BASE_HEX
,
3312 NULL
, 0x0, NULL
, HFILL
}},
3314 { &hf_sna_xid_3_partg
,
3315 { "Parallel TG Support",
3316 "sna.xid.type3.partg", FT_BOOLEAN
, 8, NULL
, 0x80,
3319 { &hf_sna_xid_3_dlur
,
3320 { "Dependent LU Requester Indicator",
3321 "sna.xid.type3.dlur", FT_BOOLEAN
, 8, NULL
, 0x40,
3324 { &hf_sna_xid_3_dlus
,
3325 { "DLUS Served LU Registration Indicator",
3326 "sna.xid.type3.dlus", FT_BOOLEAN
, 8, NULL
, 0x20,
3329 { &hf_sna_xid_3_exbn
,
3330 { "Extended HPR Border Node",
3331 "sna.xid.type3.exbn", FT_BOOLEAN
, 8, NULL
, 0x10,
3334 { &hf_sna_xid_3_genodai
,
3335 { "Generalized ODAI Usage Option",
3336 "sna.xid.type3.genodai", FT_BOOLEAN
, 8, NULL
, 0x08,
3339 { &hf_sna_xid_3_branch
,
3340 { "Branch Indicator", "sna.xid.type3.branch",
3341 FT_UINT8
, BASE_HEX
, VALS(sna_xid_3_branch_vals
),
3342 0x06, NULL
, HFILL
}},
3344 { &hf_sna_xid_3_brnn
,
3345 { "Option Set 1123 Indicator",
3346 "sna.xid.type3.brnn", FT_BOOLEAN
, 8, NULL
, 0x01,
3350 { "XID TG", "sna.xid.type3.tg", FT_UINT8
, BASE_HEX
, NULL
, 0x0,
3353 { &hf_sna_xid_3_dlc
,
3354 { "XID DLC", "sna.xid.type3.dlc", FT_UINT8
, BASE_HEX
, NULL
, 0x0,
3357 { &hf_sna_xid_3_dlen
,
3358 { "DLC Dependent Section Length", "sna.xid.type3.dlen",
3359 FT_UINT8
, BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
3361 { &hf_sna_control_len
,
3362 { "Control Vector Length", "sna.control.len",
3363 FT_UINT8
, BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
3365 { &hf_sna_control_key
,
3366 { "Control Vector Key", "sna.control.key",
3367 FT_UINT8
, BASE_HEX
, VALS(sna_control_vals
), 0x0, NULL
,
3370 { &hf_sna_control_hprkey
,
3371 { "Control Vector HPR Key", "sna.control.hprkey",
3372 FT_UINT8
, BASE_HEX
, VALS(sna_control_hpr_vals
), 0x0, NULL
,
3375 { &hf_sna_control_05_delay
,
3376 { "Channel Delay", "sna.control.05.delay",
3377 FT_UINT16
, BASE_DEC
, NULL
, 0x0, NULL
, HFILL
}},
3379 { &hf_sna_control_05_type
,
3380 { "Network Address Type", "sna.control.05.type",
3381 FT_UINT8
, BASE_HEX
, NULL
, 0x0, NULL
, HFILL
}},
3383 { &hf_sna_control_05_ptp
,
3384 { "Point-to-point", "sna.control.05.ptp",
3385 FT_BOOLEAN
, 8, NULL
, 0x80, NULL
, HFILL
}},
3387 { &hf_sna_control_0e_type
,
3388 { "Type", "sna.control.0e.type",
3389 FT_UINT8
, BASE_HEX
, VALS(sna_control_0e_type_vals
),
3392 { &hf_sna_control_0e_value
,
3393 { "Value", "sna.control.0e.value",
3394 FT_STRING
, BASE_NONE
, NULL
, 0, NULL
, HFILL
}},
3397 { "Padding", "sna.padding",
3398 FT_BYTES
, BASE_NONE
, NULL
, 0, NULL
, HFILL
}},
3401 { "Reserved", "sna.reserved",
3402 FT_BYTES
, BASE_NONE
, NULL
, 0, NULL
, HFILL
}},
3404 { &hf_sna_biu_segment_data
,
3405 { "BIU segment data", "sna.biu_segment_data",
3406 FT_BYTES
, BASE_NONE
, NULL
, 0, NULL
, HFILL
}},
3409 static int *ett
[] = {
3414 &ett_sna_nlp_nhdr_0
,
3415 &ett_sna_nlp_nhdr_1
,
3417 &ett_sna_nlp_thdr_8
,
3418 &ett_sna_nlp_thdr_9
,
3419 &ett_sna_nlp_opti_un
,
3420 &ett_sna_nlp_opti_0d
,
3421 &ett_sna_nlp_opti_0d_4
,
3422 &ett_sna_nlp_opti_0e
,
3423 &ett_sna_nlp_opti_0e_stat
,
3424 &ett_sna_nlp_opti_0e_absp
,
3425 &ett_sna_nlp_opti_0f
,
3426 &ett_sna_nlp_opti_10
,
3427 &ett_sna_nlp_opti_12
,
3428 &ett_sna_nlp_opti_14
,
3429 &ett_sna_nlp_opti_14_si
,
3430 &ett_sna_nlp_opti_14_si_2
,
3431 &ett_sna_nlp_opti_14_rr
,
3432 &ett_sna_nlp_opti_14_rr_2
,
3433 &ett_sna_nlp_opti_22
,
3434 &ett_sna_nlp_opti_22_2
,
3435 &ett_sna_nlp_opti_22_3
,
3448 &ett_sna_control_un
,
3449 &ett_sna_control_05
,
3450 &ett_sna_control_05hpr
,
3451 &ett_sna_control_05hpr_type
,
3452 &ett_sna_control_0e
,
3454 module_t
*sna_module
;
3456 proto_sna
= proto_register_protocol("Systems Network Architecture", "SNA", "sna");
3457 proto_register_field_array(proto_sna
, hf
, array_length(hf
));
3458 proto_register_subtree_array(ett
, array_length(ett
));
3459 sna_handle
= register_dissector("sna", dissect_sna
, proto_sna
);
3461 proto_sna_xid
= proto_register_protocol("Systems Network Architecture XID", "SNA XID", "sna_xid");
3462 sna_xid_handle
= register_dissector("sna_xid", dissect_sna_xid
, proto_sna_xid
);
3464 sna_address_type
= address_type_dissector_register("AT_SNA", "SNA Address", sna_fid_to_str_buf
, sna_address_str_len
, NULL
, NULL
, NULL
, NULL
, NULL
);
3466 /* Register configuration options */
3467 sna_module
= prefs_register_protocol(proto_sna
, NULL
);
3468 prefs_register_bool_preference(sna_module
, "defragment",
3469 "Reassemble fragmented BIUs",
3470 "Whether fragmented BIUs should be reassembled",
3473 reassembly_table_register(&sna_reassembly_table
,
3474 &addresses_reassembly_table_functions
);
3478 proto_reg_handoff_sna(void)
3480 dissector_add_uint("llc.dsap", SAP_SNA_PATHCTRL
, sna_handle
);
3481 dissector_add_uint("llc.dsap", SAP_SNA1
, sna_handle
);
3482 dissector_add_uint("llc.dsap", SAP_SNA2
, sna_handle
);
3483 dissector_add_uint("llc.dsap", SAP_SNA3
, sna_handle
);
3484 dissector_add_uint("llc.dsap", SAP_SNA4
, sna_handle
);
3485 dissector_add_uint("llc.xid_dsap", SAP_SNA_PATHCTRL
, sna_xid_handle
);
3486 dissector_add_uint("llc.xid_dsap", SAP_SNA1
, sna_xid_handle
);
3487 dissector_add_uint("llc.xid_dsap", SAP_SNA2
, sna_xid_handle
);
3488 dissector_add_uint("llc.xid_dsap", SAP_SNA3
, sna_xid_handle
);
3490 dissector_add_uint("ppp.protocol", PPP_SNA
, sna_handle
);
3494 * Editor modelines - https://www.wireshark.org/tools/modelines.html
3499 * indent-tabs-mode: t
3502 * vi: set shiftwidth=8 tabstop=8 noexpandtab:
3503 * :indentSize=8:tabSize=8:noTabs=false: