DCERPC: factor out proto_tree_add_dcerpc_drep()
[wireshark-wip.git] / wsutil / md5.c
blob0aefa0f0d875a88116370d2aec0774f8881044c3
1 /* $Id$ */
2 /*
3 * Copyright (C) 2003-2006 Benny Prijono <benny@prijono.org>
4 * Copyright (C) 2012 C Elston, Katalix Systems Ltd <celston@katalix.com>
6 * Wireshark - Network traffic analyzer
7 * By Gerald Combs <gerald@wireshark.org>
8 * Copyright 1998 Gerald Combs
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * 2012-08-21 - C Elston - Split md5_hmac function to allow incremental usage.
29 #include "config.h"
31 #include <glib.h>
32 #include <string.h>
34 #include "pint.h"
35 #include "md5.h"
37 * This code implements the MD5 message-digest algorithm.
38 * The algorithm is due to Ron Rivest. This code was
39 * written by Colin Plumb in 1993, no copyright is claimed.
40 * This code is in the public domain; do with it what you wish.
42 * Equivalent code is available from RSA Data Security, Inc.
43 * This code has been tested against that, and is equivalent,
44 * except that you don't need to include two pages of legalese
45 * with every copy.
47 * To compute the message digest of a chunk of bytes, declare an
48 * MD5Context structure, pass it to MD5Init, call MD5Update as
49 * needed on buffers full of bytes, and then call MD5Final, which
50 * will fill a supplied 16-byte array with the digest.
53 #if WORDS_BIGENDIAN == 1
54 #define HIGHFIRST 1
55 #endif
57 #ifndef HIGHFIRST
58 #define byteReverse(buf, len) /* Nothing */
59 #else
61 * Note: this code is harmless on little-endian machines.
63 static void byteReverse(guint32 *buf, unsigned longs)
65 guint32 t;
66 do {
67 t = pletohl(buf);
68 *buf = t;
69 buf++;
70 } while (--longs);
72 #endif
74 static void MD5Transform(guint32 buf[4], guint32 const in[16]);
78 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
79 * initialization constants.
81 void md5_init(md5_state_t *ctx)
83 ctx->buf[0] = 0x67452301;
84 ctx->buf[1] = 0xefcdab89;
85 ctx->buf[2] = 0x98badcfe;
86 ctx->buf[3] = 0x10325476;
88 ctx->bits[0] = 0;
89 ctx->bits[1] = 0;
93 * Update context to reflect the concatenation of another buffer full
94 * of bytes.
96 void md5_append( md5_state_t *ctx, unsigned char const *buf, size_t len)
98 guint32 t;
100 /* Update bitcount */
102 t = ctx->bits[0];
103 if ((ctx->bits[0] = t + ((guint32) len << 3)) < t)
104 ctx->bits[1]++; /* Carry from low to high */
105 ctx->bits[1] += (guint32) len >> 29;
107 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
109 /* Handle any leading odd-sized chunks */
111 if (t) {
112 unsigned char *p = (unsigned char *) ctx->in + t;
114 t = 64 - t;
115 if (len < t) {
116 memcpy(p, buf, len);
117 return;
119 memcpy(p, buf, t);
120 byteReverse(ctx->in, 16);
121 MD5Transform(ctx->buf, ctx->in);
122 buf += t;
123 len -= t;
125 /* Process data in 64-byte chunks */
127 while (len >= 64) {
128 memcpy(ctx->in, buf, 64);
129 byteReverse(ctx->in, 16);
130 MD5Transform(ctx->buf, ctx->in);
131 buf += 64;
132 len -= 64;
135 /* Handle any remaining bytes of data. */
137 memcpy(ctx->in, buf, len);
141 * Final wrapup - pad to 64-byte boundary with the bit pattern
142 * 1 0* (64-bit count of bits processed, MSB-first)
144 void md5_finish(md5_state_t *ctx, unsigned char digest[16])
146 guint count;
147 unsigned char *p;
149 /* Compute number of bytes mod 64 */
150 count = (ctx->bits[0] >> 3) & 0x3F;
152 /* Set the first char of padding to 0x80. This is safe since there is
153 always at least one byte free */
154 p = (unsigned char *) ctx->in + count;
155 *p++ = 0x80;
157 /* Bytes of padding needed to make 64 bytes */
158 count = 64 - 1 - count;
160 /* Pad out to 56 mod 64 */
161 if (count < 8) {
162 /* Two lots of padding: Pad the first block to 64 bytes */
163 memset(p, 0, count);
164 byteReverse(ctx->in, 16);
165 MD5Transform(ctx->buf, ctx->in);
167 /* Now fill the next block with 56 bytes */
168 memset(ctx->in, 0, 56);
169 } else {
170 /* Pad block to 56 bytes */
171 memset(p, 0, count - 8);
173 byteReverse(ctx->in, 14);
175 /* Append length in bits and transform */
176 ctx->in[14] = ctx->bits[0];
177 ctx->in[15] = ctx->bits[1];
179 MD5Transform(ctx->buf, ctx->in);
180 byteReverse(ctx->buf, 4);
181 memcpy(digest, ctx->buf, 16);
182 memset(ctx, 0, sizeof(md5_state_t)); /* In case it's sensitive */
185 /* The four core functions - F1 is optimized somewhat */
187 /* #define F1(x, y, z) (x & y | ~x & z) */
188 #define F1(x, y, z) (z ^ (x & (y ^ z)))
189 #define F2(x, y, z) F1(z, x, y)
190 #define F3(x, y, z) (x ^ y ^ z)
191 #define F4(x, y, z) (y ^ (x | ~z))
193 /* This is the central step in the MD5 algorithm. */
194 #define MD5STEP(f, w, x, y, z, data, s) \
195 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
198 * The core of the MD5 algorithm, this alters an existing MD5 hash to
199 * reflect the addition of 16 longwords of new data. MD5Update blocks
200 * the data and converts bytes into longwords for this routine.
202 static void MD5Transform(guint32 buf[4], guint32 const in[16])
204 register guint32 a, b, c, d;
206 a = buf[0];
207 b = buf[1];
208 c = buf[2];
209 d = buf[3];
211 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
212 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
213 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
214 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
215 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
216 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
217 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
218 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
219 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
220 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
221 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
222 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
223 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
224 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
225 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
226 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
228 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
229 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
230 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
231 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
232 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
233 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
234 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
235 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
236 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
237 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
238 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
239 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
240 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
241 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
242 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
243 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
245 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
246 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
247 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
248 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
249 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
250 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
251 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
252 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
253 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
254 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
255 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
256 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
257 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
258 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
259 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
260 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
262 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
263 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
264 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
265 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
266 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
267 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
268 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
269 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
270 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
271 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
272 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
273 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
274 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
275 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
276 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
277 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
279 buf[0] += a;
280 buf[1] += b;
281 buf[2] += c;
282 buf[3] += d;
285 /* from RFC 2104 HMAC Appendix -- Sample Code */
287 void md5_hmac_init(md5_hmac_state_t *hctx, const guint8* key, size_t key_len)
289 guint8 k_ipad[65]; /* inner padding - * key XORd with ipad */
290 guint8 tk[16];
291 int i;
293 /* if key is longer than 64 bytes reset it to key=MD5(key) */
294 if (key_len > 64) {
295 md5_state_t tctx;
297 md5_init(&tctx);
298 md5_append(&tctx, key, key_len);
299 md5_finish(&tctx, tk);
301 key = tk;
302 key_len = 16;
306 * the HMAC_MD5 transform looks like:
308 * MD5(K XOR opad, MD5(K XOR ipad, text))
310 * where K is an n byte key
311 * ipad is the byte 0x36 repeated 64 times
312 * opad is the byte 0x5c repeated 64 times
313 * and text is the data being protected
316 /* start out by storing key in pads */
317 memset(k_ipad, 0, sizeof(k_ipad));
318 memset(hctx->k_opad, 0, sizeof(hctx->k_opad));
319 memcpy(k_ipad, key, key_len);
320 memcpy(hctx->k_opad, key, key_len);
322 /* XOR key with ipad and opad values */
323 for (i=0; i<64; i++) {
324 k_ipad[i] ^= 0x36;
325 hctx->k_opad[i] ^= 0x5c;
329 * perform inner MD5
331 md5_init(&hctx->ctx); /* init context for 1st pass */
332 md5_append(&hctx->ctx, k_ipad, 64); /* start with inner pad */
335 void md5_hmac_append(md5_hmac_state_t *hctx, const guint8* text, size_t text_len)
337 md5_append(&hctx->ctx, text, text_len);
340 void md5_hmac_finish(md5_hmac_state_t *hctx, guint8 digest[16])
342 md5_state_t context;
344 md5_finish(&hctx->ctx, digest); /* finish up 1st pass */
347 * perform outer MD5
349 md5_init(&context); /* init context for 2nd pass */
350 md5_append(&context, hctx->k_opad, 64); /* start with outer pad */
351 md5_append(&context, digest, 16); /* then results of 1st hash */
352 md5_finish(&context, digest); /* finish up 2nd pass */
355 void md5_hmac(const guint8* text, size_t text_len, const guint8* key, size_t key_len, guint8 digest[16])
357 md5_hmac_state_t hctx;
359 md5_hmac_init(&hctx, key, key_len);
360 md5_hmac_append(&hctx, text, text_len);
361 md5_hmac_finish(&hctx, digest);