Simplify hexa further, using inv3 in module_lin_alg
[wrf-fire-matlab.git] / quicwind / multigrid_3d_test.m
blobd08acd89fcc5c07b7206f71c96788d138a162c1b
1 function relres=multigrid_3d_test
2 N=5;
3 nc=[4,3,3];   % the coarsest grid points
4 a=[1,3,2];    % domain size 
5 % solve Dirichlet problem with vertex nodes
6 % homogeneous boundary conditions 
7 % mesh is 0:n1+1  times 0:n2+1 but the boundary is not stored
8 % refinement:
9 %    0       1     ...      n1          n1+1        level l+1
10 %    0   1   2     ...     2*n1  2*n1+1 2*(n1+1)    level l
12 for l=N:-1:1
13     n{l} = (nc+1)*2^(N-l)-1;                % mesh points
14     h{l}=[a./(n{l}+1)];                     % mesh step  
15     A{l}=@(x)flat(@mlap3z,x,n{l},h{l});    % matrix vector multiply
16     M{l}=@(x)x;                             % identity preconditioner
17     if l<N
18           P{l}=@(x)flat(@prolongation_3d,x,n{l+1});
19           R{l}=@(x)flat(@restriction_3d,x,n{l}); 
20     end
21     fprintf('level %i size %i %i %i\n',l,n{l})
22 end
23 f=zeros(n{1});
24 c=round(n{1}/2);
25 f(c(1),c(2),c(3))=1;
26 % set params
27 p.tol=1e-9;       % relative residual tolerance
28 p.maxit=7;        % maximum number of multigrid iterations 
29 p.tolsm1=p.tol;    % tolerance in pre-smoothing, 
30 p.tolsm2=p.tol;    % tolerance in pre-smoothing
31 p.tolcr=p.tol;     % tolerance for coarse solver
32 p.maxsm1=7;       % max pre-smoothing iterations
33 p.maxsm2=7;       % max post-smoothing iterations   
34 p.maxcr=20;       % max coarse solve iterations
35 p.ncoarse=1;      % number of coarse solves 1=V-cycle, 2=W-cycle
37 [x,relres]=multigrid(A,f(:),[],M,P,R,p);
38 x = reshape(x,n{1});
39 %mesh(x)
41 end