1 function [ detect_prob ] = detection_probability(tign)
\r
2 %[ detect_prob ] = detection_probability(pixel_heat)
\r
3 %returns the probability of detection based on logistic curve of validation
\r
6 % tign : time since fire arrival
\r
9 % detect_prob : proability of satellite detection at that pixel
\r
10 detect_prob = zeros(size(tign));
\r
12 % use exponential increase in heat
\r
15 %for new burn model, set to zero for old model
\r
16 % length of time heat is maximum, constant
\r
19 %needed for computing with time instead of heat
\r
21 heat = zeros(size(tign));
\r
24 m3 = tign >= const_time;
\r
28 heat(m1) = exp(100*decay*tign(m1));
\r
30 tign_shift = tign-const_time;
\r
31 heat(m3) = exp(-decay*tign_shift(m3));
\r
33 heat(m2) = exp(-decay*tign(m2));
\r
40 %a = 100; %controls shape of curve 20 for patch
\r
41 %b = 2.2; %controls false positive rate 2.2 for patch
\r
43 %can comput false pos rate as
\r
45 b = log(false_rate/(1-false_rate));
\r
48 p = 0.30; % percent detection prob at time t
\r
49 t = 24; % hours since fire arrival
\r
50 h_t = exp(-decay*t);
\r
51 a = (log(p/(1-p))-b)/h_t;
\r
56 % for exponential heat-up...
\r
57 detect_prob = 1./(1+exp(-a*heat-b));
\r
59 %without exponential heat-up
\r
62 detect_prob(m1) = 1./(1 + exp(-b));
\r
63 detect_prob(m2) = 1./(1 + exp(-a*heat(m2) - b));
\r