2 %prints out variables needed to make fortran neural network for
3 %fuel_left_cell_4 subroutine
6 fprintf('!processing inputs \n\n');
7 %x1s1off, x1s1gain, x1s1ymin
8 fort_mat('x1s1off',net.inputs{1}.processSettings{1}.xoffset')
9 fort_mat('x1s1gain',net.inputs{1}.processSettings{1}.gain')
10 %fort_mat('x1s1ymin',net.inputs{1}.processSettings{1}.ymin')
11 fprintf('x1s1ymin = %3.16f \n',net.inputs{1}.processSettings{1}.ymin);
13 fprintf('\n!layer 1 weights and bias \n')
14 fort_mat('w1',net.IW{1})
15 fort_mat('b1',net.b{1})
17 fprintf('\n!layer 2 weights and bias\n')
18 fort_mat('w2',net.LW{2,1})
19 fort_mat('b2',net.b{2})
21 fprintf('\n!layer 3 weights and bias \n')
22 fort_mat('w3',net.LW{3,2})
23 fort_mat('b3',net.b{3})
25 fprintf('\n!scale the output \n')
26 %y1s1ymin, y1s1gain, y1s1off
27 fprintf('y1s1ymin = %3.16f \n', net.outputs{3}.processSettings{1}.ymin);
28 fprintf('y1s1gain = %3.16f \n', net.outputs{3}.processSettings{1}.gain);
29 fprintf('y1s1off = %3.16f \n', net.outputs{3}.processSettings{1}.xoffset);
30 fprintf('\n\n\n !done\n')