2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
43 * This file contains the top-level implementation of an RPC RDMA
46 * Naming convention: functions beginning with xprt_ are part of the
47 * transport switch. All others are RPC RDMA internal.
50 #include <linux/module.h>
51 #include <linux/init.h>
52 #include <linux/seq_file.h>
54 #include "xprt_rdma.h"
57 # define RPCDBG_FACILITY RPCDBG_TRANS
60 MODULE_LICENSE("Dual BSD/GPL");
62 MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
63 MODULE_AUTHOR("Network Appliance, Inc.");
69 static unsigned int xprt_rdma_slot_table_entries
= RPCRDMA_DEF_SLOT_TABLE
;
70 static unsigned int xprt_rdma_max_inline_read
= RPCRDMA_DEF_INLINE
;
71 static unsigned int xprt_rdma_max_inline_write
= RPCRDMA_DEF_INLINE
;
72 static unsigned int xprt_rdma_inline_write_padding
;
73 #if !RPCRDMA_PERSISTENT_REGISTRATION
74 static unsigned int xprt_rdma_memreg_strategy
= RPCRDMA_REGISTER
; /* FMR? */
76 static unsigned int xprt_rdma_memreg_strategy
= RPCRDMA_ALLPHYSICAL
;
81 static unsigned int min_slot_table_size
= RPCRDMA_MIN_SLOT_TABLE
;
82 static unsigned int max_slot_table_size
= RPCRDMA_MAX_SLOT_TABLE
;
83 static unsigned int zero
;
84 static unsigned int max_padding
= PAGE_SIZE
;
85 static unsigned int min_memreg
= RPCRDMA_BOUNCEBUFFERS
;
86 static unsigned int max_memreg
= RPCRDMA_LAST
- 1;
88 static struct ctl_table_header
*sunrpc_table_header
;
90 static ctl_table xr_tunables_table
[] = {
92 .ctl_name
= CTL_UNNUMBERED
,
93 .procname
= "rdma_slot_table_entries",
94 .data
= &xprt_rdma_slot_table_entries
,
95 .maxlen
= sizeof(unsigned int),
97 .proc_handler
= &proc_dointvec_minmax
,
98 .strategy
= &sysctl_intvec
,
99 .extra1
= &min_slot_table_size
,
100 .extra2
= &max_slot_table_size
103 .ctl_name
= CTL_UNNUMBERED
,
104 .procname
= "rdma_max_inline_read",
105 .data
= &xprt_rdma_max_inline_read
,
106 .maxlen
= sizeof(unsigned int),
108 .proc_handler
= &proc_dointvec
,
109 .strategy
= &sysctl_intvec
,
112 .ctl_name
= CTL_UNNUMBERED
,
113 .procname
= "rdma_max_inline_write",
114 .data
= &xprt_rdma_max_inline_write
,
115 .maxlen
= sizeof(unsigned int),
117 .proc_handler
= &proc_dointvec
,
118 .strategy
= &sysctl_intvec
,
121 .ctl_name
= CTL_UNNUMBERED
,
122 .procname
= "rdma_inline_write_padding",
123 .data
= &xprt_rdma_inline_write_padding
,
124 .maxlen
= sizeof(unsigned int),
126 .proc_handler
= &proc_dointvec_minmax
,
127 .strategy
= &sysctl_intvec
,
129 .extra2
= &max_padding
,
132 .ctl_name
= CTL_UNNUMBERED
,
133 .procname
= "rdma_memreg_strategy",
134 .data
= &xprt_rdma_memreg_strategy
,
135 .maxlen
= sizeof(unsigned int),
137 .proc_handler
= &proc_dointvec_minmax
,
138 .strategy
= &sysctl_intvec
,
139 .extra1
= &min_memreg
,
140 .extra2
= &max_memreg
,
147 static ctl_table sunrpc_table
[] = {
149 .ctl_name
= CTL_SUNRPC
,
150 .procname
= "sunrpc",
152 .child
= xr_tunables_table
161 static struct rpc_xprt_ops xprt_rdma_procs
; /* forward reference */
164 xprt_rdma_format_addresses(struct rpc_xprt
*xprt
)
166 struct sockaddr_in
*addr
= (struct sockaddr_in
*)
167 &rpcx_to_rdmad(xprt
).addr
;
170 buf
= kzalloc(20, GFP_KERNEL
);
172 snprintf(buf
, 20, NIPQUAD_FMT
, NIPQUAD(addr
->sin_addr
.s_addr
));
173 xprt
->address_strings
[RPC_DISPLAY_ADDR
] = buf
;
175 buf
= kzalloc(8, GFP_KERNEL
);
177 snprintf(buf
, 8, "%u", ntohs(addr
->sin_port
));
178 xprt
->address_strings
[RPC_DISPLAY_PORT
] = buf
;
180 xprt
->address_strings
[RPC_DISPLAY_PROTO
] = "rdma";
182 buf
= kzalloc(48, GFP_KERNEL
);
184 snprintf(buf
, 48, "addr="NIPQUAD_FMT
" port=%u proto=%s",
185 NIPQUAD(addr
->sin_addr
.s_addr
),
186 ntohs(addr
->sin_port
), "rdma");
187 xprt
->address_strings
[RPC_DISPLAY_ALL
] = buf
;
189 buf
= kzalloc(10, GFP_KERNEL
);
191 snprintf(buf
, 10, "%02x%02x%02x%02x",
192 NIPQUAD(addr
->sin_addr
.s_addr
));
193 xprt
->address_strings
[RPC_DISPLAY_HEX_ADDR
] = buf
;
195 buf
= kzalloc(8, GFP_KERNEL
);
197 snprintf(buf
, 8, "%4hx", ntohs(addr
->sin_port
));
198 xprt
->address_strings
[RPC_DISPLAY_HEX_PORT
] = buf
;
200 buf
= kzalloc(30, GFP_KERNEL
);
202 snprintf(buf
, 30, NIPQUAD_FMT
".%u.%u",
203 NIPQUAD(addr
->sin_addr
.s_addr
),
204 ntohs(addr
->sin_port
) >> 8,
205 ntohs(addr
->sin_port
) & 0xff);
206 xprt
->address_strings
[RPC_DISPLAY_UNIVERSAL_ADDR
] = buf
;
209 xprt
->address_strings
[RPC_DISPLAY_NETID
] = "rdma";
213 xprt_rdma_free_addresses(struct rpc_xprt
*xprt
)
215 kfree(xprt
->address_strings
[RPC_DISPLAY_ADDR
]);
216 kfree(xprt
->address_strings
[RPC_DISPLAY_PORT
]);
217 kfree(xprt
->address_strings
[RPC_DISPLAY_ALL
]);
218 kfree(xprt
->address_strings
[RPC_DISPLAY_HEX_ADDR
]);
219 kfree(xprt
->address_strings
[RPC_DISPLAY_HEX_PORT
]);
220 kfree(xprt
->address_strings
[RPC_DISPLAY_UNIVERSAL_ADDR
]);
224 xprt_rdma_connect_worker(struct work_struct
*work
)
226 struct rpcrdma_xprt
*r_xprt
=
227 container_of(work
, struct rpcrdma_xprt
, rdma_connect
.work
);
228 struct rpc_xprt
*xprt
= &r_xprt
->xprt
;
231 if (!xprt
->shutdown
) {
232 xprt_clear_connected(xprt
);
234 dprintk("RPC: %s: %sconnect\n", __func__
,
235 r_xprt
->rx_ep
.rep_connected
!= 0 ? "re" : "");
236 rc
= rpcrdma_ep_connect(&r_xprt
->rx_ep
, &r_xprt
->rx_ia
);
243 xprt_wake_pending_tasks(xprt
, rc
);
246 dprintk("RPC: %s: exit\n", __func__
);
247 xprt_clear_connecting(xprt
);
254 * Free all memory associated with the object, including its own.
255 * NOTE: none of the *destroy methods free memory for their top-level
256 * objects, even though they may have allocated it (they do free
257 * private memory). It's up to the caller to handle it. In this
258 * case (RDMA transport), all structure memory is inlined with the
259 * struct rpcrdma_xprt.
262 xprt_rdma_destroy(struct rpc_xprt
*xprt
)
264 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
267 dprintk("RPC: %s: called\n", __func__
);
269 cancel_delayed_work(&r_xprt
->rdma_connect
);
270 flush_scheduled_work();
272 xprt_clear_connected(xprt
);
274 rpcrdma_buffer_destroy(&r_xprt
->rx_buf
);
275 rc
= rpcrdma_ep_destroy(&r_xprt
->rx_ep
, &r_xprt
->rx_ia
);
277 dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n",
279 rpcrdma_ia_close(&r_xprt
->rx_ia
);
281 xprt_rdma_free_addresses(xprt
);
287 dprintk("RPC: %s: returning\n", __func__
);
289 module_put(THIS_MODULE
);
293 * xprt_setup_rdma - Set up transport to use RDMA
295 * @args: rpc transport arguments
297 static struct rpc_xprt
*
298 xprt_setup_rdma(struct xprt_create
*args
)
300 struct rpcrdma_create_data_internal cdata
;
301 struct rpc_xprt
*xprt
;
302 struct rpcrdma_xprt
*new_xprt
;
303 struct rpcrdma_ep
*new_ep
;
304 struct sockaddr_in
*sin
;
307 if (args
->addrlen
> sizeof(xprt
->addr
)) {
308 dprintk("RPC: %s: address too large\n", __func__
);
309 return ERR_PTR(-EBADF
);
312 xprt
= kzalloc(sizeof(struct rpcrdma_xprt
), GFP_KERNEL
);
314 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
316 return ERR_PTR(-ENOMEM
);
319 xprt
->max_reqs
= xprt_rdma_slot_table_entries
;
320 xprt
->slot
= kcalloc(xprt
->max_reqs
,
321 sizeof(struct rpc_rqst
), GFP_KERNEL
);
322 if (xprt
->slot
== NULL
) {
323 dprintk("RPC: %s: couldn't allocate %d slots\n",
324 __func__
, xprt
->max_reqs
);
326 return ERR_PTR(-ENOMEM
);
329 /* 60 second timeout, no retries */
330 xprt_set_timeout(&xprt
->timeout
, 0, 60UL * HZ
);
331 xprt
->bind_timeout
= (60U * HZ
);
332 xprt
->connect_timeout
= (60U * HZ
);
333 xprt
->reestablish_timeout
= (5U * HZ
);
334 xprt
->idle_timeout
= (5U * 60 * HZ
);
336 xprt
->resvport
= 0; /* privileged port not needed */
337 xprt
->tsh_size
= 0; /* RPC-RDMA handles framing */
338 xprt
->max_payload
= RPCRDMA_MAX_DATA_SEGS
* PAGE_SIZE
;
339 xprt
->ops
= &xprt_rdma_procs
;
342 * Set up RDMA-specific connect data.
345 /* Put server RDMA address in local cdata */
346 memcpy(&cdata
.addr
, args
->dstaddr
, args
->addrlen
);
348 /* Ensure xprt->addr holds valid server TCP (not RDMA)
349 * address, for any side protocols which peek at it */
350 xprt
->prot
= IPPROTO_TCP
;
351 xprt
->addrlen
= args
->addrlen
;
352 memcpy(&xprt
->addr
, &cdata
.addr
, xprt
->addrlen
);
354 sin
= (struct sockaddr_in
*)&cdata
.addr
;
355 if (ntohs(sin
->sin_port
) != 0)
356 xprt_set_bound(xprt
);
358 dprintk("RPC: %s: %u.%u.%u.%u:%u\n", __func__
,
359 NIPQUAD(sin
->sin_addr
.s_addr
), ntohs(sin
->sin_port
));
361 /* Set max requests */
362 cdata
.max_requests
= xprt
->max_reqs
;
364 /* Set some length limits */
365 cdata
.rsize
= RPCRDMA_MAX_SEGS
* PAGE_SIZE
; /* RDMA write max */
366 cdata
.wsize
= RPCRDMA_MAX_SEGS
* PAGE_SIZE
; /* RDMA read max */
368 cdata
.inline_wsize
= xprt_rdma_max_inline_write
;
369 if (cdata
.inline_wsize
> cdata
.wsize
)
370 cdata
.inline_wsize
= cdata
.wsize
;
372 cdata
.inline_rsize
= xprt_rdma_max_inline_read
;
373 if (cdata
.inline_rsize
> cdata
.rsize
)
374 cdata
.inline_rsize
= cdata
.rsize
;
376 cdata
.padding
= xprt_rdma_inline_write_padding
;
379 * Create new transport instance, which includes initialized
385 new_xprt
= rpcx_to_rdmax(xprt
);
387 rc
= rpcrdma_ia_open(new_xprt
, (struct sockaddr
*) &cdata
.addr
,
388 xprt_rdma_memreg_strategy
);
393 * initialize and create ep
395 new_xprt
->rx_data
= cdata
;
396 new_ep
= &new_xprt
->rx_ep
;
397 new_ep
->rep_remote_addr
= cdata
.addr
;
399 rc
= rpcrdma_ep_create(&new_xprt
->rx_ep
,
400 &new_xprt
->rx_ia
, &new_xprt
->rx_data
);
405 * Allocate pre-registered send and receive buffers for headers and
406 * any inline data. Also specify any padding which will be provided
407 * from a preregistered zero buffer.
409 rc
= rpcrdma_buffer_create(&new_xprt
->rx_buf
, new_ep
, &new_xprt
->rx_ia
,
415 * Register a callback for connection events. This is necessary because
416 * connection loss notification is async. We also catch connection loss
417 * when reaping receives.
419 INIT_DELAYED_WORK(&new_xprt
->rdma_connect
, xprt_rdma_connect_worker
);
420 new_ep
->rep_func
= rpcrdma_conn_func
;
421 new_ep
->rep_xprt
= xprt
;
423 xprt_rdma_format_addresses(xprt
);
425 if (!try_module_get(THIS_MODULE
))
431 xprt_rdma_free_addresses(xprt
);
434 (void) rpcrdma_ep_destroy(new_ep
, &new_xprt
->rx_ia
);
436 rpcrdma_ia_close(&new_xprt
->rx_ia
);
444 * Close a connection, during shutdown or timeout/reconnect
447 xprt_rdma_close(struct rpc_xprt
*xprt
)
449 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
451 dprintk("RPC: %s: closing\n", __func__
);
452 xprt_disconnect(xprt
);
453 (void) rpcrdma_ep_disconnect(&r_xprt
->rx_ep
, &r_xprt
->rx_ia
);
457 xprt_rdma_set_port(struct rpc_xprt
*xprt
, u16 port
)
459 struct sockaddr_in
*sap
;
461 sap
= (struct sockaddr_in
*)&xprt
->addr
;
462 sap
->sin_port
= htons(port
);
463 sap
= (struct sockaddr_in
*)&rpcx_to_rdmad(xprt
).addr
;
464 sap
->sin_port
= htons(port
);
465 dprintk("RPC: %s: %u\n", __func__
, port
);
469 xprt_rdma_connect(struct rpc_task
*task
)
471 struct rpc_xprt
*xprt
= (struct rpc_xprt
*)task
->tk_xprt
;
472 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
474 if (!xprt_test_and_set_connecting(xprt
)) {
475 if (r_xprt
->rx_ep
.rep_connected
!= 0) {
477 schedule_delayed_work(&r_xprt
->rdma_connect
,
478 xprt
->reestablish_timeout
);
480 schedule_delayed_work(&r_xprt
->rdma_connect
, 0);
481 if (!RPC_IS_ASYNC(task
))
482 flush_scheduled_work();
488 xprt_rdma_reserve_xprt(struct rpc_task
*task
)
490 struct rpc_xprt
*xprt
= task
->tk_xprt
;
491 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
492 int credits
= atomic_read(&r_xprt
->rx_buf
.rb_credits
);
494 /* == RPC_CWNDSCALE @ init, but *after* setup */
495 if (r_xprt
->rx_buf
.rb_cwndscale
== 0UL) {
496 r_xprt
->rx_buf
.rb_cwndscale
= xprt
->cwnd
;
497 dprintk("RPC: %s: cwndscale %lu\n", __func__
,
498 r_xprt
->rx_buf
.rb_cwndscale
);
499 BUG_ON(r_xprt
->rx_buf
.rb_cwndscale
<= 0);
501 xprt
->cwnd
= credits
* r_xprt
->rx_buf
.rb_cwndscale
;
502 return xprt_reserve_xprt_cong(task
);
506 * The RDMA allocate/free functions need the task structure as a place
507 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
508 * sequence. For this reason, the recv buffers are attached to send
509 * buffers for portions of the RPC. Note that the RPC layer allocates
510 * both send and receive buffers in the same call. We may register
511 * the receive buffer portion when using reply chunks.
514 xprt_rdma_allocate(struct rpc_task
*task
, size_t size
)
516 struct rpc_xprt
*xprt
= task
->tk_xprt
;
517 struct rpcrdma_req
*req
, *nreq
;
519 req
= rpcrdma_buffer_get(&rpcx_to_rdmax(xprt
)->rx_buf
);
522 if (size
> req
->rl_size
) {
523 dprintk("RPC: %s: size %zd too large for buffer[%zd]: "
524 "prog %d vers %d proc %d\n",
525 __func__
, size
, req
->rl_size
,
526 task
->tk_client
->cl_prog
, task
->tk_client
->cl_vers
,
527 task
->tk_msg
.rpc_proc
->p_proc
);
529 * Outgoing length shortage. Our inline write max must have
530 * been configured to perform direct i/o.
532 * This is therefore a large metadata operation, and the
533 * allocate call was made on the maximum possible message,
534 * e.g. containing long filename(s) or symlink data. In
535 * fact, while these metadata operations *might* carry
536 * large outgoing payloads, they rarely *do*. However, we
537 * have to commit to the request here, so reallocate and
538 * register it now. The data path will never require this
541 * If the allocation or registration fails, the RPC framework
542 * will (doggedly) retry.
544 if (rpcx_to_rdmax(xprt
)->rx_ia
.ri_memreg_strategy
==
545 RPCRDMA_BOUNCEBUFFERS
) {
546 /* forced to "pure inline" */
547 dprintk("RPC: %s: too much data (%zd) for inline "
548 "(r/w max %d/%d)\n", __func__
, size
,
549 rpcx_to_rdmad(xprt
).inline_rsize
,
550 rpcx_to_rdmad(xprt
).inline_wsize
);
552 rpc_exit(task
, -EIO
); /* fail the operation */
553 rpcx_to_rdmax(xprt
)->rx_stats
.failed_marshal_count
++;
556 if (task
->tk_flags
& RPC_TASK_SWAPPER
)
557 nreq
= kmalloc(sizeof *req
+ size
, GFP_ATOMIC
);
559 nreq
= kmalloc(sizeof *req
+ size
, GFP_NOFS
);
563 if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt
)->rx_ia
,
564 nreq
->rl_base
, size
+ sizeof(struct rpcrdma_req
)
565 - offsetof(struct rpcrdma_req
, rl_base
),
566 &nreq
->rl_handle
, &nreq
->rl_iov
)) {
570 rpcx_to_rdmax(xprt
)->rx_stats
.hardway_register_count
+= size
;
571 nreq
->rl_size
= size
;
573 nreq
->rl_nchunks
= 0;
574 nreq
->rl_buffer
= (struct rpcrdma_buffer
*)req
;
575 nreq
->rl_reply
= req
->rl_reply
;
576 memcpy(nreq
->rl_segments
,
577 req
->rl_segments
, sizeof nreq
->rl_segments
);
578 /* flag the swap with an unused field */
579 nreq
->rl_iov
.length
= 0;
580 req
->rl_reply
= NULL
;
583 dprintk("RPC: %s: size %zd, request 0x%p\n", __func__
, size
, req
);
585 return req
->rl_xdr_buf
;
588 rpcrdma_buffer_put(req
);
589 rpcx_to_rdmax(xprt
)->rx_stats
.failed_marshal_count
++;
594 * This function returns all RDMA resources to the pool.
597 xprt_rdma_free(void *buffer
)
599 struct rpcrdma_req
*req
;
600 struct rpcrdma_xprt
*r_xprt
;
601 struct rpcrdma_rep
*rep
;
607 req
= container_of(buffer
, struct rpcrdma_req
, rl_xdr_buf
[0]);
608 r_xprt
= container_of(req
->rl_buffer
, struct rpcrdma_xprt
, rx_buf
);
611 dprintk("RPC: %s: called on 0x%p%s\n",
612 __func__
, rep
, (rep
&& rep
->rr_func
) ? " (with waiter)" : "");
615 * Finish the deregistration. When using mw bind, this was
616 * begun in rpcrdma_reply_handler(). In all other modes, we
617 * do it here, in thread context. The process is considered
618 * complete when the rr_func vector becomes NULL - this
619 * was put in place during rpcrdma_reply_handler() - the wait
620 * call below will not block if the dereg is "done". If
621 * interrupted, our framework will clean up.
623 for (i
= 0; req
->rl_nchunks
;) {
625 i
+= rpcrdma_deregister_external(
626 &req
->rl_segments
[i
], r_xprt
, NULL
);
629 if (rep
&& wait_event_interruptible(rep
->rr_unbind
, !rep
->rr_func
)) {
630 rep
->rr_func
= NULL
; /* abandon the callback */
631 req
->rl_reply
= NULL
;
634 if (req
->rl_iov
.length
== 0) { /* see allocate above */
635 struct rpcrdma_req
*oreq
= (struct rpcrdma_req
*)req
->rl_buffer
;
636 oreq
->rl_reply
= req
->rl_reply
;
637 (void) rpcrdma_deregister_internal(&r_xprt
->rx_ia
,
644 /* Put back request+reply buffers */
645 rpcrdma_buffer_put(req
);
649 * send_request invokes the meat of RPC RDMA. It must do the following:
650 * 1. Marshal the RPC request into an RPC RDMA request, which means
651 * putting a header in front of data, and creating IOVs for RDMA
652 * from those in the request.
653 * 2. In marshaling, detect opportunities for RDMA, and use them.
654 * 3. Post a recv message to set up asynch completion, then send
655 * the request (rpcrdma_ep_post).
656 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
660 xprt_rdma_send_request(struct rpc_task
*task
)
662 struct rpc_rqst
*rqst
= task
->tk_rqstp
;
663 struct rpc_xprt
*xprt
= task
->tk_xprt
;
664 struct rpcrdma_req
*req
= rpcr_to_rdmar(rqst
);
665 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
667 /* marshal the send itself */
668 if (req
->rl_niovs
== 0 && rpcrdma_marshal_req(rqst
) != 0) {
669 r_xprt
->rx_stats
.failed_marshal_count
++;
670 dprintk("RPC: %s: rpcrdma_marshal_req failed\n",
675 if (req
->rl_reply
== NULL
) /* e.g. reconnection */
676 rpcrdma_recv_buffer_get(req
);
679 req
->rl_reply
->rr_func
= rpcrdma_reply_handler
;
680 /* this need only be done once, but... */
681 req
->rl_reply
->rr_xprt
= xprt
;
684 if (rpcrdma_ep_post(&r_xprt
->rx_ia
, &r_xprt
->rx_ep
, req
)) {
685 xprt_disconnect(xprt
);
686 return -ENOTCONN
; /* implies disconnect */
689 rqst
->rq_bytes_sent
= 0;
693 static void xprt_rdma_print_stats(struct rpc_xprt
*xprt
, struct seq_file
*seq
)
695 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
698 if (xprt_connected(xprt
))
699 idle_time
= (long)(jiffies
- xprt
->last_used
) / HZ
;
702 "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
703 "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
705 0, /* need a local port? */
706 xprt
->stat
.bind_count
,
707 xprt
->stat
.connect_count
,
708 xprt
->stat
.connect_time
,
716 r_xprt
->rx_stats
.read_chunk_count
,
717 r_xprt
->rx_stats
.write_chunk_count
,
718 r_xprt
->rx_stats
.reply_chunk_count
,
719 r_xprt
->rx_stats
.total_rdma_request
,
720 r_xprt
->rx_stats
.total_rdma_reply
,
721 r_xprt
->rx_stats
.pullup_copy_count
,
722 r_xprt
->rx_stats
.fixup_copy_count
,
723 r_xprt
->rx_stats
.hardway_register_count
,
724 r_xprt
->rx_stats
.failed_marshal_count
,
725 r_xprt
->rx_stats
.bad_reply_count
);
729 * Plumbing for rpc transport switch and kernel module
732 static struct rpc_xprt_ops xprt_rdma_procs
= {
733 .reserve_xprt
= xprt_rdma_reserve_xprt
,
734 .release_xprt
= xprt_release_xprt_cong
, /* sunrpc/xprt.c */
735 .release_request
= xprt_release_rqst_cong
, /* ditto */
736 .set_retrans_timeout
= xprt_set_retrans_timeout_def
, /* ditto */
737 .rpcbind
= rpcb_getport_async
, /* sunrpc/rpcb_clnt.c */
738 .set_port
= xprt_rdma_set_port
,
739 .connect
= xprt_rdma_connect
,
740 .buf_alloc
= xprt_rdma_allocate
,
741 .buf_free
= xprt_rdma_free
,
742 .send_request
= xprt_rdma_send_request
,
743 .close
= xprt_rdma_close
,
744 .destroy
= xprt_rdma_destroy
,
745 .print_stats
= xprt_rdma_print_stats
748 static struct xprt_class xprt_rdma
= {
749 .list
= LIST_HEAD_INIT(xprt_rdma
.list
),
751 .owner
= THIS_MODULE
,
752 .ident
= XPRT_TRANSPORT_RDMA
,
753 .setup
= xprt_setup_rdma
,
756 static void __exit
xprt_rdma_cleanup(void)
760 dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n");
762 if (sunrpc_table_header
) {
763 unregister_sysctl_table(sunrpc_table_header
);
764 sunrpc_table_header
= NULL
;
767 rc
= xprt_unregister_transport(&xprt_rdma
);
769 dprintk("RPC: %s: xprt_unregister returned %i\n",
773 static int __init
xprt_rdma_init(void)
777 rc
= xprt_register_transport(&xprt_rdma
);
782 dprintk(KERN_INFO
"RPCRDMA Module Init, register RPC RDMA transport\n");
784 dprintk(KERN_INFO
"Defaults:\n");
785 dprintk(KERN_INFO
"\tSlots %d\n"
786 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
787 xprt_rdma_slot_table_entries
,
788 xprt_rdma_max_inline_read
, xprt_rdma_max_inline_write
);
789 dprintk(KERN_INFO
"\tPadding %d\n\tMemreg %d\n",
790 xprt_rdma_inline_write_padding
, xprt_rdma_memreg_strategy
);
793 if (!sunrpc_table_header
)
794 sunrpc_table_header
= register_sysctl_table(sunrpc_table
);
799 module_init(xprt_rdma_init
);
800 module_exit(xprt_rdma_cleanup
);