b43: Changes to enable BCM4311 rev 02 with wireless core revision 13
[wrt350n-kernel.git] / drivers / net / mace.c
blob95ebe72f320f0ee1cb9ec1c17b8fb661b527f3d1
1 /*
2 * Network device driver for the MACE ethernet controller on
3 * Apple Powermacs. Assumes it's under a DBDMA controller.
5 * Copyright (C) 1996 Paul Mackerras.
6 */
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/string.h>
14 #include <linux/timer.h>
15 #include <linux/init.h>
16 #include <linux/crc32.h>
17 #include <linux/spinlock.h>
18 #include <linux/bitrev.h>
19 #include <asm/prom.h>
20 #include <asm/dbdma.h>
21 #include <asm/io.h>
22 #include <asm/pgtable.h>
23 #include <asm/macio.h>
25 #include "mace.h"
27 static int port_aaui = -1;
29 #define N_RX_RING 8
30 #define N_TX_RING 6
31 #define MAX_TX_ACTIVE 1
32 #define NCMDS_TX 1 /* dma commands per element in tx ring */
33 #define RX_BUFLEN (ETH_FRAME_LEN + 8)
34 #define TX_TIMEOUT HZ /* 1 second */
36 /* Chip rev needs workaround on HW & multicast addr change */
37 #define BROKEN_ADDRCHG_REV 0x0941
39 /* Bits in transmit DMA status */
40 #define TX_DMA_ERR 0x80
42 struct mace_data {
43 volatile struct mace __iomem *mace;
44 volatile struct dbdma_regs __iomem *tx_dma;
45 int tx_dma_intr;
46 volatile struct dbdma_regs __iomem *rx_dma;
47 int rx_dma_intr;
48 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
49 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
50 struct sk_buff *rx_bufs[N_RX_RING];
51 int rx_fill;
52 int rx_empty;
53 struct sk_buff *tx_bufs[N_TX_RING];
54 int tx_fill;
55 int tx_empty;
56 unsigned char maccc;
57 unsigned char tx_fullup;
58 unsigned char tx_active;
59 unsigned char tx_bad_runt;
60 struct timer_list tx_timeout;
61 int timeout_active;
62 int port_aaui;
63 int chipid;
64 struct macio_dev *mdev;
65 spinlock_t lock;
69 * Number of bytes of private data per MACE: allow enough for
70 * the rx and tx dma commands plus a branch dma command each,
71 * and another 16 bytes to allow us to align the dma command
72 * buffers on a 16 byte boundary.
74 #define PRIV_BYTES (sizeof(struct mace_data) \
75 + (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd))
77 static int mace_open(struct net_device *dev);
78 static int mace_close(struct net_device *dev);
79 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
80 static void mace_set_multicast(struct net_device *dev);
81 static void mace_reset(struct net_device *dev);
82 static int mace_set_address(struct net_device *dev, void *addr);
83 static irqreturn_t mace_interrupt(int irq, void *dev_id);
84 static irqreturn_t mace_txdma_intr(int irq, void *dev_id);
85 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id);
86 static void mace_set_timeout(struct net_device *dev);
87 static void mace_tx_timeout(unsigned long data);
88 static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma);
89 static inline void mace_clean_rings(struct mace_data *mp);
90 static void __mace_set_address(struct net_device *dev, void *addr);
93 * If we can't get a skbuff when we need it, we use this area for DMA.
95 static unsigned char *dummy_buf;
97 static int __devinit mace_probe(struct macio_dev *mdev, const struct of_device_id *match)
99 struct device_node *mace = macio_get_of_node(mdev);
100 struct net_device *dev;
101 struct mace_data *mp;
102 const unsigned char *addr;
103 int j, rev, rc = -EBUSY;
104 DECLARE_MAC_BUF(mac);
106 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
107 printk(KERN_ERR "can't use MACE %s: need 3 addrs and 3 irqs\n",
108 mace->full_name);
109 return -ENODEV;
112 addr = of_get_property(mace, "mac-address", NULL);
113 if (addr == NULL) {
114 addr = of_get_property(mace, "local-mac-address", NULL);
115 if (addr == NULL) {
116 printk(KERN_ERR "Can't get mac-address for MACE %s\n",
117 mace->full_name);
118 return -ENODEV;
123 * lazy allocate the driver-wide dummy buffer. (Note that we
124 * never have more than one MACE in the system anyway)
126 if (dummy_buf == NULL) {
127 dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL);
128 if (dummy_buf == NULL) {
129 printk(KERN_ERR "MACE: couldn't allocate dummy buffer\n");
130 return -ENOMEM;
134 if (macio_request_resources(mdev, "mace")) {
135 printk(KERN_ERR "MACE: can't request IO resources !\n");
136 return -EBUSY;
139 dev = alloc_etherdev(PRIV_BYTES);
140 if (!dev) {
141 printk(KERN_ERR "MACE: can't allocate ethernet device !\n");
142 rc = -ENOMEM;
143 goto err_release;
145 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
147 mp = dev->priv;
148 mp->mdev = mdev;
149 macio_set_drvdata(mdev, dev);
151 dev->base_addr = macio_resource_start(mdev, 0);
152 mp->mace = ioremap(dev->base_addr, 0x1000);
153 if (mp->mace == NULL) {
154 printk(KERN_ERR "MACE: can't map IO resources !\n");
155 rc = -ENOMEM;
156 goto err_free;
158 dev->irq = macio_irq(mdev, 0);
160 rev = addr[0] == 0 && addr[1] == 0xA0;
161 for (j = 0; j < 6; ++j) {
162 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
164 mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
165 in_8(&mp->mace->chipid_lo);
168 mp = (struct mace_data *) dev->priv;
169 mp->maccc = ENXMT | ENRCV;
171 mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000);
172 if (mp->tx_dma == NULL) {
173 printk(KERN_ERR "MACE: can't map TX DMA resources !\n");
174 rc = -ENOMEM;
175 goto err_unmap_io;
177 mp->tx_dma_intr = macio_irq(mdev, 1);
179 mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000);
180 if (mp->rx_dma == NULL) {
181 printk(KERN_ERR "MACE: can't map RX DMA resources !\n");
182 rc = -ENOMEM;
183 goto err_unmap_tx_dma;
185 mp->rx_dma_intr = macio_irq(mdev, 2);
187 mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1);
188 mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1;
190 memset((char *) mp->tx_cmds, 0,
191 (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
192 init_timer(&mp->tx_timeout);
193 spin_lock_init(&mp->lock);
194 mp->timeout_active = 0;
196 if (port_aaui >= 0)
197 mp->port_aaui = port_aaui;
198 else {
199 /* Apple Network Server uses the AAUI port */
200 if (machine_is_compatible("AAPL,ShinerESB"))
201 mp->port_aaui = 1;
202 else {
203 #ifdef CONFIG_MACE_AAUI_PORT
204 mp->port_aaui = 1;
205 #else
206 mp->port_aaui = 0;
207 #endif
211 dev->open = mace_open;
212 dev->stop = mace_close;
213 dev->hard_start_xmit = mace_xmit_start;
214 dev->set_multicast_list = mace_set_multicast;
215 dev->set_mac_address = mace_set_address;
218 * Most of what is below could be moved to mace_open()
220 mace_reset(dev);
222 rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev);
223 if (rc) {
224 printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
225 goto err_unmap_rx_dma;
227 rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev);
228 if (rc) {
229 printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr);
230 goto err_free_irq;
232 rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev);
233 if (rc) {
234 printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr);
235 goto err_free_tx_irq;
238 rc = register_netdev(dev);
239 if (rc) {
240 printk(KERN_ERR "MACE: Cannot register net device, aborting.\n");
241 goto err_free_rx_irq;
244 printk(KERN_INFO "%s: MACE at %s, chip revision %d.%d\n",
245 dev->name, print_mac(mac, dev->dev_addr),
246 mp->chipid >> 8, mp->chipid & 0xff);
248 return 0;
250 err_free_rx_irq:
251 free_irq(macio_irq(mdev, 2), dev);
252 err_free_tx_irq:
253 free_irq(macio_irq(mdev, 1), dev);
254 err_free_irq:
255 free_irq(macio_irq(mdev, 0), dev);
256 err_unmap_rx_dma:
257 iounmap(mp->rx_dma);
258 err_unmap_tx_dma:
259 iounmap(mp->tx_dma);
260 err_unmap_io:
261 iounmap(mp->mace);
262 err_free:
263 free_netdev(dev);
264 err_release:
265 macio_release_resources(mdev);
267 return rc;
270 static int __devexit mace_remove(struct macio_dev *mdev)
272 struct net_device *dev = macio_get_drvdata(mdev);
273 struct mace_data *mp;
275 BUG_ON(dev == NULL);
277 macio_set_drvdata(mdev, NULL);
279 mp = dev->priv;
281 unregister_netdev(dev);
283 free_irq(dev->irq, dev);
284 free_irq(mp->tx_dma_intr, dev);
285 free_irq(mp->rx_dma_intr, dev);
287 iounmap(mp->rx_dma);
288 iounmap(mp->tx_dma);
289 iounmap(mp->mace);
291 free_netdev(dev);
293 macio_release_resources(mdev);
295 return 0;
298 static void dbdma_reset(volatile struct dbdma_regs __iomem *dma)
300 int i;
302 out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
305 * Yes this looks peculiar, but apparently it needs to be this
306 * way on some machines.
308 for (i = 200; i > 0; --i)
309 if (ld_le32(&dma->control) & RUN)
310 udelay(1);
313 static void mace_reset(struct net_device *dev)
315 struct mace_data *mp = (struct mace_data *) dev->priv;
316 volatile struct mace __iomem *mb = mp->mace;
317 int i;
319 /* soft-reset the chip */
320 i = 200;
321 while (--i) {
322 out_8(&mb->biucc, SWRST);
323 if (in_8(&mb->biucc) & SWRST) {
324 udelay(10);
325 continue;
327 break;
329 if (!i) {
330 printk(KERN_ERR "mace: cannot reset chip!\n");
331 return;
334 out_8(&mb->imr, 0xff); /* disable all intrs for now */
335 i = in_8(&mb->ir);
336 out_8(&mb->maccc, 0); /* turn off tx, rx */
338 out_8(&mb->biucc, XMTSP_64);
339 out_8(&mb->utr, RTRD);
340 out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST);
341 out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */
342 out_8(&mb->rcvfc, 0);
344 /* load up the hardware address */
345 __mace_set_address(dev, dev->dev_addr);
347 /* clear the multicast filter */
348 if (mp->chipid == BROKEN_ADDRCHG_REV)
349 out_8(&mb->iac, LOGADDR);
350 else {
351 out_8(&mb->iac, ADDRCHG | LOGADDR);
352 while ((in_8(&mb->iac) & ADDRCHG) != 0)
355 for (i = 0; i < 8; ++i)
356 out_8(&mb->ladrf, 0);
358 /* done changing address */
359 if (mp->chipid != BROKEN_ADDRCHG_REV)
360 out_8(&mb->iac, 0);
362 if (mp->port_aaui)
363 out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
364 else
365 out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO);
368 static void __mace_set_address(struct net_device *dev, void *addr)
370 struct mace_data *mp = (struct mace_data *) dev->priv;
371 volatile struct mace __iomem *mb = mp->mace;
372 unsigned char *p = addr;
373 int i;
375 /* load up the hardware address */
376 if (mp->chipid == BROKEN_ADDRCHG_REV)
377 out_8(&mb->iac, PHYADDR);
378 else {
379 out_8(&mb->iac, ADDRCHG | PHYADDR);
380 while ((in_8(&mb->iac) & ADDRCHG) != 0)
383 for (i = 0; i < 6; ++i)
384 out_8(&mb->padr, dev->dev_addr[i] = p[i]);
385 if (mp->chipid != BROKEN_ADDRCHG_REV)
386 out_8(&mb->iac, 0);
389 static int mace_set_address(struct net_device *dev, void *addr)
391 struct mace_data *mp = (struct mace_data *) dev->priv;
392 volatile struct mace __iomem *mb = mp->mace;
393 unsigned long flags;
395 spin_lock_irqsave(&mp->lock, flags);
397 __mace_set_address(dev, addr);
399 /* note: setting ADDRCHG clears ENRCV */
400 out_8(&mb->maccc, mp->maccc);
402 spin_unlock_irqrestore(&mp->lock, flags);
403 return 0;
406 static inline void mace_clean_rings(struct mace_data *mp)
408 int i;
410 /* free some skb's */
411 for (i = 0; i < N_RX_RING; ++i) {
412 if (mp->rx_bufs[i] != 0) {
413 dev_kfree_skb(mp->rx_bufs[i]);
414 mp->rx_bufs[i] = NULL;
417 for (i = mp->tx_empty; i != mp->tx_fill; ) {
418 dev_kfree_skb(mp->tx_bufs[i]);
419 if (++i >= N_TX_RING)
420 i = 0;
424 static int mace_open(struct net_device *dev)
426 struct mace_data *mp = (struct mace_data *) dev->priv;
427 volatile struct mace __iomem *mb = mp->mace;
428 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
429 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
430 volatile struct dbdma_cmd *cp;
431 int i;
432 struct sk_buff *skb;
433 unsigned char *data;
435 /* reset the chip */
436 mace_reset(dev);
438 /* initialize list of sk_buffs for receiving and set up recv dma */
439 mace_clean_rings(mp);
440 memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd));
441 cp = mp->rx_cmds;
442 for (i = 0; i < N_RX_RING - 1; ++i) {
443 skb = dev_alloc_skb(RX_BUFLEN + 2);
444 if (skb == 0) {
445 data = dummy_buf;
446 } else {
447 skb_reserve(skb, 2); /* so IP header lands on 4-byte bdry */
448 data = skb->data;
450 mp->rx_bufs[i] = skb;
451 st_le16(&cp->req_count, RX_BUFLEN);
452 st_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
453 st_le32(&cp->phy_addr, virt_to_bus(data));
454 cp->xfer_status = 0;
455 ++cp;
457 mp->rx_bufs[i] = NULL;
458 st_le16(&cp->command, DBDMA_STOP);
459 mp->rx_fill = i;
460 mp->rx_empty = 0;
462 /* Put a branch back to the beginning of the receive command list */
463 ++cp;
464 st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
465 st_le32(&cp->cmd_dep, virt_to_bus(mp->rx_cmds));
467 /* start rx dma */
468 out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
469 out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds));
470 out_le32(&rd->control, (RUN << 16) | RUN);
472 /* put a branch at the end of the tx command list */
473 cp = mp->tx_cmds + NCMDS_TX * N_TX_RING;
474 st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
475 st_le32(&cp->cmd_dep, virt_to_bus(mp->tx_cmds));
477 /* reset tx dma */
478 out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
479 out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds));
480 mp->tx_fill = 0;
481 mp->tx_empty = 0;
482 mp->tx_fullup = 0;
483 mp->tx_active = 0;
484 mp->tx_bad_runt = 0;
486 /* turn it on! */
487 out_8(&mb->maccc, mp->maccc);
488 /* enable all interrupts except receive interrupts */
489 out_8(&mb->imr, RCVINT);
491 return 0;
494 static int mace_close(struct net_device *dev)
496 struct mace_data *mp = (struct mace_data *) dev->priv;
497 volatile struct mace __iomem *mb = mp->mace;
498 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
499 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
501 /* disable rx and tx */
502 out_8(&mb->maccc, 0);
503 out_8(&mb->imr, 0xff); /* disable all intrs */
505 /* disable rx and tx dma */
506 st_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
507 st_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
509 mace_clean_rings(mp);
511 return 0;
514 static inline void mace_set_timeout(struct net_device *dev)
516 struct mace_data *mp = (struct mace_data *) dev->priv;
518 if (mp->timeout_active)
519 del_timer(&mp->tx_timeout);
520 mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
521 mp->tx_timeout.function = mace_tx_timeout;
522 mp->tx_timeout.data = (unsigned long) dev;
523 add_timer(&mp->tx_timeout);
524 mp->timeout_active = 1;
527 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
529 struct mace_data *mp = (struct mace_data *) dev->priv;
530 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
531 volatile struct dbdma_cmd *cp, *np;
532 unsigned long flags;
533 int fill, next, len;
535 /* see if there's a free slot in the tx ring */
536 spin_lock_irqsave(&mp->lock, flags);
537 fill = mp->tx_fill;
538 next = fill + 1;
539 if (next >= N_TX_RING)
540 next = 0;
541 if (next == mp->tx_empty) {
542 netif_stop_queue(dev);
543 mp->tx_fullup = 1;
544 spin_unlock_irqrestore(&mp->lock, flags);
545 return 1; /* can't take it at the moment */
547 spin_unlock_irqrestore(&mp->lock, flags);
549 /* partially fill in the dma command block */
550 len = skb->len;
551 if (len > ETH_FRAME_LEN) {
552 printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len);
553 len = ETH_FRAME_LEN;
555 mp->tx_bufs[fill] = skb;
556 cp = mp->tx_cmds + NCMDS_TX * fill;
557 st_le16(&cp->req_count, len);
558 st_le32(&cp->phy_addr, virt_to_bus(skb->data));
560 np = mp->tx_cmds + NCMDS_TX * next;
561 out_le16(&np->command, DBDMA_STOP);
563 /* poke the tx dma channel */
564 spin_lock_irqsave(&mp->lock, flags);
565 mp->tx_fill = next;
566 if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) {
567 out_le16(&cp->xfer_status, 0);
568 out_le16(&cp->command, OUTPUT_LAST);
569 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
570 ++mp->tx_active;
571 mace_set_timeout(dev);
573 if (++next >= N_TX_RING)
574 next = 0;
575 if (next == mp->tx_empty)
576 netif_stop_queue(dev);
577 spin_unlock_irqrestore(&mp->lock, flags);
579 return 0;
582 static void mace_set_multicast(struct net_device *dev)
584 struct mace_data *mp = (struct mace_data *) dev->priv;
585 volatile struct mace __iomem *mb = mp->mace;
586 int i, j;
587 u32 crc;
588 unsigned long flags;
590 spin_lock_irqsave(&mp->lock, flags);
591 mp->maccc &= ~PROM;
592 if (dev->flags & IFF_PROMISC) {
593 mp->maccc |= PROM;
594 } else {
595 unsigned char multicast_filter[8];
596 struct dev_mc_list *dmi = dev->mc_list;
598 if (dev->flags & IFF_ALLMULTI) {
599 for (i = 0; i < 8; i++)
600 multicast_filter[i] = 0xff;
601 } else {
602 for (i = 0; i < 8; i++)
603 multicast_filter[i] = 0;
604 for (i = 0; i < dev->mc_count; i++) {
605 crc = ether_crc_le(6, dmi->dmi_addr);
606 j = crc >> 26; /* bit number in multicast_filter */
607 multicast_filter[j >> 3] |= 1 << (j & 7);
608 dmi = dmi->next;
611 #if 0
612 printk("Multicast filter :");
613 for (i = 0; i < 8; i++)
614 printk("%02x ", multicast_filter[i]);
615 printk("\n");
616 #endif
618 if (mp->chipid == BROKEN_ADDRCHG_REV)
619 out_8(&mb->iac, LOGADDR);
620 else {
621 out_8(&mb->iac, ADDRCHG | LOGADDR);
622 while ((in_8(&mb->iac) & ADDRCHG) != 0)
625 for (i = 0; i < 8; ++i)
626 out_8(&mb->ladrf, multicast_filter[i]);
627 if (mp->chipid != BROKEN_ADDRCHG_REV)
628 out_8(&mb->iac, 0);
630 /* reset maccc */
631 out_8(&mb->maccc, mp->maccc);
632 spin_unlock_irqrestore(&mp->lock, flags);
635 static void mace_handle_misc_intrs(struct mace_data *mp, int intr, struct net_device *dev)
637 volatile struct mace __iomem *mb = mp->mace;
638 static int mace_babbles, mace_jabbers;
640 if (intr & MPCO)
641 dev->stats.rx_missed_errors += 256;
642 dev->stats.rx_missed_errors += in_8(&mb->mpc); /* reading clears it */
643 if (intr & RNTPCO)
644 dev->stats.rx_length_errors += 256;
645 dev->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */
646 if (intr & CERR)
647 ++dev->stats.tx_heartbeat_errors;
648 if (intr & BABBLE)
649 if (mace_babbles++ < 4)
650 printk(KERN_DEBUG "mace: babbling transmitter\n");
651 if (intr & JABBER)
652 if (mace_jabbers++ < 4)
653 printk(KERN_DEBUG "mace: jabbering transceiver\n");
656 static irqreturn_t mace_interrupt(int irq, void *dev_id)
658 struct net_device *dev = (struct net_device *) dev_id;
659 struct mace_data *mp = (struct mace_data *) dev->priv;
660 volatile struct mace __iomem *mb = mp->mace;
661 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
662 volatile struct dbdma_cmd *cp;
663 int intr, fs, i, stat, x;
664 int xcount, dstat;
665 unsigned long flags;
666 /* static int mace_last_fs, mace_last_xcount; */
668 spin_lock_irqsave(&mp->lock, flags);
669 intr = in_8(&mb->ir); /* read interrupt register */
670 in_8(&mb->xmtrc); /* get retries */
671 mace_handle_misc_intrs(mp, intr, dev);
673 i = mp->tx_empty;
674 while (in_8(&mb->pr) & XMTSV) {
675 del_timer(&mp->tx_timeout);
676 mp->timeout_active = 0;
678 * Clear any interrupt indication associated with this status
679 * word. This appears to unlatch any error indication from
680 * the DMA controller.
682 intr = in_8(&mb->ir);
683 if (intr != 0)
684 mace_handle_misc_intrs(mp, intr, dev);
685 if (mp->tx_bad_runt) {
686 fs = in_8(&mb->xmtfs);
687 mp->tx_bad_runt = 0;
688 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
689 continue;
691 dstat = ld_le32(&td->status);
692 /* stop DMA controller */
693 out_le32(&td->control, RUN << 16);
695 * xcount is the number of complete frames which have been
696 * written to the fifo but for which status has not been read.
698 xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
699 if (xcount == 0 || (dstat & DEAD)) {
701 * If a packet was aborted before the DMA controller has
702 * finished transferring it, it seems that there are 2 bytes
703 * which are stuck in some buffer somewhere. These will get
704 * transmitted as soon as we read the frame status (which
705 * reenables the transmit data transfer request). Turning
706 * off the DMA controller and/or resetting the MACE doesn't
707 * help. So we disable auto-padding and FCS transmission
708 * so the two bytes will only be a runt packet which should
709 * be ignored by other stations.
711 out_8(&mb->xmtfc, DXMTFCS);
713 fs = in_8(&mb->xmtfs);
714 if ((fs & XMTSV) == 0) {
715 printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n",
716 fs, xcount, dstat);
717 mace_reset(dev);
719 * XXX mace likes to hang the machine after a xmtfs error.
720 * This is hard to reproduce, reseting *may* help
723 cp = mp->tx_cmds + NCMDS_TX * i;
724 stat = ld_le16(&cp->xfer_status);
725 if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) {
727 * Check whether there were in fact 2 bytes written to
728 * the transmit FIFO.
730 udelay(1);
731 x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
732 if (x != 0) {
733 /* there were two bytes with an end-of-packet indication */
734 mp->tx_bad_runt = 1;
735 mace_set_timeout(dev);
736 } else {
738 * Either there weren't the two bytes buffered up, or they
739 * didn't have an end-of-packet indication.
740 * We flush the transmit FIFO just in case (by setting the
741 * XMTFWU bit with the transmitter disabled).
743 out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT);
744 out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU);
745 udelay(1);
746 out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT);
747 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
750 /* dma should have finished */
751 if (i == mp->tx_fill) {
752 printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n",
753 fs, xcount, dstat);
754 continue;
756 /* Update stats */
757 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
758 ++dev->stats.tx_errors;
759 if (fs & LCAR)
760 ++dev->stats.tx_carrier_errors;
761 if (fs & (UFLO|LCOL|RTRY))
762 ++dev->stats.tx_aborted_errors;
763 } else {
764 dev->stats.tx_bytes += mp->tx_bufs[i]->len;
765 ++dev->stats.tx_packets;
767 dev_kfree_skb_irq(mp->tx_bufs[i]);
768 --mp->tx_active;
769 if (++i >= N_TX_RING)
770 i = 0;
771 #if 0
772 mace_last_fs = fs;
773 mace_last_xcount = xcount;
774 #endif
777 if (i != mp->tx_empty) {
778 mp->tx_fullup = 0;
779 netif_wake_queue(dev);
781 mp->tx_empty = i;
782 i += mp->tx_active;
783 if (i >= N_TX_RING)
784 i -= N_TX_RING;
785 if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) {
786 do {
787 /* set up the next one */
788 cp = mp->tx_cmds + NCMDS_TX * i;
789 out_le16(&cp->xfer_status, 0);
790 out_le16(&cp->command, OUTPUT_LAST);
791 ++mp->tx_active;
792 if (++i >= N_TX_RING)
793 i = 0;
794 } while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE);
795 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
796 mace_set_timeout(dev);
798 spin_unlock_irqrestore(&mp->lock, flags);
799 return IRQ_HANDLED;
802 static void mace_tx_timeout(unsigned long data)
804 struct net_device *dev = (struct net_device *) data;
805 struct mace_data *mp = (struct mace_data *) dev->priv;
806 volatile struct mace __iomem *mb = mp->mace;
807 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
808 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
809 volatile struct dbdma_cmd *cp;
810 unsigned long flags;
811 int i;
813 spin_lock_irqsave(&mp->lock, flags);
814 mp->timeout_active = 0;
815 if (mp->tx_active == 0 && !mp->tx_bad_runt)
816 goto out;
818 /* update various counters */
819 mace_handle_misc_intrs(mp, in_8(&mb->ir), dev);
821 cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty;
823 /* turn off both tx and rx and reset the chip */
824 out_8(&mb->maccc, 0);
825 printk(KERN_ERR "mace: transmit timeout - resetting\n");
826 dbdma_reset(td);
827 mace_reset(dev);
829 /* restart rx dma */
830 cp = bus_to_virt(ld_le32(&rd->cmdptr));
831 dbdma_reset(rd);
832 out_le16(&cp->xfer_status, 0);
833 out_le32(&rd->cmdptr, virt_to_bus(cp));
834 out_le32(&rd->control, (RUN << 16) | RUN);
836 /* fix up the transmit side */
837 i = mp->tx_empty;
838 mp->tx_active = 0;
839 ++dev->stats.tx_errors;
840 if (mp->tx_bad_runt) {
841 mp->tx_bad_runt = 0;
842 } else if (i != mp->tx_fill) {
843 dev_kfree_skb(mp->tx_bufs[i]);
844 if (++i >= N_TX_RING)
845 i = 0;
846 mp->tx_empty = i;
848 mp->tx_fullup = 0;
849 netif_wake_queue(dev);
850 if (i != mp->tx_fill) {
851 cp = mp->tx_cmds + NCMDS_TX * i;
852 out_le16(&cp->xfer_status, 0);
853 out_le16(&cp->command, OUTPUT_LAST);
854 out_le32(&td->cmdptr, virt_to_bus(cp));
855 out_le32(&td->control, (RUN << 16) | RUN);
856 ++mp->tx_active;
857 mace_set_timeout(dev);
860 /* turn it back on */
861 out_8(&mb->imr, RCVINT);
862 out_8(&mb->maccc, mp->maccc);
864 out:
865 spin_unlock_irqrestore(&mp->lock, flags);
868 static irqreturn_t mace_txdma_intr(int irq, void *dev_id)
870 return IRQ_HANDLED;
873 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id)
875 struct net_device *dev = (struct net_device *) dev_id;
876 struct mace_data *mp = (struct mace_data *) dev->priv;
877 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
878 volatile struct dbdma_cmd *cp, *np;
879 int i, nb, stat, next;
880 struct sk_buff *skb;
881 unsigned frame_status;
882 static int mace_lost_status;
883 unsigned char *data;
884 unsigned long flags;
886 spin_lock_irqsave(&mp->lock, flags);
887 for (i = mp->rx_empty; i != mp->rx_fill; ) {
888 cp = mp->rx_cmds + i;
889 stat = ld_le16(&cp->xfer_status);
890 if ((stat & ACTIVE) == 0) {
891 next = i + 1;
892 if (next >= N_RX_RING)
893 next = 0;
894 np = mp->rx_cmds + next;
895 if (next != mp->rx_fill
896 && (ld_le16(&np->xfer_status) & ACTIVE) != 0) {
897 printk(KERN_DEBUG "mace: lost a status word\n");
898 ++mace_lost_status;
899 } else
900 break;
902 nb = ld_le16(&cp->req_count) - ld_le16(&cp->res_count);
903 out_le16(&cp->command, DBDMA_STOP);
904 /* got a packet, have a look at it */
905 skb = mp->rx_bufs[i];
906 if (skb == 0) {
907 ++dev->stats.rx_dropped;
908 } else if (nb > 8) {
909 data = skb->data;
910 frame_status = (data[nb-3] << 8) + data[nb-4];
911 if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) {
912 ++dev->stats.rx_errors;
913 if (frame_status & RS_OFLO)
914 ++dev->stats.rx_over_errors;
915 if (frame_status & RS_FRAMERR)
916 ++dev->stats.rx_frame_errors;
917 if (frame_status & RS_FCSERR)
918 ++dev->stats.rx_crc_errors;
919 } else {
920 /* Mace feature AUTO_STRIP_RCV is on by default, dropping the
921 * FCS on frames with 802.3 headers. This means that Ethernet
922 * frames have 8 extra octets at the end, while 802.3 frames
923 * have only 4. We need to correctly account for this. */
924 if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */
925 nb -= 4;
926 else /* Ethernet header; mace includes FCS */
927 nb -= 8;
928 skb_put(skb, nb);
929 skb->protocol = eth_type_trans(skb, dev);
930 dev->stats.rx_bytes += skb->len;
931 netif_rx(skb);
932 dev->last_rx = jiffies;
933 mp->rx_bufs[i] = NULL;
934 ++dev->stats.rx_packets;
936 } else {
937 ++dev->stats.rx_errors;
938 ++dev->stats.rx_length_errors;
941 /* advance to next */
942 if (++i >= N_RX_RING)
943 i = 0;
945 mp->rx_empty = i;
947 i = mp->rx_fill;
948 for (;;) {
949 next = i + 1;
950 if (next >= N_RX_RING)
951 next = 0;
952 if (next == mp->rx_empty)
953 break;
954 cp = mp->rx_cmds + i;
955 skb = mp->rx_bufs[i];
956 if (skb == 0) {
957 skb = dev_alloc_skb(RX_BUFLEN + 2);
958 if (skb != 0) {
959 skb_reserve(skb, 2);
960 mp->rx_bufs[i] = skb;
963 st_le16(&cp->req_count, RX_BUFLEN);
964 data = skb? skb->data: dummy_buf;
965 st_le32(&cp->phy_addr, virt_to_bus(data));
966 out_le16(&cp->xfer_status, 0);
967 out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
968 #if 0
969 if ((ld_le32(&rd->status) & ACTIVE) != 0) {
970 out_le32(&rd->control, (PAUSE << 16) | PAUSE);
971 while ((in_le32(&rd->status) & ACTIVE) != 0)
974 #endif
975 i = next;
977 if (i != mp->rx_fill) {
978 out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE));
979 mp->rx_fill = i;
981 spin_unlock_irqrestore(&mp->lock, flags);
982 return IRQ_HANDLED;
985 static struct of_device_id mace_match[] =
988 .name = "mace",
992 MODULE_DEVICE_TABLE (of, mace_match);
994 static struct macio_driver mace_driver =
996 .name = "mace",
997 .match_table = mace_match,
998 .probe = mace_probe,
999 .remove = mace_remove,
1003 static int __init mace_init(void)
1005 return macio_register_driver(&mace_driver);
1008 static void __exit mace_cleanup(void)
1010 macio_unregister_driver(&mace_driver);
1012 kfree(dummy_buf);
1013 dummy_buf = NULL;
1016 MODULE_AUTHOR("Paul Mackerras");
1017 MODULE_DESCRIPTION("PowerMac MACE driver.");
1018 module_param(port_aaui, int, 0);
1019 MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
1020 MODULE_LICENSE("GPL");
1022 module_init(mace_init);
1023 module_exit(mace_cleanup);