2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 #include <linux/module.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/device.h>
23 #include <linux/mutex.h>
24 #include <linux/crc-itu-t.h>
25 #include "fw-transaction.h"
26 #include "fw-topology.h"
27 #include "fw-device.h"
29 int fw_compute_block_crc(u32
*block
)
31 __be32 be32_block
[256];
34 length
= (*block
>> 16) & 0xff;
35 for (i
= 0; i
< length
; i
++)
36 be32_block
[i
] = cpu_to_be32(block
[i
+ 1]);
37 *block
|= crc_itu_t(0, (u8
*) be32_block
, length
* 4);
42 static DEFINE_MUTEX(card_mutex
);
43 static LIST_HEAD(card_list
);
45 static LIST_HEAD(descriptor_list
);
46 static int descriptor_count
;
48 #define BIB_CRC(v) ((v) << 0)
49 #define BIB_CRC_LENGTH(v) ((v) << 16)
50 #define BIB_INFO_LENGTH(v) ((v) << 24)
52 #define BIB_LINK_SPEED(v) ((v) << 0)
53 #define BIB_GENERATION(v) ((v) << 4)
54 #define BIB_MAX_ROM(v) ((v) << 8)
55 #define BIB_MAX_RECEIVE(v) ((v) << 12)
56 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
57 #define BIB_PMC ((1) << 27)
58 #define BIB_BMC ((1) << 28)
59 #define BIB_ISC ((1) << 29)
60 #define BIB_CMC ((1) << 30)
61 #define BIB_IMC ((1) << 31)
64 generate_config_rom(struct fw_card
*card
, size_t *config_rom_length
)
66 struct fw_descriptor
*desc
;
67 static u32 config_rom
[256];
71 * Initialize contents of config rom buffer. On the OHCI
72 * controller, block reads to the config rom accesses the host
73 * memory, but quadlet read access the hardware bus info block
74 * registers. That's just crack, but it means we should make
75 * sure the contents of bus info block in host memory mathces
76 * the version stored in the OHCI registers.
79 memset(config_rom
, 0, sizeof(config_rom
));
80 config_rom
[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
81 config_rom
[1] = 0x31333934;
84 BIB_LINK_SPEED(card
->link_speed
) |
85 BIB_GENERATION(card
->config_rom_generation
++ % 14 + 2) |
87 BIB_MAX_RECEIVE(card
->max_receive
) |
88 BIB_BMC
| BIB_ISC
| BIB_CMC
| BIB_IMC
;
89 config_rom
[3] = card
->guid
>> 32;
90 config_rom
[4] = card
->guid
;
92 /* Generate root directory. */
95 config_rom
[i
++] = 0x0c0083c0; /* node capabilities */
96 j
= i
+ descriptor_count
;
98 /* Generate root directory entries for descriptors. */
99 list_for_each_entry (desc
, &descriptor_list
, link
) {
100 if (desc
->immediate
> 0)
101 config_rom
[i
++] = desc
->immediate
;
102 config_rom
[i
] = desc
->key
| (j
- i
);
107 /* Update root directory length. */
108 config_rom
[5] = (i
- 5 - 1) << 16;
110 /* End of root directory, now copy in descriptors. */
111 list_for_each_entry (desc
, &descriptor_list
, link
) {
112 memcpy(&config_rom
[i
], desc
->data
, desc
->length
* 4);
116 /* Calculate CRCs for all blocks in the config rom. This
117 * assumes that CRC length and info length are identical for
118 * the bus info block, which is always the case for this
120 for (i
= 0; i
< j
; i
+= length
+ 1)
121 length
= fw_compute_block_crc(config_rom
+ i
);
123 *config_rom_length
= j
;
129 update_config_roms(void)
131 struct fw_card
*card
;
135 list_for_each_entry (card
, &card_list
, link
) {
136 config_rom
= generate_config_rom(card
, &length
);
137 card
->driver
->set_config_rom(card
, config_rom
, length
);
142 fw_core_add_descriptor(struct fw_descriptor
*desc
)
147 * Check descriptor is valid; the length of all blocks in the
148 * descriptor has to add up to exactly the length of the
152 while (i
< desc
->length
)
153 i
+= (desc
->data
[i
] >> 16) + 1;
155 if (i
!= desc
->length
)
158 mutex_lock(&card_mutex
);
160 list_add_tail(&desc
->link
, &descriptor_list
);
162 if (desc
->immediate
> 0)
164 update_config_roms();
166 mutex_unlock(&card_mutex
);
170 EXPORT_SYMBOL(fw_core_add_descriptor
);
173 fw_core_remove_descriptor(struct fw_descriptor
*desc
)
175 mutex_lock(&card_mutex
);
177 list_del(&desc
->link
);
179 if (desc
->immediate
> 0)
181 update_config_roms();
183 mutex_unlock(&card_mutex
);
185 EXPORT_SYMBOL(fw_core_remove_descriptor
);
187 static const char gap_count_table
[] = {
188 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
192 struct fw_transaction t
;
199 struct completion done
;
203 complete_bm_lock(struct fw_card
*card
, int rcode
,
204 void *payload
, size_t length
, void *data
)
206 struct bm_data
*bmd
= data
;
208 if (rcode
== RCODE_COMPLETE
)
209 bmd
->old
= be32_to_cpu(*(__be32
*) payload
);
211 complete(&bmd
->done
);
215 fw_card_bm_work(struct work_struct
*work
)
217 struct fw_card
*card
= container_of(work
, struct fw_card
, work
.work
);
218 struct fw_device
*root_device
;
219 struct fw_node
*root_node
, *local_node
;
222 int root_id
, new_root_id
, irm_id
, gap_count
, generation
, grace
;
225 spin_lock_irqsave(&card
->lock
, flags
);
226 local_node
= card
->local_node
;
227 root_node
= card
->root_node
;
229 if (local_node
== NULL
) {
230 spin_unlock_irqrestore(&card
->lock
, flags
);
233 fw_node_get(local_node
);
234 fw_node_get(root_node
);
236 generation
= card
->generation
;
237 root_device
= root_node
->data
;
239 fw_device_get(root_device
);
240 root_id
= root_node
->node_id
;
241 grace
= time_after(jiffies
, card
->reset_jiffies
+ DIV_ROUND_UP(HZ
, 10));
243 if (card
->bm_generation
+ 1 == generation
||
244 (card
->bm_generation
!= generation
&& grace
)) {
246 * This first step is to figure out who is IRM and
247 * then try to become bus manager. If the IRM is not
248 * well defined (e.g. does not have an active link
249 * layer or does not responds to our lock request, we
250 * will have to do a little vigilante bus management.
251 * In that case, we do a goto into the gap count logic
252 * so that when we do the reset, we still optimize the
253 * gap count. That could well save a reset in the
257 irm_id
= card
->irm_node
->node_id
;
258 if (!card
->irm_node
->link_on
) {
259 new_root_id
= local_node
->node_id
;
260 fw_notify("IRM has link off, making local node (%02x) root.\n",
265 bmd
.lock
.arg
= cpu_to_be32(0x3f);
266 bmd
.lock
.data
= cpu_to_be32(local_node
->node_id
);
268 spin_unlock_irqrestore(&card
->lock
, flags
);
270 init_completion(&bmd
.done
);
271 fw_send_request(card
, &bmd
.t
, TCODE_LOCK_COMPARE_SWAP
,
273 SCODE_100
, CSR_REGISTER_BASE
+ CSR_BUS_MANAGER_ID
,
274 &bmd
.lock
, sizeof(bmd
.lock
),
275 complete_bm_lock
, &bmd
);
276 wait_for_completion(&bmd
.done
);
278 if (bmd
.rcode
== RCODE_GENERATION
) {
280 * Another bus reset happened. Just return,
281 * the BM work has been rescheduled.
286 if (bmd
.rcode
== RCODE_COMPLETE
&& bmd
.old
!= 0x3f)
287 /* Somebody else is BM, let them do the work. */
290 spin_lock_irqsave(&card
->lock
, flags
);
291 if (bmd
.rcode
!= RCODE_COMPLETE
) {
293 * The lock request failed, maybe the IRM
294 * isn't really IRM capable after all. Let's
295 * do a bus reset and pick the local node as
296 * root, and thus, IRM.
298 new_root_id
= local_node
->node_id
;
299 fw_notify("BM lock failed, making local node (%02x) root.\n",
303 } else if (card
->bm_generation
!= generation
) {
305 * OK, we weren't BM in the last generation, and it's
306 * less than 100ms since last bus reset. Reschedule
307 * this task 100ms from now.
309 spin_unlock_irqrestore(&card
->lock
, flags
);
310 schedule_delayed_work(&card
->work
, DIV_ROUND_UP(HZ
, 10));
315 * We're bus manager for this generation, so next step is to
316 * make sure we have an active cycle master and do gap count
319 card
->bm_generation
= generation
;
321 if (root_device
== NULL
) {
323 * Either link_on is false, or we failed to read the
324 * config rom. In either case, pick another root.
326 new_root_id
= local_node
->node_id
;
327 } else if (atomic_read(&root_device
->state
) != FW_DEVICE_RUNNING
) {
329 * If we haven't probed this device yet, bail out now
330 * and let's try again once that's done.
332 spin_unlock_irqrestore(&card
->lock
, flags
);
334 } else if (root_device
->config_rom
[2] & BIB_CMC
) {
336 * FIXME: I suppose we should set the cmstr bit in the
337 * STATE_CLEAR register of this node, as described in
338 * 1394-1995, 8.4.2.6. Also, send out a force root
339 * packet for this node.
341 new_root_id
= root_id
;
344 * Current root has an active link layer and we
345 * successfully read the config rom, but it's not
346 * cycle master capable.
348 new_root_id
= local_node
->node_id
;
353 * Pick a gap count from 1394a table E-1. The table doesn't cover
354 * the typically much larger 1394b beta repeater delays though.
356 if (!card
->beta_repeaters_present
&&
357 root_node
->max_hops
< ARRAY_SIZE(gap_count_table
))
358 gap_count
= gap_count_table
[root_node
->max_hops
];
363 * Finally, figure out if we should do a reset or not. If we've
364 * done less that 5 resets with the same physical topology and we
365 * have either a new root or a new gap count setting, let's do it.
368 if (card
->bm_retries
++ < 5 &&
369 (card
->gap_count
!= gap_count
|| new_root_id
!= root_id
))
372 spin_unlock_irqrestore(&card
->lock
, flags
);
375 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
376 card
->index
, new_root_id
, gap_count
);
377 fw_send_phy_config(card
, new_root_id
, generation
, gap_count
);
378 fw_core_initiate_bus_reset(card
, 1);
382 fw_device_put(root_device
);
383 fw_node_put(root_node
);
384 fw_node_put(local_node
);
388 flush_timer_callback(unsigned long data
)
390 struct fw_card
*card
= (struct fw_card
*)data
;
392 fw_flush_transactions(card
);
396 fw_card_initialize(struct fw_card
*card
, const struct fw_card_driver
*driver
,
397 struct device
*device
)
399 static atomic_t index
= ATOMIC_INIT(-1);
401 kref_init(&card
->kref
);
402 atomic_set(&card
->device_count
, 0);
403 card
->index
= atomic_inc_return(&index
);
404 card
->driver
= driver
;
405 card
->device
= device
;
406 card
->current_tlabel
= 0;
407 card
->tlabel_mask
= 0;
410 INIT_LIST_HEAD(&card
->transaction_list
);
411 spin_lock_init(&card
->lock
);
412 setup_timer(&card
->flush_timer
,
413 flush_timer_callback
, (unsigned long)card
);
415 card
->local_node
= NULL
;
417 INIT_DELAYED_WORK(&card
->work
, fw_card_bm_work
);
419 EXPORT_SYMBOL(fw_card_initialize
);
422 fw_card_add(struct fw_card
*card
,
423 u32 max_receive
, u32 link_speed
, u64 guid
)
428 card
->max_receive
= max_receive
;
429 card
->link_speed
= link_speed
;
433 * The subsystem grabs a reference when the card is added and
434 * drops it when the driver calls fw_core_remove_card.
438 mutex_lock(&card_mutex
);
439 config_rom
= generate_config_rom(card
, &length
);
440 list_add_tail(&card
->link
, &card_list
);
441 mutex_unlock(&card_mutex
);
443 return card
->driver
->enable(card
, config_rom
, length
);
445 EXPORT_SYMBOL(fw_card_add
);
449 * The next few functions implements a dummy driver that use once a
450 * card driver shuts down an fw_card. This allows the driver to
451 * cleanly unload, as all IO to the card will be handled by the dummy
452 * driver instead of calling into the (possibly) unloaded module. The
453 * dummy driver just fails all IO.
457 dummy_enable(struct fw_card
*card
, u32
*config_rom
, size_t length
)
464 dummy_update_phy_reg(struct fw_card
*card
, int address
,
465 int clear_bits
, int set_bits
)
471 dummy_set_config_rom(struct fw_card
*card
,
472 u32
*config_rom
, size_t length
)
475 * We take the card out of card_list before setting the dummy
476 * driver, so this should never get called.
483 dummy_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
485 packet
->callback(packet
, card
, -ENODEV
);
489 dummy_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
491 packet
->callback(packet
, card
, -ENODEV
);
495 dummy_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
501 dummy_enable_phys_dma(struct fw_card
*card
,
502 int node_id
, int generation
)
507 static struct fw_card_driver dummy_driver
= {
509 .enable
= dummy_enable
,
510 .update_phy_reg
= dummy_update_phy_reg
,
511 .set_config_rom
= dummy_set_config_rom
,
512 .send_request
= dummy_send_request
,
513 .cancel_packet
= dummy_cancel_packet
,
514 .send_response
= dummy_send_response
,
515 .enable_phys_dma
= dummy_enable_phys_dma
,
519 fw_core_remove_card(struct fw_card
*card
)
521 card
->driver
->update_phy_reg(card
, 4,
522 PHY_LINK_ACTIVE
| PHY_CONTENDER
, 0);
523 fw_core_initiate_bus_reset(card
, 1);
525 mutex_lock(&card_mutex
);
526 list_del(&card
->link
);
527 mutex_unlock(&card_mutex
);
529 /* Set up the dummy driver. */
530 card
->driver
= &dummy_driver
;
532 fw_destroy_nodes(card
);
534 * Wait for all device workqueue jobs to finish. Otherwise the
535 * firewire-core module could be unloaded before the jobs ran.
537 while (atomic_read(&card
->device_count
) > 0)
540 cancel_delayed_work_sync(&card
->work
);
541 fw_flush_transactions(card
);
542 del_timer_sync(&card
->flush_timer
);
546 EXPORT_SYMBOL(fw_core_remove_card
);
549 fw_card_get(struct fw_card
*card
)
551 kref_get(&card
->kref
);
555 EXPORT_SYMBOL(fw_card_get
);
558 release_card(struct kref
*kref
)
560 struct fw_card
*card
= container_of(kref
, struct fw_card
, kref
);
566 * An assumption for fw_card_put() is that the card driver allocates
567 * the fw_card struct with kalloc and that it has been shut down
568 * before the last ref is dropped.
571 fw_card_put(struct fw_card
*card
)
573 kref_put(&card
->kref
, release_card
);
575 EXPORT_SYMBOL(fw_card_put
);
578 fw_core_initiate_bus_reset(struct fw_card
*card
, int short_reset
)
580 int reg
= short_reset
? 5 : 1;
581 int bit
= short_reset
? PHY_BUS_SHORT_RESET
: PHY_BUS_RESET
;
583 return card
->driver
->update_phy_reg(card
, reg
, 0, bit
);
585 EXPORT_SYMBOL(fw_core_initiate_bus_reset
);