Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux...
[wrt350n-kernel.git] / drivers / hid / hid-core.c
blobd73a768e176e97becbcad37d5f26372d611ee482
1 /*
2 * HID support for Linux
4 * Copyright (c) 1999 Andreas Gal
5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 * Copyright (c) 2006-2007 Jiri Kosina
8 */
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/list.h>
22 #include <linux/mm.h>
23 #include <linux/spinlock.h>
24 #include <asm/unaligned.h>
25 #include <asm/byteorder.h>
26 #include <linux/input.h>
27 #include <linux/wait.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
37 * Version Information
40 #define DRIVER_VERSION "v2.6"
41 #define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik, Jiri Kosina"
42 #define DRIVER_DESC "HID core driver"
43 #define DRIVER_LICENSE "GPL"
45 #ifdef CONFIG_HID_DEBUG
46 int hid_debug = 0;
47 module_param_named(debug, hid_debug, bool, 0600);
48 MODULE_PARM_DESC(debug, "Turn HID debugging mode on and off");
49 EXPORT_SYMBOL_GPL(hid_debug);
50 #endif
53 * Register a new report for a device.
56 static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
58 struct hid_report_enum *report_enum = device->report_enum + type;
59 struct hid_report *report;
61 if (report_enum->report_id_hash[id])
62 return report_enum->report_id_hash[id];
64 if (!(report = kzalloc(sizeof(struct hid_report), GFP_KERNEL)))
65 return NULL;
67 if (id != 0)
68 report_enum->numbered = 1;
70 report->id = id;
71 report->type = type;
72 report->size = 0;
73 report->device = device;
74 report_enum->report_id_hash[id] = report;
76 list_add_tail(&report->list, &report_enum->report_list);
78 return report;
82 * Register a new field for this report.
85 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
87 struct hid_field *field;
89 if (report->maxfield == HID_MAX_FIELDS) {
90 dbg_hid("too many fields in report\n");
91 return NULL;
94 if (!(field = kzalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
95 + values * sizeof(unsigned), GFP_KERNEL))) return NULL;
97 field->index = report->maxfield++;
98 report->field[field->index] = field;
99 field->usage = (struct hid_usage *)(field + 1);
100 field->value = (unsigned *)(field->usage + usages);
101 field->report = report;
103 return field;
107 * Open a collection. The type/usage is pushed on the stack.
110 static int open_collection(struct hid_parser *parser, unsigned type)
112 struct hid_collection *collection;
113 unsigned usage;
115 usage = parser->local.usage[0];
117 if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
118 dbg_hid("collection stack overflow\n");
119 return -1;
122 if (parser->device->maxcollection == parser->device->collection_size) {
123 collection = kmalloc(sizeof(struct hid_collection) *
124 parser->device->collection_size * 2, GFP_KERNEL);
125 if (collection == NULL) {
126 dbg_hid("failed to reallocate collection array\n");
127 return -1;
129 memcpy(collection, parser->device->collection,
130 sizeof(struct hid_collection) *
131 parser->device->collection_size);
132 memset(collection + parser->device->collection_size, 0,
133 sizeof(struct hid_collection) *
134 parser->device->collection_size);
135 kfree(parser->device->collection);
136 parser->device->collection = collection;
137 parser->device->collection_size *= 2;
140 parser->collection_stack[parser->collection_stack_ptr++] =
141 parser->device->maxcollection;
143 collection = parser->device->collection +
144 parser->device->maxcollection++;
145 collection->type = type;
146 collection->usage = usage;
147 collection->level = parser->collection_stack_ptr - 1;
149 if (type == HID_COLLECTION_APPLICATION)
150 parser->device->maxapplication++;
152 return 0;
156 * Close a collection.
159 static int close_collection(struct hid_parser *parser)
161 if (!parser->collection_stack_ptr) {
162 dbg_hid("collection stack underflow\n");
163 return -1;
165 parser->collection_stack_ptr--;
166 return 0;
170 * Climb up the stack, search for the specified collection type
171 * and return the usage.
174 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
176 int n;
177 for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
178 if (parser->device->collection[parser->collection_stack[n]].type == type)
179 return parser->device->collection[parser->collection_stack[n]].usage;
180 return 0; /* we know nothing about this usage type */
184 * Add a usage to the temporary parser table.
187 static int hid_add_usage(struct hid_parser *parser, unsigned usage)
189 if (parser->local.usage_index >= HID_MAX_USAGES) {
190 dbg_hid("usage index exceeded\n");
191 return -1;
193 parser->local.usage[parser->local.usage_index] = usage;
194 parser->local.collection_index[parser->local.usage_index] =
195 parser->collection_stack_ptr ?
196 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
197 parser->local.usage_index++;
198 return 0;
202 * Register a new field for this report.
205 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
207 struct hid_report *report;
208 struct hid_field *field;
209 int usages;
210 unsigned offset;
211 int i;
213 if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
214 dbg_hid("hid_register_report failed\n");
215 return -1;
218 if (parser->global.logical_maximum < parser->global.logical_minimum) {
219 dbg_hid("logical range invalid %d %d\n", parser->global.logical_minimum, parser->global.logical_maximum);
220 return -1;
223 offset = report->size;
224 report->size += parser->global.report_size * parser->global.report_count;
226 if (!parser->local.usage_index) /* Ignore padding fields */
227 return 0;
229 usages = max_t(int, parser->local.usage_index, parser->global.report_count);
231 if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
232 return 0;
234 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
235 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
236 field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
238 for (i = 0; i < usages; i++) {
239 int j = i;
240 /* Duplicate the last usage we parsed if we have excess values */
241 if (i >= parser->local.usage_index)
242 j = parser->local.usage_index - 1;
243 field->usage[i].hid = parser->local.usage[j];
244 field->usage[i].collection_index =
245 parser->local.collection_index[j];
248 field->maxusage = usages;
249 field->flags = flags;
250 field->report_offset = offset;
251 field->report_type = report_type;
252 field->report_size = parser->global.report_size;
253 field->report_count = parser->global.report_count;
254 field->logical_minimum = parser->global.logical_minimum;
255 field->logical_maximum = parser->global.logical_maximum;
256 field->physical_minimum = parser->global.physical_minimum;
257 field->physical_maximum = parser->global.physical_maximum;
258 field->unit_exponent = parser->global.unit_exponent;
259 field->unit = parser->global.unit;
261 return 0;
265 * Read data value from item.
268 static u32 item_udata(struct hid_item *item)
270 switch (item->size) {
271 case 1: return item->data.u8;
272 case 2: return item->data.u16;
273 case 4: return item->data.u32;
275 return 0;
278 static s32 item_sdata(struct hid_item *item)
280 switch (item->size) {
281 case 1: return item->data.s8;
282 case 2: return item->data.s16;
283 case 4: return item->data.s32;
285 return 0;
289 * Process a global item.
292 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
294 switch (item->tag) {
296 case HID_GLOBAL_ITEM_TAG_PUSH:
298 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
299 dbg_hid("global enviroment stack overflow\n");
300 return -1;
303 memcpy(parser->global_stack + parser->global_stack_ptr++,
304 &parser->global, sizeof(struct hid_global));
305 return 0;
307 case HID_GLOBAL_ITEM_TAG_POP:
309 if (!parser->global_stack_ptr) {
310 dbg_hid("global enviroment stack underflow\n");
311 return -1;
314 memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
315 sizeof(struct hid_global));
316 return 0;
318 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
319 parser->global.usage_page = item_udata(item);
320 return 0;
322 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
323 parser->global.logical_minimum = item_sdata(item);
324 return 0;
326 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
327 if (parser->global.logical_minimum < 0)
328 parser->global.logical_maximum = item_sdata(item);
329 else
330 parser->global.logical_maximum = item_udata(item);
331 return 0;
333 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
334 parser->global.physical_minimum = item_sdata(item);
335 return 0;
337 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
338 if (parser->global.physical_minimum < 0)
339 parser->global.physical_maximum = item_sdata(item);
340 else
341 parser->global.physical_maximum = item_udata(item);
342 return 0;
344 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
345 parser->global.unit_exponent = item_sdata(item);
346 return 0;
348 case HID_GLOBAL_ITEM_TAG_UNIT:
349 parser->global.unit = item_udata(item);
350 return 0;
352 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
353 if ((parser->global.report_size = item_udata(item)) > 32) {
354 dbg_hid("invalid report_size %d\n", parser->global.report_size);
355 return -1;
357 return 0;
359 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
360 if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
361 dbg_hid("invalid report_count %d\n", parser->global.report_count);
362 return -1;
364 return 0;
366 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
367 if ((parser->global.report_id = item_udata(item)) == 0) {
368 dbg_hid("report_id 0 is invalid\n");
369 return -1;
371 return 0;
373 default:
374 dbg_hid("unknown global tag 0x%x\n", item->tag);
375 return -1;
380 * Process a local item.
383 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
385 __u32 data;
386 unsigned n;
388 if (item->size == 0) {
389 dbg_hid("item data expected for local item\n");
390 return -1;
393 data = item_udata(item);
395 switch (item->tag) {
397 case HID_LOCAL_ITEM_TAG_DELIMITER:
399 if (data) {
401 * We treat items before the first delimiter
402 * as global to all usage sets (branch 0).
403 * In the moment we process only these global
404 * items and the first delimiter set.
406 if (parser->local.delimiter_depth != 0) {
407 dbg_hid("nested delimiters\n");
408 return -1;
410 parser->local.delimiter_depth++;
411 parser->local.delimiter_branch++;
412 } else {
413 if (parser->local.delimiter_depth < 1) {
414 dbg_hid("bogus close delimiter\n");
415 return -1;
417 parser->local.delimiter_depth--;
419 return 1;
421 case HID_LOCAL_ITEM_TAG_USAGE:
423 if (parser->local.delimiter_branch > 1) {
424 dbg_hid("alternative usage ignored\n");
425 return 0;
428 if (item->size <= 2)
429 data = (parser->global.usage_page << 16) + data;
431 return hid_add_usage(parser, data);
433 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
435 if (parser->local.delimiter_branch > 1) {
436 dbg_hid("alternative usage ignored\n");
437 return 0;
440 if (item->size <= 2)
441 data = (parser->global.usage_page << 16) + data;
443 parser->local.usage_minimum = data;
444 return 0;
446 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
448 if (parser->local.delimiter_branch > 1) {
449 dbg_hid("alternative usage ignored\n");
450 return 0;
453 if (item->size <= 2)
454 data = (parser->global.usage_page << 16) + data;
456 for (n = parser->local.usage_minimum; n <= data; n++)
457 if (hid_add_usage(parser, n)) {
458 dbg_hid("hid_add_usage failed\n");
459 return -1;
461 return 0;
463 default:
465 dbg_hid("unknown local item tag 0x%x\n", item->tag);
466 return 0;
468 return 0;
472 * Process a main item.
475 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
477 __u32 data;
478 int ret;
480 data = item_udata(item);
482 switch (item->tag) {
483 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
484 ret = open_collection(parser, data & 0xff);
485 break;
486 case HID_MAIN_ITEM_TAG_END_COLLECTION:
487 ret = close_collection(parser);
488 break;
489 case HID_MAIN_ITEM_TAG_INPUT:
490 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
491 break;
492 case HID_MAIN_ITEM_TAG_OUTPUT:
493 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
494 break;
495 case HID_MAIN_ITEM_TAG_FEATURE:
496 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
497 break;
498 default:
499 dbg_hid("unknown main item tag 0x%x\n", item->tag);
500 ret = 0;
503 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
505 return ret;
509 * Process a reserved item.
512 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
514 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
515 return 0;
519 * Free a report and all registered fields. The field->usage and
520 * field->value table's are allocated behind the field, so we need
521 * only to free(field) itself.
524 static void hid_free_report(struct hid_report *report)
526 unsigned n;
528 for (n = 0; n < report->maxfield; n++)
529 kfree(report->field[n]);
530 kfree(report);
534 * Free a device structure, all reports, and all fields.
537 void hid_free_device(struct hid_device *device)
539 unsigned i,j;
541 for (i = 0; i < HID_REPORT_TYPES; i++) {
542 struct hid_report_enum *report_enum = device->report_enum + i;
544 for (j = 0; j < 256; j++) {
545 struct hid_report *report = report_enum->report_id_hash[j];
546 if (report)
547 hid_free_report(report);
551 kfree(device->rdesc);
552 kfree(device->collection);
553 kfree(device);
555 EXPORT_SYMBOL_GPL(hid_free_device);
558 * Fetch a report description item from the data stream. We support long
559 * items, though they are not used yet.
562 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
564 u8 b;
566 if ((end - start) <= 0)
567 return NULL;
569 b = *start++;
571 item->type = (b >> 2) & 3;
572 item->tag = (b >> 4) & 15;
574 if (item->tag == HID_ITEM_TAG_LONG) {
576 item->format = HID_ITEM_FORMAT_LONG;
578 if ((end - start) < 2)
579 return NULL;
581 item->size = *start++;
582 item->tag = *start++;
584 if ((end - start) < item->size)
585 return NULL;
587 item->data.longdata = start;
588 start += item->size;
589 return start;
592 item->format = HID_ITEM_FORMAT_SHORT;
593 item->size = b & 3;
595 switch (item->size) {
597 case 0:
598 return start;
600 case 1:
601 if ((end - start) < 1)
602 return NULL;
603 item->data.u8 = *start++;
604 return start;
606 case 2:
607 if ((end - start) < 2)
608 return NULL;
609 item->data.u16 = le16_to_cpu(get_unaligned((__le16*)start));
610 start = (__u8 *)((__le16 *)start + 1);
611 return start;
613 case 3:
614 item->size++;
615 if ((end - start) < 4)
616 return NULL;
617 item->data.u32 = le32_to_cpu(get_unaligned((__le32*)start));
618 start = (__u8 *)((__le32 *)start + 1);
619 return start;
622 return NULL;
626 * Parse a report description into a hid_device structure. Reports are
627 * enumerated, fields are attached to these reports.
630 struct hid_device *hid_parse_report(__u8 *start, unsigned size)
632 struct hid_device *device;
633 struct hid_parser *parser;
634 struct hid_item item;
635 __u8 *end;
636 unsigned i;
637 static int (*dispatch_type[])(struct hid_parser *parser,
638 struct hid_item *item) = {
639 hid_parser_main,
640 hid_parser_global,
641 hid_parser_local,
642 hid_parser_reserved
645 if (!(device = kzalloc(sizeof(struct hid_device), GFP_KERNEL)))
646 return NULL;
648 if (!(device->collection = kzalloc(sizeof(struct hid_collection) *
649 HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) {
650 kfree(device);
651 return NULL;
653 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
655 for (i = 0; i < HID_REPORT_TYPES; i++)
656 INIT_LIST_HEAD(&device->report_enum[i].report_list);
658 if (!(device->rdesc = kmalloc(size, GFP_KERNEL))) {
659 kfree(device->collection);
660 kfree(device);
661 return NULL;
663 memcpy(device->rdesc, start, size);
664 device->rsize = size;
666 if (!(parser = vmalloc(sizeof(struct hid_parser)))) {
667 kfree(device->rdesc);
668 kfree(device->collection);
669 kfree(device);
670 return NULL;
672 memset(parser, 0, sizeof(struct hid_parser));
673 parser->device = device;
675 end = start + size;
676 while ((start = fetch_item(start, end, &item)) != NULL) {
678 if (item.format != HID_ITEM_FORMAT_SHORT) {
679 dbg_hid("unexpected long global item\n");
680 hid_free_device(device);
681 vfree(parser);
682 return NULL;
685 if (dispatch_type[item.type](parser, &item)) {
686 dbg_hid("item %u %u %u %u parsing failed\n",
687 item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
688 hid_free_device(device);
689 vfree(parser);
690 return NULL;
693 if (start == end) {
694 if (parser->collection_stack_ptr) {
695 dbg_hid("unbalanced collection at end of report description\n");
696 hid_free_device(device);
697 vfree(parser);
698 return NULL;
700 if (parser->local.delimiter_depth) {
701 dbg_hid("unbalanced delimiter at end of report description\n");
702 hid_free_device(device);
703 vfree(parser);
704 return NULL;
706 vfree(parser);
707 return device;
711 dbg_hid("item fetching failed at offset %d\n", (int)(end - start));
712 hid_free_device(device);
713 vfree(parser);
714 return NULL;
716 EXPORT_SYMBOL_GPL(hid_parse_report);
719 * Convert a signed n-bit integer to signed 32-bit integer. Common
720 * cases are done through the compiler, the screwed things has to be
721 * done by hand.
724 static s32 snto32(__u32 value, unsigned n)
726 switch (n) {
727 case 8: return ((__s8)value);
728 case 16: return ((__s16)value);
729 case 32: return ((__s32)value);
731 return value & (1 << (n - 1)) ? value | (-1 << n) : value;
735 * Convert a signed 32-bit integer to a signed n-bit integer.
738 static u32 s32ton(__s32 value, unsigned n)
740 s32 a = value >> (n - 1);
741 if (a && a != -1)
742 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
743 return value & ((1 << n) - 1);
747 * Extract/implement a data field from/to a little endian report (bit array).
749 * Code sort-of follows HID spec:
750 * http://www.usb.org/developers/devclass_docs/HID1_11.pdf
752 * While the USB HID spec allows unlimited length bit fields in "report
753 * descriptors", most devices never use more than 16 bits.
754 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
755 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
758 static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
760 u64 x;
762 if (n > 32)
763 printk(KERN_WARNING "HID: extract() called with n (%d) > 32! (%s)\n",
764 n, current->comm);
766 report += offset >> 3; /* adjust byte index */
767 offset &= 7; /* now only need bit offset into one byte */
768 x = le64_to_cpu(get_unaligned((__le64 *) report));
769 x = (x >> offset) & ((1ULL << n) - 1); /* extract bit field */
770 return (u32) x;
774 * "implement" : set bits in a little endian bit stream.
775 * Same concepts as "extract" (see comments above).
776 * The data mangled in the bit stream remains in little endian
777 * order the whole time. It make more sense to talk about
778 * endianness of register values by considering a register
779 * a "cached" copy of the little endiad bit stream.
781 static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
783 __le64 x;
784 u64 m = (1ULL << n) - 1;
786 if (n > 32)
787 printk(KERN_WARNING "HID: implement() called with n (%d) > 32! (%s)\n",
788 n, current->comm);
790 if (value > m)
791 printk(KERN_WARNING "HID: implement() called with too large value %d! (%s)\n",
792 value, current->comm);
793 WARN_ON(value > m);
794 value &= m;
796 report += offset >> 3;
797 offset &= 7;
799 x = get_unaligned((__le64 *)report);
800 x &= cpu_to_le64(~(m << offset));
801 x |= cpu_to_le64(((u64) value) << offset);
802 put_unaligned(x, (__le64 *) report);
806 * Search an array for a value.
809 static __inline__ int search(__s32 *array, __s32 value, unsigned n)
811 while (n--) {
812 if (*array++ == value)
813 return 0;
815 return -1;
818 static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, int interrupt)
820 hid_dump_input(usage, value);
821 if (hid->claimed & HID_CLAIMED_INPUT)
822 hidinput_hid_event(hid, field, usage, value);
823 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
824 hid->hiddev_hid_event(hid, field, usage, value);
828 * Analyse a received field, and fetch the data from it. The field
829 * content is stored for next report processing (we do differential
830 * reporting to the layer).
833 void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, int interrupt)
835 unsigned n;
836 unsigned count = field->report_count;
837 unsigned offset = field->report_offset;
838 unsigned size = field->report_size;
839 __s32 min = field->logical_minimum;
840 __s32 max = field->logical_maximum;
841 __s32 *value;
843 if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC)))
844 return;
846 for (n = 0; n < count; n++) {
848 value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
849 extract(data, offset + n * size, size);
851 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
852 && value[n] >= min && value[n] <= max
853 && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
854 goto exit;
857 for (n = 0; n < count; n++) {
859 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
860 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
861 continue;
864 if (field->value[n] >= min && field->value[n] <= max
865 && field->usage[field->value[n] - min].hid
866 && search(value, field->value[n], count))
867 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
869 if (value[n] >= min && value[n] <= max
870 && field->usage[value[n] - min].hid
871 && search(field->value, value[n], count))
872 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
875 memcpy(field->value, value, count * sizeof(__s32));
876 exit:
877 kfree(value);
879 EXPORT_SYMBOL_GPL(hid_input_field);
882 * Output the field into the report.
885 static void hid_output_field(struct hid_field *field, __u8 *data)
887 unsigned count = field->report_count;
888 unsigned offset = field->report_offset;
889 unsigned size = field->report_size;
890 unsigned bitsused = offset + count * size;
891 unsigned n;
893 /* make sure the unused bits in the last byte are zeros */
894 if (count > 0 && size > 0 && (bitsused % 8) != 0)
895 data[(bitsused-1)/8] &= (1 << (bitsused % 8)) - 1;
897 for (n = 0; n < count; n++) {
898 if (field->logical_minimum < 0) /* signed values */
899 implement(data, offset + n * size, size, s32ton(field->value[n], size));
900 else /* unsigned values */
901 implement(data, offset + n * size, size, field->value[n]);
906 * Create a report.
909 void hid_output_report(struct hid_report *report, __u8 *data)
911 unsigned n;
913 if (report->id > 0)
914 *data++ = report->id;
916 for (n = 0; n < report->maxfield; n++)
917 hid_output_field(report->field[n], data);
919 EXPORT_SYMBOL_GPL(hid_output_report);
922 * Set a field value. The report this field belongs to has to be
923 * created and transferred to the device, to set this value in the
924 * device.
927 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
929 unsigned size = field->report_size;
931 hid_dump_input(field->usage + offset, value);
933 if (offset >= field->report_count) {
934 dbg_hid("offset (%d) exceeds report_count (%d)\n", offset, field->report_count);
935 hid_dump_field(field, 8);
936 return -1;
938 if (field->logical_minimum < 0) {
939 if (value != snto32(s32ton(value, size), size)) {
940 dbg_hid("value %d is out of range\n", value);
941 return -1;
944 field->value[offset] = value;
945 return 0;
947 EXPORT_SYMBOL_GPL(hid_set_field);
949 int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
951 struct hid_report_enum *report_enum = hid->report_enum + type;
952 struct hid_report *report;
953 int n, rsize, i;
955 if (!hid)
956 return -ENODEV;
958 if (!size) {
959 dbg_hid("empty report\n");
960 return -1;
963 dbg_hid("report (size %u) (%snumbered)\n", size, report_enum->numbered ? "" : "un");
965 n = 0; /* Normally report number is 0 */
966 if (report_enum->numbered) { /* Device uses numbered reports, data[0] is report number */
967 n = *data++;
968 size--;
971 /* dump the report descriptor */
972 dbg_hid("report %d (size %u) = ", n, size);
973 for (i = 0; i < size; i++)
974 dbg_hid_line(" %02x", data[i]);
975 dbg_hid_line("\n");
977 if (!(report = report_enum->report_id_hash[n])) {
978 dbg_hid("undefined report_id %d received\n", n);
979 return -1;
982 rsize = ((report->size - 1) >> 3) + 1;
984 if (size < rsize) {
985 dbg_hid("report %d is too short, (%d < %d)\n", report->id, size, rsize);
986 memset(data + size, 0, rsize - size);
989 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
990 hid->hiddev_report_event(hid, report);
991 if (hid->claimed & HID_CLAIMED_HIDRAW)
992 hidraw_report_event(hid, data, size);
994 for (n = 0; n < report->maxfield; n++)
995 hid_input_field(hid, report->field[n], data, interrupt);
997 if (hid->claimed & HID_CLAIMED_INPUT)
998 hidinput_report_event(hid, report);
1000 return 0;
1002 EXPORT_SYMBOL_GPL(hid_input_report);
1004 static int __init hid_init(void)
1006 return hidraw_init();
1009 static void __exit hid_exit(void)
1011 hidraw_exit();
1014 module_init(hid_init);
1015 module_exit(hid_exit);
1017 MODULE_LICENSE(DRIVER_LICENSE);