[POWERPC] Use menuconfig objects II - Macintosh
[wrt350n-kernel.git] / drivers / hwmon / abituguru.c
blobbede4d990ea67330546e7b897ae51bf434f55341
1 /*
2 abituguru.c Copyright (c) 2005-2006 Hans de Goede <j.w.r.degoede@hhs.nl>
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 This driver supports the sensor part of the custom Abit uGuru chip found
20 on Abit uGuru motherboards. Note: because of lack of specs the CPU / RAM /
21 etc voltage & frequency control is not supported!
23 #include <linux/module.h>
24 #include <linux/sched.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/mutex.h>
29 #include <linux/err.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/hwmon.h>
33 #include <linux/hwmon-sysfs.h>
34 #include <asm/io.h>
36 /* Banks */
37 #define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */
38 #define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */
39 #define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */
40 #define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */
41 /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
42 #define ABIT_UGURU_MAX_BANK1_SENSORS 16
43 /* Warning if you increase one of the 2 MAX defines below to 10 or higher you
44 should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! */
45 /* max nr of sensors in bank2, currently mb's with max 6 fans are known */
46 #define ABIT_UGURU_MAX_BANK2_SENSORS 6
47 /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
48 #define ABIT_UGURU_MAX_PWMS 5
49 /* uGuru sensor bank 1 flags */ /* Alarm if: */
50 #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */
51 #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */
52 #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */
53 #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */
54 #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */
55 #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */
56 /* uGuru sensor bank 2 flags */ /* Alarm if: */
57 #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */
58 /* uGuru sensor bank common flags */
59 #define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */
60 #define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */
61 /* uGuru fan PWM (speed control) flags */
62 #define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */
63 /* Values used for conversion */
64 #define ABIT_UGURU_FAN_MAX 15300 /* RPM */
65 /* Bank1 sensor types */
66 #define ABIT_UGURU_IN_SENSOR 0
67 #define ABIT_UGURU_TEMP_SENSOR 1
68 #define ABIT_UGURU_NC 2
69 /* In many cases we need to wait for the uGuru to reach a certain status, most
70 of the time it will reach this status within 30 - 90 ISA reads, and thus we
71 can best busy wait. This define gives the total amount of reads to try. */
72 #define ABIT_UGURU_WAIT_TIMEOUT 125
73 /* However sometimes older versions of the uGuru seem to be distracted and they
74 do not respond for a long time. To handle this we sleep before each of the
75 last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries. */
76 #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5
77 /* Normally all expected status in abituguru_ready, are reported after the
78 first read, but sometimes not and we need to poll. */
79 #define ABIT_UGURU_READY_TIMEOUT 5
80 /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
81 #define ABIT_UGURU_MAX_RETRIES 3
82 #define ABIT_UGURU_RETRY_DELAY (HZ/5)
83 /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
84 #define ABIT_UGURU_MAX_TIMEOUTS 2
85 /* utility macros */
86 #define ABIT_UGURU_NAME "abituguru"
87 #define ABIT_UGURU_DEBUG(level, format, arg...) \
88 if (level <= verbose) \
89 printk(KERN_DEBUG ABIT_UGURU_NAME ": " format , ## arg)
90 /* Macros to help calculate the sysfs_names array length */
91 /* sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
92 in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 */
93 #define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
94 /* sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
95 temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 */
96 #define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16)
97 /* sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
98 fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 */
99 #define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14)
100 /* sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
101 pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 */
102 #define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22)
103 /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
104 #define ABITUGURU_SYSFS_NAMES_LENGTH ( \
105 ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
106 ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
107 ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
109 /* All the macros below are named identical to the oguru and oguru2 programs
110 reverse engineered by Olle Sandberg, hence the names might not be 100%
111 logical. I could come up with better names, but I prefer keeping the names
112 identical so that this driver can be compared with his work more easily. */
113 /* Two i/o-ports are used by uGuru */
114 #define ABIT_UGURU_BASE 0x00E0
115 /* Used to tell uGuru what to read and to read the actual data */
116 #define ABIT_UGURU_CMD 0x00
117 /* Mostly used to check if uGuru is busy */
118 #define ABIT_UGURU_DATA 0x04
119 #define ABIT_UGURU_REGION_LENGTH 5
120 /* uGuru status' */
121 #define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */
122 #define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */
123 #define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */
124 #define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */
126 /* Constants */
127 /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
128 static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
129 /* Min / Max allowed values for sensor2 (fan) alarm threshold, these values
130 correspond to 300-3000 RPM */
131 static const u8 abituguru_bank2_min_threshold = 5;
132 static const u8 abituguru_bank2_max_threshold = 50;
133 /* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
134 are temperature trip points. */
135 static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
136 /* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
137 special case the minium allowed pwm% setting for this is 30% (77) on
138 some MB's this special case is handled in the code! */
139 static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
140 static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
143 /* Insmod parameters */
144 static int force;
145 module_param(force, bool, 0);
146 MODULE_PARM_DESC(force, "Set to one to force detection.");
147 static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
148 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
149 module_param_array(bank1_types, int, NULL, 0);
150 MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
151 " -1 autodetect\n"
152 " 0 volt sensor\n"
153 " 1 temp sensor\n"
154 " 2 not connected");
155 static int fan_sensors;
156 module_param(fan_sensors, int, 0);
157 MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
158 "(0 = autodetect)");
159 static int pwms;
160 module_param(pwms, int, 0);
161 MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
162 "(0 = autodetect)");
164 /* Default verbose is 2, since this driver is still in the testing phase */
165 static int verbose = 2;
166 module_param(verbose, int, 0644);
167 MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
168 " 0 normal output\n"
169 " 1 + verbose error reporting\n"
170 " 2 + sensors type probing info\n"
171 " 3 + retryable error reporting");
174 /* For the Abit uGuru, we need to keep some data in memory.
175 The structure is dynamically allocated, at the same time when a new
176 abituguru device is allocated. */
177 struct abituguru_data {
178 struct class_device *class_dev; /* hwmon registered device */
179 struct mutex update_lock; /* protect access to data and uGuru */
180 unsigned long last_updated; /* In jiffies */
181 unsigned short addr; /* uguru base address */
182 char uguru_ready; /* is the uguru in ready state? */
183 unsigned char update_timeouts; /* number of update timeouts since last
184 successful update */
186 /* The sysfs attr and their names are generated automatically, for bank1
187 we cannot use a predefined array because we don't know beforehand
188 of a sensor is a volt or a temp sensor, for bank2 and the pwms its
189 easier todo things the same way. For in sensors we have 9 (temp 7)
190 sysfs entries per sensor, for bank2 and pwms 6. */
191 struct sensor_device_attribute_2 sysfs_attr[
192 ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
193 ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
194 /* Buffer to store the dynamically generated sysfs names */
195 char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
197 /* Bank 1 data */
198 /* number of and addresses of [0] in, [1] temp sensors */
199 u8 bank1_sensors[2];
200 u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
201 u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
202 /* This array holds 3 entries per sensor for the bank 1 sensor settings
203 (flags, min, max for voltage / flags, warn, shutdown for temp). */
204 u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
205 /* Maximum value for each sensor used for scaling in mV/millidegrees
206 Celsius. */
207 int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
209 /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
210 u8 bank2_sensors; /* actual number of bank2 sensors found */
211 u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
212 u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
214 /* Alarms 2 bytes for bank1, 1 byte for bank2 */
215 u8 alarms[3];
217 /* Fan PWM (speed control) 5 bytes per PWM */
218 u8 pwms; /* actual number of pwms found */
219 u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
222 /* wait till the uguru is in the specified state */
223 static int abituguru_wait(struct abituguru_data *data, u8 state)
225 int timeout = ABIT_UGURU_WAIT_TIMEOUT;
227 while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
228 timeout--;
229 if (timeout == 0)
230 return -EBUSY;
231 /* sleep a bit before our last few tries, see the comment on
232 this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined. */
233 if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
234 msleep(0);
236 return 0;
239 /* Put the uguru in ready for input state */
240 static int abituguru_ready(struct abituguru_data *data)
242 int timeout = ABIT_UGURU_READY_TIMEOUT;
244 if (data->uguru_ready)
245 return 0;
247 /* Reset? / Prepare for next read/write cycle */
248 outb(0x00, data->addr + ABIT_UGURU_DATA);
250 /* Wait till the uguru is ready */
251 if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
252 ABIT_UGURU_DEBUG(1,
253 "timeout exceeded waiting for ready state\n");
254 return -EIO;
257 /* Cmd port MUST be read now and should contain 0xAC */
258 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
259 timeout--;
260 if (timeout == 0) {
261 ABIT_UGURU_DEBUG(1,
262 "CMD reg does not hold 0xAC after ready command\n");
263 return -EIO;
265 msleep(0);
268 /* After this the ABIT_UGURU_DATA port should contain
269 ABIT_UGURU_STATUS_INPUT */
270 timeout = ABIT_UGURU_READY_TIMEOUT;
271 while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
272 timeout--;
273 if (timeout == 0) {
274 ABIT_UGURU_DEBUG(1,
275 "state != more input after ready command\n");
276 return -EIO;
278 msleep(0);
281 data->uguru_ready = 1;
282 return 0;
285 /* Send the bank and then sensor address to the uGuru for the next read/write
286 cycle. This function gets called as the first part of a read/write by
287 abituguru_read and abituguru_write. This function should never be
288 called by any other function. */
289 static int abituguru_send_address(struct abituguru_data *data,
290 u8 bank_addr, u8 sensor_addr, int retries)
292 /* assume the caller does error handling itself if it has not requested
293 any retries, and thus be quiet. */
294 int report_errors = retries;
296 for (;;) {
297 /* Make sure the uguru is ready and then send the bank address,
298 after this the uguru is no longer "ready". */
299 if (abituguru_ready(data) != 0)
300 return -EIO;
301 outb(bank_addr, data->addr + ABIT_UGURU_DATA);
302 data->uguru_ready = 0;
304 /* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
305 and send the sensor addr */
306 if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
307 if (retries) {
308 ABIT_UGURU_DEBUG(3, "timeout exceeded "
309 "waiting for more input state, %d "
310 "tries remaining\n", retries);
311 set_current_state(TASK_UNINTERRUPTIBLE);
312 schedule_timeout(ABIT_UGURU_RETRY_DELAY);
313 retries--;
314 continue;
316 if (report_errors)
317 ABIT_UGURU_DEBUG(1, "timeout exceeded "
318 "waiting for more input state "
319 "(bank: %d)\n", (int)bank_addr);
320 return -EBUSY;
322 outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
323 return 0;
327 /* Read count bytes from sensor sensor_addr in bank bank_addr and store the
328 result in buf, retry the send address part of the read retries times. */
329 static int abituguru_read(struct abituguru_data *data,
330 u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
332 int i;
334 /* Send the address */
335 i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
336 if (i)
337 return i;
339 /* And read the data */
340 for (i = 0; i < count; i++) {
341 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
342 ABIT_UGURU_DEBUG(retries ? 1 : 3,
343 "timeout exceeded waiting for "
344 "read state (bank: %d, sensor: %d)\n",
345 (int)bank_addr, (int)sensor_addr);
346 break;
348 buf[i] = inb(data->addr + ABIT_UGURU_CMD);
351 /* Last put the chip back in ready state */
352 abituguru_ready(data);
354 return i;
357 /* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
358 address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */
359 static int abituguru_write(struct abituguru_data *data,
360 u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
362 /* We use the ready timeout as we have to wait for 0xAC just like the
363 ready function */
364 int i, timeout = ABIT_UGURU_READY_TIMEOUT;
366 /* Send the address */
367 i = abituguru_send_address(data, bank_addr, sensor_addr,
368 ABIT_UGURU_MAX_RETRIES);
369 if (i)
370 return i;
372 /* And write the data */
373 for (i = 0; i < count; i++) {
374 if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
375 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
376 "write state (bank: %d, sensor: %d)\n",
377 (int)bank_addr, (int)sensor_addr);
378 break;
380 outb(buf[i], data->addr + ABIT_UGURU_CMD);
383 /* Now we need to wait till the chip is ready to be read again,
384 so that we can read 0xAC as confirmation that our write has
385 succeeded. */
386 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
387 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
388 "after write (bank: %d, sensor: %d)\n", (int)bank_addr,
389 (int)sensor_addr);
390 return -EIO;
393 /* Cmd port MUST be read now and should contain 0xAC */
394 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
395 timeout--;
396 if (timeout == 0) {
397 ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
398 "write (bank: %d, sensor: %d)\n",
399 (int)bank_addr, (int)sensor_addr);
400 return -EIO;
402 msleep(0);
405 /* Last put the chip back in ready state */
406 abituguru_ready(data);
408 return i;
411 /* Detect sensor type. Temp and Volt sensors are enabled with
412 different masks and will ignore enable masks not meant for them.
413 This enables us to test what kind of sensor we're dealing with.
414 By setting the alarm thresholds so that we will always get an
415 alarm for sensor type X and then enabling the sensor as sensor type
416 X, if we then get an alarm it is a sensor of type X. */
417 static int __devinit
418 abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
419 u8 sensor_addr)
421 u8 val, buf[3];
422 int i, ret = -ENODEV; /* error is the most common used retval :| */
424 /* If overriden by the user return the user selected type */
425 if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
426 bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
427 ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
428 "%d because of \"bank1_types\" module param\n",
429 bank1_types[sensor_addr], (int)sensor_addr);
430 return bank1_types[sensor_addr];
433 /* First read the sensor and the current settings */
434 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
435 1, ABIT_UGURU_MAX_RETRIES) != 1)
436 return -ENODEV;
438 /* Test val is sane / usable for sensor type detection. */
439 if ((val < 10u) || (val > 240u)) {
440 printk(KERN_WARNING ABIT_UGURU_NAME
441 ": bank1-sensor: %d reading (%d) too close to limits, "
442 "unable to determine sensor type, skipping sensor\n",
443 (int)sensor_addr, (int)val);
444 /* assume no sensor is there for sensors for which we can't
445 determine the sensor type because their reading is too close
446 to their limits, this usually means no sensor is there. */
447 return ABIT_UGURU_NC;
450 ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
451 /* Volt sensor test, enable volt low alarm, set min value ridicously
452 high. If its a volt sensor this should always give us an alarm. */
453 buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
454 buf[1] = 245;
455 buf[2] = 250;
456 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
457 buf, 3) != 3)
458 goto abituguru_detect_bank1_sensor_type_exit;
459 /* Now we need 20 ms to give the uguru time to read the sensors
460 and raise a voltage alarm */
461 set_current_state(TASK_UNINTERRUPTIBLE);
462 schedule_timeout(HZ/50);
463 /* Check for alarm and check the alarm is a volt low alarm. */
464 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
465 ABIT_UGURU_MAX_RETRIES) != 3)
466 goto abituguru_detect_bank1_sensor_type_exit;
467 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
468 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
469 sensor_addr, buf, 3,
470 ABIT_UGURU_MAX_RETRIES) != 3)
471 goto abituguru_detect_bank1_sensor_type_exit;
472 if (buf[0] & ABIT_UGURU_VOLT_LOW_ALARM_FLAG) {
473 ABIT_UGURU_DEBUG(2, " found volt sensor\n");
474 ret = ABIT_UGURU_IN_SENSOR;
475 goto abituguru_detect_bank1_sensor_type_exit;
476 } else
477 ABIT_UGURU_DEBUG(2, " alarm raised during volt "
478 "sensor test, but volt low flag not set\n");
479 } else
480 ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor "
481 "test\n");
483 /* Temp sensor test, enable sensor as a temp sensor, set beep value
484 ridicously low (but not too low, otherwise uguru ignores it).
485 If its a temp sensor this should always give us an alarm. */
486 buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
487 buf[1] = 5;
488 buf[2] = 10;
489 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
490 buf, 3) != 3)
491 goto abituguru_detect_bank1_sensor_type_exit;
492 /* Now we need 50 ms to give the uguru time to read the sensors
493 and raise a temp alarm */
494 set_current_state(TASK_UNINTERRUPTIBLE);
495 schedule_timeout(HZ/20);
496 /* Check for alarm and check the alarm is a temp high alarm. */
497 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
498 ABIT_UGURU_MAX_RETRIES) != 3)
499 goto abituguru_detect_bank1_sensor_type_exit;
500 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
501 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
502 sensor_addr, buf, 3,
503 ABIT_UGURU_MAX_RETRIES) != 3)
504 goto abituguru_detect_bank1_sensor_type_exit;
505 if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
506 ABIT_UGURU_DEBUG(2, " found temp sensor\n");
507 ret = ABIT_UGURU_TEMP_SENSOR;
508 goto abituguru_detect_bank1_sensor_type_exit;
509 } else
510 ABIT_UGURU_DEBUG(2, " alarm raised during temp "
511 "sensor test, but temp high flag not set\n");
512 } else
513 ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor "
514 "test\n");
516 ret = ABIT_UGURU_NC;
517 abituguru_detect_bank1_sensor_type_exit:
518 /* Restore original settings, failing here is really BAD, it has been
519 reported that some BIOS-es hang when entering the uGuru menu with
520 invalid settings present in the uGuru, so we try this 3 times. */
521 for (i = 0; i < 3; i++)
522 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
523 sensor_addr, data->bank1_settings[sensor_addr],
524 3) == 3)
525 break;
526 if (i == 3) {
527 printk(KERN_ERR ABIT_UGURU_NAME
528 ": Fatal error could not restore original settings. "
529 "This should never happen please report this to the "
530 "abituguru maintainer (see MAINTAINERS)\n");
531 return -ENODEV;
533 return ret;
536 /* These functions try to find out how many sensors there are in bank2 and how
537 many pwms there are. The purpose of this is to make sure that we don't give
538 the user the possibility to change settings for non-existent sensors / pwm.
539 The uGuru will happily read / write whatever memory happens to be after the
540 memory storing the PWM settings when reading/writing to a PWM which is not
541 there. Notice even if we detect a PWM which doesn't exist we normally won't
542 write to it, unless the user tries to change the settings.
544 Although the uGuru allows reading (settings) from non existing bank2
545 sensors, my version of the uGuru does seem to stop writing to them, the
546 write function above aborts in this case with:
547 "CMD reg does not hold 0xAC after write"
549 Notice these 2 tests are non destructive iow read-only tests, otherwise
550 they would defeat their purpose. Although for the bank2_sensors detection a
551 read/write test would be feasible because of the reaction above, I've
552 however opted to stay on the safe side. */
553 static void __devinit
554 abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
556 int i;
558 if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
559 data->bank2_sensors = fan_sensors;
560 ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
561 "\"fan_sensors\" module param\n",
562 (int)data->bank2_sensors);
563 return;
566 ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
567 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
568 /* 0x89 are the known used bits:
569 -0x80 enable shutdown
570 -0x08 enable beep
571 -0x01 enable alarm
572 All other bits should be 0, but on some motherboards
573 0x40 (bit 6) is also high for some of the fans?? */
574 if (data->bank2_settings[i][0] & ~0xC9) {
575 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
576 "to be a fan sensor: settings[0] = %02X\n",
577 i, (unsigned int)data->bank2_settings[i][0]);
578 break;
581 /* check if the threshold is within the allowed range */
582 if (data->bank2_settings[i][1] <
583 abituguru_bank2_min_threshold) {
584 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
585 "to be a fan sensor: the threshold (%d) is "
586 "below the minimum (%d)\n", i,
587 (int)data->bank2_settings[i][1],
588 (int)abituguru_bank2_min_threshold);
589 break;
591 if (data->bank2_settings[i][1] >
592 abituguru_bank2_max_threshold) {
593 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
594 "to be a fan sensor: the threshold (%d) is "
595 "above the maximum (%d)\n", i,
596 (int)data->bank2_settings[i][1],
597 (int)abituguru_bank2_max_threshold);
598 break;
602 data->bank2_sensors = i;
603 ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
604 (int)data->bank2_sensors);
607 static void __devinit
608 abituguru_detect_no_pwms(struct abituguru_data *data)
610 int i, j;
612 if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
613 data->pwms = pwms;
614 ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
615 "\"pwms\" module param\n", (int)data->pwms);
616 return;
619 ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
620 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
621 /* 0x80 is the enable bit and the low
622 nibble is which temp sensor to use,
623 the other bits should be 0 */
624 if (data->pwm_settings[i][0] & ~0x8F) {
625 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
626 "to be a pwm channel: settings[0] = %02X\n",
627 i, (unsigned int)data->pwm_settings[i][0]);
628 break;
631 /* the low nibble must correspond to one of the temp sensors
632 we've found */
633 for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
634 j++) {
635 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
636 (data->pwm_settings[i][0] & 0x0F))
637 break;
639 if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
640 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
641 "to be a pwm channel: %d is not a valid temp "
642 "sensor address\n", i,
643 data->pwm_settings[i][0] & 0x0F);
644 break;
647 /* check if all other settings are within the allowed range */
648 for (j = 1; j < 5; j++) {
649 u8 min;
650 /* special case pwm1 min pwm% */
651 if ((i == 0) && ((j == 1) || (j == 2)))
652 min = 77;
653 else
654 min = abituguru_pwm_min[j];
655 if (data->pwm_settings[i][j] < min) {
656 ABIT_UGURU_DEBUG(2, " pwm channel %d does "
657 "not seem to be a pwm channel: "
658 "setting %d (%d) is below the minimum "
659 "value (%d)\n", i, j,
660 (int)data->pwm_settings[i][j],
661 (int)min);
662 goto abituguru_detect_no_pwms_exit;
664 if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
665 ABIT_UGURU_DEBUG(2, " pwm channel %d does "
666 "not seem to be a pwm channel: "
667 "setting %d (%d) is above the maximum "
668 "value (%d)\n", i, j,
669 (int)data->pwm_settings[i][j],
670 (int)abituguru_pwm_max[j]);
671 goto abituguru_detect_no_pwms_exit;
675 /* check that min temp < max temp and min pwm < max pwm */
676 if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
677 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
678 "to be a pwm channel: min pwm (%d) >= "
679 "max pwm (%d)\n", i,
680 (int)data->pwm_settings[i][1],
681 (int)data->pwm_settings[i][2]);
682 break;
684 if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
685 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
686 "to be a pwm channel: min temp (%d) >= "
687 "max temp (%d)\n", i,
688 (int)data->pwm_settings[i][3],
689 (int)data->pwm_settings[i][4]);
690 break;
694 abituguru_detect_no_pwms_exit:
695 data->pwms = i;
696 ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
699 /* Following are the sysfs callback functions. These functions expect:
700 sensor_device_attribute_2->index: sensor address/offset in the bank
701 sensor_device_attribute_2->nr: register offset, bitmask or NA. */
702 static struct abituguru_data *abituguru_update_device(struct device *dev);
704 static ssize_t show_bank1_value(struct device *dev,
705 struct device_attribute *devattr, char *buf)
707 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
708 struct abituguru_data *data = abituguru_update_device(dev);
709 if (!data)
710 return -EIO;
711 return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
712 data->bank1_max_value[attr->index] + 128) / 255);
715 static ssize_t show_bank1_setting(struct device *dev,
716 struct device_attribute *devattr, char *buf)
718 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
719 struct abituguru_data *data = dev_get_drvdata(dev);
720 return sprintf(buf, "%d\n",
721 (data->bank1_settings[attr->index][attr->nr] *
722 data->bank1_max_value[attr->index] + 128) / 255);
725 static ssize_t show_bank2_value(struct device *dev,
726 struct device_attribute *devattr, char *buf)
728 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
729 struct abituguru_data *data = abituguru_update_device(dev);
730 if (!data)
731 return -EIO;
732 return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
733 ABIT_UGURU_FAN_MAX + 128) / 255);
736 static ssize_t show_bank2_setting(struct device *dev,
737 struct device_attribute *devattr, char *buf)
739 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
740 struct abituguru_data *data = dev_get_drvdata(dev);
741 return sprintf(buf, "%d\n",
742 (data->bank2_settings[attr->index][attr->nr] *
743 ABIT_UGURU_FAN_MAX + 128) / 255);
746 static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
747 *devattr, const char *buf, size_t count)
749 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
750 struct abituguru_data *data = dev_get_drvdata(dev);
751 u8 val = (simple_strtoul(buf, NULL, 10) * 255 +
752 data->bank1_max_value[attr->index]/2) /
753 data->bank1_max_value[attr->index];
754 ssize_t ret = count;
756 mutex_lock(&data->update_lock);
757 if (data->bank1_settings[attr->index][attr->nr] != val) {
758 u8 orig_val = data->bank1_settings[attr->index][attr->nr];
759 data->bank1_settings[attr->index][attr->nr] = val;
760 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
761 attr->index, data->bank1_settings[attr->index],
762 3) <= attr->nr) {
763 data->bank1_settings[attr->index][attr->nr] = orig_val;
764 ret = -EIO;
767 mutex_unlock(&data->update_lock);
768 return ret;
771 static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
772 *devattr, const char *buf, size_t count)
774 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
775 struct abituguru_data *data = dev_get_drvdata(dev);
776 u8 val = (simple_strtoul(buf, NULL, 10)*255 + ABIT_UGURU_FAN_MAX/2) /
777 ABIT_UGURU_FAN_MAX;
778 ssize_t ret = count;
780 /* this check can be done before taking the lock */
781 if ((val < abituguru_bank2_min_threshold) ||
782 (val > abituguru_bank2_max_threshold))
783 return -EINVAL;
785 mutex_lock(&data->update_lock);
786 if (data->bank2_settings[attr->index][attr->nr] != val) {
787 u8 orig_val = data->bank2_settings[attr->index][attr->nr];
788 data->bank2_settings[attr->index][attr->nr] = val;
789 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
790 attr->index, data->bank2_settings[attr->index],
791 2) <= attr->nr) {
792 data->bank2_settings[attr->index][attr->nr] = orig_val;
793 ret = -EIO;
796 mutex_unlock(&data->update_lock);
797 return ret;
800 static ssize_t show_bank1_alarm(struct device *dev,
801 struct device_attribute *devattr, char *buf)
803 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
804 struct abituguru_data *data = abituguru_update_device(dev);
805 if (!data)
806 return -EIO;
807 /* See if the alarm bit for this sensor is set, and if the
808 alarm matches the type of alarm we're looking for (for volt
809 it can be either low or high). The type is stored in a few
810 readonly bits in the settings part of the relevant sensor.
811 The bitmask of the type is passed to us in attr->nr. */
812 if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
813 (data->bank1_settings[attr->index][0] & attr->nr))
814 return sprintf(buf, "1\n");
815 else
816 return sprintf(buf, "0\n");
819 static ssize_t show_bank2_alarm(struct device *dev,
820 struct device_attribute *devattr, char *buf)
822 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
823 struct abituguru_data *data = abituguru_update_device(dev);
824 if (!data)
825 return -EIO;
826 if (data->alarms[2] & (0x01 << attr->index))
827 return sprintf(buf, "1\n");
828 else
829 return sprintf(buf, "0\n");
832 static ssize_t show_bank1_mask(struct device *dev,
833 struct device_attribute *devattr, char *buf)
835 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
836 struct abituguru_data *data = dev_get_drvdata(dev);
837 if (data->bank1_settings[attr->index][0] & attr->nr)
838 return sprintf(buf, "1\n");
839 else
840 return sprintf(buf, "0\n");
843 static ssize_t show_bank2_mask(struct device *dev,
844 struct device_attribute *devattr, char *buf)
846 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
847 struct abituguru_data *data = dev_get_drvdata(dev);
848 if (data->bank2_settings[attr->index][0] & attr->nr)
849 return sprintf(buf, "1\n");
850 else
851 return sprintf(buf, "0\n");
854 static ssize_t store_bank1_mask(struct device *dev,
855 struct device_attribute *devattr, const char *buf, size_t count)
857 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
858 struct abituguru_data *data = dev_get_drvdata(dev);
859 int mask = simple_strtoul(buf, NULL, 10);
860 ssize_t ret = count;
861 u8 orig_val;
863 mutex_lock(&data->update_lock);
864 orig_val = data->bank1_settings[attr->index][0];
866 if (mask)
867 data->bank1_settings[attr->index][0] |= attr->nr;
868 else
869 data->bank1_settings[attr->index][0] &= ~attr->nr;
871 if ((data->bank1_settings[attr->index][0] != orig_val) &&
872 (abituguru_write(data,
873 ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
874 data->bank1_settings[attr->index], 3) < 1)) {
875 data->bank1_settings[attr->index][0] = orig_val;
876 ret = -EIO;
878 mutex_unlock(&data->update_lock);
879 return ret;
882 static ssize_t store_bank2_mask(struct device *dev,
883 struct device_attribute *devattr, const char *buf, size_t count)
885 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
886 struct abituguru_data *data = dev_get_drvdata(dev);
887 int mask = simple_strtoul(buf, NULL, 10);
888 ssize_t ret = count;
889 u8 orig_val;
891 mutex_lock(&data->update_lock);
892 orig_val = data->bank2_settings[attr->index][0];
894 if (mask)
895 data->bank2_settings[attr->index][0] |= attr->nr;
896 else
897 data->bank2_settings[attr->index][0] &= ~attr->nr;
899 if ((data->bank2_settings[attr->index][0] != orig_val) &&
900 (abituguru_write(data,
901 ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
902 data->bank2_settings[attr->index], 2) < 1)) {
903 data->bank2_settings[attr->index][0] = orig_val;
904 ret = -EIO;
906 mutex_unlock(&data->update_lock);
907 return ret;
910 /* Fan PWM (speed control) */
911 static ssize_t show_pwm_setting(struct device *dev,
912 struct device_attribute *devattr, char *buf)
914 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
915 struct abituguru_data *data = dev_get_drvdata(dev);
916 return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
917 abituguru_pwm_settings_multiplier[attr->nr]);
920 static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
921 *devattr, const char *buf, size_t count)
923 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
924 struct abituguru_data *data = dev_get_drvdata(dev);
925 u8 min, val = (simple_strtoul(buf, NULL, 10) +
926 abituguru_pwm_settings_multiplier[attr->nr]/2) /
927 abituguru_pwm_settings_multiplier[attr->nr];
928 ssize_t ret = count;
930 /* special case pwm1 min pwm% */
931 if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
932 min = 77;
933 else
934 min = abituguru_pwm_min[attr->nr];
936 /* this check can be done before taking the lock */
937 if ((val < min) || (val > abituguru_pwm_max[attr->nr]))
938 return -EINVAL;
940 mutex_lock(&data->update_lock);
941 /* this check needs to be done after taking the lock */
942 if ((attr->nr & 1) &&
943 (val >= data->pwm_settings[attr->index][attr->nr + 1]))
944 ret = -EINVAL;
945 else if (!(attr->nr & 1) &&
946 (val <= data->pwm_settings[attr->index][attr->nr - 1]))
947 ret = -EINVAL;
948 else if (data->pwm_settings[attr->index][attr->nr] != val) {
949 u8 orig_val = data->pwm_settings[attr->index][attr->nr];
950 data->pwm_settings[attr->index][attr->nr] = val;
951 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
952 attr->index, data->pwm_settings[attr->index],
953 5) <= attr->nr) {
954 data->pwm_settings[attr->index][attr->nr] =
955 orig_val;
956 ret = -EIO;
959 mutex_unlock(&data->update_lock);
960 return ret;
963 static ssize_t show_pwm_sensor(struct device *dev,
964 struct device_attribute *devattr, char *buf)
966 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
967 struct abituguru_data *data = dev_get_drvdata(dev);
968 int i;
969 /* We need to walk to the temp sensor addresses to find what
970 the userspace id of the configured temp sensor is. */
971 for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
972 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
973 (data->pwm_settings[attr->index][0] & 0x0F))
974 return sprintf(buf, "%d\n", i+1);
976 return -ENXIO;
979 static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
980 *devattr, const char *buf, size_t count)
982 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
983 struct abituguru_data *data = dev_get_drvdata(dev);
984 unsigned long val = simple_strtoul(buf, NULL, 10) - 1;
985 ssize_t ret = count;
987 mutex_lock(&data->update_lock);
988 if (val < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
989 u8 orig_val = data->pwm_settings[attr->index][0];
990 u8 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
991 data->pwm_settings[attr->index][0] &= 0xF0;
992 data->pwm_settings[attr->index][0] |= address;
993 if (data->pwm_settings[attr->index][0] != orig_val) {
994 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
995 attr->index,
996 data->pwm_settings[attr->index],
997 5) < 1) {
998 data->pwm_settings[attr->index][0] = orig_val;
999 ret = -EIO;
1003 else
1004 ret = -EINVAL;
1005 mutex_unlock(&data->update_lock);
1006 return ret;
1009 static ssize_t show_pwm_enable(struct device *dev,
1010 struct device_attribute *devattr, char *buf)
1012 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1013 struct abituguru_data *data = dev_get_drvdata(dev);
1014 int res = 0;
1015 if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1016 res = 2;
1017 return sprintf(buf, "%d\n", res);
1020 static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1021 *devattr, const char *buf, size_t count)
1023 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1024 struct abituguru_data *data = dev_get_drvdata(dev);
1025 u8 orig_val, user_val = simple_strtoul(buf, NULL, 10);
1026 ssize_t ret = count;
1028 mutex_lock(&data->update_lock);
1029 orig_val = data->pwm_settings[attr->index][0];
1030 switch (user_val) {
1031 case 0:
1032 data->pwm_settings[attr->index][0] &=
1033 ~ABIT_UGURU_FAN_PWM_ENABLE;
1034 break;
1035 case 2:
1036 data->pwm_settings[attr->index][0] |=
1037 ABIT_UGURU_FAN_PWM_ENABLE;
1038 break;
1039 default:
1040 ret = -EINVAL;
1042 if ((data->pwm_settings[attr->index][0] != orig_val) &&
1043 (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1044 attr->index, data->pwm_settings[attr->index],
1045 5) < 1)) {
1046 data->pwm_settings[attr->index][0] = orig_val;
1047 ret = -EIO;
1049 mutex_unlock(&data->update_lock);
1050 return ret;
1053 static ssize_t show_name(struct device *dev,
1054 struct device_attribute *devattr, char *buf)
1056 return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1059 /* Sysfs attr templates, the real entries are generated automatically. */
1060 static const
1061 struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1063 SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1064 SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1065 store_bank1_setting, 1, 0),
1066 SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1067 ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1068 SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1069 store_bank1_setting, 2, 0),
1070 SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1071 ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1072 SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1073 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1074 SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1075 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1076 SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1077 store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1078 SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1079 store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1080 }, {
1081 SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1082 SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1083 ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1084 SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1085 store_bank1_setting, 1, 0),
1086 SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1087 store_bank1_setting, 2, 0),
1088 SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1089 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1090 SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1091 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1092 SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1093 store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1097 static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1098 SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1099 SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1100 SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1101 store_bank2_setting, 1, 0),
1102 SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1103 store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1104 SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1105 store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1106 SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1107 store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1110 static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1111 SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1112 store_pwm_enable, 0, 0),
1113 SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1114 store_pwm_sensor, 0, 0),
1115 SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1116 store_pwm_setting, 1, 0),
1117 SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1118 store_pwm_setting, 2, 0),
1119 SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1120 store_pwm_setting, 3, 0),
1121 SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1122 store_pwm_setting, 4, 0),
1125 static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1126 SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1129 static int __devinit abituguru_probe(struct platform_device *pdev)
1131 struct abituguru_data *data;
1132 int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1133 char *sysfs_filename;
1135 /* El weirdo probe order, to keep the sysfs order identical to the
1136 BIOS and window-appliction listing order. */
1137 const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1138 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1139 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1141 if (!(data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL)))
1142 return -ENOMEM;
1144 data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1145 mutex_init(&data->update_lock);
1146 platform_set_drvdata(pdev, data);
1148 /* See if the uGuru is ready */
1149 if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1150 data->uguru_ready = 1;
1152 /* Completely read the uGuru this has 2 purposes:
1153 - testread / see if one really is there.
1154 - make an in memory copy of all the uguru settings for future use. */
1155 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1156 data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1157 goto abituguru_probe_error;
1159 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1160 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1161 &data->bank1_value[i], 1,
1162 ABIT_UGURU_MAX_RETRIES) != 1)
1163 goto abituguru_probe_error;
1164 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1165 data->bank1_settings[i], 3,
1166 ABIT_UGURU_MAX_RETRIES) != 3)
1167 goto abituguru_probe_error;
1169 /* Note: We don't know how many bank2 sensors / pwms there really are,
1170 but in order to "detect" this we need to read the maximum amount
1171 anyways. If we read sensors/pwms not there we'll just read crap
1172 this can't hurt. We need the detection because we don't want
1173 unwanted writes, which will hurt! */
1174 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1175 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1176 &data->bank2_value[i], 1,
1177 ABIT_UGURU_MAX_RETRIES) != 1)
1178 goto abituguru_probe_error;
1179 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1180 data->bank2_settings[i], 2,
1181 ABIT_UGURU_MAX_RETRIES) != 2)
1182 goto abituguru_probe_error;
1184 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1185 if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1186 data->pwm_settings[i], 5,
1187 ABIT_UGURU_MAX_RETRIES) != 5)
1188 goto abituguru_probe_error;
1190 data->last_updated = jiffies;
1192 /* Detect sensor types and fill the sysfs attr for bank1 */
1193 sysfs_attr_i = 0;
1194 sysfs_filename = data->sysfs_names;
1195 sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1196 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1197 res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1198 if (res < 0)
1199 goto abituguru_probe_error;
1200 if (res == ABIT_UGURU_NC)
1201 continue;
1203 /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1204 for (j = 0; j < (res ? 7 : 9); j++) {
1205 used = snprintf(sysfs_filename, sysfs_names_free,
1206 abituguru_sysfs_bank1_templ[res][j].dev_attr.
1207 attr.name, data->bank1_sensors[res] + res)
1208 + 1;
1209 data->sysfs_attr[sysfs_attr_i] =
1210 abituguru_sysfs_bank1_templ[res][j];
1211 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1212 sysfs_filename;
1213 data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1214 sysfs_filename += used;
1215 sysfs_names_free -= used;
1216 sysfs_attr_i++;
1218 data->bank1_max_value[probe_order[i]] =
1219 abituguru_bank1_max_value[res];
1220 data->bank1_address[res][data->bank1_sensors[res]] =
1221 probe_order[i];
1222 data->bank1_sensors[res]++;
1224 /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1225 abituguru_detect_no_bank2_sensors(data);
1226 for (i = 0; i < data->bank2_sensors; i++) {
1227 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1228 used = snprintf(sysfs_filename, sysfs_names_free,
1229 abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1230 i + 1) + 1;
1231 data->sysfs_attr[sysfs_attr_i] =
1232 abituguru_sysfs_fan_templ[j];
1233 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1234 sysfs_filename;
1235 data->sysfs_attr[sysfs_attr_i].index = i;
1236 sysfs_filename += used;
1237 sysfs_names_free -= used;
1238 sysfs_attr_i++;
1241 /* Detect number of sensors and fill the sysfs attr for pwms */
1242 abituguru_detect_no_pwms(data);
1243 for (i = 0; i < data->pwms; i++) {
1244 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1245 used = snprintf(sysfs_filename, sysfs_names_free,
1246 abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1247 i + 1) + 1;
1248 data->sysfs_attr[sysfs_attr_i] =
1249 abituguru_sysfs_pwm_templ[j];
1250 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1251 sysfs_filename;
1252 data->sysfs_attr[sysfs_attr_i].index = i;
1253 sysfs_filename += used;
1254 sysfs_names_free -= used;
1255 sysfs_attr_i++;
1258 /* Fail safe check, this should never happen! */
1259 if (sysfs_names_free < 0) {
1260 printk(KERN_ERR ABIT_UGURU_NAME ": Fatal error ran out of "
1261 "space for sysfs attr names. This should never "
1262 "happen please report to the abituguru maintainer "
1263 "(see MAINTAINERS)\n");
1264 res = -ENAMETOOLONG;
1265 goto abituguru_probe_error;
1267 printk(KERN_INFO ABIT_UGURU_NAME ": found Abit uGuru\n");
1269 /* Register sysfs hooks */
1270 for (i = 0; i < sysfs_attr_i; i++)
1271 if (device_create_file(&pdev->dev,
1272 &data->sysfs_attr[i].dev_attr))
1273 goto abituguru_probe_error;
1274 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1275 if (device_create_file(&pdev->dev,
1276 &abituguru_sysfs_attr[i].dev_attr))
1277 goto abituguru_probe_error;
1279 data->class_dev = hwmon_device_register(&pdev->dev);
1280 if (!IS_ERR(data->class_dev))
1281 return 0; /* success */
1283 res = PTR_ERR(data->class_dev);
1284 abituguru_probe_error:
1285 for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1286 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1287 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1288 device_remove_file(&pdev->dev,
1289 &abituguru_sysfs_attr[i].dev_attr);
1290 kfree(data);
1291 return res;
1294 static int __devexit abituguru_remove(struct platform_device *pdev)
1296 int i;
1297 struct abituguru_data *data = platform_get_drvdata(pdev);
1299 platform_set_drvdata(pdev, NULL);
1300 hwmon_device_unregister(data->class_dev);
1301 for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1302 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1303 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1304 device_remove_file(&pdev->dev,
1305 &abituguru_sysfs_attr[i].dev_attr);
1306 kfree(data);
1308 return 0;
1311 static struct abituguru_data *abituguru_update_device(struct device *dev)
1313 int i, err;
1314 struct abituguru_data *data = dev_get_drvdata(dev);
1315 /* fake a complete successful read if no update necessary. */
1316 char success = 1;
1318 mutex_lock(&data->update_lock);
1319 if (time_after(jiffies, data->last_updated + HZ)) {
1320 success = 0;
1321 if ((err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1322 data->alarms, 3, 0)) != 3)
1323 goto LEAVE_UPDATE;
1324 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1325 if ((err = abituguru_read(data,
1326 ABIT_UGURU_SENSOR_BANK1, i,
1327 &data->bank1_value[i], 1, 0)) != 1)
1328 goto LEAVE_UPDATE;
1329 if ((err = abituguru_read(data,
1330 ABIT_UGURU_SENSOR_BANK1 + 1, i,
1331 data->bank1_settings[i], 3, 0)) != 3)
1332 goto LEAVE_UPDATE;
1334 for (i = 0; i < data->bank2_sensors; i++)
1335 if ((err = abituguru_read(data,
1336 ABIT_UGURU_SENSOR_BANK2, i,
1337 &data->bank2_value[i], 1, 0)) != 1)
1338 goto LEAVE_UPDATE;
1339 /* success! */
1340 success = 1;
1341 data->update_timeouts = 0;
1342 LEAVE_UPDATE:
1343 /* handle timeout condition */
1344 if (!success && (err == -EBUSY || err >= 0)) {
1345 /* No overflow please */
1346 if (data->update_timeouts < 255u)
1347 data->update_timeouts++;
1348 if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1349 ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1350 "try again next update\n");
1351 /* Just a timeout, fake a successful read */
1352 success = 1;
1353 } else
1354 ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1355 "times waiting for more input state\n",
1356 (int)data->update_timeouts);
1358 /* On success set last_updated */
1359 if (success)
1360 data->last_updated = jiffies;
1362 mutex_unlock(&data->update_lock);
1364 if (success)
1365 return data;
1366 else
1367 return NULL;
1370 #ifdef CONFIG_PM
1371 static int abituguru_suspend(struct platform_device *pdev, pm_message_t state)
1373 struct abituguru_data *data = platform_get_drvdata(pdev);
1374 /* make sure all communications with the uguru are done and no new
1375 ones are started */
1376 mutex_lock(&data->update_lock);
1377 return 0;
1380 static int abituguru_resume(struct platform_device *pdev)
1382 struct abituguru_data *data = platform_get_drvdata(pdev);
1383 /* See if the uGuru is still ready */
1384 if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1385 data->uguru_ready = 0;
1386 mutex_unlock(&data->update_lock);
1387 return 0;
1389 #else
1390 #define abituguru_suspend NULL
1391 #define abituguru_resume NULL
1392 #endif /* CONFIG_PM */
1394 static struct platform_driver abituguru_driver = {
1395 .driver = {
1396 .owner = THIS_MODULE,
1397 .name = ABIT_UGURU_NAME,
1399 .probe = abituguru_probe,
1400 .remove = __devexit_p(abituguru_remove),
1401 .suspend = abituguru_suspend,
1402 .resume = abituguru_resume,
1405 static int __init abituguru_detect(void)
1407 /* See if there is an uguru there. After a reboot uGuru will hold 0x00
1408 at DATA and 0xAC, when this driver has already been loaded once
1409 DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1410 scenario but some will hold 0x00.
1411 Some uGuru's initally hold 0x09 at DATA and will only hold 0x08
1412 after reading CMD first, so CMD must be read first! */
1413 u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1414 u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1415 if (((data_val == 0x00) || (data_val == 0x08)) &&
1416 ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1417 return ABIT_UGURU_BASE;
1419 ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1420 "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1422 if (force) {
1423 printk(KERN_INFO ABIT_UGURU_NAME ": Assuming Abit uGuru is "
1424 "present because of \"force\" parameter\n");
1425 return ABIT_UGURU_BASE;
1428 /* No uGuru found */
1429 return -ENODEV;
1432 static struct platform_device *abituguru_pdev;
1434 static int __init abituguru_init(void)
1436 int address, err;
1437 struct resource res = { .flags = IORESOURCE_IO };
1439 address = abituguru_detect();
1440 if (address < 0)
1441 return address;
1443 err = platform_driver_register(&abituguru_driver);
1444 if (err)
1445 goto exit;
1447 abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1448 if (!abituguru_pdev) {
1449 printk(KERN_ERR ABIT_UGURU_NAME
1450 ": Device allocation failed\n");
1451 err = -ENOMEM;
1452 goto exit_driver_unregister;
1455 res.start = address;
1456 res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1457 res.name = ABIT_UGURU_NAME;
1459 err = platform_device_add_resources(abituguru_pdev, &res, 1);
1460 if (err) {
1461 printk(KERN_ERR ABIT_UGURU_NAME
1462 ": Device resource addition failed (%d)\n", err);
1463 goto exit_device_put;
1466 err = platform_device_add(abituguru_pdev);
1467 if (err) {
1468 printk(KERN_ERR ABIT_UGURU_NAME
1469 ": Device addition failed (%d)\n", err);
1470 goto exit_device_put;
1473 return 0;
1475 exit_device_put:
1476 platform_device_put(abituguru_pdev);
1477 exit_driver_unregister:
1478 platform_driver_unregister(&abituguru_driver);
1479 exit:
1480 return err;
1483 static void __exit abituguru_exit(void)
1485 platform_device_unregister(abituguru_pdev);
1486 platform_driver_unregister(&abituguru_driver);
1489 MODULE_AUTHOR("Hans de Goede <j.w.r.degoede@hhs.nl>");
1490 MODULE_DESCRIPTION("Abit uGuru Sensor device");
1491 MODULE_LICENSE("GPL");
1493 module_init(abituguru_init);
1494 module_exit(abituguru_exit);