2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 * Copyright © 2006 Red Hat, Inc.
5 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
10 #include <linux/device.h>
12 #include <linux/mtd/mtd.h>
13 #include <linux/mtd/nand.h>
14 #include <linux/pci.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <linux/dma-mapping.h>
20 #define CAFE_NAND_CTRL1 0x00
21 #define CAFE_NAND_CTRL2 0x04
22 #define CAFE_NAND_CTRL3 0x08
23 #define CAFE_NAND_STATUS 0x0c
24 #define CAFE_NAND_IRQ 0x10
25 #define CAFE_NAND_IRQ_MASK 0x14
26 #define CAFE_NAND_DATA_LEN 0x18
27 #define CAFE_NAND_ADDR1 0x1c
28 #define CAFE_NAND_ADDR2 0x20
29 #define CAFE_NAND_TIMING1 0x24
30 #define CAFE_NAND_TIMING2 0x28
31 #define CAFE_NAND_TIMING3 0x2c
32 #define CAFE_NAND_NONMEM 0x30
33 #define CAFE_NAND_ECC_RESULT 0x3C
34 #define CAFE_NAND_DMA_CTRL 0x40
35 #define CAFE_NAND_DMA_ADDR0 0x44
36 #define CAFE_NAND_DMA_ADDR1 0x48
37 #define CAFE_NAND_ECC_SYN01 0x50
38 #define CAFE_NAND_ECC_SYN23 0x54
39 #define CAFE_NAND_ECC_SYN45 0x58
40 #define CAFE_NAND_ECC_SYN67 0x5c
41 #define CAFE_NAND_READ_DATA 0x1000
42 #define CAFE_NAND_WRITE_DATA 0x2000
44 #define CAFE_GLOBAL_CTRL 0x3004
45 #define CAFE_GLOBAL_IRQ 0x3008
46 #define CAFE_GLOBAL_IRQ_MASK 0x300c
47 #define CAFE_NAND_RESET 0x3034
49 int cafe_correct_ecc(unsigned char *buf
,
50 unsigned short *chk_syndrome_list
);
53 struct nand_chip nand
;
63 unsigned char *dmabuf
;
66 static int usedma
= 1;
67 module_param(usedma
, int, 0644);
69 static int skipbbt
= 0;
70 module_param(skipbbt
, int, 0644);
73 module_param(debug
, int, 0644);
75 static int regdebug
= 0;
76 module_param(regdebug
, int, 0644);
78 static int checkecc
= 1;
79 module_param(checkecc
, int, 0644);
81 static int numtimings
;
83 module_param_array(timing
, int, &numtimings
, 0644);
85 /* Hrm. Why isn't this already conditional on something in the struct device? */
86 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
88 /* Make it easier to switch to PIO if we need to */
89 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
90 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
92 static int cafe_device_ready(struct mtd_info
*mtd
)
94 struct cafe_priv
*cafe
= mtd
->priv
;
95 int result
= !!(cafe_readl(cafe
, NAND_STATUS
) | 0x40000000);
96 uint32_t irqs
= cafe_readl(cafe
, NAND_IRQ
);
98 cafe_writel(cafe
, irqs
, NAND_IRQ
);
100 cafe_dev_dbg(&cafe
->pdev
->dev
, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
101 result
?"":" not", irqs
, cafe_readl(cafe
, NAND_IRQ
),
102 cafe_readl(cafe
, GLOBAL_IRQ
), cafe_readl(cafe
, GLOBAL_IRQ_MASK
));
108 static void cafe_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
110 struct cafe_priv
*cafe
= mtd
->priv
;
113 memcpy(cafe
->dmabuf
+ cafe
->datalen
, buf
, len
);
115 memcpy_toio(cafe
->mmio
+ CAFE_NAND_WRITE_DATA
+ cafe
->datalen
, buf
, len
);
117 cafe
->datalen
+= len
;
119 cafe_dev_dbg(&cafe
->pdev
->dev
, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
123 static void cafe_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
125 struct cafe_priv
*cafe
= mtd
->priv
;
128 memcpy(buf
, cafe
->dmabuf
+ cafe
->datalen
, len
);
130 memcpy_fromio(buf
, cafe
->mmio
+ CAFE_NAND_READ_DATA
+ cafe
->datalen
, len
);
132 cafe_dev_dbg(&cafe
->pdev
->dev
, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
134 cafe
->datalen
+= len
;
137 static uint8_t cafe_read_byte(struct mtd_info
*mtd
)
139 struct cafe_priv
*cafe
= mtd
->priv
;
142 cafe_read_buf(mtd
, &d
, 1);
143 cafe_dev_dbg(&cafe
->pdev
->dev
, "Read %02x\n", d
);
148 static void cafe_nand_cmdfunc(struct mtd_info
*mtd
, unsigned command
,
149 int column
, int page_addr
)
151 struct cafe_priv
*cafe
= mtd
->priv
;
154 uint32_t doneint
= 0x80000000;
156 cafe_dev_dbg(&cafe
->pdev
->dev
, "cmdfunc %02x, 0x%x, 0x%x\n",
157 command
, column
, page_addr
);
159 if (command
== NAND_CMD_ERASE2
|| command
== NAND_CMD_PAGEPROG
) {
160 /* Second half of a command we already calculated */
161 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | command
, NAND_CTRL2
);
163 cafe
->ctl2
&= ~(1<<30);
164 cafe_dev_dbg(&cafe
->pdev
->dev
, "Continue command, ctl1 %08x, #data %d\n",
165 cafe
->ctl1
, cafe
->nr_data
);
168 /* Reset ECC engine */
169 cafe_writel(cafe
, 0, NAND_CTRL2
);
171 /* Emulate NAND_CMD_READOOB on large-page chips */
172 if (mtd
->writesize
> 512 &&
173 command
== NAND_CMD_READOOB
) {
174 column
+= mtd
->writesize
;
175 command
= NAND_CMD_READ0
;
178 /* FIXME: Do we need to send read command before sending data
179 for small-page chips, to position the buffer correctly? */
182 cafe_writel(cafe
, column
, NAND_ADDR1
);
186 } else if (page_addr
!= -1) {
187 cafe_writel(cafe
, page_addr
& 0xffff, NAND_ADDR1
);
190 cafe_writel(cafe
, page_addr
, NAND_ADDR2
);
192 if (mtd
->size
> mtd
->writesize
<< 16)
196 cafe
->data_pos
= cafe
->datalen
= 0;
198 /* Set command valid bit */
199 ctl1
= 0x80000000 | command
;
201 /* Set RD or WR bits as appropriate */
202 if (command
== NAND_CMD_READID
|| command
== NAND_CMD_STATUS
) {
203 ctl1
|= (1<<26); /* rd */
204 /* Always 5 bytes, for now */
206 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
208 } else if (command
== NAND_CMD_READ0
|| command
== NAND_CMD_READ1
||
209 command
== NAND_CMD_READOOB
|| command
== NAND_CMD_RNDOUT
) {
210 ctl1
|= 1<<26; /* rd */
211 /* For now, assume just read to end of page */
212 cafe
->datalen
= mtd
->writesize
+ mtd
->oobsize
- column
;
213 } else if (command
== NAND_CMD_SEQIN
)
214 ctl1
|= 1<<25; /* wr */
216 /* Set number of address bytes */
218 ctl1
|= ((adrbytes
-1)|8) << 27;
220 if (command
== NAND_CMD_SEQIN
|| command
== NAND_CMD_ERASE1
) {
221 /* Ignore the first command of a pair; the hardware
222 deals with them both at once, later */
224 cafe_dev_dbg(&cafe
->pdev
->dev
, "Setup for delayed command, ctl1 %08x, dlen %x\n",
225 cafe
->ctl1
, cafe
->datalen
);
228 /* RNDOUT and READ0 commands need a following byte */
229 if (command
== NAND_CMD_RNDOUT
)
230 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | NAND_CMD_RNDOUTSTART
, NAND_CTRL2
);
231 else if (command
== NAND_CMD_READ0
&& mtd
->writesize
> 512)
232 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | NAND_CMD_READSTART
, NAND_CTRL2
);
235 cafe_dev_dbg(&cafe
->pdev
->dev
, "dlen %x, ctl1 %x, ctl2 %x\n",
236 cafe
->datalen
, ctl1
, cafe_readl(cafe
, NAND_CTRL2
));
238 /* NB: The datasheet lies -- we really should be subtracting 1 here */
239 cafe_writel(cafe
, cafe
->datalen
, NAND_DATA_LEN
);
240 cafe_writel(cafe
, 0x90000000, NAND_IRQ
);
241 if (usedma
&& (ctl1
& (3<<25))) {
242 uint32_t dmactl
= 0xc0000000 + cafe
->datalen
;
243 /* If WR or RD bits set, set up DMA */
244 if (ctl1
& (1<<26)) {
247 /* ... so it's done when the DMA is done, not just
249 doneint
= 0x10000000;
251 cafe_writel(cafe
, dmactl
, NAND_DMA_CTRL
);
255 if (unlikely(regdebug
)) {
257 printk("About to write command %08x to register 0\n", ctl1
);
258 for (i
=4; i
< 0x5c; i
+=4)
259 printk("Register %x: %08x\n", i
, readl(cafe
->mmio
+ i
));
262 cafe_writel(cafe
, ctl1
, NAND_CTRL1
);
263 /* Apply this short delay always to ensure that we do wait tWB in
264 * any case on any machine. */
271 for (c
= 500000; c
!= 0; c
--) {
272 irqs
= cafe_readl(cafe
, NAND_IRQ
);
277 cafe_dev_dbg(&cafe
->pdev
->dev
, "Wait for ready, IRQ %x\n", irqs
);
280 cafe_writel(cafe
, doneint
, NAND_IRQ
);
281 cafe_dev_dbg(&cafe
->pdev
->dev
, "Command %x completed after %d usec, irqs %x (%x)\n",
282 command
, 500000-c
, irqs
, cafe_readl(cafe
, NAND_IRQ
));
285 WARN_ON(cafe
->ctl2
& (1<<30));
289 case NAND_CMD_CACHEDPROG
:
290 case NAND_CMD_PAGEPROG
:
291 case NAND_CMD_ERASE1
:
292 case NAND_CMD_ERASE2
:
295 case NAND_CMD_STATUS
:
296 case NAND_CMD_DEPLETE1
:
297 case NAND_CMD_RNDOUT
:
298 case NAND_CMD_STATUS_ERROR
:
299 case NAND_CMD_STATUS_ERROR0
:
300 case NAND_CMD_STATUS_ERROR1
:
301 case NAND_CMD_STATUS_ERROR2
:
302 case NAND_CMD_STATUS_ERROR3
:
303 cafe_writel(cafe
, cafe
->ctl2
, NAND_CTRL2
);
306 nand_wait_ready(mtd
);
307 cafe_writel(cafe
, cafe
->ctl2
, NAND_CTRL2
);
310 static void cafe_select_chip(struct mtd_info
*mtd
, int chipnr
)
312 //struct cafe_priv *cafe = mtd->priv;
313 // cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
316 static int cafe_nand_interrupt(int irq
, void *id
)
318 struct mtd_info
*mtd
= id
;
319 struct cafe_priv
*cafe
= mtd
->priv
;
320 uint32_t irqs
= cafe_readl(cafe
, NAND_IRQ
);
321 cafe_writel(cafe
, irqs
& ~0x90000000, NAND_IRQ
);
325 cafe_dev_dbg(&cafe
->pdev
->dev
, "irq, bits %x (%x)\n", irqs
, cafe_readl(cafe
, NAND_IRQ
));
329 static void cafe_nand_bug(struct mtd_info
*mtd
)
334 static int cafe_nand_write_oob(struct mtd_info
*mtd
,
335 struct nand_chip
*chip
, int page
)
339 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
340 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
341 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
342 status
= chip
->waitfunc(mtd
, chip
);
344 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
347 /* Don't use -- use nand_read_oob_std for now */
348 static int cafe_nand_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
349 int page
, int sndcmd
)
351 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
352 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
356 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
357 * @mtd: mtd info structure
358 * @chip: nand chip info structure
359 * @buf: buffer to store read data
361 * The hw generator calculates the error syndrome automatically. Therefor
362 * we need a special oob layout and handling.
364 static int cafe_nand_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
367 struct cafe_priv
*cafe
= mtd
->priv
;
369 cafe_dev_dbg(&cafe
->pdev
->dev
, "ECC result %08x SYN1,2 %08x\n",
370 cafe_readl(cafe
, NAND_ECC_RESULT
),
371 cafe_readl(cafe
, NAND_ECC_SYN01
));
373 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
374 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
376 if (checkecc
&& cafe_readl(cafe
, NAND_ECC_RESULT
) & (1<<18)) {
377 unsigned short syn
[8];
380 for (i
=0; i
<8; i
+=2) {
381 uint32_t tmp
= cafe_readl(cafe
, NAND_ECC_SYN01
+ (i
*2));
382 syn
[i
] = tmp
& 0xfff;
383 syn
[i
+1] = (tmp
>> 16) & 0xfff;
386 if ((i
= cafe_correct_ecc(buf
, syn
)) < 0) {
387 dev_dbg(&cafe
->pdev
->dev
, "Failed to correct ECC at %08x\n",
388 cafe_readl(cafe
, NAND_ADDR2
) * 2048);
389 for (i
=0; i
< 0x5c; i
+=4)
390 printk("Register %x: %08x\n", i
, readl(cafe
->mmio
+ i
));
391 mtd
->ecc_stats
.failed
++;
393 dev_dbg(&cafe
->pdev
->dev
, "Corrected %d symbol errors\n", i
);
394 mtd
->ecc_stats
.corrected
+= i
;
402 static struct nand_ecclayout cafe_oobinfo_2048
= {
404 .eccpos
= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
405 .oobfree
= {{14, 50}}
408 /* Ick. The BBT code really ought to be able to work this bit out
409 for itself from the above, at least for the 2KiB case */
410 static uint8_t cafe_bbt_pattern_2048
[] = { 'B', 'b', 't', '0' };
411 static uint8_t cafe_mirror_pattern_2048
[] = { '1', 't', 'b', 'B' };
413 static uint8_t cafe_bbt_pattern_512
[] = { 0xBB };
414 static uint8_t cafe_mirror_pattern_512
[] = { 0xBC };
417 static struct nand_bbt_descr cafe_bbt_main_descr_2048
= {
418 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
419 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
424 .pattern
= cafe_bbt_pattern_2048
427 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048
= {
428 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
429 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
434 .pattern
= cafe_mirror_pattern_2048
437 static struct nand_ecclayout cafe_oobinfo_512
= {
439 .eccpos
= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
443 static struct nand_bbt_descr cafe_bbt_main_descr_512
= {
444 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
445 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
450 .pattern
= cafe_bbt_pattern_512
453 static struct nand_bbt_descr cafe_bbt_mirror_descr_512
= {
454 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
455 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
460 .pattern
= cafe_mirror_pattern_512
464 static void cafe_nand_write_page_lowlevel(struct mtd_info
*mtd
,
465 struct nand_chip
*chip
, const uint8_t *buf
)
467 struct cafe_priv
*cafe
= mtd
->priv
;
469 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
470 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
472 /* Set up ECC autogeneration */
473 cafe
->ctl2
|= (1<<30);
476 static int cafe_nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
477 const uint8_t *buf
, int page
, int cached
, int raw
)
481 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
484 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
486 chip
->ecc
.write_page(mtd
, chip
, buf
);
489 * Cached progamming disabled for now, Not sure if its worth the
490 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
494 if (!cached
|| !(chip
->options
& NAND_CACHEPRG
)) {
496 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
497 status
= chip
->waitfunc(mtd
, chip
);
499 * See if operation failed and additional status checks are
502 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
503 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
506 if (status
& NAND_STATUS_FAIL
)
509 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
510 status
= chip
->waitfunc(mtd
, chip
);
513 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
514 /* Send command to read back the data */
515 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
517 if (chip
->verify_buf(mtd
, buf
, mtd
->writesize
))
523 static int cafe_nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
528 static int __devinit
cafe_nand_probe(struct pci_dev
*pdev
,
529 const struct pci_device_id
*ent
)
531 struct mtd_info
*mtd
;
532 struct cafe_priv
*cafe
;
536 err
= pci_enable_device(pdev
);
540 pci_set_master(pdev
);
542 mtd
= kzalloc(sizeof(*mtd
) + sizeof(struct cafe_priv
), GFP_KERNEL
);
544 dev_warn(&pdev
->dev
, "failed to alloc mtd_info\n");
547 cafe
= (void *)(&mtd
[1]);
550 mtd
->owner
= THIS_MODULE
;
553 cafe
->mmio
= pci_iomap(pdev
, 0, 0);
555 dev_warn(&pdev
->dev
, "failed to iomap\n");
559 cafe
->dmabuf
= dma_alloc_coherent(&cafe
->pdev
->dev
, 2112 + sizeof(struct nand_buffers
),
560 &cafe
->dmaaddr
, GFP_KERNEL
);
565 cafe
->nand
.buffers
= (void *)cafe
->dmabuf
+ 2112;
567 cafe
->nand
.cmdfunc
= cafe_nand_cmdfunc
;
568 cafe
->nand
.dev_ready
= cafe_device_ready
;
569 cafe
->nand
.read_byte
= cafe_read_byte
;
570 cafe
->nand
.read_buf
= cafe_read_buf
;
571 cafe
->nand
.write_buf
= cafe_write_buf
;
572 cafe
->nand
.select_chip
= cafe_select_chip
;
574 cafe
->nand
.chip_delay
= 0;
576 /* Enable the following for a flash based bad block table */
577 cafe
->nand
.options
= NAND_USE_FLASH_BBT
| NAND_NO_AUTOINCR
| NAND_OWN_BUFFERS
;
580 cafe
->nand
.options
|= NAND_SKIP_BBTSCAN
;
581 cafe
->nand
.block_bad
= cafe_nand_block_bad
;
584 if (numtimings
&& numtimings
!= 3) {
585 dev_warn(&cafe
->pdev
->dev
, "%d timing register values ignored; precisely three are required\n", numtimings
);
588 if (numtimings
== 3) {
589 cafe_dev_dbg(&cafe
->pdev
->dev
, "Using provided timings (%08x %08x %08x)\n",
590 timing
[0], timing
[1], timing
[2]);
592 timing
[0] = cafe_readl(cafe
, NAND_TIMING1
);
593 timing
[1] = cafe_readl(cafe
, NAND_TIMING2
);
594 timing
[2] = cafe_readl(cafe
, NAND_TIMING3
);
596 if (timing
[0] | timing
[1] | timing
[2]) {
597 cafe_dev_dbg(&cafe
->pdev
->dev
, "Timing registers already set (%08x %08x %08x)\n",
598 timing
[0], timing
[1], timing
[2]);
600 dev_warn(&cafe
->pdev
->dev
, "Timing registers unset; using most conservative defaults\n");
601 timing
[0] = timing
[1] = timing
[2] = 0xffffffff;
605 /* Start off by resetting the NAND controller completely */
606 cafe_writel(cafe
, 1, NAND_RESET
);
607 cafe_writel(cafe
, 0, NAND_RESET
);
609 cafe_writel(cafe
, timing
[0], NAND_TIMING1
);
610 cafe_writel(cafe
, timing
[1], NAND_TIMING2
);
611 cafe_writel(cafe
, timing
[2], NAND_TIMING3
);
613 cafe_writel(cafe
, 0xffffffff, NAND_IRQ_MASK
);
614 err
= request_irq(pdev
->irq
, &cafe_nand_interrupt
, IRQF_SHARED
,
617 dev_warn(&pdev
->dev
, "Could not register IRQ %d\n", pdev
->irq
);
621 /* Disable master reset, enable NAND clock */
622 ctrl
= cafe_readl(cafe
, GLOBAL_CTRL
);
625 cafe_writel(cafe
, ctrl
| 0x05, GLOBAL_CTRL
);
626 cafe_writel(cafe
, ctrl
| 0x0a, GLOBAL_CTRL
);
627 cafe_writel(cafe
, 0, NAND_DMA_CTRL
);
629 cafe_writel(cafe
, 0x7006, GLOBAL_CTRL
);
630 cafe_writel(cafe
, 0x700a, GLOBAL_CTRL
);
632 /* Set up DMA address */
633 cafe_writel(cafe
, cafe
->dmaaddr
& 0xffffffff, NAND_DMA_ADDR0
);
634 if (sizeof(cafe
->dmaaddr
) > 4)
635 /* Shift in two parts to shut the compiler up */
636 cafe_writel(cafe
, (cafe
->dmaaddr
>> 16) >> 16, NAND_DMA_ADDR1
);
638 cafe_writel(cafe
, 0, NAND_DMA_ADDR1
);
640 cafe_dev_dbg(&cafe
->pdev
->dev
, "Set DMA address to %x (virt %p)\n",
641 cafe_readl(cafe
, NAND_DMA_ADDR0
), cafe
->dmabuf
);
643 /* Enable NAND IRQ in global IRQ mask register */
644 cafe_writel(cafe
, 0x80000007, GLOBAL_IRQ_MASK
);
645 cafe_dev_dbg(&cafe
->pdev
->dev
, "Control %x, IRQ mask %x\n",
646 cafe_readl(cafe
, GLOBAL_CTRL
), cafe_readl(cafe
, GLOBAL_IRQ_MASK
));
648 /* Scan to find existence of the device */
649 if (nand_scan_ident(mtd
, 1)) {
654 cafe
->ctl2
= 1<<27; /* Reed-Solomon ECC */
655 if (mtd
->writesize
== 2048)
656 cafe
->ctl2
|= 1<<29; /* 2KiB page size */
658 /* Set up ECC according to the type of chip we found */
659 if (mtd
->writesize
== 2048) {
660 cafe
->nand
.ecc
.layout
= &cafe_oobinfo_2048
;
661 cafe
->nand
.bbt_td
= &cafe_bbt_main_descr_2048
;
662 cafe
->nand
.bbt_md
= &cafe_bbt_mirror_descr_2048
;
663 } else if (mtd
->writesize
== 512) {
664 cafe
->nand
.ecc
.layout
= &cafe_oobinfo_512
;
665 cafe
->nand
.bbt_td
= &cafe_bbt_main_descr_512
;
666 cafe
->nand
.bbt_md
= &cafe_bbt_mirror_descr_512
;
668 printk(KERN_WARNING
"Unexpected NAND flash writesize %d. Aborting\n",
672 cafe
->nand
.ecc
.mode
= NAND_ECC_HW_SYNDROME
;
673 cafe
->nand
.ecc
.size
= mtd
->writesize
;
674 cafe
->nand
.ecc
.bytes
= 14;
675 cafe
->nand
.ecc
.hwctl
= (void *)cafe_nand_bug
;
676 cafe
->nand
.ecc
.calculate
= (void *)cafe_nand_bug
;
677 cafe
->nand
.ecc
.correct
= (void *)cafe_nand_bug
;
678 cafe
->nand
.write_page
= cafe_nand_write_page
;
679 cafe
->nand
.ecc
.write_page
= cafe_nand_write_page_lowlevel
;
680 cafe
->nand
.ecc
.write_oob
= cafe_nand_write_oob
;
681 cafe
->nand
.ecc
.read_page
= cafe_nand_read_page
;
682 cafe
->nand
.ecc
.read_oob
= cafe_nand_read_oob
;
684 err
= nand_scan_tail(mtd
);
688 pci_set_drvdata(pdev
, mtd
);
693 /* Disable NAND IRQ in global IRQ mask register */
694 cafe_writel(cafe
, ~1 & cafe_readl(cafe
, GLOBAL_IRQ_MASK
), GLOBAL_IRQ_MASK
);
695 free_irq(pdev
->irq
, mtd
);
697 dma_free_coherent(&cafe
->pdev
->dev
, 2112, cafe
->dmabuf
, cafe
->dmaaddr
);
699 pci_iounmap(pdev
, cafe
->mmio
);
706 static void __devexit
cafe_nand_remove(struct pci_dev
*pdev
)
708 struct mtd_info
*mtd
= pci_get_drvdata(pdev
);
709 struct cafe_priv
*cafe
= mtd
->priv
;
712 /* Disable NAND IRQ in global IRQ mask register */
713 cafe_writel(cafe
, ~1 & cafe_readl(cafe
, GLOBAL_IRQ_MASK
), GLOBAL_IRQ_MASK
);
714 free_irq(pdev
->irq
, mtd
);
716 pci_iounmap(pdev
, cafe
->mmio
);
717 dma_free_coherent(&cafe
->pdev
->dev
, 2112, cafe
->dmabuf
, cafe
->dmaaddr
);
721 static struct pci_device_id cafe_nand_tbl
[] = {
722 { 0x11ab, 0x4100, PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_MEMORY_FLASH
<< 8, 0xFFFF0 }
725 MODULE_DEVICE_TABLE(pci
, cafe_nand_tbl
);
727 static struct pci_driver cafe_nand_pci_driver
= {
729 .id_table
= cafe_nand_tbl
,
730 .probe
= cafe_nand_probe
,
731 .remove
= __devexit_p(cafe_nand_remove
),
733 .suspend
= cafe_nand_suspend
,
734 .resume
= cafe_nand_resume
,
738 static int cafe_nand_init(void)
740 return pci_register_driver(&cafe_nand_pci_driver
);
743 static void cafe_nand_exit(void)
745 pci_unregister_driver(&cafe_nand_pci_driver
);
747 module_init(cafe_nand_init
);
748 module_exit(cafe_nand_exit
);
750 MODULE_LICENSE("GPL");
751 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
752 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");