[POWERPC] Use menuconfig objects II - Macintosh
[wrt350n-kernel.git] / drivers / mtd / nand / rtc_from4.c
blob9189ec8f243eda85e2d89d5dd4037064d13ad2fc
1 /*
2 * drivers/mtd/nand/rtc_from4.c
4 * Copyright (C) 2004 Red Hat, Inc.
6 * Derived from drivers/mtd/nand/spia.c
7 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
9 * $Id: rtc_from4.c,v 1.10 2005/11/07 11:14:31 gleixner Exp $
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
15 * Overview:
16 * This is a device driver for the AG-AND flash device found on the
17 * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
18 * which utilizes the Renesas HN29V1G91T-30 part.
19 * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
22 #include <linux/delay.h>
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/rslib.h>
27 #include <linux/bitrev.h>
28 #include <linux/module.h>
29 #include <linux/mtd/compatmac.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/partitions.h>
33 #include <asm/io.h>
36 * MTD structure for Renesas board
38 static struct mtd_info *rtc_from4_mtd = NULL;
40 #define RTC_FROM4_MAX_CHIPS 2
42 /* HS77x9 processor register defines */
43 #define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60))
44 #define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62))
45 #define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64))
46 #define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66))
47 #define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68))
48 #define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C))
49 #define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80))
52 * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
54 /* Address where flash is mapped */
55 #define RTC_FROM4_FIO_BASE 0x14000000
57 /* CLE and ALE are tied to address lines 5 & 4, respectively */
58 #define RTC_FROM4_CLE (1 << 5)
59 #define RTC_FROM4_ALE (1 << 4)
61 /* address lines A24-A22 used for chip selection */
62 #define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000)
63 #define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000)
64 #define RTC_FROM4_NAND_ADDR_FPGA (0x01000000)
65 /* mask address lines A24-A22 used for chip selection */
66 #define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
68 /* FPGA status register for checking device ready (bit zero) */
69 #define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
70 #define RTC_FROM4_DEVICE_READY 0x0001
72 /* FPGA Reed-Solomon ECC Control register */
74 #define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
75 #define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7)
76 #define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6)
77 #define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5)
79 /* FPGA Reed-Solomon ECC code base */
80 #define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
81 #define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
83 /* FPGA Reed-Solomon ECC check register */
84 #define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
85 #define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
87 #define ERR_STAT_ECC_AVAILABLE 0x20
89 /* Undefine for software ECC */
90 #define RTC_FROM4_HWECC 1
92 /* Define as 1 for no virtual erase blocks (in JFFS2) */
93 #define RTC_FROM4_NO_VIRTBLOCKS 0
96 * Module stuff
98 static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
100 static const struct mtd_partition partition_info[] = {
102 .name = "Renesas flash partition 1",
103 .offset = 0,
104 .size = MTDPART_SIZ_FULL},
107 #define NUM_PARTITIONS 1
110 * hardware specific flash bbt decriptors
111 * Note: this is to allow debugging by disabling
112 * NAND_BBT_CREATE and/or NAND_BBT_WRITE
115 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
116 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
118 static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
119 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
120 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
121 .offs = 40,
122 .len = 4,
123 .veroffs = 44,
124 .maxblocks = 4,
125 .pattern = bbt_pattern
128 static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
129 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
130 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
131 .offs = 40,
132 .len = 4,
133 .veroffs = 44,
134 .maxblocks = 4,
135 .pattern = mirror_pattern
138 #ifdef RTC_FROM4_HWECC
140 /* the Reed Solomon control structure */
141 static struct rs_control *rs_decoder;
144 * hardware specific Out Of Band information
146 static struct nand_ecclayout rtc_from4_nand_oobinfo = {
147 .eccbytes = 32,
148 .eccpos = {
149 0, 1, 2, 3, 4, 5, 6, 7,
150 8, 9, 10, 11, 12, 13, 14, 15,
151 16, 17, 18, 19, 20, 21, 22, 23,
152 24, 25, 26, 27, 28, 29, 30, 31},
153 .oobfree = {{32, 32}}
156 #endif
159 * rtc_from4_hwcontrol - hardware specific access to control-lines
160 * @mtd: MTD device structure
161 * @cmd: hardware control command
163 * Address lines (A5 and A4) are used to control Command and Address Latch
164 * Enable on this board, so set the read/write address appropriately.
166 * Chip Enable is also controlled by the Chip Select (CS5) and
167 * Address lines (A24-A22), so no action is required here.
170 static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
171 unsigned int ctrl)
173 struct nand_chip *chip = (mtd->priv);
175 if (cmd == NAND_CMD_NONE)
176 return;
178 if (ctrl & NAND_CLE)
179 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
180 else
181 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
185 * rtc_from4_nand_select_chip - hardware specific chip select
186 * @mtd: MTD device structure
187 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
189 * The chip select is based on address lines A24-A22.
190 * This driver uses flash slots 3 and 4 (A23-A22).
193 static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
195 struct nand_chip *this = mtd->priv;
197 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
198 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
200 switch (chip) {
202 case 0: /* select slot 3 chip */
203 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
204 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
205 break;
206 case 1: /* select slot 4 chip */
207 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
208 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
209 break;
215 * rtc_from4_nand_device_ready - hardware specific ready/busy check
216 * @mtd: MTD device structure
218 * This board provides the Ready/Busy state in the status register
219 * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal.
222 static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
224 unsigned short status;
226 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
228 return (status & RTC_FROM4_DEVICE_READY);
233 * deplete - code to perform device recovery in case there was a power loss
234 * @mtd: MTD device structure
235 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
237 * If there was a sudden loss of power during an erase operation, a
238 * "device recovery" operation must be performed when power is restored
239 * to ensure correct operation. This routine performs the required steps
240 * for the requested chip.
242 * See page 86 of the data sheet for details.
245 static void deplete(struct mtd_info *mtd, int chip)
247 struct nand_chip *this = mtd->priv;
249 /* wait until device is ready */
250 while (!this->dev_ready(mtd)) ;
252 this->select_chip(mtd, chip);
254 /* Send the commands for device recovery, phase 1 */
255 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
256 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
258 /* Send the commands for device recovery, phase 2 */
259 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
260 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
264 #ifdef RTC_FROM4_HWECC
266 * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
267 * @mtd: MTD device structure
268 * @mode: I/O mode; read or write
270 * enable hardware ECC for data read or write
273 static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
275 volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
276 unsigned short status;
278 switch (mode) {
279 case NAND_ECC_READ:
280 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
282 *rs_ecc_ctl = status;
283 break;
285 case NAND_ECC_READSYN:
286 status = 0x00;
288 *rs_ecc_ctl = status;
289 break;
291 case NAND_ECC_WRITE:
292 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
294 *rs_ecc_ctl = status;
295 break;
297 default:
298 BUG();
299 break;
305 * rtc_from4_calculate_ecc - hardware specific code to read ECC code
306 * @mtd: MTD device structure
307 * @dat: buffer containing the data to generate ECC codes
308 * @ecc_code ECC codes calculated
310 * The ECC code is calculated by the FPGA. All we have to do is read the values
311 * from the FPGA registers.
313 * Note: We read from the inverted registers, since data is inverted before
314 * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
317 static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
319 volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
320 unsigned short value;
321 int i;
323 for (i = 0; i < 8; i++) {
324 value = *rs_eccn;
325 ecc_code[i] = (unsigned char)value;
326 rs_eccn++;
328 ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
332 * rtc_from4_correct_data - hardware specific code to correct data using ECC code
333 * @mtd: MTD device structure
334 * @buf: buffer containing the data to generate ECC codes
335 * @ecc1 ECC codes read
336 * @ecc2 ECC codes calculated
338 * The FPGA tells us fast, if there's an error or not. If no, we go back happy
339 * else we read the ecc results from the fpga and call the rs library to decode
340 * and hopefully correct the error.
343 static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
345 int i, j, res;
346 unsigned short status;
347 uint16_t par[6], syn[6];
348 uint8_t ecc[8];
349 volatile unsigned short *rs_ecc;
351 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
353 if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
354 return 0;
357 /* Read the syndrom pattern from the FPGA and correct the bitorder */
358 rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
359 for (i = 0; i < 8; i++) {
360 ecc[i] = bitrev8(*rs_ecc);
361 rs_ecc++;
364 /* convert into 6 10bit syndrome fields */
365 par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
366 par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
367 par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
368 par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
369 par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
370 par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
372 /* Convert to computable syndrome */
373 for (i = 0; i < 6; i++) {
374 syn[i] = par[0];
375 for (j = 1; j < 6; j++)
376 if (par[j] != rs_decoder->nn)
377 syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
379 /* Convert to index form */
380 syn[i] = rs_decoder->index_of[syn[i]];
383 /* Let the library code do its magic. */
384 res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
385 if (res > 0) {
386 DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
388 return res;
392 * rtc_from4_errstat - perform additional error status checks
393 * @mtd: MTD device structure
394 * @this: NAND chip structure
395 * @state: state or the operation
396 * @status: status code returned from read status
397 * @page: startpage inside the chip, must be called with (page & this->pagemask)
399 * Perform additional error status checks on erase and write failures
400 * to determine if errors are correctable. For this device, correctable
401 * 1-bit errors on erase and write are considered acceptable.
403 * note: see pages 34..37 of data sheet for details.
406 static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
407 int state, int status, int page)
409 int er_stat = 0;
410 int rtn, retlen;
411 size_t len;
412 uint8_t *buf;
413 int i;
415 this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
417 if (state == FL_ERASING) {
419 for (i = 0; i < 4; i++) {
420 if (!(status & 1 << (i + 1)))
421 continue;
422 this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
423 -1, -1);
424 rtn = this->read_byte(mtd);
425 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
427 /* err_ecc_not_avail */
428 if (!(rtn & ERR_STAT_ECC_AVAILABLE))
429 er_stat |= 1 << (i + 1);
432 } else if (state == FL_WRITING) {
434 unsigned long corrected = mtd->ecc_stats.corrected;
436 /* single bank write logic */
437 this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
438 rtn = this->read_byte(mtd);
439 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
441 if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
442 /* err_ecc_not_avail */
443 er_stat |= 1 << 1;
444 goto out;
447 len = mtd->writesize;
448 buf = kmalloc(len, GFP_KERNEL);
449 if (!buf) {
450 printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n");
451 er_stat = 1;
452 goto out;
455 /* recovery read */
456 rtn = nand_do_read(mtd, page, len, &retlen, buf);
458 /* if read failed or > 1-bit error corrected */
459 if (rtn || (mtd->ecc_stats.corrected - corrected) > 1)
460 er_stat |= 1 << 1;
461 kfree(buf);
464 rtn = status;
465 if (er_stat == 0) { /* if ECC is available */
466 rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */
469 return rtn;
471 #endif
474 * Main initialization routine
476 static int __init rtc_from4_init(void)
478 struct nand_chip *this;
479 unsigned short bcr1, bcr2, wcr2;
480 int i;
482 /* Allocate memory for MTD device structure and private data */
483 rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
484 if (!rtc_from4_mtd) {
485 printk("Unable to allocate Renesas NAND MTD device structure.\n");
486 return -ENOMEM;
489 /* Get pointer to private data */
490 this = (struct nand_chip *)(&rtc_from4_mtd[1]);
492 /* Initialize structures */
493 memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
494 memset(this, 0, sizeof(struct nand_chip));
496 /* Link the private data with the MTD structure */
497 rtc_from4_mtd->priv = this;
498 rtc_from4_mtd->owner = THIS_MODULE;
500 /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
501 bcr1 = *SH77X9_BCR1 & ~0x0002;
502 bcr1 |= 0x0002;
503 *SH77X9_BCR1 = bcr1;
505 /* set */
506 bcr2 = *SH77X9_BCR2 & ~0x0c00;
507 bcr2 |= 0x0800;
508 *SH77X9_BCR2 = bcr2;
510 /* set area 5 wait states */
511 wcr2 = *SH77X9_WCR2 & ~0x1c00;
512 wcr2 |= 0x1c00;
513 *SH77X9_WCR2 = wcr2;
515 /* Set address of NAND IO lines */
516 this->IO_ADDR_R = rtc_from4_fio_base;
517 this->IO_ADDR_W = rtc_from4_fio_base;
518 /* Set address of hardware control function */
519 this->cmd_ctrl = rtc_from4_hwcontrol;
520 /* Set address of chip select function */
521 this->select_chip = rtc_from4_nand_select_chip;
522 /* command delay time (in us) */
523 this->chip_delay = 100;
524 /* return the status of the Ready/Busy line */
525 this->dev_ready = rtc_from4_nand_device_ready;
527 #ifdef RTC_FROM4_HWECC
528 printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
530 this->ecc.mode = NAND_ECC_HW_SYNDROME;
531 this->ecc.size = 512;
532 this->ecc.bytes = 8;
533 /* return the status of extra status and ECC checks */
534 this->errstat = rtc_from4_errstat;
535 /* set the nand_oobinfo to support FPGA H/W error detection */
536 this->ecc.layout = &rtc_from4_nand_oobinfo;
537 this->ecc.hwctl = rtc_from4_enable_hwecc;
538 this->ecc.calculate = rtc_from4_calculate_ecc;
539 this->ecc.correct = rtc_from4_correct_data;
540 #else
541 printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
543 this->ecc.mode = NAND_ECC_SOFT;
544 #endif
546 /* set the bad block tables to support debugging */
547 this->bbt_td = &rtc_from4_bbt_main_descr;
548 this->bbt_md = &rtc_from4_bbt_mirror_descr;
550 /* Scan to find existence of the device */
551 if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
552 kfree(rtc_from4_mtd);
553 return -ENXIO;
556 /* Perform 'device recovery' for each chip in case there was a power loss. */
557 for (i = 0; i < this->numchips; i++) {
558 deplete(rtc_from4_mtd, i);
561 #if RTC_FROM4_NO_VIRTBLOCKS
562 /* use a smaller erase block to minimize wasted space when a block is bad */
563 /* note: this uses eight times as much RAM as using the default and makes */
564 /* mounts take four times as long. */
565 rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
566 #endif
568 /* Register the partitions */
569 add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);
571 #ifdef RTC_FROM4_HWECC
572 /* We could create the decoder on demand, if memory is a concern.
573 * This way we have it handy, if an error happens
575 * Symbolsize is 10 (bits)
576 * Primitve polynomial is x^10+x^3+1
577 * first consecutive root is 0
578 * primitve element to generate roots = 1
579 * generator polinomial degree = 6
581 rs_decoder = init_rs(10, 0x409, 0, 1, 6);
582 if (!rs_decoder) {
583 printk(KERN_ERR "Could not create a RS decoder\n");
584 nand_release(rtc_from4_mtd);
585 kfree(rtc_from4_mtd);
586 return -ENOMEM;
588 #endif
589 /* Return happy */
590 return 0;
593 module_init(rtc_from4_init);
596 * Clean up routine
598 static void __exit rtc_from4_cleanup(void)
600 /* Release resource, unregister partitions */
601 nand_release(rtc_from4_mtd);
603 /* Free the MTD device structure */
604 kfree(rtc_from4_mtd);
606 #ifdef RTC_FROM4_HWECC
607 /* Free the reed solomon resources */
608 if (rs_decoder) {
609 free_rs(rs_decoder);
611 #endif
614 module_exit(rtc_from4_cleanup);
616 MODULE_LICENSE("GPL");
617 MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
618 MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");