2 * File: arch/blackfin/mm/blackfin_sram.c
7 * Description: SRAM driver for Blackfin ADSP-BF5xx
10 * Copyright 2004-2007 Analog Devices Inc.
12 * Bugs: Enter bugs at http://blackfin.uclinux.org/
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, see the file COPYING, or write
26 * to the Free Software Foundation, Inc.,
27 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
30 #include <linux/autoconf.h>
31 #include <linux/module.h>
32 #include <linux/kernel.h>
33 #include <linux/types.h>
34 #include <linux/miscdevice.h>
35 #include <linux/ioport.h>
36 #include <linux/fcntl.h>
37 #include <linux/init.h>
38 #include <linux/poll.h>
39 #include <linux/proc_fs.h>
40 #include <linux/spinlock.h>
41 #include <linux/rtc.h>
42 #include <asm/blackfin.h>
43 #include "blackfin_sram.h"
45 spinlock_t l1sram_lock
, l1_data_sram_lock
, l1_inst_sram_lock
;
47 #if CONFIG_L1_MAX_PIECE < 16
48 #undef CONFIG_L1_MAX_PIECE
49 #define CONFIG_L1_MAX_PIECE 16
52 #if CONFIG_L1_MAX_PIECE > 1024
53 #undef CONFIG_L1_MAX_PIECE
54 #define CONFIG_L1_MAX_PIECE 1024
57 #define SRAM_SLT_NULL 0
58 #define SRAM_SLT_FREE 1
59 #define SRAM_SLT_ALLOCATED 2
61 /* the data structure for L1 scratchpad and DATA SRAM */
62 struct l1_sram_piece
{
69 static struct l1_sram_piece l1_ssram
[CONFIG_L1_MAX_PIECE
];
71 #if L1_DATA_A_LENGTH != 0
72 static struct l1_sram_piece l1_data_A_sram
[CONFIG_L1_MAX_PIECE
];
75 #if L1_DATA_B_LENGTH != 0
76 static struct l1_sram_piece l1_data_B_sram
[CONFIG_L1_MAX_PIECE
];
79 #if L1_CODE_LENGTH != 0
80 static struct l1_sram_piece l1_inst_sram
[CONFIG_L1_MAX_PIECE
];
83 /* L1 Scratchpad SRAM initialization function */
84 void __init
l1sram_init(void)
86 printk(KERN_INFO
"Blackfin Scratchpad data SRAM: %d KB\n",
87 L1_SCRATCH_LENGTH
>> 10);
89 memset(&l1_ssram
, 0x00, sizeof(l1_ssram
));
90 l1_ssram
[0].paddr
= (void *)L1_SCRATCH_START
;
91 l1_ssram
[0].size
= L1_SCRATCH_LENGTH
;
92 l1_ssram
[0].flag
= SRAM_SLT_FREE
;
94 /* mutex initialize */
95 spin_lock_init(&l1sram_lock
);
98 void __init
l1_data_sram_init(void)
100 #if L1_DATA_A_LENGTH != 0
101 memset(&l1_data_A_sram
, 0x00, sizeof(l1_data_A_sram
));
102 l1_data_A_sram
[0].paddr
= (void *)L1_DATA_A_START
+
103 (_ebss_l1
- _sdata_l1
);
104 l1_data_A_sram
[0].size
= L1_DATA_A_LENGTH
- (_ebss_l1
- _sdata_l1
);
105 l1_data_A_sram
[0].flag
= SRAM_SLT_FREE
;
107 printk(KERN_INFO
"Blackfin Data A SRAM: %d KB (%d KB free)\n",
108 L1_DATA_A_LENGTH
>> 10, l1_data_A_sram
[0].size
>> 10);
110 #if L1_DATA_B_LENGTH != 0
111 memset(&l1_data_B_sram
, 0x00, sizeof(l1_data_B_sram
));
112 l1_data_B_sram
[0].paddr
= (void *)L1_DATA_B_START
+
113 (_ebss_b_l1
- _sdata_b_l1
);
114 l1_data_B_sram
[0].size
= L1_DATA_B_LENGTH
- (_ebss_b_l1
- _sdata_b_l1
);
115 l1_data_B_sram
[0].flag
= SRAM_SLT_FREE
;
117 printk(KERN_INFO
"Blackfin Data B SRAM: %d KB (%d KB free)\n",
118 L1_DATA_B_LENGTH
>> 10, l1_data_B_sram
[0].size
>> 10);
121 /* mutex initialize */
122 spin_lock_init(&l1_data_sram_lock
);
125 void __init
l1_inst_sram_init(void)
127 #if L1_CODE_LENGTH != 0
128 memset(&l1_inst_sram
, 0x00, sizeof(l1_inst_sram
));
129 l1_inst_sram
[0].paddr
= (void *)L1_CODE_START
+ (_etext_l1
- _stext_l1
);
130 l1_inst_sram
[0].size
= L1_CODE_LENGTH
- (_etext_l1
- _stext_l1
);
131 l1_inst_sram
[0].flag
= SRAM_SLT_FREE
;
133 printk(KERN_INFO
"Blackfin Instruction SRAM: %d KB (%d KB free)\n",
134 L1_CODE_LENGTH
>> 10, l1_inst_sram
[0].size
>> 10);
137 /* mutex initialize */
138 spin_lock_init(&l1_inst_sram_lock
);
141 /* L1 memory allocate function */
142 static void *_l1_sram_alloc(size_t size
, struct l1_sram_piece
*pfree
, int count
)
151 size
= (size
+ 3) & ~3;
153 /* not use the good method to match the best slot !!! */
154 /* search an available memory slot */
155 for (i
= 0; i
< count
; i
++) {
156 if ((pfree
[i
].flag
== SRAM_SLT_FREE
)
157 && (pfree
[i
].size
>= size
)) {
158 addr
= pfree
[i
].paddr
;
159 pfree
[i
].flag
= SRAM_SLT_ALLOCATED
;
160 pfree
[i
].pid
= current
->pid
;
168 /* updated the NULL memory slot !!! */
169 if (pfree
[i
].size
> size
) {
170 for (i
= 0; i
< count
; i
++) {
171 if (pfree
[i
].flag
== SRAM_SLT_NULL
) {
173 pfree
[i
].flag
= SRAM_SLT_FREE
;
174 pfree
[i
].paddr
= addr
+ size
;
175 pfree
[i
].size
= pfree
[index
].size
- size
;
176 pfree
[index
].size
= size
;
185 /* Allocate the largest available block. */
186 static void *_l1_sram_alloc_max(struct l1_sram_piece
*pfree
, int count
,
187 unsigned long *psize
)
189 unsigned long best
= 0;
193 /* search an available memory slot */
194 for (i
= 0; i
< count
; i
++) {
195 if (pfree
[i
].flag
== SRAM_SLT_FREE
&& pfree
[i
].size
> best
) {
196 addr
= pfree
[i
].paddr
;
198 best
= pfree
[i
].size
;
205 pfree
[index
].pid
= current
->pid
;
206 pfree
[index
].flag
= SRAM_SLT_ALLOCATED
;
210 /* L1 memory free function */
211 static int _l1_sram_free(const void *addr
,
212 struct l1_sram_piece
*pfree
,
217 /* search the relevant memory slot */
218 for (i
= 0; i
< count
; i
++) {
219 if (pfree
[i
].paddr
== addr
) {
220 if (pfree
[i
].flag
!= SRAM_SLT_ALLOCATED
) {
231 pfree
[index
].pid
= 0;
232 pfree
[index
].flag
= SRAM_SLT_FREE
;
234 /* link the next address slot */
235 for (i
= 0; i
< count
; i
++) {
236 if (((pfree
[index
].paddr
+ pfree
[index
].size
) == pfree
[i
].paddr
)
237 && (pfree
[i
].flag
== SRAM_SLT_FREE
)) {
239 pfree
[i
].flag
= SRAM_SLT_NULL
;
240 pfree
[index
].size
+= pfree
[i
].size
;
241 pfree
[index
].flag
= SRAM_SLT_FREE
;
246 /* link the last address slot */
247 for (i
= 0; i
< count
; i
++) {
248 if (((pfree
[i
].paddr
+ pfree
[i
].size
) == pfree
[index
].paddr
) &&
249 (pfree
[i
].flag
== SRAM_SLT_FREE
)) {
250 pfree
[index
].flag
= SRAM_SLT_NULL
;
251 pfree
[i
].size
+= pfree
[index
].size
;
259 int sram_free(const void *addr
)
262 #if L1_CODE_LENGTH != 0
263 else if (addr
>= (void *)L1_CODE_START
264 && addr
< (void *)(L1_CODE_START
+ L1_CODE_LENGTH
))
265 return l1_inst_sram_free(addr
);
267 #if L1_DATA_A_LENGTH != 0
268 else if (addr
>= (void *)L1_DATA_A_START
269 && addr
< (void *)(L1_DATA_A_START
+ L1_DATA_A_LENGTH
))
270 return l1_data_A_sram_free(addr
);
272 #if L1_DATA_B_LENGTH != 0
273 else if (addr
>= (void *)L1_DATA_B_START
274 && addr
< (void *)(L1_DATA_B_START
+ L1_DATA_B_LENGTH
))
275 return l1_data_B_sram_free(addr
);
280 EXPORT_SYMBOL(sram_free
);
282 void *l1_data_A_sram_alloc(size_t size
)
287 /* add mutex operation */
288 spin_lock_irqsave(&l1_data_sram_lock
, flags
);
290 #if L1_DATA_A_LENGTH != 0
291 addr
= _l1_sram_alloc(size
, l1_data_A_sram
, ARRAY_SIZE(l1_data_A_sram
));
294 /* add mutex operation */
295 spin_unlock_irqrestore(&l1_data_sram_lock
, flags
);
297 pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
298 (long unsigned int)addr
, size
);
302 EXPORT_SYMBOL(l1_data_A_sram_alloc
);
304 int l1_data_A_sram_free(const void *addr
)
309 /* add mutex operation */
310 spin_lock_irqsave(&l1_data_sram_lock
, flags
);
312 #if L1_DATA_A_LENGTH != 0
313 ret
= _l1_sram_free(addr
,
314 l1_data_A_sram
, ARRAY_SIZE(l1_data_A_sram
));
319 /* add mutex operation */
320 spin_unlock_irqrestore(&l1_data_sram_lock
, flags
);
324 EXPORT_SYMBOL(l1_data_A_sram_free
);
326 void *l1_data_B_sram_alloc(size_t size
)
328 #if L1_DATA_B_LENGTH != 0
332 /* add mutex operation */
333 spin_lock_irqsave(&l1_data_sram_lock
, flags
);
335 addr
= _l1_sram_alloc(size
, l1_data_B_sram
, ARRAY_SIZE(l1_data_B_sram
));
337 /* add mutex operation */
338 spin_unlock_irqrestore(&l1_data_sram_lock
, flags
);
340 pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
341 (long unsigned int)addr
, size
);
348 EXPORT_SYMBOL(l1_data_B_sram_alloc
);
350 int l1_data_B_sram_free(const void *addr
)
352 #if L1_DATA_B_LENGTH != 0
356 /* add mutex operation */
357 spin_lock_irqsave(&l1_data_sram_lock
, flags
);
359 ret
= _l1_sram_free(addr
, l1_data_B_sram
, ARRAY_SIZE(l1_data_B_sram
));
361 /* add mutex operation */
362 spin_unlock_irqrestore(&l1_data_sram_lock
, flags
);
369 EXPORT_SYMBOL(l1_data_B_sram_free
);
371 void *l1_data_sram_alloc(size_t size
)
373 void *addr
= l1_data_A_sram_alloc(size
);
376 addr
= l1_data_B_sram_alloc(size
);
380 EXPORT_SYMBOL(l1_data_sram_alloc
);
382 void *l1_data_sram_zalloc(size_t size
)
384 void *addr
= l1_data_sram_alloc(size
);
387 memset(addr
, 0x00, size
);
391 EXPORT_SYMBOL(l1_data_sram_zalloc
);
393 int l1_data_sram_free(const void *addr
)
396 ret
= l1_data_A_sram_free(addr
);
398 ret
= l1_data_B_sram_free(addr
);
401 EXPORT_SYMBOL(l1_data_sram_free
);
403 void *l1_inst_sram_alloc(size_t size
)
405 #if L1_DATA_A_LENGTH != 0
409 /* add mutex operation */
410 spin_lock_irqsave(&l1_inst_sram_lock
, flags
);
412 addr
= _l1_sram_alloc(size
, l1_inst_sram
, ARRAY_SIZE(l1_inst_sram
));
414 /* add mutex operation */
415 spin_unlock_irqrestore(&l1_inst_sram_lock
, flags
);
417 pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
418 (long unsigned int)addr
, size
);
425 EXPORT_SYMBOL(l1_inst_sram_alloc
);
427 int l1_inst_sram_free(const void *addr
)
429 #if L1_CODE_LENGTH != 0
433 /* add mutex operation */
434 spin_lock_irqsave(&l1_inst_sram_lock
, flags
);
436 ret
= _l1_sram_free(addr
, l1_inst_sram
, ARRAY_SIZE(l1_inst_sram
));
438 /* add mutex operation */
439 spin_unlock_irqrestore(&l1_inst_sram_lock
, flags
);
446 EXPORT_SYMBOL(l1_inst_sram_free
);
448 /* L1 Scratchpad memory allocate function */
449 void *l1sram_alloc(size_t size
)
454 /* add mutex operation */
455 spin_lock_irqsave(&l1sram_lock
, flags
);
457 addr
= _l1_sram_alloc(size
, l1_ssram
, ARRAY_SIZE(l1_ssram
));
459 /* add mutex operation */
460 spin_unlock_irqrestore(&l1sram_lock
, flags
);
465 /* L1 Scratchpad memory allocate function */
466 void *l1sram_alloc_max(size_t *psize
)
471 /* add mutex operation */
472 spin_lock_irqsave(&l1sram_lock
, flags
);
474 addr
= _l1_sram_alloc_max(l1_ssram
, ARRAY_SIZE(l1_ssram
), psize
);
476 /* add mutex operation */
477 spin_unlock_irqrestore(&l1sram_lock
, flags
);
482 /* L1 Scratchpad memory free function */
483 int l1sram_free(const void *addr
)
488 /* add mutex operation */
489 spin_lock_irqsave(&l1sram_lock
, flags
);
491 ret
= _l1_sram_free(addr
, l1_ssram
, ARRAY_SIZE(l1_ssram
));
493 /* add mutex operation */
494 spin_unlock_irqrestore(&l1sram_lock
, flags
);
499 int sram_free_with_lsl(const void *addr
)
501 struct sram_list_struct
*lsl
, **tmp
;
502 struct mm_struct
*mm
= current
->mm
;
504 for (tmp
= &mm
->context
.sram_list
; *tmp
; tmp
= &(*tmp
)->next
)
505 if ((*tmp
)->addr
== addr
)
516 EXPORT_SYMBOL(sram_free_with_lsl
);
518 void *sram_alloc_with_lsl(size_t size
, unsigned long flags
)
521 struct sram_list_struct
*lsl
= NULL
;
522 struct mm_struct
*mm
= current
->mm
;
524 lsl
= kzalloc(sizeof(struct sram_list_struct
), GFP_KERNEL
);
528 if (flags
& L1_INST_SRAM
)
529 addr
= l1_inst_sram_alloc(size
);
531 if (addr
== NULL
&& (flags
& L1_DATA_A_SRAM
))
532 addr
= l1_data_A_sram_alloc(size
);
534 if (addr
== NULL
&& (flags
& L1_DATA_B_SRAM
))
535 addr
= l1_data_B_sram_alloc(size
);
543 lsl
->next
= mm
->context
.sram_list
;
544 mm
->context
.sram_list
= lsl
;
547 EXPORT_SYMBOL(sram_alloc_with_lsl
);
549 #ifdef CONFIG_PROC_FS
550 /* Once we get a real allocator, we'll throw all of this away.
551 * Until then, we need some sort of visibility into the L1 alloc.
553 static void _l1sram_proc_read(char *buf
, int *len
, const char *desc
,
554 struct l1_sram_piece
*pfree
, const int array_size
)
558 *len
+= sprintf(&buf
[*len
], "--- L1 %-14s Size PID State\n", desc
);
559 for (i
= 0; i
< array_size
; ++i
) {
560 const char *alloc_type
;
561 switch (pfree
[i
].flag
) {
562 case SRAM_SLT_NULL
: alloc_type
= "NULL"; break;
563 case SRAM_SLT_FREE
: alloc_type
= "FREE"; break;
564 case SRAM_SLT_ALLOCATED
: alloc_type
= "ALLOCATED"; break;
565 default: alloc_type
= "????"; break;
567 *len
+= sprintf(&buf
[*len
], "%p-%p %8i %4i %s\n",
568 pfree
[i
].paddr
, pfree
[i
].paddr
+ pfree
[i
].size
,
569 pfree
[i
].size
, pfree
[i
].pid
, alloc_type
);
572 static int l1sram_proc_read(char *buf
, char **start
, off_t offset
, int count
,
573 int *eof
, void *data
)
577 _l1sram_proc_read(buf
, &len
, "Scratchpad",
578 l1_ssram
, ARRAY_SIZE(l1_ssram
));
579 #if L1_DATA_A_LENGTH != 0
580 _l1sram_proc_read(buf
, &len
, "Data A",
581 l1_data_A_sram
, ARRAY_SIZE(l1_data_A_sram
));
583 #if L1_DATA_B_LENGTH != 0
584 _l1sram_proc_read(buf
, &len
, "Data B",
585 l1_data_B_sram
, ARRAY_SIZE(l1_data_B_sram
));
587 #if L1_CODE_LENGTH != 0
588 _l1sram_proc_read(buf
, &len
, "Instruction",
589 l1_inst_sram
, ARRAY_SIZE(l1_inst_sram
));
595 static int __init
l1sram_proc_init(void)
597 struct proc_dir_entry
*ptr
;
598 ptr
= create_proc_entry("sram", S_IFREG
| S_IRUGO
, NULL
);
600 printk(KERN_WARNING
"unable to create /proc/sram\n");
603 ptr
->owner
= THIS_MODULE
;
604 ptr
->read_proc
= l1sram_proc_read
;
607 late_initcall(l1sram_proc_init
);