2 * Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
3 * Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net)
5 * This version of the driver is a combination of the 8xx fec and
6 * 8260 SCC Ethernet drivers. This version has some additional
7 * configuration options, which should probably be moved out of
8 * here. This driver currently works for the EST SBC8260,
9 * SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others.
11 * Right now, I am very watseful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets. Since this is a cache coherent processor and CPM,
17 * I could also preallocate SKB's and use them directly on the interface.
19 * 2004-12 Leo Li (leoli@freescale.com)
20 * - Rework the FCC clock configuration part, make it easier to configure.
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/spinlock.h>
38 #include <linux/mii.h>
39 #include <linux/workqueue.h>
40 #include <linux/bitops.h>
42 #include <asm/immap_cpm2.h>
43 #include <asm/pgtable.h>
44 #include <asm/mpc8260.h>
46 #include <asm/uaccess.h>
47 #include <asm/signal.h>
49 /* We can't use the PHY interrupt if we aren't using MDIO. */
50 #if !defined(CONFIG_USE_MDIO)
54 /* If we have a PHY interrupt, we will advertise both full-duplex and half-
55 * duplex capabilities. If we don't have a PHY interrupt, then we will only
56 * advertise half-duplex capabilities.
58 #define MII_ADVERTISE_HALF (ADVERTISE_100HALF | ADVERTISE_10HALF | \
60 #define MII_ADVERTISE_ALL (ADVERTISE_100FULL | ADVERTISE_10FULL | \
63 #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_ALL
65 #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_HALF
69 /* The transmitter timeout
71 #define TX_TIMEOUT (2*HZ)
73 #ifdef CONFIG_USE_MDIO
74 /* Forward declarations of some structures to support different PHYs */
78 void (*funct
)(uint mii_reg
, struct net_device
*dev
);
85 const phy_cmd_t
*config
;
86 const phy_cmd_t
*startup
;
87 const phy_cmd_t
*ack_int
;
88 const phy_cmd_t
*shutdown
;
91 /* values for phy_status */
93 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
94 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
95 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
96 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
97 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
98 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
99 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
101 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
102 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
103 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
104 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
105 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
106 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
107 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
108 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
109 #endif /* CONFIG_USE_MDIO */
111 /* The number of Tx and Rx buffers. These are allocated from the page
112 * pool. The code may assume these are power of two, so it is best
113 * to keep them that size.
114 * We don't need to allocate pages for the transmitter. We just use
115 * the skbuffer directly.
117 #define FCC_ENET_RX_PAGES 16
118 #define FCC_ENET_RX_FRSIZE 2048
119 #define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE)
120 #define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
121 #define TX_RING_SIZE 16 /* Must be power of two */
122 #define TX_RING_MOD_MASK 15 /* for this to work */
124 /* The FCC stores dest/src/type, data, and checksum for receive packets.
125 * size includes support for VLAN
127 #define PKT_MAXBUF_SIZE 1522
128 #define PKT_MINBUF_SIZE 64
130 /* Maximum input DMA size. Must be a should(?) be a multiple of 4.
131 * size includes support for VLAN
133 #define PKT_MAXDMA_SIZE 1524
135 /* Maximum input buffer size. Must be a multiple of 32.
137 #define PKT_MAXBLR_SIZE 1536
139 static int fcc_enet_open(struct net_device
*dev
);
140 static int fcc_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
141 static int fcc_enet_rx(struct net_device
*dev
);
142 static irqreturn_t
fcc_enet_interrupt(int irq
, void *dev_id
);
143 static int fcc_enet_close(struct net_device
*dev
);
144 static struct net_device_stats
*fcc_enet_get_stats(struct net_device
*dev
);
145 /* static void set_multicast_list(struct net_device *dev); */
146 static void fcc_restart(struct net_device
*dev
, int duplex
);
147 static void fcc_stop(struct net_device
*dev
);
148 static int fcc_enet_set_mac_address(struct net_device
*dev
, void *addr
);
150 /* These will be configurable for the FCC choice.
151 * Multiple ports can be configured. There is little choice among the
152 * I/O pins to the PHY, except the clocks. We will need some board
153 * dependent clock selection.
154 * Why in the hell did I put these inside #ifdef's? I dunno, maybe to
155 * help show what pins are used for each device.
158 /* Since the CLK setting changes greatly from board to board, I changed
159 * it to a easy way. You just need to specify which CLK number to use.
160 * Note that only limited choices can be make on each port.
163 /* FCC1 Clock Source Configuration. There are board specific.
164 Can only choose from CLK9-12 */
165 #ifdef CONFIG_SBC82xx
168 #elif defined(CONFIG_ADS8272)
176 /* FCC2 Clock Source Configuration. There are board specific.
177 Can only choose from CLK13-16 */
178 #ifdef CONFIG_ADS8272
186 /* FCC3 Clock Source Configuration. There are board specific.
187 Can only choose from CLK13-16 */
191 /* Automatically generates register configurations */
192 #define PC_CLK(x) ((uint)(1<<(x-1))) /* FCC CLK I/O ports */
194 #define CMXFCR_RF1CS(x) ((uint)((x-5)<<27)) /* FCC1 Receive Clock Source */
195 #define CMXFCR_TF1CS(x) ((uint)((x-5)<<24)) /* FCC1 Transmit Clock Source */
196 #define CMXFCR_RF2CS(x) ((uint)((x-9)<<19)) /* FCC2 Receive Clock Source */
197 #define CMXFCR_TF2CS(x) ((uint)((x-9)<<16)) /* FCC2 Transmit Clock Source */
198 #define CMXFCR_RF3CS(x) ((uint)((x-9)<<11)) /* FCC3 Receive Clock Source */
199 #define CMXFCR_TF3CS(x) ((uint)((x-9)<<8)) /* FCC3 Transmit Clock Source */
201 #define PC_F1RXCLK PC_CLK(F1_RXCLK)
202 #define PC_F1TXCLK PC_CLK(F1_TXCLK)
203 #define CMX1_CLK_ROUTE (CMXFCR_RF1CS(F1_RXCLK) | CMXFCR_TF1CS(F1_TXCLK))
204 #define CMX1_CLK_MASK ((uint)0xff000000)
206 #define PC_F2RXCLK PC_CLK(F2_RXCLK)
207 #define PC_F2TXCLK PC_CLK(F2_TXCLK)
208 #define CMX2_CLK_ROUTE (CMXFCR_RF2CS(F2_RXCLK) | CMXFCR_TF2CS(F2_TXCLK))
209 #define CMX2_CLK_MASK ((uint)0x00ff0000)
211 #define PC_F3RXCLK PC_CLK(F3_RXCLK)
212 #define PC_F3TXCLK PC_CLK(F3_TXCLK)
213 #define CMX3_CLK_ROUTE (CMXFCR_RF3CS(F3_RXCLK) | CMXFCR_TF3CS(F3_TXCLK))
214 #define CMX3_CLK_MASK ((uint)0x0000ff00)
217 /* I/O Pin assignment for FCC1. I don't yet know the best way to do this,
218 * but there is little variation among the choices.
220 #define PA1_COL ((uint)0x00000001)
221 #define PA1_CRS ((uint)0x00000002)
222 #define PA1_TXER ((uint)0x00000004)
223 #define PA1_TXEN ((uint)0x00000008)
224 #define PA1_RXDV ((uint)0x00000010)
225 #define PA1_RXER ((uint)0x00000020)
226 #define PA1_TXDAT ((uint)0x00003c00)
227 #define PA1_RXDAT ((uint)0x0003c000)
228 #define PA1_PSORA_BOUT (PA1_RXDAT | PA1_TXDAT)
229 #define PA1_PSORA_BIN (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \
231 #define PA1_DIRA_BOUT (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
232 #define PA1_DIRA_BIN (PA1_TXDAT | PA1_TXEN | PA1_TXER)
235 /* I/O Pin assignment for FCC2. I don't yet know the best way to do this,
236 * but there is little variation among the choices.
238 #define PB2_TXER ((uint)0x00000001)
239 #define PB2_RXDV ((uint)0x00000002)
240 #define PB2_TXEN ((uint)0x00000004)
241 #define PB2_RXER ((uint)0x00000008)
242 #define PB2_COL ((uint)0x00000010)
243 #define PB2_CRS ((uint)0x00000020)
244 #define PB2_TXDAT ((uint)0x000003c0)
245 #define PB2_RXDAT ((uint)0x00003c00)
246 #define PB2_PSORB_BOUT (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \
247 PB2_RXER | PB2_RXDV | PB2_TXER)
248 #define PB2_PSORB_BIN (PB2_TXEN)
249 #define PB2_DIRB_BOUT (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
250 #define PB2_DIRB_BIN (PB2_TXDAT | PB2_TXEN | PB2_TXER)
253 /* I/O Pin assignment for FCC3. I don't yet know the best way to do this,
254 * but there is little variation among the choices.
256 #define PB3_RXDV ((uint)0x00004000)
257 #define PB3_RXER ((uint)0x00008000)
258 #define PB3_TXER ((uint)0x00010000)
259 #define PB3_TXEN ((uint)0x00020000)
260 #define PB3_COL ((uint)0x00040000)
261 #define PB3_CRS ((uint)0x00080000)
262 #ifndef CONFIG_RPX8260
263 #define PB3_TXDAT ((uint)0x0f000000)
264 #define PC3_TXDAT ((uint)0x00000000)
266 #define PB3_TXDAT ((uint)0x0f000000)
269 #define PB3_RXDAT ((uint)0x00f00000)
270 #define PB3_PSORB_BOUT (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \
271 PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
272 #define PB3_PSORB_BIN (0)
273 #define PB3_DIRB_BOUT (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
274 #define PB3_DIRB_BIN (PB3_TXDAT | PB3_TXEN | PB3_TXER)
276 #define PC3_PSORC_BOUT (PC3_TXDAT)
277 #define PC3_PSORC_BIN (0)
278 #define PC3_DIRC_BOUT (0)
279 #define PC3_DIRC_BIN (PC3_TXDAT)
282 /* MII status/control serial interface.
284 #if defined(CONFIG_RPX8260)
285 /* The EP8260 doesn't use Port C for MDIO */
286 #define PC_MDIO ((uint)0x00000000)
287 #define PC_MDCK ((uint)0x00000000)
288 #elif defined(CONFIG_TQM8260)
289 /* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */
290 #define PC_MDIO ((uint)0x00000002)
291 #define PC_MDCK ((uint)0x00000001)
292 #elif defined(CONFIG_ADS8272)
293 #define PC_MDIO ((uint)0x00002000)
294 #define PC_MDCK ((uint)0x00001000)
295 #elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260) || defined(CONFIG_PQ2FADS)
296 #define PC_MDIO ((uint)0x00400000)
297 #define PC_MDCK ((uint)0x00200000)
299 #define PC_MDIO ((uint)0x00000004)
300 #define PC_MDCK ((uint)0x00000020)
303 #if defined(CONFIG_USE_MDIO) && (!defined(PC_MDIO) || !defined(PC_MDCK))
304 #error "Must define PC_MDIO and PC_MDCK if using MDIO"
308 /* default to dynamic config of phy addresses */
309 #define FCC1_PHY_ADDR 0
310 #ifdef CONFIG_PQ2FADS
311 #define FCC2_PHY_ADDR 0
313 #define FCC2_PHY_ADDR 2
315 #define FCC3_PHY_ADDR 3
317 /* A table of information for supporting FCCs. This does two things.
318 * First, we know how many FCCs we have and they are always externally
319 * numbered from zero. Second, it holds control register and I/O
320 * information that could be different among board designs.
322 typedef struct fcc_info
{
336 static fcc_info_t fcc_ports
[] = {
337 #ifdef CONFIG_FCC1_ENET
338 { 0, FCC1_PHY_ADDR
, CPM_CR_FCC1_SBLOCK
, CPM_CR_FCC1_PAGE
, PROFF_FCC1
, SIU_INT_FCC1
,
339 (PC_F1RXCLK
| PC_F1TXCLK
), CMX1_CLK_ROUTE
, CMX1_CLK_MASK
,
342 #ifdef CONFIG_FCC2_ENET
343 { 1, FCC2_PHY_ADDR
, CPM_CR_FCC2_SBLOCK
, CPM_CR_FCC2_PAGE
, PROFF_FCC2
, SIU_INT_FCC2
,
344 (PC_F2RXCLK
| PC_F2TXCLK
), CMX2_CLK_ROUTE
, CMX2_CLK_MASK
,
347 #ifdef CONFIG_FCC3_ENET
348 { 2, FCC3_PHY_ADDR
, CPM_CR_FCC3_SBLOCK
, CPM_CR_FCC3_PAGE
, PROFF_FCC3
, SIU_INT_FCC3
,
349 (PC_F3RXCLK
| PC_F3TXCLK
), CMX3_CLK_ROUTE
, CMX3_CLK_MASK
,
354 /* The FCC buffer descriptors track the ring buffers. The rx_bd_base and
355 * tx_bd_base always point to the base of the buffer descriptors. The
356 * cur_rx and cur_tx point to the currently available buffer.
357 * The dirty_tx tracks the current buffer that is being sent by the
358 * controller. The cur_tx and dirty_tx are equal under both completely
359 * empty and completely full conditions. The empty/ready indicator in
360 * the buffer descriptor determines the actual condition.
362 struct fcc_enet_private
{
363 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
364 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
368 /* CPM dual port RAM relative addresses.
370 cbd_t
*rx_bd_base
; /* Address of Rx and Tx buffers. */
372 cbd_t
*cur_rx
, *cur_tx
; /* The next free ring entry */
373 cbd_t
*dirty_tx
; /* The ring entries to be free()ed. */
374 volatile fcc_t
*fccp
;
375 volatile fcc_enet_t
*ep
;
376 struct net_device_stats stats
;
380 #ifdef CONFIG_USE_MDIO
385 struct work_struct phy_relink
;
386 struct work_struct phy_display_config
;
387 struct net_device
*dev
;
392 #endif /* CONFIG_USE_MDIO */
401 static void init_fcc_shutdown(fcc_info_t
*fip
, struct fcc_enet_private
*cep
,
402 volatile cpm2_map_t
*immap
);
403 static void init_fcc_startup(fcc_info_t
*fip
, struct net_device
*dev
);
404 static void init_fcc_ioports(fcc_info_t
*fip
, volatile iop_cpm2_t
*io
,
405 volatile cpm2_map_t
*immap
);
406 static void init_fcc_param(fcc_info_t
*fip
, struct net_device
*dev
,
407 volatile cpm2_map_t
*immap
);
409 #ifdef CONFIG_USE_MDIO
410 static int mii_queue(struct net_device
*dev
, int request
, void (*func
)(uint
, struct net_device
*));
411 static uint
mii_send_receive(fcc_info_t
*fip
, uint cmd
);
412 static void mii_do_cmd(struct net_device
*dev
, const phy_cmd_t
*c
);
414 /* Make MII read/write commands for the FCC.
416 #define mk_mii_read(REG) (0x60020000 | (((REG) & 0x1f) << 18))
417 #define mk_mii_write(REG, VAL) (0x50020000 | (((REG) & 0x1f) << 18) | \
420 #endif /* CONFIG_USE_MDIO */
424 fcc_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
426 struct fcc_enet_private
*cep
= (struct fcc_enet_private
*)dev
->priv
;
429 /* Fill in a Tx ring entry */
432 #ifndef final_version
433 if (!cep
->tx_free
|| (bdp
->cbd_sc
& BD_ENET_TX_READY
)) {
434 /* Ooops. All transmit buffers are full. Bail out.
435 * This should not happen, since the tx queue should be stopped.
437 printk("%s: tx queue full!.\n", dev
->name
);
442 /* Clear all of the status flags. */
443 bdp
->cbd_sc
&= ~BD_ENET_TX_STATS
;
445 /* If the frame is short, tell CPM to pad it. */
446 if (skb
->len
<= ETH_ZLEN
)
447 bdp
->cbd_sc
|= BD_ENET_TX_PAD
;
449 bdp
->cbd_sc
&= ~BD_ENET_TX_PAD
;
451 /* Set buffer length and buffer pointer. */
452 bdp
->cbd_datlen
= skb
->len
;
453 bdp
->cbd_bufaddr
= __pa(skb
->data
);
455 spin_lock_irq(&cep
->lock
);
457 /* Save skb pointer. */
458 cep
->tx_skbuff
[cep
->skb_cur
] = skb
;
460 cep
->stats
.tx_bytes
+= skb
->len
;
461 cep
->skb_cur
= (cep
->skb_cur
+1) & TX_RING_MOD_MASK
;
463 /* Send it on its way. Tell CPM its ready, interrupt when done,
464 * its the last BD of the frame, and to put the CRC on the end.
466 bdp
->cbd_sc
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
| BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
469 /* Errata says don't do this. */
470 cep
->fccp
->fcc_ftodr
= 0x8000;
472 dev
->trans_start
= jiffies
;
474 /* If this was the last BD in the ring, start at the beginning again. */
475 if (bdp
->cbd_sc
& BD_ENET_TX_WRAP
)
476 bdp
= cep
->tx_bd_base
;
481 netif_stop_queue(dev
);
483 cep
->cur_tx
= (cbd_t
*)bdp
;
485 spin_unlock_irq(&cep
->lock
);
492 fcc_enet_timeout(struct net_device
*dev
)
494 struct fcc_enet_private
*cep
= (struct fcc_enet_private
*)dev
->priv
;
496 printk("%s: transmit timed out.\n", dev
->name
);
497 cep
->stats
.tx_errors
++;
498 #ifndef final_version
502 printk(" Ring data dump: cur_tx %p tx_free %d cur_rx %p.\n",
503 cep
->cur_tx
, cep
->tx_free
,
505 bdp
= cep
->tx_bd_base
;
506 printk(" Tx @base %p :\n", bdp
);
507 for (i
= 0 ; i
< TX_RING_SIZE
; i
++, bdp
++)
508 printk("%04x %04x %08x\n",
512 bdp
= cep
->rx_bd_base
;
513 printk(" Rx @base %p :\n", bdp
);
514 for (i
= 0 ; i
< RX_RING_SIZE
; i
++, bdp
++)
515 printk("%04x %04x %08x\n",
522 netif_wake_queue(dev
);
525 /* The interrupt handler. */
527 fcc_enet_interrupt(int irq
, void * dev_id
)
529 struct net_device
*dev
= dev_id
;
530 volatile struct fcc_enet_private
*cep
;
535 cep
= (struct fcc_enet_private
*)dev
->priv
;
537 /* Get the interrupt events that caused us to be here.
539 int_events
= cep
->fccp
->fcc_fcce
;
540 cep
->fccp
->fcc_fcce
= (int_events
& cep
->fccp
->fcc_fccm
);
544 /* We have to be careful here to make sure that we aren't
545 * interrupted by a PHY interrupt.
547 disable_irq_nosync(PHY_INTERRUPT
);
550 /* Handle receive event in its own function.
552 if (int_events
& FCC_ENET_RXF
)
555 /* Check for a transmit error. The manual is a little unclear
556 * about this, so the debug code until I get it figured out. It
557 * appears that if TXE is set, then TXB is not set. However,
558 * if carrier sense is lost during frame transmission, the TXE
559 * bit is set, "and continues the buffer transmission normally."
560 * I don't know if "normally" implies TXB is set when the buffer
561 * descriptor is closed.....trial and error :-).
564 /* Transmit OK, or non-fatal error. Update the buffer descriptors.
566 if (int_events
& (FCC_ENET_TXE
| FCC_ENET_TXB
)) {
567 spin_lock(&cep
->lock
);
569 while ((bdp
->cbd_sc
&BD_ENET_TX_READY
)==0) {
570 if (cep
->tx_free
== TX_RING_SIZE
)
573 if (bdp
->cbd_sc
& BD_ENET_TX_HB
) /* No heartbeat */
574 cep
->stats
.tx_heartbeat_errors
++;
575 if (bdp
->cbd_sc
& BD_ENET_TX_LC
) /* Late collision */
576 cep
->stats
.tx_window_errors
++;
577 if (bdp
->cbd_sc
& BD_ENET_TX_RL
) /* Retrans limit */
578 cep
->stats
.tx_aborted_errors
++;
579 if (bdp
->cbd_sc
& BD_ENET_TX_UN
) /* Underrun */
580 cep
->stats
.tx_fifo_errors
++;
581 if (bdp
->cbd_sc
& BD_ENET_TX_CSL
) /* Carrier lost */
582 cep
->stats
.tx_carrier_errors
++;
585 /* No heartbeat or Lost carrier are not really bad errors.
586 * The others require a restart transmit command.
589 (BD_ENET_TX_LC
| BD_ENET_TX_RL
| BD_ENET_TX_UN
)) {
591 cep
->stats
.tx_errors
++;
594 cep
->stats
.tx_packets
++;
596 /* Deferred means some collisions occurred during transmit,
597 * but we eventually sent the packet OK.
599 if (bdp
->cbd_sc
& BD_ENET_TX_DEF
)
600 cep
->stats
.collisions
++;
602 /* Free the sk buffer associated with this last transmit. */
603 dev_kfree_skb_irq(cep
->tx_skbuff
[cep
->skb_dirty
]);
604 cep
->tx_skbuff
[cep
->skb_dirty
] = NULL
;
605 cep
->skb_dirty
= (cep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
607 /* Update pointer to next buffer descriptor to be transmitted. */
608 if (bdp
->cbd_sc
& BD_ENET_TX_WRAP
)
609 bdp
= cep
->tx_bd_base
;
613 /* I don't know if we can be held off from processing these
614 * interrupts for more than one frame time. I really hope
615 * not. In such a case, we would now want to check the
616 * currently available BD (cur_tx) and determine if any
617 * buffers between the dirty_tx and cur_tx have also been
618 * sent. We would want to process anything in between that
619 * does not have BD_ENET_TX_READY set.
622 /* Since we have freed up a buffer, the ring is no longer
625 if (!cep
->tx_free
++) {
626 if (netif_queue_stopped(dev
)) {
627 netif_wake_queue(dev
);
631 cep
->dirty_tx
= (cbd_t
*)bdp
;
635 volatile cpm_cpm2_t
*cp
;
637 /* Some transmit errors cause the transmitter to shut
638 * down. We now issue a restart transmit. Since the
639 * errors close the BD and update the pointers, the restart
640 * _should_ pick up without having to reset any of our
641 * pointers either. Also, To workaround 8260 device erratum
642 * CPM37, we must disable and then re-enable the transmitter
643 * following a Late Collision, Underrun, or Retry Limit error.
645 cep
->fccp
->fcc_gfmr
&= ~FCC_GFMR_ENT
;
646 udelay(10); /* wait a few microseconds just on principle */
647 cep
->fccp
->fcc_gfmr
|= FCC_GFMR_ENT
;
651 mk_cr_cmd(cep
->fip
->fc_cpmpage
, cep
->fip
->fc_cpmblock
,
652 0x0c, CPM_CR_RESTART_TX
) | CPM_CR_FLG
;
653 while (cp
->cp_cpcr
& CPM_CR_FLG
);
655 spin_unlock(&cep
->lock
);
658 /* Check for receive busy, i.e. packets coming but no place to
661 if (int_events
& FCC_ENET_BSY
) {
662 cep
->fccp
->fcc_fcce
= FCC_ENET_BSY
;
663 cep
->stats
.rx_dropped
++;
667 enable_irq(PHY_INTERRUPT
);
672 /* During a receive, the cur_rx points to the current incoming buffer.
673 * When we update through the ring, if the next incoming buffer has
674 * not been given to the system, we just set the empty indicator,
675 * effectively tossing the packet.
678 fcc_enet_rx(struct net_device
*dev
)
680 struct fcc_enet_private
*cep
;
685 cep
= (struct fcc_enet_private
*)dev
->priv
;
687 /* First, grab all of the stats for the incoming packet.
688 * These get messed up if we get called due to a busy condition.
693 if (bdp
->cbd_sc
& BD_ENET_RX_EMPTY
)
696 #ifndef final_version
697 /* Since we have allocated space to hold a complete frame, both
698 * the first and last indicators should be set.
700 if ((bdp
->cbd_sc
& (BD_ENET_RX_FIRST
| BD_ENET_RX_LAST
)) !=
701 (BD_ENET_RX_FIRST
| BD_ENET_RX_LAST
))
702 printk("CPM ENET: rcv is not first+last\n");
705 /* Frame too long or too short. */
706 if (bdp
->cbd_sc
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
))
707 cep
->stats
.rx_length_errors
++;
708 if (bdp
->cbd_sc
& BD_ENET_RX_NO
) /* Frame alignment */
709 cep
->stats
.rx_frame_errors
++;
710 if (bdp
->cbd_sc
& BD_ENET_RX_CR
) /* CRC Error */
711 cep
->stats
.rx_crc_errors
++;
712 if (bdp
->cbd_sc
& BD_ENET_RX_OV
) /* FIFO overrun */
713 cep
->stats
.rx_crc_errors
++;
714 if (bdp
->cbd_sc
& BD_ENET_RX_CL
) /* Late Collision */
715 cep
->stats
.rx_frame_errors
++;
718 (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
| BD_ENET_RX_CR
719 | BD_ENET_RX_OV
| BD_ENET_RX_CL
)))
721 /* Process the incoming frame. */
722 cep
->stats
.rx_packets
++;
724 /* Remove the FCS from the packet length. */
725 pkt_len
= bdp
->cbd_datlen
- 4;
726 cep
->stats
.rx_bytes
+= pkt_len
;
728 /* This does 16 byte alignment, much more than we need. */
729 skb
= dev_alloc_skb(pkt_len
);
732 printk("%s: Memory squeeze, dropping packet.\n", dev
->name
);
733 cep
->stats
.rx_dropped
++;
736 skb_put(skb
,pkt_len
); /* Make room */
737 skb_copy_to_linear_data(skb
,
738 (unsigned char *)__va(bdp
->cbd_bufaddr
),
740 skb
->protocol
=eth_type_trans(skb
,dev
);
745 /* Clear the status flags for this buffer. */
746 bdp
->cbd_sc
&= ~BD_ENET_RX_STATS
;
748 /* Mark the buffer empty. */
749 bdp
->cbd_sc
|= BD_ENET_RX_EMPTY
;
751 /* Update BD pointer to next entry. */
752 if (bdp
->cbd_sc
& BD_ENET_RX_WRAP
)
753 bdp
= cep
->rx_bd_base
;
758 cep
->cur_rx
= (cbd_t
*)bdp
;
764 fcc_enet_close(struct net_device
*dev
)
766 #ifdef CONFIG_USE_MDIO
767 struct fcc_enet_private
*fep
= dev
->priv
;
770 netif_stop_queue(dev
);
772 #ifdef CONFIG_USE_MDIO
774 mii_do_cmd(dev
, fep
->phy
->shutdown
);
780 static struct net_device_stats
*fcc_enet_get_stats(struct net_device
*dev
)
782 struct fcc_enet_private
*cep
= (struct fcc_enet_private
*)dev
->priv
;
787 #ifdef CONFIG_USE_MDIO
789 /* NOTE: Most of the following comes from the FEC driver for 860. The
790 * overall structure of MII code has been retained (as it's proved stable
791 * and well-tested), but actual transfer requests are processed "at once"
792 * instead of being queued (there's no interrupt-driven MII transfer
793 * mechanism, one has to toggle the data/clock bits manually).
796 mii_queue(struct net_device
*dev
, int regval
, void (*func
)(uint
, struct net_device
*))
798 struct fcc_enet_private
*fep
;
801 /* Add PHY address to register command. */
803 regval
|= fep
->phy_addr
<< 23;
807 tmp
= mii_send_receive(fep
->fip
, regval
);
814 static void mii_do_cmd(struct net_device
*dev
, const phy_cmd_t
*c
)
821 for(k
= 0; (c
+k
)->mii_data
!= mk_mii_end
; k
++)
822 mii_queue(dev
, (c
+k
)->mii_data
, (c
+k
)->funct
);
825 static void mii_parse_sr(uint mii_reg
, struct net_device
*dev
)
827 volatile struct fcc_enet_private
*fep
= dev
->priv
;
828 uint s
= fep
->phy_status
;
830 s
&= ~(PHY_STAT_LINK
| PHY_STAT_FAULT
| PHY_STAT_ANC
);
832 if (mii_reg
& BMSR_LSTATUS
)
834 if (mii_reg
& BMSR_RFAULT
)
836 if (mii_reg
& BMSR_ANEGCOMPLETE
)
842 static void mii_parse_cr(uint mii_reg
, struct net_device
*dev
)
844 volatile struct fcc_enet_private
*fep
= dev
->priv
;
845 uint s
= fep
->phy_status
;
847 s
&= ~(PHY_CONF_ANE
| PHY_CONF_LOOP
);
849 if (mii_reg
& BMCR_ANENABLE
)
851 if (mii_reg
& BMCR_LOOPBACK
)
857 static void mii_parse_anar(uint mii_reg
, struct net_device
*dev
)
859 volatile struct fcc_enet_private
*fep
= dev
->priv
;
860 uint s
= fep
->phy_status
;
862 s
&= ~(PHY_CONF_SPMASK
);
864 if (mii_reg
& ADVERTISE_10HALF
)
866 if (mii_reg
& ADVERTISE_10FULL
)
868 if (mii_reg
& ADVERTISE_100HALF
)
869 s
|= PHY_CONF_100HDX
;
870 if (mii_reg
& ADVERTISE_100FULL
)
871 s
|= PHY_CONF_100FDX
;
876 /* ------------------------------------------------------------------------- */
877 /* Generic PHY support. Should work for all PHYs, but does not support link
880 #ifdef CONFIG_FCC_GENERIC_PHY
882 static phy_info_t phy_info_generic
= {
883 0x00000000, /* 0-->match any PHY */
886 (const phy_cmd_t
[]) { /* config */
887 /* advertise only half-duplex capabilities */
888 { mk_mii_write(MII_ADVERTISE
, MII_ADVERTISE_HALF
),
891 /* enable auto-negotiation */
892 { mk_mii_write(MII_BMCR
, BMCR_ANENABLE
), mii_parse_cr
},
895 (const phy_cmd_t
[]) { /* startup */
896 /* restart auto-negotiation */
897 { mk_mii_write(MII_BMCR
, BMCR_ANENABLE
| BMCR_ANRESTART
),
901 (const phy_cmd_t
[]) { /* ack_int */
902 /* We don't actually use the ack_int table with a generic
903 * PHY, but putting a reference to mii_parse_sr here keeps
904 * us from getting a compiler warning about unused static
905 * functions in the case where we only compile in generic
908 { mk_mii_read(MII_BMSR
), mii_parse_sr
},
911 (const phy_cmd_t
[]) { /* shutdown */
915 #endif /* ifdef CONFIG_FCC_GENERIC_PHY */
917 /* ------------------------------------------------------------------------- */
918 /* The Level one LXT970 is used by many boards */
920 #ifdef CONFIG_FCC_LXT970
922 #define MII_LXT970_MIRROR 16 /* Mirror register */
923 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
924 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
925 #define MII_LXT970_CONFIG 19 /* Configuration Register */
926 #define MII_LXT970_CSR 20 /* Chip Status Register */
928 static void mii_parse_lxt970_csr(uint mii_reg
, struct net_device
*dev
)
930 volatile struct fcc_enet_private
*fep
= dev
->priv
;
931 uint s
= fep
->phy_status
;
933 s
&= ~(PHY_STAT_SPMASK
);
935 if (mii_reg
& 0x0800) {
936 if (mii_reg
& 0x1000)
937 s
|= PHY_STAT_100FDX
;
939 s
|= PHY_STAT_100HDX
;
941 if (mii_reg
& 0x1000)
950 static phy_info_t phy_info_lxt970
= {
954 (const phy_cmd_t
[]) { /* config */
956 // { mk_mii_write(MII_ADVERTISE, 0x0021), NULL },
958 /* Set default operation of 100-TX....for some reason
959 * some of these bits are set on power up, which is wrong.
961 { mk_mii_write(MII_LXT970_CONFIG
, 0), NULL
},
963 { mk_mii_read(MII_BMCR
), mii_parse_cr
},
964 { mk_mii_read(MII_ADVERTISE
), mii_parse_anar
},
967 (const phy_cmd_t
[]) { /* startup - enable interrupts */
968 { mk_mii_write(MII_LXT970_IER
, 0x0002), NULL
},
969 { mk_mii_write(MII_BMCR
, 0x1200), NULL
}, /* autonegotiate */
972 (const phy_cmd_t
[]) { /* ack_int */
973 /* read SR and ISR to acknowledge */
975 { mk_mii_read(MII_BMSR
), mii_parse_sr
},
976 { mk_mii_read(MII_LXT970_ISR
), NULL
},
978 /* find out the current status */
980 { mk_mii_read(MII_LXT970_CSR
), mii_parse_lxt970_csr
},
983 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
984 { mk_mii_write(MII_LXT970_IER
, 0x0000), NULL
},
989 #endif /* CONFIG_FEC_LXT970 */
991 /* ------------------------------------------------------------------------- */
992 /* The Level one LXT971 is used on some of my custom boards */
994 #ifdef CONFIG_FCC_LXT971
996 /* register definitions for the 971 */
998 #define MII_LXT971_PCR 16 /* Port Control Register */
999 #define MII_LXT971_SR2 17 /* Status Register 2 */
1000 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
1001 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
1002 #define MII_LXT971_LCR 20 /* LED Control Register */
1003 #define MII_LXT971_TCR 30 /* Transmit Control Register */
1006 * I had some nice ideas of running the MDIO faster...
1007 * The 971 should support 8MHz and I tried it, but things acted really
1008 * weird, so 2.5 MHz ought to be enough for anyone...
1011 static void mii_parse_lxt971_sr2(uint mii_reg
, struct net_device
*dev
)
1013 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1014 uint s
= fep
->phy_status
;
1016 s
&= ~(PHY_STAT_SPMASK
);
1018 if (mii_reg
& 0x4000) {
1019 if (mii_reg
& 0x0200)
1020 s
|= PHY_STAT_100FDX
;
1022 s
|= PHY_STAT_100HDX
;
1024 if (mii_reg
& 0x0200)
1025 s
|= PHY_STAT_10FDX
;
1027 s
|= PHY_STAT_10HDX
;
1029 if (mii_reg
& 0x0008)
1030 s
|= PHY_STAT_FAULT
;
1032 fep
->phy_status
= s
;
1035 static phy_info_t phy_info_lxt971
= {
1039 (const phy_cmd_t
[]) { /* config */
1040 /* configure link capabilities to advertise */
1041 { mk_mii_write(MII_ADVERTISE
, MII_ADVERTISE_DEFAULT
),
1044 /* enable auto-negotiation */
1045 { mk_mii_write(MII_BMCR
, BMCR_ANENABLE
), mii_parse_cr
},
1048 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1049 { mk_mii_write(MII_LXT971_IER
, 0x00f2), NULL
},
1051 /* restart auto-negotiation */
1052 { mk_mii_write(MII_BMCR
, BMCR_ANENABLE
| BMCR_ANRESTART
),
1056 (const phy_cmd_t
[]) { /* ack_int */
1057 /* find out the current status */
1058 { mk_mii_read(MII_BMSR
), NULL
},
1059 { mk_mii_read(MII_BMSR
), mii_parse_sr
},
1060 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
1062 /* we only need to read ISR to acknowledge */
1063 { mk_mii_read(MII_LXT971_ISR
), NULL
},
1066 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
1067 { mk_mii_write(MII_LXT971_IER
, 0x0000), NULL
},
1072 #endif /* CONFIG_FCC_LXT971 */
1074 /* ------------------------------------------------------------------------- */
1075 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
1077 #ifdef CONFIG_FCC_QS6612
1079 /* register definitions */
1081 #define MII_QS6612_MCR 17 /* Mode Control Register */
1082 #define MII_QS6612_FTR 27 /* Factory Test Register */
1083 #define MII_QS6612_MCO 28 /* Misc. Control Register */
1084 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
1085 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
1086 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
1088 static void mii_parse_qs6612_pcr(uint mii_reg
, struct net_device
*dev
)
1090 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1091 uint s
= fep
->phy_status
;
1093 s
&= ~(PHY_STAT_SPMASK
);
1095 switch((mii_reg
>> 2) & 7) {
1096 case 1: s
|= PHY_STAT_10HDX
; break;
1097 case 2: s
|= PHY_STAT_100HDX
; break;
1098 case 5: s
|= PHY_STAT_10FDX
; break;
1099 case 6: s
|= PHY_STAT_100FDX
; break;
1102 fep
->phy_status
= s
;
1105 static phy_info_t phy_info_qs6612
= {
1109 (const phy_cmd_t
[]) { /* config */
1110 // { mk_mii_write(MII_ADVERTISE, 0x061), NULL }, /* 10 Mbps */
1112 /* The PHY powers up isolated on the RPX,
1113 * so send a command to allow operation.
1116 { mk_mii_write(MII_QS6612_PCR
, 0x0dc0), NULL
},
1118 /* parse cr and anar to get some info */
1120 { mk_mii_read(MII_BMCR
), mii_parse_cr
},
1121 { mk_mii_read(MII_ADVERTISE
), mii_parse_anar
},
1124 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1125 { mk_mii_write(MII_QS6612_IMR
, 0x003a), NULL
},
1126 { mk_mii_write(MII_BMCR
, 0x1200), NULL
}, /* autonegotiate */
1129 (const phy_cmd_t
[]) { /* ack_int */
1131 /* we need to read ISR, SR and ANER to acknowledge */
1133 { mk_mii_read(MII_QS6612_ISR
), NULL
},
1134 { mk_mii_read(MII_BMSR
), mii_parse_sr
},
1135 { mk_mii_read(MII_EXPANSION
), NULL
},
1137 /* read pcr to get info */
1139 { mk_mii_read(MII_QS6612_PCR
), mii_parse_qs6612_pcr
},
1142 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
1143 { mk_mii_write(MII_QS6612_IMR
, 0x0000), NULL
},
1149 #endif /* CONFIG_FEC_QS6612 */
1152 /* ------------------------------------------------------------------------- */
1153 /* The Davicom DM9131 is used on the HYMOD board */
1155 #ifdef CONFIG_FCC_DM9131
1157 /* register definitions */
1159 #define MII_DM9131_ACR 16 /* Aux. Config Register */
1160 #define MII_DM9131_ACSR 17 /* Aux. Config/Status Register */
1161 #define MII_DM9131_10TCSR 18 /* 10BaseT Config/Status Reg. */
1162 #define MII_DM9131_INTR 21 /* Interrupt Register */
1163 #define MII_DM9131_RECR 22 /* Receive Error Counter Reg. */
1164 #define MII_DM9131_DISCR 23 /* Disconnect Counter Register */
1166 static void mii_parse_dm9131_acsr(uint mii_reg
, struct net_device
*dev
)
1168 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1169 uint s
= fep
->phy_status
;
1171 s
&= ~(PHY_STAT_SPMASK
);
1173 switch ((mii_reg
>> 12) & 0xf) {
1174 case 1: s
|= PHY_STAT_10HDX
; break;
1175 case 2: s
|= PHY_STAT_10FDX
; break;
1176 case 4: s
|= PHY_STAT_100HDX
; break;
1177 case 8: s
|= PHY_STAT_100FDX
; break;
1180 fep
->phy_status
= s
;
1183 static phy_info_t phy_info_dm9131
= {
1187 (const phy_cmd_t
[]) { /* config */
1188 /* parse cr and anar to get some info */
1189 { mk_mii_read(MII_BMCR
), mii_parse_cr
},
1190 { mk_mii_read(MII_ADVERTISE
), mii_parse_anar
},
1193 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1194 { mk_mii_write(MII_DM9131_INTR
, 0x0002), NULL
},
1195 { mk_mii_write(MII_BMCR
, 0x1200), NULL
}, /* autonegotiate */
1198 (const phy_cmd_t
[]) { /* ack_int */
1200 /* we need to read INTR, SR and ANER to acknowledge */
1202 { mk_mii_read(MII_DM9131_INTR
), NULL
},
1203 { mk_mii_read(MII_BMSR
), mii_parse_sr
},
1204 { mk_mii_read(MII_EXPANSION
), NULL
},
1206 /* read acsr to get info */
1208 { mk_mii_read(MII_DM9131_ACSR
), mii_parse_dm9131_acsr
},
1211 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
1212 { mk_mii_write(MII_DM9131_INTR
, 0x0f00), NULL
},
1218 #endif /* CONFIG_FEC_DM9131 */
1219 #ifdef CONFIG_FCC_DM9161
1220 /* ------------------------------------------------------------------------- */
1221 /* DM9161 Control register values */
1222 #define MIIM_DM9161_CR_STOP 0x0400
1223 #define MIIM_DM9161_CR_RSTAN 0x1200
1225 #define MIIM_DM9161_SCR 0x10
1226 #define MIIM_DM9161_SCR_INIT 0x0610
1228 /* DM9161 Specified Configuration and Status Register */
1229 #define MIIM_DM9161_SCSR 0x11
1230 #define MIIM_DM9161_SCSR_100F 0x8000
1231 #define MIIM_DM9161_SCSR_100H 0x4000
1232 #define MIIM_DM9161_SCSR_10F 0x2000
1233 #define MIIM_DM9161_SCSR_10H 0x1000
1234 /* DM9161 10BT register */
1235 #define MIIM_DM9161_10BTCSR 0x12
1236 #define MIIM_DM9161_10BTCSR_INIT 0x7800
1237 /* DM9161 Interrupt Register */
1238 #define MIIM_DM9161_INTR 0x15
1239 #define MIIM_DM9161_INTR_PEND 0x8000
1240 #define MIIM_DM9161_INTR_DPLX_MASK 0x0800
1241 #define MIIM_DM9161_INTR_SPD_MASK 0x0400
1242 #define MIIM_DM9161_INTR_LINK_MASK 0x0200
1243 #define MIIM_DM9161_INTR_MASK 0x0100
1244 #define MIIM_DM9161_INTR_DPLX_CHANGE 0x0010
1245 #define MIIM_DM9161_INTR_SPD_CHANGE 0x0008
1246 #define MIIM_DM9161_INTR_LINK_CHANGE 0x0004
1247 #define MIIM_DM9161_INTR_INIT 0x0000
1248 #define MIIM_DM9161_INTR_STOP \
1249 (MIIM_DM9161_INTR_DPLX_MASK | MIIM_DM9161_INTR_SPD_MASK \
1250 | MIIM_DM9161_INTR_LINK_MASK | MIIM_DM9161_INTR_MASK)
1252 static void mii_parse_dm9161_sr(uint mii_reg
, struct net_device
* dev
)
1254 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1255 uint regstat
, timeout
=0xffff;
1257 while(!(mii_reg
& 0x0020) && timeout
--)
1259 regstat
=mk_mii_read(MII_BMSR
);
1260 regstat
|= fep
->phy_addr
<<23;
1261 mii_reg
= mii_send_receive(fep
->fip
,regstat
);
1264 mii_parse_sr(mii_reg
, dev
);
1267 static void mii_parse_dm9161_scsr(uint mii_reg
, struct net_device
* dev
)
1269 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1270 uint s
= fep
->phy_status
;
1272 s
&= ~(PHY_STAT_SPMASK
);
1273 switch((mii_reg
>>12) & 0xf) {
1276 s
|= PHY_STAT_10HDX
;
1277 printk("10BaseT Half Duplex\n");
1282 s
|= PHY_STAT_10FDX
;
1283 printk("10BaseT Full Duplex\n");
1288 s
|= PHY_STAT_100HDX
;
1289 printk("100BaseT Half Duplex\n");
1294 s
|= PHY_STAT_100FDX
;
1295 printk("100BaseT Full Duplex\n");
1300 fep
->phy_status
= s
;
1304 static void mii_dm9161_wait(uint mii_reg
, struct net_device
*dev
)
1308 /* Davicom takes a bit to come up after a reset,
1309 * so wait here for a bit */
1310 schedule_timeout_uninterruptible(timeout
);
1313 static phy_info_t phy_info_dm9161
= {
1316 (const phy_cmd_t
[]) { /* config */
1317 { mk_mii_write(MII_BMCR
, MIIM_DM9161_CR_STOP
), NULL
},
1318 /* Do not bypass the scrambler/descrambler */
1319 { mk_mii_write(MIIM_DM9161_SCR
, MIIM_DM9161_SCR_INIT
), NULL
},
1320 /* Configure 10BTCSR register */
1321 { mk_mii_write(MIIM_DM9161_10BTCSR
, MIIM_DM9161_10BTCSR_INIT
),NULL
},
1322 /* Configure some basic stuff */
1323 { mk_mii_write(MII_BMCR
, 0x1000), NULL
},
1324 { mk_mii_read(MII_BMCR
), mii_parse_cr
},
1325 { mk_mii_read(MII_ADVERTISE
), mii_parse_anar
},
1328 (const phy_cmd_t
[]) { /* startup */
1329 /* Restart Auto Negotiation */
1330 { mk_mii_write(MII_BMCR
, MIIM_DM9161_CR_RSTAN
), NULL
},
1331 /* Status is read once to clear old link state */
1332 { mk_mii_read(MII_BMSR
), mii_dm9161_wait
},
1333 /* Auto-negotiate */
1334 { mk_mii_read(MII_BMSR
), mii_parse_dm9161_sr
},
1335 /* Read the status */
1336 { mk_mii_read(MIIM_DM9161_SCSR
), mii_parse_dm9161_scsr
},
1337 /* Clear any pending interrupts */
1338 { mk_mii_read(MIIM_DM9161_INTR
), NULL
},
1339 /* Enable Interrupts */
1340 { mk_mii_write(MIIM_DM9161_INTR
, MIIM_DM9161_INTR_INIT
), NULL
},
1343 (const phy_cmd_t
[]) { /* ack_int */
1344 { mk_mii_read(MIIM_DM9161_INTR
), NULL
},
1346 { mk_mii_read(MII_BMSR
), NULL
},
1347 { mk_mii_read(MII_BMSR
), mii_parse_dm9161_sr
},
1348 { mk_mii_read(MIIM_DM9161_SCSR
), mii_parse_dm9161_scsr
},
1352 (const phy_cmd_t
[]) { /* shutdown */
1353 { mk_mii_read(MIIM_DM9161_INTR
),NULL
},
1354 { mk_mii_write(MIIM_DM9161_INTR
, MIIM_DM9161_INTR_STOP
), NULL
},
1358 #endif /* CONFIG_FCC_DM9161 */
1360 static phy_info_t
*phy_info
[] = {
1362 #ifdef CONFIG_FCC_LXT970
1364 #endif /* CONFIG_FEC_LXT970 */
1366 #ifdef CONFIG_FCC_LXT971
1368 #endif /* CONFIG_FEC_LXT971 */
1370 #ifdef CONFIG_FCC_QS6612
1372 #endif /* CONFIG_FEC_QS6612 */
1374 #ifdef CONFIG_FCC_DM9131
1376 #endif /* CONFIG_FEC_DM9131 */
1378 #ifdef CONFIG_FCC_DM9161
1380 #endif /* CONFIG_FCC_DM9161 */
1382 #ifdef CONFIG_FCC_GENERIC_PHY
1383 /* Generic PHY support. This must be the last PHY in the table.
1384 * It will be used to support any PHY that doesn't match a previous
1385 * entry in the table.
1388 #endif /* CONFIG_FCC_GENERIC_PHY */
1393 static void mii_display_status(struct work_struct
*work
)
1395 volatile struct fcc_enet_private
*fep
=
1396 container_of(work
, struct fcc_enet_private
, phy_relink
);
1397 struct net_device
*dev
= fep
->dev
;
1398 uint s
= fep
->phy_status
;
1400 if (!fep
->link
&& !fep
->old_link
) {
1401 /* Link is still down - don't print anything */
1405 printk("%s: status: ", dev
->name
);
1408 printk("link down");
1412 switch(s
& PHY_STAT_SPMASK
) {
1413 case PHY_STAT_100FDX
: printk(", 100 Mbps Full Duplex"); break;
1414 case PHY_STAT_100HDX
: printk(", 100 Mbps Half Duplex"); break;
1415 case PHY_STAT_10FDX
: printk(", 10 Mbps Full Duplex"); break;
1416 case PHY_STAT_10HDX
: printk(", 10 Mbps Half Duplex"); break;
1418 printk(", Unknown speed/duplex");
1421 if (s
& PHY_STAT_ANC
)
1422 printk(", auto-negotiation complete");
1425 if (s
& PHY_STAT_FAULT
)
1426 printk(", remote fault");
1431 static void mii_display_config(struct work_struct
*work
)
1433 volatile struct fcc_enet_private
*fep
=
1434 container_of(work
, struct fcc_enet_private
,
1435 phy_display_config
);
1436 struct net_device
*dev
= fep
->dev
;
1437 uint s
= fep
->phy_status
;
1439 printk("%s: config: auto-negotiation ", dev
->name
);
1441 if (s
& PHY_CONF_ANE
)
1446 if (s
& PHY_CONF_100FDX
)
1448 if (s
& PHY_CONF_100HDX
)
1450 if (s
& PHY_CONF_10FDX
)
1452 if (s
& PHY_CONF_10HDX
)
1454 if (!(s
& PHY_CONF_SPMASK
))
1455 printk(", No speed/duplex selected?");
1457 if (s
& PHY_CONF_LOOP
)
1458 printk(", loopback enabled");
1462 fep
->sequence_done
= 1;
1465 static void mii_relink(struct net_device
*dev
)
1467 struct fcc_enet_private
*fep
= dev
->priv
;
1470 fep
->old_link
= fep
->link
;
1471 fep
->link
= (fep
->phy_status
& PHY_STAT_LINK
) ? 1 : 0;
1474 printk(" mii_relink: link=%d\n", fep
->link
);
1479 & (PHY_STAT_100FDX
| PHY_STAT_10FDX
))
1481 fcc_restart(dev
, duplex
);
1483 printk(" mii_relink: duplex=%d\n", duplex
);
1488 static void mii_queue_relink(uint mii_reg
, struct net_device
*dev
)
1490 struct fcc_enet_private
*fep
= dev
->priv
;
1494 schedule_work(&fep
->phy_relink
);
1497 static void mii_queue_config(uint mii_reg
, struct net_device
*dev
)
1499 struct fcc_enet_private
*fep
= dev
->priv
;
1501 schedule_work(&fep
->phy_display_config
);
1504 phy_cmd_t phy_cmd_relink
[] = { { mk_mii_read(MII_BMCR
), mii_queue_relink
},
1506 phy_cmd_t phy_cmd_config
[] = { { mk_mii_read(MII_BMCR
), mii_queue_config
},
1510 /* Read remainder of PHY ID.
1513 mii_discover_phy3(uint mii_reg
, struct net_device
*dev
)
1515 struct fcc_enet_private
*fep
;
1519 printk("mii_reg: %08x\n", mii_reg
);
1520 fep
->phy_id
|= (mii_reg
& 0xffff);
1522 for(i
= 0; phy_info
[i
]; i
++)
1523 if((phy_info
[i
]->id
== (fep
->phy_id
>> 4)) || !phy_info
[i
]->id
)
1527 panic("%s: PHY id 0x%08x is not supported!\n",
1528 dev
->name
, fep
->phy_id
);
1530 fep
->phy
= phy_info
[i
];
1531 fep
->phy_id_done
= 1;
1533 printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
1534 dev
->name
, fep
->phy_addr
, fep
->phy
->name
, fep
->phy_id
);
1537 /* Scan all of the MII PHY addresses looking for someone to respond
1538 * with a valid ID. This usually happens quickly.
1541 mii_discover_phy(uint mii_reg
, struct net_device
*dev
)
1543 struct fcc_enet_private
*fep
;
1548 if ((phytype
= (mii_reg
& 0xffff)) != 0xffff) {
1550 /* Got first part of ID, now get remainder. */
1551 fep
->phy_id
= phytype
<< 16;
1552 mii_queue(dev
, mk_mii_read(MII_PHYSID2
), mii_discover_phy3
);
1555 if (fep
->phy_addr
< 32) {
1556 mii_queue(dev
, mk_mii_read(MII_PHYSID1
),
1559 printk("fec: No PHY device found.\n");
1563 #endif /* CONFIG_USE_MDIO */
1565 #ifdef PHY_INTERRUPT
1566 /* This interrupt occurs when the PHY detects a link change. */
1568 mii_link_interrupt(int irq
, void * dev_id
)
1570 struct net_device
*dev
= dev_id
;
1571 struct fcc_enet_private
*fep
= dev
->priv
;
1572 fcc_info_t
*fip
= fep
->fip
;
1575 /* We don't want to be interrupted by an FCC
1578 disable_irq_nosync(fip
->fc_interrupt
);
1580 mii_do_cmd(dev
, fep
->phy
->ack_int
);
1581 /* restart and display status */
1582 mii_do_cmd(dev
, phy_cmd_relink
);
1584 enable_irq(fip
->fc_interrupt
);
1588 #endif /* ifdef PHY_INTERRUPT */
1590 #if 0 /* This should be fixed someday */
1591 /* Set or clear the multicast filter for this adaptor.
1592 * Skeleton taken from sunlance driver.
1593 * The CPM Ethernet implementation allows Multicast as well as individual
1594 * MAC address filtering. Some of the drivers check to make sure it is
1595 * a group multicast address, and discard those that are not. I guess I
1596 * will do the same for now, but just remove the test if you want
1597 * individual filtering as well (do the upper net layers want or support
1598 * this kind of feature?).
1601 set_multicast_list(struct net_device
*dev
)
1603 struct fcc_enet_private
*cep
;
1604 struct dev_mc_list
*dmi
;
1605 u_char
*mcptr
, *tdptr
;
1606 volatile fcc_enet_t
*ep
;
1609 cep
= (struct fcc_enet_private
*)dev
->priv
;
1612 /* Get pointer to FCC area in parameter RAM.
1614 ep
= (fcc_enet_t
*)dev
->base_addr
;
1616 if (dev
->flags
&IFF_PROMISC
) {
1618 /* Log any net taps. */
1619 printk("%s: Promiscuous mode enabled.\n", dev
->name
);
1620 cep
->fccp
->fcc_fpsmr
|= FCC_PSMR_PRO
;
1623 cep
->fccp
->fcc_fpsmr
&= ~FCC_PSMR_PRO
;
1625 if (dev
->flags
& IFF_ALLMULTI
) {
1626 /* Catch all multicast addresses, so set the
1627 * filter to all 1's.
1629 ep
->fen_gaddrh
= 0xffffffff;
1630 ep
->fen_gaddrl
= 0xffffffff;
1633 /* Clear filter and add the addresses in the list.
1640 for (i
=0; i
<dev
->mc_count
; i
++, dmi
= dmi
->next
) {
1642 /* Only support group multicast for now.
1644 if (!(dmi
->dmi_addr
[0] & 1))
1647 /* The address in dmi_addr is LSB first,
1648 * and taddr is MSB first. We have to
1649 * copy bytes MSB first from dmi_addr.
1651 mcptr
= (u_char
*)dmi
->dmi_addr
+ 5;
1652 tdptr
= (u_char
*)&ep
->fen_taddrh
;
1654 *tdptr
++ = *mcptr
--;
1656 /* Ask CPM to run CRC and set bit in
1659 cpmp
->cp_cpcr
= mk_cr_cmd(cep
->fip
->fc_cpmpage
,
1660 cep
->fip
->fc_cpmblock
, 0x0c,
1661 CPM_CR_SET_GADDR
) | CPM_CR_FLG
;
1663 while (cpmp
->cp_cpcr
& CPM_CR_FLG
);
1671 /* Set the individual MAC address.
1673 int fcc_enet_set_mac_address(struct net_device
*dev
, void *p
)
1675 struct sockaddr
*addr
= (struct sockaddr
*) p
;
1676 struct fcc_enet_private
*cep
;
1677 volatile fcc_enet_t
*ep
;
1681 cep
= (struct fcc_enet_private
*)(dev
->priv
);
1684 if (netif_running(dev
))
1687 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
1689 eap
= (unsigned char *) &(ep
->fen_paddrh
);
1690 for (i
=5; i
>=0; i
--)
1691 *eap
++ = addr
->sa_data
[i
];
1697 /* Initialize the CPM Ethernet on FCC.
1699 static int __init
fec_enet_init(void)
1701 struct net_device
*dev
;
1702 struct fcc_enet_private
*cep
;
1705 volatile cpm2_map_t
*immap
;
1706 volatile iop_cpm2_t
*io
;
1708 immap
= (cpm2_map_t
*)CPM_MAP_ADDR
; /* and to internal registers */
1709 io
= &immap
->im_ioport
;
1711 np
= sizeof(fcc_ports
) / sizeof(fcc_info_t
);
1715 /* Create an Ethernet device instance.
1717 dev
= alloc_etherdev(sizeof(*cep
));
1722 spin_lock_init(&cep
->lock
);
1725 init_fcc_shutdown(fip
, cep
, immap
);
1726 init_fcc_ioports(fip
, io
, immap
);
1727 init_fcc_param(fip
, dev
, immap
);
1729 dev
->base_addr
= (unsigned long)(cep
->ep
);
1731 /* The CPM Ethernet specific entries in the device
1734 dev
->open
= fcc_enet_open
;
1735 dev
->hard_start_xmit
= fcc_enet_start_xmit
;
1736 dev
->tx_timeout
= fcc_enet_timeout
;
1737 dev
->watchdog_timeo
= TX_TIMEOUT
;
1738 dev
->stop
= fcc_enet_close
;
1739 dev
->get_stats
= fcc_enet_get_stats
;
1740 /* dev->set_multicast_list = set_multicast_list; */
1741 dev
->set_mac_address
= fcc_enet_set_mac_address
;
1743 init_fcc_startup(fip
, dev
);
1745 err
= register_netdev(dev
);
1751 printk("%s: FCC ENET Version 0.3, ", dev
->name
);
1753 printk("%02x:", dev
->dev_addr
[i
]);
1754 printk("%02x\n", dev
->dev_addr
[5]);
1756 #ifdef CONFIG_USE_MDIO
1757 /* Queue up command to detect the PHY and initialize the
1758 * remainder of the interface.
1760 cep
->phy_id_done
= 0;
1761 cep
->phy_addr
= fip
->fc_phyaddr
;
1762 mii_queue(dev
, mk_mii_read(MII_PHYSID1
), mii_discover_phy
);
1763 INIT_WORK(&cep
->phy_relink
, mii_display_status
);
1764 INIT_WORK(&cep
->phy_display_config
, mii_display_config
);
1766 #endif /* CONFIG_USE_MDIO */
1773 module_init(fec_enet_init
);
1775 /* Make sure the device is shut down during initialization.
1778 init_fcc_shutdown(fcc_info_t
*fip
, struct fcc_enet_private
*cep
,
1779 volatile cpm2_map_t
*immap
)
1781 volatile fcc_enet_t
*ep
;
1782 volatile fcc_t
*fccp
;
1784 /* Get pointer to FCC area in parameter RAM.
1786 ep
= (fcc_enet_t
*)(&immap
->im_dprambase
[fip
->fc_proff
]);
1788 /* And another to the FCC register area.
1790 fccp
= (volatile fcc_t
*)(&immap
->im_fcc
[fip
->fc_fccnum
]);
1791 cep
->fccp
= fccp
; /* Keep the pointers handy */
1794 /* Disable receive and transmit in case someone left it running.
1796 fccp
->fcc_gfmr
&= ~(FCC_GFMR_ENR
| FCC_GFMR_ENT
);
1799 /* Initialize the I/O pins for the FCC Ethernet.
1802 init_fcc_ioports(fcc_info_t
*fip
, volatile iop_cpm2_t
*io
,
1803 volatile cpm2_map_t
*immap
)
1806 /* FCC1 pins are on port A/C. FCC2/3 are port B/C.
1808 if (fip
->fc_proff
== PROFF_FCC1
) {
1809 /* Configure port A and C pins for FCC1 Ethernet.
1811 io
->iop_pdira
&= ~PA1_DIRA_BOUT
;
1812 io
->iop_pdira
|= PA1_DIRA_BIN
;
1813 io
->iop_psora
&= ~PA1_PSORA_BOUT
;
1814 io
->iop_psora
|= PA1_PSORA_BIN
;
1815 io
->iop_ppara
|= (PA1_DIRA_BOUT
| PA1_DIRA_BIN
);
1817 if (fip
->fc_proff
== PROFF_FCC2
) {
1818 /* Configure port B and C pins for FCC Ethernet.
1820 io
->iop_pdirb
&= ~PB2_DIRB_BOUT
;
1821 io
->iop_pdirb
|= PB2_DIRB_BIN
;
1822 io
->iop_psorb
&= ~PB2_PSORB_BOUT
;
1823 io
->iop_psorb
|= PB2_PSORB_BIN
;
1824 io
->iop_pparb
|= (PB2_DIRB_BOUT
| PB2_DIRB_BIN
);
1826 if (fip
->fc_proff
== PROFF_FCC3
) {
1827 /* Configure port B and C pins for FCC Ethernet.
1829 io
->iop_pdirb
&= ~PB3_DIRB_BOUT
;
1830 io
->iop_pdirb
|= PB3_DIRB_BIN
;
1831 io
->iop_psorb
&= ~PB3_PSORB_BOUT
;
1832 io
->iop_psorb
|= PB3_PSORB_BIN
;
1833 io
->iop_pparb
|= (PB3_DIRB_BOUT
| PB3_DIRB_BIN
);
1835 io
->iop_pdirc
&= ~PC3_DIRC_BOUT
;
1836 io
->iop_pdirc
|= PC3_DIRC_BIN
;
1837 io
->iop_psorc
&= ~PC3_PSORC_BOUT
;
1838 io
->iop_psorc
|= PC3_PSORC_BIN
;
1839 io
->iop_pparc
|= (PC3_DIRC_BOUT
| PC3_DIRC_BIN
);
1843 /* Port C has clocks......
1845 io
->iop_psorc
&= ~(fip
->fc_trxclocks
);
1846 io
->iop_pdirc
&= ~(fip
->fc_trxclocks
);
1847 io
->iop_pparc
|= fip
->fc_trxclocks
;
1849 #ifdef CONFIG_USE_MDIO
1850 /* ....and the MII serial clock/data.
1852 io
->iop_pdatc
|= (fip
->fc_mdio
| fip
->fc_mdck
);
1853 io
->iop_podrc
&= ~(fip
->fc_mdio
| fip
->fc_mdck
);
1854 io
->iop_pdirc
|= (fip
->fc_mdio
| fip
->fc_mdck
);
1855 io
->iop_pparc
&= ~(fip
->fc_mdio
| fip
->fc_mdck
);
1856 #endif /* CONFIG_USE_MDIO */
1858 /* Configure Serial Interface clock routing.
1859 * First, clear all FCC bits to zero,
1860 * then set the ones we want.
1862 immap
->im_cpmux
.cmx_fcr
&= ~(fip
->fc_clockmask
);
1863 immap
->im_cpmux
.cmx_fcr
|= fip
->fc_clockroute
;
1867 init_fcc_param(fcc_info_t
*fip
, struct net_device
*dev
,
1868 volatile cpm2_map_t
*immap
)
1871 unsigned long mem_addr
;
1874 struct fcc_enet_private
*cep
;
1875 volatile fcc_enet_t
*ep
;
1876 volatile cbd_t
*bdp
;
1877 volatile cpm_cpm2_t
*cp
;
1879 cep
= (struct fcc_enet_private
*)(dev
->priv
);
1885 /* Zero the whole thing.....I must have missed some individually.
1886 * It works when I do this.
1888 memset((char *)ep
, 0, sizeof(fcc_enet_t
));
1890 /* Allocate space for the buffer descriptors from regular memory.
1891 * Initialize base addresses for the buffer descriptors.
1893 cep
->rx_bd_base
= kmalloc(sizeof(cbd_t
) * RX_RING_SIZE
,
1894 GFP_KERNEL
| GFP_DMA
);
1895 ep
->fen_genfcc
.fcc_rbase
= __pa(cep
->rx_bd_base
);
1896 cep
->tx_bd_base
= kmalloc(sizeof(cbd_t
) * TX_RING_SIZE
,
1897 GFP_KERNEL
| GFP_DMA
);
1898 ep
->fen_genfcc
.fcc_tbase
= __pa(cep
->tx_bd_base
);
1900 cep
->dirty_tx
= cep
->cur_tx
= cep
->tx_bd_base
;
1901 cep
->cur_rx
= cep
->rx_bd_base
;
1903 ep
->fen_genfcc
.fcc_rstate
= (CPMFCR_GBL
| CPMFCR_EB
) << 24;
1904 ep
->fen_genfcc
.fcc_tstate
= (CPMFCR_GBL
| CPMFCR_EB
) << 24;
1906 /* Set maximum bytes per receive buffer.
1907 * It must be a multiple of 32.
1909 ep
->fen_genfcc
.fcc_mrblr
= PKT_MAXBLR_SIZE
;
1911 /* Allocate space in the reserved FCC area of DPRAM for the
1912 * internal buffers. No one uses this space (yet), so we
1913 * can do this. Later, we will add resource management for
1916 mem_addr
= CPM_FCC_SPECIAL_BASE
+ (fip
->fc_fccnum
* 128);
1917 ep
->fen_genfcc
.fcc_riptr
= mem_addr
;
1918 ep
->fen_genfcc
.fcc_tiptr
= mem_addr
+32;
1919 ep
->fen_padptr
= mem_addr
+64;
1920 memset((char *)(&(immap
->im_dprambase
[(mem_addr
+64)])), 0x88, 32);
1922 ep
->fen_genfcc
.fcc_rbptr
= 0;
1923 ep
->fen_genfcc
.fcc_tbptr
= 0;
1924 ep
->fen_genfcc
.fcc_rcrc
= 0;
1925 ep
->fen_genfcc
.fcc_tcrc
= 0;
1926 ep
->fen_genfcc
.fcc_res1
= 0;
1927 ep
->fen_genfcc
.fcc_res2
= 0;
1929 ep
->fen_camptr
= 0; /* CAM isn't used in this driver */
1931 /* Set CRC preset and mask.
1933 ep
->fen_cmask
= 0xdebb20e3;
1934 ep
->fen_cpres
= 0xffffffff;
1936 ep
->fen_crcec
= 0; /* CRC Error counter */
1937 ep
->fen_alec
= 0; /* alignment error counter */
1938 ep
->fen_disfc
= 0; /* discard frame counter */
1939 ep
->fen_retlim
= 15; /* Retry limit threshold */
1940 ep
->fen_pper
= 0; /* Normal persistence */
1942 /* Clear hash filter tables.
1949 /* Clear the Out-of-sequence TxBD.
1951 ep
->fen_tfcstat
= 0;
1955 ep
->fen_mflr
= PKT_MAXBUF_SIZE
; /* maximum frame length register */
1956 ep
->fen_minflr
= PKT_MINBUF_SIZE
; /* minimum frame length register */
1958 /* Set Ethernet station address.
1960 * This is supplied in the board information structure, so we
1961 * copy that into the controller.
1962 * So, far we have only been given one Ethernet address. We make
1963 * it unique by setting a few bits in the upper byte of the
1964 * non-static part of the address.
1966 eap
= (unsigned char *)&(ep
->fen_paddrh
);
1967 for (i
=5; i
>=0; i
--) {
1970 * The EP8260 only uses FCC3, so we can safely give it the real
1973 #ifdef CONFIG_SBC82xx
1975 /* bd->bi_enetaddr holds the SCC0 address; the FCC
1976 devices count up from there */
1977 dev
->dev_addr
[i
] = bd
->bi_enetaddr
[i
] & ~3;
1978 dev
->dev_addr
[i
] += 1 + fip
->fc_fccnum
;
1979 *eap
++ = dev
->dev_addr
[i
];
1982 #ifndef CONFIG_RPX8260
1984 dev
->dev_addr
[i
] = bd
->bi_enetaddr
[i
];
1985 dev
->dev_addr
[i
] |= (1 << (7 - fip
->fc_fccnum
));
1986 *eap
++ = dev
->dev_addr
[i
];
1990 *eap
++ = dev
->dev_addr
[i
] = bd
->bi_enetaddr
[i
];
1999 ep
->fen_maxd1
= PKT_MAXDMA_SIZE
; /* maximum DMA1 length */
2000 ep
->fen_maxd2
= PKT_MAXDMA_SIZE
; /* maximum DMA2 length */
2002 /* Clear stat counters, in case we ever enable RMON.
2019 ep
->fen_rfthr
= 0; /* Suggested by manual */
2023 /* Now allocate the host memory pages and initialize the
2024 * buffer descriptors.
2026 bdp
= cep
->tx_bd_base
;
2027 for (i
=0; i
<TX_RING_SIZE
; i
++) {
2029 /* Initialize the BD for every fragment in the page.
2032 bdp
->cbd_datlen
= 0;
2033 bdp
->cbd_bufaddr
= 0;
2037 /* Set the last buffer to wrap.
2040 bdp
->cbd_sc
|= BD_SC_WRAP
;
2042 bdp
= cep
->rx_bd_base
;
2043 for (i
=0; i
<FCC_ENET_RX_PAGES
; i
++) {
2047 mem_addr
= __get_free_page(GFP_KERNEL
);
2049 /* Initialize the BD for every fragment in the page.
2051 for (j
=0; j
<FCC_ENET_RX_FRPPG
; j
++) {
2052 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
| BD_ENET_RX_INTR
;
2053 bdp
->cbd_datlen
= 0;
2054 bdp
->cbd_bufaddr
= __pa(mem_addr
);
2055 mem_addr
+= FCC_ENET_RX_FRSIZE
;
2060 /* Set the last buffer to wrap.
2063 bdp
->cbd_sc
|= BD_SC_WRAP
;
2065 /* Let's re-initialize the channel now. We have to do it later
2066 * than the manual describes because we have just now finished
2067 * the BD initialization.
2069 cp
->cp_cpcr
= mk_cr_cmd(fip
->fc_cpmpage
, fip
->fc_cpmblock
, 0x0c,
2070 CPM_CR_INIT_TRX
) | CPM_CR_FLG
;
2071 while (cp
->cp_cpcr
& CPM_CR_FLG
);
2073 cep
->skb_cur
= cep
->skb_dirty
= 0;
2079 init_fcc_startup(fcc_info_t
*fip
, struct net_device
*dev
)
2081 volatile fcc_t
*fccp
;
2082 struct fcc_enet_private
*cep
;
2084 cep
= (struct fcc_enet_private
*)(dev
->priv
);
2087 #ifdef CONFIG_RPX8260
2088 #ifdef PHY_INTERRUPT
2089 /* Route PHY interrupt to IRQ. The following code only works for
2090 * IRQ1 - IRQ7. It does not work for Port C interrupts.
2092 *((volatile u_char
*) (RPX_CSR_ADDR
+ 13)) &= ~BCSR13_FETH_IRQMASK
;
2093 *((volatile u_char
*) (RPX_CSR_ADDR
+ 13)) |=
2094 ((PHY_INTERRUPT
- SIU_INT_IRQ1
+ 1) << 4);
2096 /* Initialize MDIO pins. */
2097 *((volatile u_char
*) (RPX_CSR_ADDR
+ 4)) &= ~BCSR4_MII_MDC
;
2098 *((volatile u_char
*) (RPX_CSR_ADDR
+ 4)) |=
2099 BCSR4_MII_READ
| BCSR4_MII_MDIO
;
2100 /* Enable external LXT971 PHY. */
2101 *((volatile u_char
*) (RPX_CSR_ADDR
+ 4)) |= BCSR4_EN_PHY
;
2103 *((volatile u_char
*) (RPX_CSR_ADDR
+ 4)) |= BCSR4_EN_MII
;
2105 #endif /* ifdef CONFIG_RPX8260 */
2107 fccp
->fcc_fcce
= 0xffff; /* Clear any pending events */
2109 /* Leave FCC interrupts masked for now. Will be unmasked by
2114 /* Install our interrupt handler.
2116 if (request_irq(fip
->fc_interrupt
, fcc_enet_interrupt
, 0, "fenet",
2118 printk("Can't get FCC IRQ %d\n", fip
->fc_interrupt
);
2120 #ifdef PHY_INTERRUPT
2121 #ifdef CONFIG_ADS8272
2122 if (request_irq(PHY_INTERRUPT
, mii_link_interrupt
, IRQF_SHARED
,
2124 printk(KERN_CRIT
"Can't get MII IRQ %d\n", PHY_INTERRUPT
);
2126 /* Make IRQn edge triggered. This does not work if PHY_INTERRUPT is
2129 ((volatile cpm2_map_t
*) CPM_MAP_ADDR
)->im_intctl
.ic_siexr
|=
2130 (1 << (14 - (PHY_INTERRUPT
- SIU_INT_IRQ1
)));
2132 if (request_irq(PHY_INTERRUPT
, mii_link_interrupt
, 0,
2134 printk(KERN_CRIT
"Can't get MII IRQ %d\n", PHY_INTERRUPT
);
2136 #endif /* PHY_INTERRUPT */
2138 /* Set GFMR to enable Ethernet operating mode.
2140 fccp
->fcc_gfmr
= (FCC_GFMR_TCI
| FCC_GFMR_MODE_ENET
);
2142 /* Set sync/delimiters.
2144 fccp
->fcc_fdsr
= 0xd555;
2146 /* Set protocol specific processing mode for Ethernet.
2147 * This has to be adjusted for Full Duplex operation after we can
2148 * determine how to detect that.
2150 fccp
->fcc_fpsmr
= FCC_PSMR_ENCRC
;
2152 #ifdef CONFIG_PQ2ADS
2153 /* Enable the PHY. */
2154 *(volatile uint
*)(BCSR_ADDR
+ 4) &= ~BCSR1_FETHIEN
;
2155 *(volatile uint
*)(BCSR_ADDR
+ 4) |= BCSR1_FETH_RST
;
2157 #if defined(CONFIG_PQ2ADS) || defined(CONFIG_PQ2FADS)
2158 /* Enable the 2nd PHY. */
2159 *(volatile uint
*)(BCSR_ADDR
+ 12) &= ~BCSR3_FETHIEN2
;
2160 *(volatile uint
*)(BCSR_ADDR
+ 12) |= BCSR3_FETH2_RST
;
2163 #if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260)
2164 /* start in full duplex mode, and negotiate speed
2166 fcc_restart (dev
, 1);
2168 /* start in half duplex mode
2170 fcc_restart (dev
, 0);
2174 #ifdef CONFIG_USE_MDIO
2175 /* MII command/status interface.
2176 * I'm not going to describe all of the details. You can find the
2177 * protocol definition in many other places, including the data sheet
2178 * of most PHY parts.
2179 * I wonder what "they" were thinking (maybe weren't) when they leave
2180 * the I2C in the CPM but I have to toggle these bits......
2182 #ifdef CONFIG_RPX8260
2183 /* The EP8260 has the MDIO pins in a BCSR instead of on Port C
2184 * like most other boards.
2186 #define MDIO_ADDR ((volatile u_char *)(RPX_CSR_ADDR + 4))
2187 #define MAKE_MDIO_OUTPUT *MDIO_ADDR &= ~BCSR4_MII_READ
2188 #define MAKE_MDIO_INPUT *MDIO_ADDR |= BCSR4_MII_READ | BCSR4_MII_MDIO
2189 #define OUT_MDIO(bit) \
2191 *MDIO_ADDR |= BCSR4_MII_MDIO; \
2193 *MDIO_ADDR &= ~BCSR4_MII_MDIO;
2194 #define IN_MDIO (*MDIO_ADDR & BCSR4_MII_MDIO)
2195 #define OUT_MDC(bit) \
2197 *MDIO_ADDR |= BCSR4_MII_MDC; \
2199 *MDIO_ADDR &= ~BCSR4_MII_MDC;
2200 #else /* ifdef CONFIG_RPX8260 */
2201 /* This is for the usual case where the MDIO pins are on Port C.
2203 #define MDIO_ADDR (((volatile cpm2_map_t *)CPM_MAP_ADDR)->im_ioport)
2204 #define MAKE_MDIO_OUTPUT MDIO_ADDR.iop_pdirc |= fip->fc_mdio
2205 #define MAKE_MDIO_INPUT MDIO_ADDR.iop_pdirc &= ~fip->fc_mdio
2206 #define OUT_MDIO(bit) \
2208 MDIO_ADDR.iop_pdatc |= fip->fc_mdio; \
2210 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdio;
2211 #define IN_MDIO ((MDIO_ADDR.iop_pdatc) & fip->fc_mdio)
2212 #define OUT_MDC(bit) \
2214 MDIO_ADDR.iop_pdatc |= fip->fc_mdck; \
2216 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdck;
2217 #endif /* ifdef CONFIG_RPX8260 */
2220 mii_send_receive(fcc_info_t
*fip
, uint cmd
)
2223 int read_op
, i
, off
;
2226 read_op
= ((cmd
& 0xf0000000) == 0x60000000);
2233 for (i
= 0; i
< 32; i
++)
2243 for (i
= 0, off
= 31; i
< (read_op
? 14 : 32); i
++, --off
)
2245 OUT_MDIO((cmd
>> off
) & 0x00000001);
2264 for (i
= 0; i
< 16; i
++)
2284 #endif /* CONFIG_USE_MDIO */
2287 fcc_stop(struct net_device
*dev
)
2289 struct fcc_enet_private
*fep
= (struct fcc_enet_private
*)(dev
->priv
);
2290 volatile fcc_t
*fccp
= fep
->fccp
;
2291 fcc_info_t
*fip
= fep
->fip
;
2292 volatile fcc_enet_t
*ep
= fep
->ep
;
2293 volatile cpm_cpm2_t
*cp
= cpmp
;
2294 volatile cbd_t
*bdp
;
2297 if ((fccp
->fcc_gfmr
& (FCC_GFMR_ENR
| FCC_GFMR_ENT
)) == 0)
2298 return; /* already down */
2302 /* issue the graceful stop tx command */
2303 while (cp
->cp_cpcr
& CPM_CR_FLG
);
2304 cp
->cp_cpcr
= mk_cr_cmd(fip
->fc_cpmpage
, fip
->fc_cpmblock
,
2305 0x0c, CPM_CR_GRA_STOP_TX
) | CPM_CR_FLG
;
2306 while (cp
->cp_cpcr
& CPM_CR_FLG
);
2308 /* Disable transmit/receive */
2309 fccp
->fcc_gfmr
&= ~(FCC_GFMR_ENR
| FCC_GFMR_ENT
);
2311 /* issue the restart tx command */
2312 fccp
->fcc_fcce
= FCC_ENET_GRA
;
2313 while (cp
->cp_cpcr
& CPM_CR_FLG
);
2314 cp
->cp_cpcr
= mk_cr_cmd(fip
->fc_cpmpage
, fip
->fc_cpmblock
,
2315 0x0c, CPM_CR_RESTART_TX
) | CPM_CR_FLG
;
2316 while (cp
->cp_cpcr
& CPM_CR_FLG
);
2318 /* free tx buffers */
2319 fep
->skb_cur
= fep
->skb_dirty
= 0;
2320 for (i
=0; i
<=TX_RING_MOD_MASK
; i
++) {
2321 if (fep
->tx_skbuff
[i
] != NULL
) {
2322 dev_kfree_skb(fep
->tx_skbuff
[i
]);
2323 fep
->tx_skbuff
[i
] = NULL
;
2326 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2327 fep
->tx_free
= TX_RING_SIZE
;
2328 ep
->fen_genfcc
.fcc_tbptr
= ep
->fen_genfcc
.fcc_tbase
;
2330 /* Initialize the tx buffer descriptors. */
2331 bdp
= fep
->tx_bd_base
;
2332 for (i
=0; i
<TX_RING_SIZE
; i
++) {
2334 bdp
->cbd_datlen
= 0;
2335 bdp
->cbd_bufaddr
= 0;
2338 /* Set the last buffer to wrap. */
2340 bdp
->cbd_sc
|= BD_SC_WRAP
;
2344 fcc_restart(struct net_device
*dev
, int duplex
)
2346 struct fcc_enet_private
*fep
= (struct fcc_enet_private
*)(dev
->priv
);
2347 volatile fcc_t
*fccp
= fep
->fccp
;
2349 /* stop any transmissions in progress */
2353 fccp
->fcc_fpsmr
|= FCC_PSMR_FDE
| FCC_PSMR_LPB
;
2355 fccp
->fcc_fpsmr
&= ~(FCC_PSMR_FDE
| FCC_PSMR_LPB
);
2357 /* Enable interrupts for transmit error, complete frame
2358 * received, and any transmit buffer we have also set the
2361 fccp
->fcc_fccm
= (FCC_ENET_TXE
| FCC_ENET_RXF
| FCC_ENET_TXB
);
2363 /* Enable transmit/receive */
2364 fccp
->fcc_gfmr
|= FCC_GFMR_ENR
| FCC_GFMR_ENT
;
2368 fcc_enet_open(struct net_device
*dev
)
2370 struct fcc_enet_private
*fep
= dev
->priv
;
2372 #ifdef CONFIG_USE_MDIO
2373 fep
->sequence_done
= 0;
2377 fcc_restart(dev
, 0); /* always start in half-duplex */
2378 mii_do_cmd(dev
, fep
->phy
->ack_int
);
2379 mii_do_cmd(dev
, fep
->phy
->config
);
2380 mii_do_cmd(dev
, phy_cmd_config
); /* display configuration */
2381 while(!fep
->sequence_done
)
2384 mii_do_cmd(dev
, fep
->phy
->startup
);
2385 netif_start_queue(dev
);
2386 return 0; /* Success */
2388 return -ENODEV
; /* No PHY we understand */
2391 fcc_restart(dev
, 0); /* always start in half-duplex */
2392 netif_start_queue(dev
);
2393 return 0; /* Always succeed */
2394 #endif /* CONFIG_USE_MDIO */