x86: VMI fix
[wrt350n-kernel.git] / drivers / firewire / fw-sbp2.c
blob19ece9b6d7425906d6cff48cee2ebfba172f5141
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/stringify.h>
41 #include <linux/timer.h>
42 #include <linux/workqueue.h>
43 #include <asm/system.h>
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
50 #include "fw-transaction.h"
51 #include "fw-topology.h"
52 #include "fw-device.h"
55 * So far only bridges from Oxford Semiconductor are known to support
56 * concurrent logins. Depending on firmware, four or two concurrent logins
57 * are possible on OXFW911 and newer Oxsemi bridges.
59 * Concurrent logins are useful together with cluster filesystems.
61 static int sbp2_param_exclusive_login = 1;
62 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
63 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
64 "(default = Y, use N for concurrent initiators)");
67 * Flags for firmware oddities
69 * - 128kB max transfer
70 * Limit transfer size. Necessary for some old bridges.
72 * - 36 byte inquiry
73 * When scsi_mod probes the device, let the inquiry command look like that
74 * from MS Windows.
76 * - skip mode page 8
77 * Suppress sending of mode_sense for mode page 8 if the device pretends to
78 * support the SCSI Primary Block commands instead of Reduced Block Commands.
80 * - fix capacity
81 * Tell sd_mod to correct the last sector number reported by read_capacity.
82 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
83 * Don't use this with devices which don't have this bug.
85 * - override internal blacklist
86 * Instead of adding to the built-in blacklist, use only the workarounds
87 * specified in the module load parameter.
88 * Useful if a blacklist entry interfered with a non-broken device.
90 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
91 #define SBP2_WORKAROUND_INQUIRY_36 0x2
92 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
93 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
94 #define SBP2_WORKAROUND_OVERRIDE 0x100
96 static int sbp2_param_workarounds;
97 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
98 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
99 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
100 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
101 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
102 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
103 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
104 ", or a combination)");
106 /* I don't know why the SCSI stack doesn't define something like this... */
107 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
109 static const char sbp2_driver_name[] = "sbp2";
112 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
113 * and one struct scsi_device per sbp2_logical_unit.
115 struct sbp2_logical_unit {
116 struct sbp2_target *tgt;
117 struct list_head link;
118 struct scsi_device *sdev;
119 struct fw_address_handler address_handler;
120 struct list_head orb_list;
122 u64 command_block_agent_address;
123 u16 lun;
124 int login_id;
127 * The generation is updated once we've logged in or reconnected
128 * to the logical unit. Thus, I/O to the device will automatically
129 * fail and get retried if it happens in a window where the device
130 * is not ready, e.g. after a bus reset but before we reconnect.
132 int generation;
133 int retries;
134 struct delayed_work work;
138 * We create one struct sbp2_target per IEEE 1212 Unit Directory
139 * and one struct Scsi_Host per sbp2_target.
141 struct sbp2_target {
142 struct kref kref;
143 struct fw_unit *unit;
145 u64 management_agent_address;
146 int directory_id;
147 int node_id;
148 int address_high;
150 unsigned workarounds;
151 struct list_head lu_list;
153 unsigned int mgt_orb_timeout;
157 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
158 * provided in the config rom. Most devices do provide a value, which
159 * we'll use for login management orbs, but with some sane limits.
161 #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
162 #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
163 #define SBP2_ORB_TIMEOUT 2000 /* Timeout in ms */
164 #define SBP2_ORB_NULL 0x80000000
165 #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
167 #define SBP2_DIRECTION_TO_MEDIA 0x0
168 #define SBP2_DIRECTION_FROM_MEDIA 0x1
170 /* Unit directory keys */
171 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
172 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
173 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
174 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
176 /* Management orb opcodes */
177 #define SBP2_LOGIN_REQUEST 0x0
178 #define SBP2_QUERY_LOGINS_REQUEST 0x1
179 #define SBP2_RECONNECT_REQUEST 0x3
180 #define SBP2_SET_PASSWORD_REQUEST 0x4
181 #define SBP2_LOGOUT_REQUEST 0x7
182 #define SBP2_ABORT_TASK_REQUEST 0xb
183 #define SBP2_ABORT_TASK_SET 0xc
184 #define SBP2_LOGICAL_UNIT_RESET 0xe
185 #define SBP2_TARGET_RESET_REQUEST 0xf
187 /* Offsets for command block agent registers */
188 #define SBP2_AGENT_STATE 0x00
189 #define SBP2_AGENT_RESET 0x04
190 #define SBP2_ORB_POINTER 0x08
191 #define SBP2_DOORBELL 0x10
192 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
194 /* Status write response codes */
195 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
196 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
197 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
198 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
200 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
201 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
202 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
203 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
204 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
205 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
206 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
207 #define STATUS_GET_DATA(v) ((v).data)
209 struct sbp2_status {
210 u32 status;
211 u32 orb_low;
212 u8 data[24];
215 struct sbp2_pointer {
216 u32 high;
217 u32 low;
220 struct sbp2_orb {
221 struct fw_transaction t;
222 struct kref kref;
223 dma_addr_t request_bus;
224 int rcode;
225 struct sbp2_pointer pointer;
226 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
227 struct list_head link;
230 #define MANAGEMENT_ORB_LUN(v) ((v))
231 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
232 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
233 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
234 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
235 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
237 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
238 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
240 struct sbp2_management_orb {
241 struct sbp2_orb base;
242 struct {
243 struct sbp2_pointer password;
244 struct sbp2_pointer response;
245 u32 misc;
246 u32 length;
247 struct sbp2_pointer status_fifo;
248 } request;
249 __be32 response[4];
250 dma_addr_t response_bus;
251 struct completion done;
252 struct sbp2_status status;
255 #define LOGIN_RESPONSE_GET_LOGIN_ID(v) ((v).misc & 0xffff)
256 #define LOGIN_RESPONSE_GET_LENGTH(v) (((v).misc >> 16) & 0xffff)
258 struct sbp2_login_response {
259 u32 misc;
260 struct sbp2_pointer command_block_agent;
261 u32 reconnect_hold;
263 #define COMMAND_ORB_DATA_SIZE(v) ((v))
264 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
265 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
266 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
267 #define COMMAND_ORB_SPEED(v) ((v) << 24)
268 #define COMMAND_ORB_DIRECTION(v) ((v) << 27)
269 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
270 #define COMMAND_ORB_NOTIFY ((1) << 31)
272 struct sbp2_command_orb {
273 struct sbp2_orb base;
274 struct {
275 struct sbp2_pointer next;
276 struct sbp2_pointer data_descriptor;
277 u32 misc;
278 u8 command_block[12];
279 } request;
280 struct scsi_cmnd *cmd;
281 scsi_done_fn_t done;
282 struct sbp2_logical_unit *lu;
284 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
285 dma_addr_t page_table_bus;
289 * List of devices with known bugs.
291 * The firmware_revision field, masked with 0xffff00, is the best
292 * indicator for the type of bridge chip of a device. It yields a few
293 * false positives but this did not break correctly behaving devices
294 * so far. We use ~0 as a wildcard, since the 24 bit values we get
295 * from the config rom can never match that.
297 static const struct {
298 u32 firmware_revision;
299 u32 model;
300 unsigned workarounds;
301 } sbp2_workarounds_table[] = {
302 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
303 .firmware_revision = 0x002800,
304 .model = 0x001010,
305 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
306 SBP2_WORKAROUND_MODE_SENSE_8,
308 /* Initio bridges, actually only needed for some older ones */ {
309 .firmware_revision = 0x000200,
310 .model = ~0,
311 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
313 /* Symbios bridge */ {
314 .firmware_revision = 0xa0b800,
315 .model = ~0,
316 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
320 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
321 * these iPods do not feature the read_capacity bug according
322 * to one report. Read_capacity behaviour as well as model_id
323 * could change due to Apple-supplied firmware updates though.
326 /* iPod 4th generation. */ {
327 .firmware_revision = 0x0a2700,
328 .model = 0x000021,
329 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
331 /* iPod mini */ {
332 .firmware_revision = 0x0a2700,
333 .model = 0x000023,
334 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
336 /* iPod Photo */ {
337 .firmware_revision = 0x0a2700,
338 .model = 0x00007e,
339 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
343 static void
344 free_orb(struct kref *kref)
346 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
348 kfree(orb);
351 static void
352 sbp2_status_write(struct fw_card *card, struct fw_request *request,
353 int tcode, int destination, int source,
354 int generation, int speed,
355 unsigned long long offset,
356 void *payload, size_t length, void *callback_data)
358 struct sbp2_logical_unit *lu = callback_data;
359 struct sbp2_orb *orb;
360 struct sbp2_status status;
361 size_t header_size;
362 unsigned long flags;
364 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
365 length == 0 || length > sizeof(status)) {
366 fw_send_response(card, request, RCODE_TYPE_ERROR);
367 return;
370 header_size = min(length, 2 * sizeof(u32));
371 fw_memcpy_from_be32(&status, payload, header_size);
372 if (length > header_size)
373 memcpy(status.data, payload + 8, length - header_size);
374 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
375 fw_notify("non-orb related status write, not handled\n");
376 fw_send_response(card, request, RCODE_COMPLETE);
377 return;
380 /* Lookup the orb corresponding to this status write. */
381 spin_lock_irqsave(&card->lock, flags);
382 list_for_each_entry(orb, &lu->orb_list, link) {
383 if (STATUS_GET_ORB_HIGH(status) == 0 &&
384 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
385 orb->rcode = RCODE_COMPLETE;
386 list_del(&orb->link);
387 break;
390 spin_unlock_irqrestore(&card->lock, flags);
392 if (&orb->link != &lu->orb_list)
393 orb->callback(orb, &status);
394 else
395 fw_error("status write for unknown orb\n");
397 kref_put(&orb->kref, free_orb);
399 fw_send_response(card, request, RCODE_COMPLETE);
402 static void
403 complete_transaction(struct fw_card *card, int rcode,
404 void *payload, size_t length, void *data)
406 struct sbp2_orb *orb = data;
407 unsigned long flags;
410 * This is a little tricky. We can get the status write for
411 * the orb before we get this callback. The status write
412 * handler above will assume the orb pointer transaction was
413 * successful and set the rcode to RCODE_COMPLETE for the orb.
414 * So this callback only sets the rcode if it hasn't already
415 * been set and only does the cleanup if the transaction
416 * failed and we didn't already get a status write.
418 spin_lock_irqsave(&card->lock, flags);
420 if (orb->rcode == -1)
421 orb->rcode = rcode;
422 if (orb->rcode != RCODE_COMPLETE) {
423 list_del(&orb->link);
424 spin_unlock_irqrestore(&card->lock, flags);
425 orb->callback(orb, NULL);
426 } else {
427 spin_unlock_irqrestore(&card->lock, flags);
430 kref_put(&orb->kref, free_orb);
433 static void
434 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
435 int node_id, int generation, u64 offset)
437 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
438 unsigned long flags;
440 orb->pointer.high = 0;
441 orb->pointer.low = orb->request_bus;
442 fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
444 spin_lock_irqsave(&device->card->lock, flags);
445 list_add_tail(&orb->link, &lu->orb_list);
446 spin_unlock_irqrestore(&device->card->lock, flags);
448 /* Take a ref for the orb list and for the transaction callback. */
449 kref_get(&orb->kref);
450 kref_get(&orb->kref);
452 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
453 node_id, generation, device->max_speed, offset,
454 &orb->pointer, sizeof(orb->pointer),
455 complete_transaction, orb);
458 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
460 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
461 struct sbp2_orb *orb, *next;
462 struct list_head list;
463 unsigned long flags;
464 int retval = -ENOENT;
466 INIT_LIST_HEAD(&list);
467 spin_lock_irqsave(&device->card->lock, flags);
468 list_splice_init(&lu->orb_list, &list);
469 spin_unlock_irqrestore(&device->card->lock, flags);
471 list_for_each_entry_safe(orb, next, &list, link) {
472 retval = 0;
473 if (fw_cancel_transaction(device->card, &orb->t) == 0)
474 continue;
476 orb->rcode = RCODE_CANCELLED;
477 orb->callback(orb, NULL);
480 return retval;
483 static void
484 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
486 struct sbp2_management_orb *orb =
487 container_of(base_orb, struct sbp2_management_orb, base);
489 if (status)
490 memcpy(&orb->status, status, sizeof(*status));
491 complete(&orb->done);
494 static int
495 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
496 int generation, int function, int lun_or_login_id,
497 void *response)
499 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
500 struct sbp2_management_orb *orb;
501 unsigned int timeout;
502 int retval = -ENOMEM;
504 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
505 if (orb == NULL)
506 return -ENOMEM;
508 kref_init(&orb->base.kref);
509 orb->response_bus =
510 dma_map_single(device->card->device, &orb->response,
511 sizeof(orb->response), DMA_FROM_DEVICE);
512 if (dma_mapping_error(orb->response_bus))
513 goto fail_mapping_response;
515 orb->request.response.high = 0;
516 orb->request.response.low = orb->response_bus;
518 orb->request.misc =
519 MANAGEMENT_ORB_NOTIFY |
520 MANAGEMENT_ORB_FUNCTION(function) |
521 MANAGEMENT_ORB_LUN(lun_or_login_id);
522 orb->request.length =
523 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
525 orb->request.status_fifo.high = lu->address_handler.offset >> 32;
526 orb->request.status_fifo.low = lu->address_handler.offset;
528 if (function == SBP2_LOGIN_REQUEST) {
529 /* Ask for 2^2 == 4 seconds reconnect grace period */
530 orb->request.misc |=
531 MANAGEMENT_ORB_RECONNECT(2) |
532 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
533 timeout = lu->tgt->mgt_orb_timeout;
534 } else {
535 timeout = SBP2_ORB_TIMEOUT;
538 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
540 init_completion(&orb->done);
541 orb->base.callback = complete_management_orb;
543 orb->base.request_bus =
544 dma_map_single(device->card->device, &orb->request,
545 sizeof(orb->request), DMA_TO_DEVICE);
546 if (dma_mapping_error(orb->base.request_bus))
547 goto fail_mapping_request;
549 sbp2_send_orb(&orb->base, lu, node_id, generation,
550 lu->tgt->management_agent_address);
552 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
554 retval = -EIO;
555 if (sbp2_cancel_orbs(lu) == 0) {
556 fw_error("orb reply timed out, rcode=0x%02x\n",
557 orb->base.rcode);
558 goto out;
561 if (orb->base.rcode != RCODE_COMPLETE) {
562 fw_error("management write failed, rcode 0x%02x\n",
563 orb->base.rcode);
564 goto out;
567 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
568 STATUS_GET_SBP_STATUS(orb->status) != 0) {
569 fw_error("error status: %d:%d\n",
570 STATUS_GET_RESPONSE(orb->status),
571 STATUS_GET_SBP_STATUS(orb->status));
572 goto out;
575 retval = 0;
576 out:
577 dma_unmap_single(device->card->device, orb->base.request_bus,
578 sizeof(orb->request), DMA_TO_DEVICE);
579 fail_mapping_request:
580 dma_unmap_single(device->card->device, orb->response_bus,
581 sizeof(orb->response), DMA_FROM_DEVICE);
582 fail_mapping_response:
583 if (response)
584 fw_memcpy_from_be32(response,
585 orb->response, sizeof(orb->response));
586 kref_put(&orb->base.kref, free_orb);
588 return retval;
591 static void
592 complete_agent_reset_write(struct fw_card *card, int rcode,
593 void *payload, size_t length, void *data)
595 struct fw_transaction *t = data;
597 kfree(t);
600 static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
602 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
603 struct fw_transaction *t;
604 static u32 zero;
606 t = kzalloc(sizeof(*t), GFP_ATOMIC);
607 if (t == NULL)
608 return -ENOMEM;
610 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
611 lu->tgt->node_id, lu->generation, device->max_speed,
612 lu->command_block_agent_address + SBP2_AGENT_RESET,
613 &zero, sizeof(zero), complete_agent_reset_write, t);
615 return 0;
618 static void sbp2_release_target(struct kref *kref)
620 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
621 struct sbp2_logical_unit *lu, *next;
622 struct Scsi_Host *shost =
623 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
624 struct fw_device *device = fw_device(tgt->unit->device.parent);
626 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
627 if (lu->sdev)
628 scsi_remove_device(lu->sdev);
630 if (!fw_device_is_shutdown(device))
631 sbp2_send_management_orb(lu, tgt->node_id,
632 lu->generation, SBP2_LOGOUT_REQUEST,
633 lu->login_id, NULL);
635 fw_core_remove_address_handler(&lu->address_handler);
636 list_del(&lu->link);
637 kfree(lu);
639 scsi_remove_host(shost);
640 fw_notify("released %s\n", tgt->unit->device.bus_id);
642 put_device(&tgt->unit->device);
643 scsi_host_put(shost);
646 static struct workqueue_struct *sbp2_wq;
649 * Always get the target's kref when scheduling work on one its units.
650 * Each workqueue job is responsible to call sbp2_target_put() upon return.
652 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
654 if (queue_delayed_work(sbp2_wq, &lu->work, delay))
655 kref_get(&lu->tgt->kref);
658 static void sbp2_target_put(struct sbp2_target *tgt)
660 kref_put(&tgt->kref, sbp2_release_target);
663 static void sbp2_reconnect(struct work_struct *work);
665 static void sbp2_login(struct work_struct *work)
667 struct sbp2_logical_unit *lu =
668 container_of(work, struct sbp2_logical_unit, work.work);
669 struct Scsi_Host *shost =
670 container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
671 struct scsi_device *sdev;
672 struct scsi_lun eight_bytes_lun;
673 struct fw_unit *unit = lu->tgt->unit;
674 struct fw_device *device = fw_device(unit->device.parent);
675 struct sbp2_login_response response;
676 int generation, node_id, local_node_id;
678 generation = device->generation;
679 smp_rmb(); /* node_id must not be older than generation */
680 node_id = device->node_id;
681 local_node_id = device->card->node_id;
683 if (sbp2_send_management_orb(lu, node_id, generation,
684 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
685 if (lu->retries++ < 5)
686 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
687 else
688 fw_error("failed to login to %s LUN %04x\n",
689 unit->device.bus_id, lu->lun);
690 goto out;
693 lu->generation = generation;
694 lu->tgt->node_id = node_id;
695 lu->tgt->address_high = local_node_id << 16;
697 /* Get command block agent offset and login id. */
698 lu->command_block_agent_address =
699 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
700 response.command_block_agent.low;
701 lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
703 fw_notify("logged in to %s LUN %04x (%d retries)\n",
704 unit->device.bus_id, lu->lun, lu->retries);
706 #if 0
707 /* FIXME: The linux1394 sbp2 does this last step. */
708 sbp2_set_busy_timeout(scsi_id);
709 #endif
711 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
712 sbp2_agent_reset(lu);
714 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
715 eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
716 eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
718 sdev = __scsi_add_device(shost, 0, 0,
719 scsilun_to_int(&eight_bytes_lun), lu);
720 if (IS_ERR(sdev)) {
721 sbp2_send_management_orb(lu, node_id, generation,
722 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
724 * Set this back to sbp2_login so we fall back and
725 * retry login on bus reset.
727 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
728 } else {
729 lu->sdev = sdev;
730 scsi_device_put(sdev);
732 out:
733 sbp2_target_put(lu->tgt);
736 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
738 struct sbp2_logical_unit *lu;
740 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
741 if (!lu)
742 return -ENOMEM;
744 lu->address_handler.length = 0x100;
745 lu->address_handler.address_callback = sbp2_status_write;
746 lu->address_handler.callback_data = lu;
748 if (fw_core_add_address_handler(&lu->address_handler,
749 &fw_high_memory_region) < 0) {
750 kfree(lu);
751 return -ENOMEM;
754 lu->tgt = tgt;
755 lu->sdev = NULL;
756 lu->lun = lun_entry & 0xffff;
757 lu->retries = 0;
758 INIT_LIST_HEAD(&lu->orb_list);
759 INIT_DELAYED_WORK(&lu->work, sbp2_login);
761 list_add_tail(&lu->link, &tgt->lu_list);
762 return 0;
765 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
767 struct fw_csr_iterator ci;
768 int key, value;
770 fw_csr_iterator_init(&ci, directory);
771 while (fw_csr_iterator_next(&ci, &key, &value))
772 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
773 sbp2_add_logical_unit(tgt, value) < 0)
774 return -ENOMEM;
775 return 0;
778 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
779 u32 *model, u32 *firmware_revision)
781 struct fw_csr_iterator ci;
782 int key, value;
783 unsigned int timeout;
785 fw_csr_iterator_init(&ci, directory);
786 while (fw_csr_iterator_next(&ci, &key, &value)) {
787 switch (key) {
789 case CSR_DEPENDENT_INFO | CSR_OFFSET:
790 tgt->management_agent_address =
791 CSR_REGISTER_BASE + 4 * value;
792 break;
794 case CSR_DIRECTORY_ID:
795 tgt->directory_id = value;
796 break;
798 case CSR_MODEL:
799 *model = value;
800 break;
802 case SBP2_CSR_FIRMWARE_REVISION:
803 *firmware_revision = value;
804 break;
806 case SBP2_CSR_UNIT_CHARACTERISTICS:
807 /* the timeout value is stored in 500ms units */
808 timeout = ((unsigned int) value >> 8 & 0xff) * 500;
809 timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
810 tgt->mgt_orb_timeout =
811 min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
813 if (timeout > tgt->mgt_orb_timeout)
814 fw_notify("%s: config rom contains %ds "
815 "management ORB timeout, limiting "
816 "to %ds\n", tgt->unit->device.bus_id,
817 timeout / 1000,
818 tgt->mgt_orb_timeout / 1000);
819 break;
821 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
822 if (sbp2_add_logical_unit(tgt, value) < 0)
823 return -ENOMEM;
824 break;
826 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
827 if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
828 return -ENOMEM;
829 break;
832 return 0;
835 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
836 u32 firmware_revision)
838 int i;
839 unsigned w = sbp2_param_workarounds;
841 if (w)
842 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
843 "if you need the workarounds parameter for %s\n",
844 tgt->unit->device.bus_id);
846 if (w & SBP2_WORKAROUND_OVERRIDE)
847 goto out;
849 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
851 if (sbp2_workarounds_table[i].firmware_revision !=
852 (firmware_revision & 0xffffff00))
853 continue;
855 if (sbp2_workarounds_table[i].model != model &&
856 sbp2_workarounds_table[i].model != ~0)
857 continue;
859 w |= sbp2_workarounds_table[i].workarounds;
860 break;
862 out:
863 if (w)
864 fw_notify("Workarounds for %s: 0x%x "
865 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
866 tgt->unit->device.bus_id,
867 w, firmware_revision, model);
868 tgt->workarounds = w;
871 static struct scsi_host_template scsi_driver_template;
873 static int sbp2_probe(struct device *dev)
875 struct fw_unit *unit = fw_unit(dev);
876 struct fw_device *device = fw_device(unit->device.parent);
877 struct sbp2_target *tgt;
878 struct sbp2_logical_unit *lu;
879 struct Scsi_Host *shost;
880 u32 model, firmware_revision;
882 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
883 if (shost == NULL)
884 return -ENOMEM;
886 tgt = (struct sbp2_target *)shost->hostdata;
887 unit->device.driver_data = tgt;
888 tgt->unit = unit;
889 kref_init(&tgt->kref);
890 INIT_LIST_HEAD(&tgt->lu_list);
892 if (fw_device_enable_phys_dma(device) < 0)
893 goto fail_shost_put;
895 if (scsi_add_host(shost, &unit->device) < 0)
896 goto fail_shost_put;
898 /* Initialize to values that won't match anything in our table. */
899 firmware_revision = 0xff000000;
900 model = 0xff000000;
902 /* implicit directory ID */
903 tgt->directory_id = ((unit->directory - device->config_rom) * 4
904 + CSR_CONFIG_ROM) & 0xffffff;
906 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
907 &firmware_revision) < 0)
908 goto fail_tgt_put;
910 sbp2_init_workarounds(tgt, model, firmware_revision);
912 get_device(&unit->device);
914 /* Do the login in a workqueue so we can easily reschedule retries. */
915 list_for_each_entry(lu, &tgt->lu_list, link)
916 sbp2_queue_work(lu, 0);
917 return 0;
919 fail_tgt_put:
920 sbp2_target_put(tgt);
921 return -ENOMEM;
923 fail_shost_put:
924 scsi_host_put(shost);
925 return -ENOMEM;
928 static int sbp2_remove(struct device *dev)
930 struct fw_unit *unit = fw_unit(dev);
931 struct sbp2_target *tgt = unit->device.driver_data;
933 sbp2_target_put(tgt);
934 return 0;
937 static void sbp2_reconnect(struct work_struct *work)
939 struct sbp2_logical_unit *lu =
940 container_of(work, struct sbp2_logical_unit, work.work);
941 struct fw_unit *unit = lu->tgt->unit;
942 struct fw_device *device = fw_device(unit->device.parent);
943 int generation, node_id, local_node_id;
945 generation = device->generation;
946 smp_rmb(); /* node_id must not be older than generation */
947 node_id = device->node_id;
948 local_node_id = device->card->node_id;
950 if (sbp2_send_management_orb(lu, node_id, generation,
951 SBP2_RECONNECT_REQUEST,
952 lu->login_id, NULL) < 0) {
953 if (lu->retries++ >= 5) {
954 fw_error("failed to reconnect to %s\n",
955 unit->device.bus_id);
956 /* Fall back and try to log in again. */
957 lu->retries = 0;
958 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
960 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
961 goto out;
964 lu->generation = generation;
965 lu->tgt->node_id = node_id;
966 lu->tgt->address_high = local_node_id << 16;
968 fw_notify("reconnected to %s LUN %04x (%d retries)\n",
969 unit->device.bus_id, lu->lun, lu->retries);
971 sbp2_agent_reset(lu);
972 sbp2_cancel_orbs(lu);
973 out:
974 sbp2_target_put(lu->tgt);
977 static void sbp2_update(struct fw_unit *unit)
979 struct sbp2_target *tgt = unit->device.driver_data;
980 struct sbp2_logical_unit *lu;
982 fw_device_enable_phys_dma(fw_device(unit->device.parent));
985 * Fw-core serializes sbp2_update() against sbp2_remove().
986 * Iteration over tgt->lu_list is therefore safe here.
988 list_for_each_entry(lu, &tgt->lu_list, link) {
989 lu->retries = 0;
990 sbp2_queue_work(lu, 0);
994 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
995 #define SBP2_SW_VERSION_ENTRY 0x00010483
997 static const struct fw_device_id sbp2_id_table[] = {
999 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1000 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1001 .version = SBP2_SW_VERSION_ENTRY,
1006 static struct fw_driver sbp2_driver = {
1007 .driver = {
1008 .owner = THIS_MODULE,
1009 .name = sbp2_driver_name,
1010 .bus = &fw_bus_type,
1011 .probe = sbp2_probe,
1012 .remove = sbp2_remove,
1014 .update = sbp2_update,
1015 .id_table = sbp2_id_table,
1018 static unsigned int
1019 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1021 int sam_status;
1023 sense_data[0] = 0x70;
1024 sense_data[1] = 0x0;
1025 sense_data[2] = sbp2_status[1];
1026 sense_data[3] = sbp2_status[4];
1027 sense_data[4] = sbp2_status[5];
1028 sense_data[5] = sbp2_status[6];
1029 sense_data[6] = sbp2_status[7];
1030 sense_data[7] = 10;
1031 sense_data[8] = sbp2_status[8];
1032 sense_data[9] = sbp2_status[9];
1033 sense_data[10] = sbp2_status[10];
1034 sense_data[11] = sbp2_status[11];
1035 sense_data[12] = sbp2_status[2];
1036 sense_data[13] = sbp2_status[3];
1037 sense_data[14] = sbp2_status[12];
1038 sense_data[15] = sbp2_status[13];
1040 sam_status = sbp2_status[0] & 0x3f;
1042 switch (sam_status) {
1043 case SAM_STAT_GOOD:
1044 case SAM_STAT_CHECK_CONDITION:
1045 case SAM_STAT_CONDITION_MET:
1046 case SAM_STAT_BUSY:
1047 case SAM_STAT_RESERVATION_CONFLICT:
1048 case SAM_STAT_COMMAND_TERMINATED:
1049 return DID_OK << 16 | sam_status;
1051 default:
1052 return DID_ERROR << 16;
1056 static void
1057 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1059 struct sbp2_command_orb *orb =
1060 container_of(base_orb, struct sbp2_command_orb, base);
1061 struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1062 int result;
1064 if (status != NULL) {
1065 if (STATUS_GET_DEAD(*status))
1066 sbp2_agent_reset(orb->lu);
1068 switch (STATUS_GET_RESPONSE(*status)) {
1069 case SBP2_STATUS_REQUEST_COMPLETE:
1070 result = DID_OK << 16;
1071 break;
1072 case SBP2_STATUS_TRANSPORT_FAILURE:
1073 result = DID_BUS_BUSY << 16;
1074 break;
1075 case SBP2_STATUS_ILLEGAL_REQUEST:
1076 case SBP2_STATUS_VENDOR_DEPENDENT:
1077 default:
1078 result = DID_ERROR << 16;
1079 break;
1082 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1083 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1084 orb->cmd->sense_buffer);
1085 } else {
1087 * If the orb completes with status == NULL, something
1088 * went wrong, typically a bus reset happened mid-orb
1089 * or when sending the write (less likely).
1091 result = DID_BUS_BUSY << 16;
1094 dma_unmap_single(device->card->device, orb->base.request_bus,
1095 sizeof(orb->request), DMA_TO_DEVICE);
1097 if (scsi_sg_count(orb->cmd) > 0)
1098 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1099 scsi_sg_count(orb->cmd),
1100 orb->cmd->sc_data_direction);
1102 if (orb->page_table_bus != 0)
1103 dma_unmap_single(device->card->device, orb->page_table_bus,
1104 sizeof(orb->page_table), DMA_TO_DEVICE);
1106 orb->cmd->result = result;
1107 orb->done(orb->cmd);
1110 static int
1111 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1112 struct sbp2_logical_unit *lu)
1114 struct scatterlist *sg;
1115 int sg_len, l, i, j, count;
1116 dma_addr_t sg_addr;
1118 sg = scsi_sglist(orb->cmd);
1119 count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1120 orb->cmd->sc_data_direction);
1121 if (count == 0)
1122 goto fail;
1125 * Handle the special case where there is only one element in
1126 * the scatter list by converting it to an immediate block
1127 * request. This is also a workaround for broken devices such
1128 * as the second generation iPod which doesn't support page
1129 * tables.
1131 if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1132 orb->request.data_descriptor.high = lu->tgt->address_high;
1133 orb->request.data_descriptor.low = sg_dma_address(sg);
1134 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1135 return 0;
1139 * Convert the scatterlist to an sbp2 page table. If any
1140 * scatterlist entries are too big for sbp2, we split them as we
1141 * go. Even if we ask the block I/O layer to not give us sg
1142 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1143 * during DMA mapping, and Linux currently doesn't prevent this.
1145 for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1146 sg_len = sg_dma_len(sg);
1147 sg_addr = sg_dma_address(sg);
1148 while (sg_len) {
1149 /* FIXME: This won't get us out of the pinch. */
1150 if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1151 fw_error("page table overflow\n");
1152 goto fail_page_table;
1154 l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1155 orb->page_table[j].low = sg_addr;
1156 orb->page_table[j].high = (l << 16);
1157 sg_addr += l;
1158 sg_len -= l;
1159 j++;
1163 fw_memcpy_to_be32(orb->page_table, orb->page_table,
1164 sizeof(orb->page_table[0]) * j);
1165 orb->page_table_bus =
1166 dma_map_single(device->card->device, orb->page_table,
1167 sizeof(orb->page_table), DMA_TO_DEVICE);
1168 if (dma_mapping_error(orb->page_table_bus))
1169 goto fail_page_table;
1172 * The data_descriptor pointer is the one case where we need
1173 * to fill in the node ID part of the address. All other
1174 * pointers assume that the data referenced reside on the
1175 * initiator (i.e. us), but data_descriptor can refer to data
1176 * on other nodes so we need to put our ID in descriptor.high.
1178 orb->request.data_descriptor.high = lu->tgt->address_high;
1179 orb->request.data_descriptor.low = orb->page_table_bus;
1180 orb->request.misc |=
1181 COMMAND_ORB_PAGE_TABLE_PRESENT |
1182 COMMAND_ORB_DATA_SIZE(j);
1184 return 0;
1186 fail_page_table:
1187 dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1188 orb->cmd->sc_data_direction);
1189 fail:
1190 return -ENOMEM;
1193 /* SCSI stack integration */
1195 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1197 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1198 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1199 struct sbp2_command_orb *orb;
1200 unsigned max_payload;
1201 int retval = SCSI_MLQUEUE_HOST_BUSY;
1204 * Bidirectional commands are not yet implemented, and unknown
1205 * transfer direction not handled.
1207 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1208 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1209 cmd->result = DID_ERROR << 16;
1210 done(cmd);
1211 return 0;
1214 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1215 if (orb == NULL) {
1216 fw_notify("failed to alloc orb\n");
1217 return SCSI_MLQUEUE_HOST_BUSY;
1220 /* Initialize rcode to something not RCODE_COMPLETE. */
1221 orb->base.rcode = -1;
1222 kref_init(&orb->base.kref);
1224 orb->lu = lu;
1225 orb->done = done;
1226 orb->cmd = cmd;
1228 orb->request.next.high = SBP2_ORB_NULL;
1229 orb->request.next.low = 0x0;
1231 * At speed 100 we can do 512 bytes per packet, at speed 200,
1232 * 1024 bytes per packet etc. The SBP-2 max_payload field
1233 * specifies the max payload size as 2 ^ (max_payload + 2), so
1234 * if we set this to max_speed + 7, we get the right value.
1236 max_payload = min(device->max_speed + 7,
1237 device->card->max_receive - 1);
1238 orb->request.misc =
1239 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1240 COMMAND_ORB_SPEED(device->max_speed) |
1241 COMMAND_ORB_NOTIFY;
1243 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1244 orb->request.misc |=
1245 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1246 else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1247 orb->request.misc |=
1248 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1250 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1251 goto out;
1253 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1255 memset(orb->request.command_block,
1256 0, sizeof(orb->request.command_block));
1257 memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1259 orb->base.callback = complete_command_orb;
1260 orb->base.request_bus =
1261 dma_map_single(device->card->device, &orb->request,
1262 sizeof(orb->request), DMA_TO_DEVICE);
1263 if (dma_mapping_error(orb->base.request_bus))
1264 goto out;
1266 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1267 lu->command_block_agent_address + SBP2_ORB_POINTER);
1268 retval = 0;
1269 out:
1270 kref_put(&orb->base.kref, free_orb);
1271 return retval;
1274 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1276 struct sbp2_logical_unit *lu = sdev->hostdata;
1278 sdev->allow_restart = 1;
1281 * Update the dma alignment (minimum alignment requirements for
1282 * start and end of DMA transfers) to be a sector
1284 blk_queue_update_dma_alignment(sdev->request_queue, 511);
1286 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1287 sdev->inquiry_len = 36;
1289 return 0;
1292 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1294 struct sbp2_logical_unit *lu = sdev->hostdata;
1296 sdev->use_10_for_rw = 1;
1298 if (sdev->type == TYPE_ROM)
1299 sdev->use_10_for_ms = 1;
1301 if (sdev->type == TYPE_DISK &&
1302 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1303 sdev->skip_ms_page_8 = 1;
1305 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1306 sdev->fix_capacity = 1;
1308 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1309 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1311 return 0;
1315 * Called by scsi stack when something has really gone wrong. Usually
1316 * called when a command has timed-out for some reason.
1318 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1320 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1322 fw_notify("sbp2_scsi_abort\n");
1323 sbp2_agent_reset(lu);
1324 sbp2_cancel_orbs(lu);
1326 return SUCCESS;
1330 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1331 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1333 * This is the concatenation of target port identifier and logical unit
1334 * identifier as per SAM-2...SAM-4 annex A.
1336 static ssize_t
1337 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1338 char *buf)
1340 struct scsi_device *sdev = to_scsi_device(dev);
1341 struct sbp2_logical_unit *lu;
1342 struct fw_device *device;
1344 if (!sdev)
1345 return 0;
1347 lu = sdev->hostdata;
1348 device = fw_device(lu->tgt->unit->device.parent);
1350 return sprintf(buf, "%08x%08x:%06x:%04x\n",
1351 device->config_rom[3], device->config_rom[4],
1352 lu->tgt->directory_id, lu->lun);
1355 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1357 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1358 &dev_attr_ieee1394_id,
1359 NULL
1362 static struct scsi_host_template scsi_driver_template = {
1363 .module = THIS_MODULE,
1364 .name = "SBP-2 IEEE-1394",
1365 .proc_name = sbp2_driver_name,
1366 .queuecommand = sbp2_scsi_queuecommand,
1367 .slave_alloc = sbp2_scsi_slave_alloc,
1368 .slave_configure = sbp2_scsi_slave_configure,
1369 .eh_abort_handler = sbp2_scsi_abort,
1370 .this_id = -1,
1371 .sg_tablesize = SG_ALL,
1372 .use_clustering = ENABLE_CLUSTERING,
1373 .cmd_per_lun = 1,
1374 .can_queue = 1,
1375 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1378 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1379 MODULE_DESCRIPTION("SCSI over IEEE1394");
1380 MODULE_LICENSE("GPL");
1381 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1383 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1384 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1385 MODULE_ALIAS("sbp2");
1386 #endif
1388 static int __init sbp2_init(void)
1390 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1391 if (!sbp2_wq)
1392 return -ENOMEM;
1394 return driver_register(&sbp2_driver.driver);
1397 static void __exit sbp2_cleanup(void)
1399 driver_unregister(&sbp2_driver.driver);
1400 destroy_workqueue(sbp2_wq);
1403 module_init(sbp2_init);
1404 module_exit(sbp2_cleanup);