x86: use _ASM_EXTABLE macro in arch/x86/lib/usercopy_32.c
[wrt350n-kernel.git] / arch / arm / mm / ioremap.c
blob75952779ce1991f68114dcbeef6a188c4c47d027
1 /*
2 * linux/arch/arm/mm/ioremap.c
4 * Re-map IO memory to kernel address space so that we can access it.
6 * (C) Copyright 1995 1996 Linus Torvalds
8 * Hacked for ARM by Phil Blundell <philb@gnu.org>
9 * Hacked to allow all architectures to build, and various cleanups
10 * by Russell King
12 * This allows a driver to remap an arbitrary region of bus memory into
13 * virtual space. One should *only* use readl, writel, memcpy_toio and
14 * so on with such remapped areas.
16 * Because the ARM only has a 32-bit address space we can't address the
17 * whole of the (physical) PCI space at once. PCI huge-mode addressing
18 * allows us to circumvent this restriction by splitting PCI space into
19 * two 2GB chunks and mapping only one at a time into processor memory.
20 * We use MMU protection domains to trap any attempt to access the bank
21 * that is not currently mapped. (This isn't fully implemented yet.)
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/mm.h>
26 #include <linux/vmalloc.h>
28 #include <asm/cacheflush.h>
29 #include <asm/io.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgalloc.h>
32 #include <asm/tlbflush.h>
33 #include <asm/sizes.h>
35 #include <asm/mach/map.h>
36 #include "mm.h"
39 * Used by ioremap() and iounmap() code to mark (super)section-mapped
40 * I/O regions in vm_struct->flags field.
42 #define VM_ARM_SECTION_MAPPING 0x80000000
44 static int remap_area_pte(pmd_t *pmd, unsigned long addr, unsigned long end,
45 unsigned long phys_addr, const struct mem_type *type)
47 pgprot_t prot = __pgprot(type->prot_pte);
48 pte_t *pte;
50 pte = pte_alloc_kernel(pmd, addr);
51 if (!pte)
52 return -ENOMEM;
54 do {
55 if (!pte_none(*pte))
56 goto bad;
58 set_pte_ext(pte, pfn_pte(phys_addr >> PAGE_SHIFT, prot),
59 type->prot_pte_ext);
60 phys_addr += PAGE_SIZE;
61 } while (pte++, addr += PAGE_SIZE, addr != end);
62 return 0;
64 bad:
65 printk(KERN_CRIT "remap_area_pte: page already exists\n");
66 BUG();
69 static inline int remap_area_pmd(pgd_t *pgd, unsigned long addr,
70 unsigned long end, unsigned long phys_addr,
71 const struct mem_type *type)
73 unsigned long next;
74 pmd_t *pmd;
75 int ret = 0;
77 pmd = pmd_alloc(&init_mm, pgd, addr);
78 if (!pmd)
79 return -ENOMEM;
81 do {
82 next = pmd_addr_end(addr, end);
83 ret = remap_area_pte(pmd, addr, next, phys_addr, type);
84 if (ret)
85 return ret;
86 phys_addr += next - addr;
87 } while (pmd++, addr = next, addr != end);
88 return ret;
91 static int remap_area_pages(unsigned long start, unsigned long pfn,
92 size_t size, const struct mem_type *type)
94 unsigned long addr = start;
95 unsigned long next, end = start + size;
96 unsigned long phys_addr = __pfn_to_phys(pfn);
97 pgd_t *pgd;
98 int err = 0;
100 BUG_ON(addr >= end);
101 pgd = pgd_offset_k(addr);
102 do {
103 next = pgd_addr_end(addr, end);
104 err = remap_area_pmd(pgd, addr, next, phys_addr, type);
105 if (err)
106 break;
107 phys_addr += next - addr;
108 } while (pgd++, addr = next, addr != end);
110 return err;
114 void __check_kvm_seq(struct mm_struct *mm)
116 unsigned int seq;
118 do {
119 seq = init_mm.context.kvm_seq;
120 memcpy(pgd_offset(mm, VMALLOC_START),
121 pgd_offset_k(VMALLOC_START),
122 sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
123 pgd_index(VMALLOC_START)));
124 mm->context.kvm_seq = seq;
125 } while (seq != init_mm.context.kvm_seq);
128 #ifndef CONFIG_SMP
130 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
131 * the other CPUs will not see this change until their next context switch.
132 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
133 * which requires the new ioremap'd region to be referenced, the CPU will
134 * reference the _old_ region.
136 * Note that get_vm_area() allocates a guard 4K page, so we need to mask
137 * the size back to 1MB aligned or we will overflow in the loop below.
139 static void unmap_area_sections(unsigned long virt, unsigned long size)
141 unsigned long addr = virt, end = virt + (size & ~SZ_1M);
142 pgd_t *pgd;
144 flush_cache_vunmap(addr, end);
145 pgd = pgd_offset_k(addr);
146 do {
147 pmd_t pmd, *pmdp = pmd_offset(pgd, addr);
149 pmd = *pmdp;
150 if (!pmd_none(pmd)) {
152 * Clear the PMD from the page table, and
153 * increment the kvm sequence so others
154 * notice this change.
156 * Note: this is still racy on SMP machines.
158 pmd_clear(pmdp);
159 init_mm.context.kvm_seq++;
162 * Free the page table, if there was one.
164 if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
165 pte_free_kernel(pmd_page_vaddr(pmd));
168 addr += PGDIR_SIZE;
169 pgd++;
170 } while (addr < end);
173 * Ensure that the active_mm is up to date - we want to
174 * catch any use-after-iounmap cases.
176 if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
177 __check_kvm_seq(current->active_mm);
179 flush_tlb_kernel_range(virt, end);
182 static int
183 remap_area_sections(unsigned long virt, unsigned long pfn,
184 size_t size, const struct mem_type *type)
186 unsigned long addr = virt, end = virt + size;
187 pgd_t *pgd;
190 * Remove and free any PTE-based mapping, and
191 * sync the current kernel mapping.
193 unmap_area_sections(virt, size);
195 pgd = pgd_offset_k(addr);
196 do {
197 pmd_t *pmd = pmd_offset(pgd, addr);
199 pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
200 pfn += SZ_1M >> PAGE_SHIFT;
201 pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
202 pfn += SZ_1M >> PAGE_SHIFT;
203 flush_pmd_entry(pmd);
205 addr += PGDIR_SIZE;
206 pgd++;
207 } while (addr < end);
209 return 0;
212 static int
213 remap_area_supersections(unsigned long virt, unsigned long pfn,
214 size_t size, const struct mem_type *type)
216 unsigned long addr = virt, end = virt + size;
217 pgd_t *pgd;
220 * Remove and free any PTE-based mapping, and
221 * sync the current kernel mapping.
223 unmap_area_sections(virt, size);
225 pgd = pgd_offset_k(virt);
226 do {
227 unsigned long super_pmd_val, i;
229 super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
230 PMD_SECT_SUPER;
231 super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
233 for (i = 0; i < 8; i++) {
234 pmd_t *pmd = pmd_offset(pgd, addr);
236 pmd[0] = __pmd(super_pmd_val);
237 pmd[1] = __pmd(super_pmd_val);
238 flush_pmd_entry(pmd);
240 addr += PGDIR_SIZE;
241 pgd++;
244 pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
245 } while (addr < end);
247 return 0;
249 #endif
253 * Remap an arbitrary physical address space into the kernel virtual
254 * address space. Needed when the kernel wants to access high addresses
255 * directly.
257 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
258 * have to convert them into an offset in a page-aligned mapping, but the
259 * caller shouldn't need to know that small detail.
261 * 'flags' are the extra L_PTE_ flags that you want to specify for this
262 * mapping. See include/asm-arm/proc-armv/pgtable.h for more information.
264 void __iomem *
265 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
266 unsigned int mtype)
268 const struct mem_type *type;
269 int err;
270 unsigned long addr;
271 struct vm_struct * area;
274 * High mappings must be supersection aligned
276 if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
277 return NULL;
279 type = get_mem_type(mtype);
280 if (!type)
281 return NULL;
284 * Page align the mapping size, taking account of any offset.
286 size = PAGE_ALIGN(offset + size);
288 area = get_vm_area(size, VM_IOREMAP);
289 if (!area)
290 return NULL;
291 addr = (unsigned long)area->addr;
293 #ifndef CONFIG_SMP
294 if (DOMAIN_IO == 0 &&
295 (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
296 cpu_is_xsc3()) && pfn >= 0x100000 &&
297 !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
298 area->flags |= VM_ARM_SECTION_MAPPING;
299 err = remap_area_supersections(addr, pfn, size, type);
300 } else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
301 area->flags |= VM_ARM_SECTION_MAPPING;
302 err = remap_area_sections(addr, pfn, size, type);
303 } else
304 #endif
305 err = remap_area_pages(addr, pfn, size, type);
307 if (err) {
308 vunmap((void *)addr);
309 return NULL;
312 flush_cache_vmap(addr, addr + size);
313 return (void __iomem *) (offset + addr);
315 EXPORT_SYMBOL(__arm_ioremap_pfn);
317 void __iomem *
318 __arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
320 unsigned long last_addr;
321 unsigned long offset = phys_addr & ~PAGE_MASK;
322 unsigned long pfn = __phys_to_pfn(phys_addr);
325 * Don't allow wraparound or zero size
327 last_addr = phys_addr + size - 1;
328 if (!size || last_addr < phys_addr)
329 return NULL;
331 return __arm_ioremap_pfn(pfn, offset, size, mtype);
333 EXPORT_SYMBOL(__arm_ioremap);
335 void __iounmap(volatile void __iomem *addr)
337 #ifndef CONFIG_SMP
338 struct vm_struct **p, *tmp;
339 #endif
340 unsigned int section_mapping = 0;
342 addr = (volatile void __iomem *)(PAGE_MASK & (unsigned long)addr);
344 #ifndef CONFIG_SMP
346 * If this is a section based mapping we need to handle it
347 * specially as the VM subsystem does not know how to handle
348 * such a beast. We need the lock here b/c we need to clear
349 * all the mappings before the area can be reclaimed
350 * by someone else.
352 write_lock(&vmlist_lock);
353 for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
354 if((tmp->flags & VM_IOREMAP) && (tmp->addr == addr)) {
355 if (tmp->flags & VM_ARM_SECTION_MAPPING) {
356 *p = tmp->next;
357 unmap_area_sections((unsigned long)tmp->addr,
358 tmp->size);
359 kfree(tmp);
360 section_mapping = 1;
362 break;
365 write_unlock(&vmlist_lock);
366 #endif
368 if (!section_mapping)
369 vunmap((void __force *)addr);
371 EXPORT_SYMBOL(__iounmap);