x86_64: Prevent doing anything from cache_remove_dev() when info setup failed.
[wrt350n-kernel.git] / arch / i386 / kernel / cpu / intel_cacheinfo.c
blobdb6c25aa57768f67f7cdb4a794ece94aece18fa0
1 /*
2 * Routines to indentify caches on Intel CPU.
4 * Changes:
5 * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
6 * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
7 * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
8 */
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/device.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/sched.h>
17 #include <asm/processor.h>
18 #include <asm/smp.h>
20 #define LVL_1_INST 1
21 #define LVL_1_DATA 2
22 #define LVL_2 3
23 #define LVL_3 4
24 #define LVL_TRACE 5
26 struct _cache_table
28 unsigned char descriptor;
29 char cache_type;
30 short size;
33 /* all the cache descriptor types we care about (no TLB or trace cache entries) */
34 static struct _cache_table cache_table[] __cpuinitdata =
36 { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
37 { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
38 { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
39 { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
40 { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
41 { 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
42 { 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
43 { 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
44 { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
45 { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
46 { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
47 { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
48 { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
49 { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
50 { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
51 { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
52 { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
53 { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
54 { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
55 { 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
56 { 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
57 { 0x46, LVL_3, 4096 }, /* 4-way set assoc, 64 byte line size */
58 { 0x47, LVL_3, 8192 }, /* 8-way set assoc, 64 byte line size */
59 { 0x49, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */
60 { 0x4a, LVL_3, 6144 }, /* 12-way set assoc, 64 byte line size */
61 { 0x4b, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */
62 { 0x4c, LVL_3, 12288 }, /* 12-way set assoc, 64 byte line size */
63 { 0x4d, LVL_3, 16384 }, /* 16-way set assoc, 64 byte line size */
64 { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
65 { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
66 { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
67 { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
68 { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
69 { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
70 { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
71 { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
72 { 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
73 { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
74 { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
75 { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
76 { 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
77 { 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
78 { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
79 { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
80 { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
81 { 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
82 { 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
83 { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
84 { 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
85 { 0x00, 0, 0}
89 enum _cache_type
91 CACHE_TYPE_NULL = 0,
92 CACHE_TYPE_DATA = 1,
93 CACHE_TYPE_INST = 2,
94 CACHE_TYPE_UNIFIED = 3
97 union _cpuid4_leaf_eax {
98 struct {
99 enum _cache_type type:5;
100 unsigned int level:3;
101 unsigned int is_self_initializing:1;
102 unsigned int is_fully_associative:1;
103 unsigned int reserved:4;
104 unsigned int num_threads_sharing:12;
105 unsigned int num_cores_on_die:6;
106 } split;
107 u32 full;
110 union _cpuid4_leaf_ebx {
111 struct {
112 unsigned int coherency_line_size:12;
113 unsigned int physical_line_partition:10;
114 unsigned int ways_of_associativity:10;
115 } split;
116 u32 full;
119 union _cpuid4_leaf_ecx {
120 struct {
121 unsigned int number_of_sets:32;
122 } split;
123 u32 full;
126 struct _cpuid4_info {
127 union _cpuid4_leaf_eax eax;
128 union _cpuid4_leaf_ebx ebx;
129 union _cpuid4_leaf_ecx ecx;
130 unsigned long size;
131 cpumask_t shared_cpu_map;
134 unsigned short num_cache_leaves;
136 /* AMD doesn't have CPUID4. Emulate it here to report the same
137 information to the user. This makes some assumptions about the machine:
138 L2 not shared, no SMT etc. that is currently true on AMD CPUs.
140 In theory the TLBs could be reported as fake type (they are in "dummy").
141 Maybe later */
142 union l1_cache {
143 struct {
144 unsigned line_size : 8;
145 unsigned lines_per_tag : 8;
146 unsigned assoc : 8;
147 unsigned size_in_kb : 8;
149 unsigned val;
152 union l2_cache {
153 struct {
154 unsigned line_size : 8;
155 unsigned lines_per_tag : 4;
156 unsigned assoc : 4;
157 unsigned size_in_kb : 16;
159 unsigned val;
162 union l3_cache {
163 struct {
164 unsigned line_size : 8;
165 unsigned lines_per_tag : 4;
166 unsigned assoc : 4;
167 unsigned res : 2;
168 unsigned size_encoded : 14;
170 unsigned val;
173 static const unsigned short assocs[] = {
174 [1] = 1, [2] = 2, [4] = 4, [6] = 8,
175 [8] = 16, [0xa] = 32, [0xb] = 48,
176 [0xc] = 64,
177 [0xf] = 0xffff // ??
180 static const unsigned char levels[] = { 1, 1, 2, 3 };
181 static const unsigned char types[] = { 1, 2, 3, 3 };
183 static void __cpuinit amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
184 union _cpuid4_leaf_ebx *ebx,
185 union _cpuid4_leaf_ecx *ecx)
187 unsigned dummy;
188 unsigned line_size, lines_per_tag, assoc, size_in_kb;
189 union l1_cache l1i, l1d;
190 union l2_cache l2;
191 union l3_cache l3;
192 union l1_cache *l1 = &l1d;
194 eax->full = 0;
195 ebx->full = 0;
196 ecx->full = 0;
198 cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
199 cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
201 switch (leaf) {
202 case 1:
203 l1 = &l1i;
204 case 0:
205 if (!l1->val)
206 return;
207 assoc = l1->assoc;
208 line_size = l1->line_size;
209 lines_per_tag = l1->lines_per_tag;
210 size_in_kb = l1->size_in_kb;
211 break;
212 case 2:
213 if (!l2.val)
214 return;
215 assoc = l2.assoc;
216 line_size = l2.line_size;
217 lines_per_tag = l2.lines_per_tag;
218 /* cpu_data has errata corrections for K7 applied */
219 size_in_kb = current_cpu_data.x86_cache_size;
220 break;
221 case 3:
222 if (!l3.val)
223 return;
224 assoc = l3.assoc;
225 line_size = l3.line_size;
226 lines_per_tag = l3.lines_per_tag;
227 size_in_kb = l3.size_encoded * 512;
228 break;
229 default:
230 return;
233 eax->split.is_self_initializing = 1;
234 eax->split.type = types[leaf];
235 eax->split.level = levels[leaf];
236 if (leaf == 3)
237 eax->split.num_threads_sharing = current_cpu_data.x86_max_cores - 1;
238 else
239 eax->split.num_threads_sharing = 0;
240 eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1;
243 if (assoc == 0xf)
244 eax->split.is_fully_associative = 1;
245 ebx->split.coherency_line_size = line_size - 1;
246 ebx->split.ways_of_associativity = assocs[assoc] - 1;
247 ebx->split.physical_line_partition = lines_per_tag - 1;
248 ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
249 (ebx->split.ways_of_associativity + 1) - 1;
252 static int __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
254 union _cpuid4_leaf_eax eax;
255 union _cpuid4_leaf_ebx ebx;
256 union _cpuid4_leaf_ecx ecx;
257 unsigned edx;
259 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
260 amd_cpuid4(index, &eax, &ebx, &ecx);
261 else
262 cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
263 if (eax.split.type == CACHE_TYPE_NULL)
264 return -EIO; /* better error ? */
266 this_leaf->eax = eax;
267 this_leaf->ebx = ebx;
268 this_leaf->ecx = ecx;
269 this_leaf->size = (ecx.split.number_of_sets + 1) *
270 (ebx.split.coherency_line_size + 1) *
271 (ebx.split.physical_line_partition + 1) *
272 (ebx.split.ways_of_associativity + 1);
273 return 0;
276 static int __cpuinit find_num_cache_leaves(void)
278 unsigned int eax, ebx, ecx, edx;
279 union _cpuid4_leaf_eax cache_eax;
280 int i = -1;
282 do {
283 ++i;
284 /* Do cpuid(4) loop to find out num_cache_leaves */
285 cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
286 cache_eax.full = eax;
287 } while (cache_eax.split.type != CACHE_TYPE_NULL);
288 return i;
291 unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
293 unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
294 unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
295 unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
296 unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
297 #ifdef CONFIG_X86_HT
298 unsigned int cpu = (c == &boot_cpu_data) ? 0 : (c - cpu_data);
299 #endif
301 if (c->cpuid_level > 3) {
302 static int is_initialized;
304 if (is_initialized == 0) {
305 /* Init num_cache_leaves from boot CPU */
306 num_cache_leaves = find_num_cache_leaves();
307 is_initialized++;
311 * Whenever possible use cpuid(4), deterministic cache
312 * parameters cpuid leaf to find the cache details
314 for (i = 0; i < num_cache_leaves; i++) {
315 struct _cpuid4_info this_leaf;
317 int retval;
319 retval = cpuid4_cache_lookup(i, &this_leaf);
320 if (retval >= 0) {
321 switch(this_leaf.eax.split.level) {
322 case 1:
323 if (this_leaf.eax.split.type ==
324 CACHE_TYPE_DATA)
325 new_l1d = this_leaf.size/1024;
326 else if (this_leaf.eax.split.type ==
327 CACHE_TYPE_INST)
328 new_l1i = this_leaf.size/1024;
329 break;
330 case 2:
331 new_l2 = this_leaf.size/1024;
332 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
333 index_msb = get_count_order(num_threads_sharing);
334 l2_id = c->apicid >> index_msb;
335 break;
336 case 3:
337 new_l3 = this_leaf.size/1024;
338 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
339 index_msb = get_count_order(num_threads_sharing);
340 l3_id = c->apicid >> index_msb;
341 break;
342 default:
343 break;
349 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
350 * trace cache
352 if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
353 /* supports eax=2 call */
354 int i, j, n;
355 int regs[4];
356 unsigned char *dp = (unsigned char *)regs;
357 int only_trace = 0;
359 if (num_cache_leaves != 0 && c->x86 == 15)
360 only_trace = 1;
362 /* Number of times to iterate */
363 n = cpuid_eax(2) & 0xFF;
365 for ( i = 0 ; i < n ; i++ ) {
366 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
368 /* If bit 31 is set, this is an unknown format */
369 for ( j = 0 ; j < 3 ; j++ ) {
370 if ( regs[j] < 0 ) regs[j] = 0;
373 /* Byte 0 is level count, not a descriptor */
374 for ( j = 1 ; j < 16 ; j++ ) {
375 unsigned char des = dp[j];
376 unsigned char k = 0;
378 /* look up this descriptor in the table */
379 while (cache_table[k].descriptor != 0)
381 if (cache_table[k].descriptor == des) {
382 if (only_trace && cache_table[k].cache_type != LVL_TRACE)
383 break;
384 switch (cache_table[k].cache_type) {
385 case LVL_1_INST:
386 l1i += cache_table[k].size;
387 break;
388 case LVL_1_DATA:
389 l1d += cache_table[k].size;
390 break;
391 case LVL_2:
392 l2 += cache_table[k].size;
393 break;
394 case LVL_3:
395 l3 += cache_table[k].size;
396 break;
397 case LVL_TRACE:
398 trace += cache_table[k].size;
399 break;
402 break;
405 k++;
411 if (new_l1d)
412 l1d = new_l1d;
414 if (new_l1i)
415 l1i = new_l1i;
417 if (new_l2) {
418 l2 = new_l2;
419 #ifdef CONFIG_X86_HT
420 cpu_llc_id[cpu] = l2_id;
421 #endif
424 if (new_l3) {
425 l3 = new_l3;
426 #ifdef CONFIG_X86_HT
427 cpu_llc_id[cpu] = l3_id;
428 #endif
431 if (trace)
432 printk (KERN_INFO "CPU: Trace cache: %dK uops", trace);
433 else if ( l1i )
434 printk (KERN_INFO "CPU: L1 I cache: %dK", l1i);
436 if (l1d)
437 printk(", L1 D cache: %dK\n", l1d);
438 else
439 printk("\n");
441 if (l2)
442 printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);
444 if (l3)
445 printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);
447 c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
449 return l2;
452 /* pointer to _cpuid4_info array (for each cache leaf) */
453 static struct _cpuid4_info *cpuid4_info[NR_CPUS];
454 #define CPUID4_INFO_IDX(x,y) (&((cpuid4_info[x])[y]))
456 #ifdef CONFIG_SMP
457 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
459 struct _cpuid4_info *this_leaf, *sibling_leaf;
460 unsigned long num_threads_sharing;
461 int index_msb, i;
462 struct cpuinfo_x86 *c = cpu_data;
464 this_leaf = CPUID4_INFO_IDX(cpu, index);
465 num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
467 if (num_threads_sharing == 1)
468 cpu_set(cpu, this_leaf->shared_cpu_map);
469 else {
470 index_msb = get_count_order(num_threads_sharing);
472 for_each_online_cpu(i) {
473 if (c[i].apicid >> index_msb ==
474 c[cpu].apicid >> index_msb) {
475 cpu_set(i, this_leaf->shared_cpu_map);
476 if (i != cpu && cpuid4_info[i]) {
477 sibling_leaf = CPUID4_INFO_IDX(i, index);
478 cpu_set(cpu, sibling_leaf->shared_cpu_map);
484 static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
486 struct _cpuid4_info *this_leaf, *sibling_leaf;
487 int sibling;
489 this_leaf = CPUID4_INFO_IDX(cpu, index);
490 for_each_cpu_mask(sibling, this_leaf->shared_cpu_map) {
491 sibling_leaf = CPUID4_INFO_IDX(sibling, index);
492 cpu_clear(cpu, sibling_leaf->shared_cpu_map);
495 #else
496 static void __init cache_shared_cpu_map_setup(unsigned int cpu, int index) {}
497 static void __init cache_remove_shared_cpu_map(unsigned int cpu, int index) {}
498 #endif
500 static void free_cache_attributes(unsigned int cpu)
502 kfree(cpuid4_info[cpu]);
503 cpuid4_info[cpu] = NULL;
506 static int __cpuinit detect_cache_attributes(unsigned int cpu)
508 struct _cpuid4_info *this_leaf;
509 unsigned long j;
510 int retval;
511 cpumask_t oldmask;
513 if (num_cache_leaves == 0)
514 return -ENOENT;
516 cpuid4_info[cpu] = kzalloc(
517 sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
518 if (cpuid4_info[cpu] == NULL)
519 return -ENOMEM;
521 oldmask = current->cpus_allowed;
522 retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
523 if (retval)
524 goto out;
526 /* Do cpuid and store the results */
527 retval = 0;
528 for (j = 0; j < num_cache_leaves; j++) {
529 this_leaf = CPUID4_INFO_IDX(cpu, j);
530 retval = cpuid4_cache_lookup(j, this_leaf);
531 if (unlikely(retval < 0))
532 break;
533 cache_shared_cpu_map_setup(cpu, j);
535 set_cpus_allowed(current, oldmask);
537 out:
538 if (retval)
539 free_cache_attributes(cpu);
540 return retval;
543 #ifdef CONFIG_SYSFS
545 #include <linux/kobject.h>
546 #include <linux/sysfs.h>
548 extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
550 /* pointer to kobject for cpuX/cache */
551 static struct kobject * cache_kobject[NR_CPUS];
553 struct _index_kobject {
554 struct kobject kobj;
555 unsigned int cpu;
556 unsigned short index;
559 /* pointer to array of kobjects for cpuX/cache/indexY */
560 static struct _index_kobject *index_kobject[NR_CPUS];
561 #define INDEX_KOBJECT_PTR(x,y) (&((index_kobject[x])[y]))
563 #define show_one_plus(file_name, object, val) \
564 static ssize_t show_##file_name \
565 (struct _cpuid4_info *this_leaf, char *buf) \
567 return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \
570 show_one_plus(level, eax.split.level, 0);
571 show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
572 show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
573 show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
574 show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
576 static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
578 return sprintf (buf, "%luK\n", this_leaf->size / 1024);
581 static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf)
583 char mask_str[NR_CPUS];
584 cpumask_scnprintf(mask_str, NR_CPUS, this_leaf->shared_cpu_map);
585 return sprintf(buf, "%s\n", mask_str);
588 static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) {
589 switch(this_leaf->eax.split.type) {
590 case CACHE_TYPE_DATA:
591 return sprintf(buf, "Data\n");
592 break;
593 case CACHE_TYPE_INST:
594 return sprintf(buf, "Instruction\n");
595 break;
596 case CACHE_TYPE_UNIFIED:
597 return sprintf(buf, "Unified\n");
598 break;
599 default:
600 return sprintf(buf, "Unknown\n");
601 break;
605 struct _cache_attr {
606 struct attribute attr;
607 ssize_t (*show)(struct _cpuid4_info *, char *);
608 ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
611 #define define_one_ro(_name) \
612 static struct _cache_attr _name = \
613 __ATTR(_name, 0444, show_##_name, NULL)
615 define_one_ro(level);
616 define_one_ro(type);
617 define_one_ro(coherency_line_size);
618 define_one_ro(physical_line_partition);
619 define_one_ro(ways_of_associativity);
620 define_one_ro(number_of_sets);
621 define_one_ro(size);
622 define_one_ro(shared_cpu_map);
624 static struct attribute * default_attrs[] = {
625 &type.attr,
626 &level.attr,
627 &coherency_line_size.attr,
628 &physical_line_partition.attr,
629 &ways_of_associativity.attr,
630 &number_of_sets.attr,
631 &size.attr,
632 &shared_cpu_map.attr,
633 NULL
636 #define to_object(k) container_of(k, struct _index_kobject, kobj)
637 #define to_attr(a) container_of(a, struct _cache_attr, attr)
639 static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf)
641 struct _cache_attr *fattr = to_attr(attr);
642 struct _index_kobject *this_leaf = to_object(kobj);
643 ssize_t ret;
645 ret = fattr->show ?
646 fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
647 buf) :
649 return ret;
652 static ssize_t store(struct kobject * kobj, struct attribute * attr,
653 const char * buf, size_t count)
655 return 0;
658 static struct sysfs_ops sysfs_ops = {
659 .show = show,
660 .store = store,
663 static struct kobj_type ktype_cache = {
664 .sysfs_ops = &sysfs_ops,
665 .default_attrs = default_attrs,
668 static struct kobj_type ktype_percpu_entry = {
669 .sysfs_ops = &sysfs_ops,
672 static void cpuid4_cache_sysfs_exit(unsigned int cpu)
674 kfree(cache_kobject[cpu]);
675 kfree(index_kobject[cpu]);
676 cache_kobject[cpu] = NULL;
677 index_kobject[cpu] = NULL;
678 free_cache_attributes(cpu);
681 static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
684 if (num_cache_leaves == 0)
685 return -ENOENT;
687 detect_cache_attributes(cpu);
688 if (cpuid4_info[cpu] == NULL)
689 return -ENOENT;
691 /* Allocate all required memory */
692 cache_kobject[cpu] = kzalloc(sizeof(struct kobject), GFP_KERNEL);
693 if (unlikely(cache_kobject[cpu] == NULL))
694 goto err_out;
696 index_kobject[cpu] = kzalloc(
697 sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL);
698 if (unlikely(index_kobject[cpu] == NULL))
699 goto err_out;
701 return 0;
703 err_out:
704 cpuid4_cache_sysfs_exit(cpu);
705 return -ENOMEM;
708 /* Add/Remove cache interface for CPU device */
709 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
711 unsigned int cpu = sys_dev->id;
712 unsigned long i, j;
713 struct _index_kobject *this_object;
714 int retval = 0;
716 retval = cpuid4_cache_sysfs_init(cpu);
717 if (unlikely(retval < 0))
718 return retval;
720 cache_kobject[cpu]->parent = &sys_dev->kobj;
721 kobject_set_name(cache_kobject[cpu], "%s", "cache");
722 cache_kobject[cpu]->ktype = &ktype_percpu_entry;
723 retval = kobject_register(cache_kobject[cpu]);
725 for (i = 0; i < num_cache_leaves; i++) {
726 this_object = INDEX_KOBJECT_PTR(cpu,i);
727 this_object->cpu = cpu;
728 this_object->index = i;
729 this_object->kobj.parent = cache_kobject[cpu];
730 kobject_set_name(&(this_object->kobj), "index%1lu", i);
731 this_object->kobj.ktype = &ktype_cache;
732 retval = kobject_register(&(this_object->kobj));
733 if (unlikely(retval)) {
734 for (j = 0; j < i; j++) {
735 kobject_unregister(
736 &(INDEX_KOBJECT_PTR(cpu,j)->kobj));
738 kobject_unregister(cache_kobject[cpu]);
739 cpuid4_cache_sysfs_exit(cpu);
740 break;
743 return retval;
746 static void __cpuinit cache_remove_dev(struct sys_device * sys_dev)
748 unsigned int cpu = sys_dev->id;
749 unsigned long i;
751 if (cpuid4_info[cpu] == NULL)
752 return;
753 for (i = 0; i < num_cache_leaves; i++) {
754 cache_remove_shared_cpu_map(cpu, i);
755 kobject_unregister(&(INDEX_KOBJECT_PTR(cpu,i)->kobj));
757 kobject_unregister(cache_kobject[cpu]);
758 cpuid4_cache_sysfs_exit(cpu);
759 return;
762 static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
763 unsigned long action, void *hcpu)
765 unsigned int cpu = (unsigned long)hcpu;
766 struct sys_device *sys_dev;
768 sys_dev = get_cpu_sysdev(cpu);
769 switch (action) {
770 case CPU_ONLINE:
771 case CPU_ONLINE_FROZEN:
772 cache_add_dev(sys_dev);
773 break;
774 case CPU_DEAD:
775 case CPU_DEAD_FROZEN:
776 cache_remove_dev(sys_dev);
777 break;
779 return NOTIFY_OK;
782 static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier =
784 .notifier_call = cacheinfo_cpu_callback,
787 static int __cpuinit cache_sysfs_init(void)
789 int i;
791 if (num_cache_leaves == 0)
792 return 0;
794 register_hotcpu_notifier(&cacheinfo_cpu_notifier);
796 for_each_online_cpu(i) {
797 cacheinfo_cpu_callback(&cacheinfo_cpu_notifier, CPU_ONLINE,
798 (void *)(long)i);
801 return 0;
804 device_initcall(cache_sysfs_init);
806 #endif