2 * drivers/mtd/nand/diskonchip.c
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
19 * $Id: diskonchip.c,v 1.55 2005/11/07 11:14:30 gleixner Exp $
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/rslib.h>
27 #include <linux/moduleparam.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/doc2000.h>
33 #include <linux/mtd/compatmac.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/mtd/inftl.h>
37 /* Where to look for the devices? */
38 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
39 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
42 static unsigned long __initdata doc_locations
[] = {
43 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
44 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
45 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
46 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
47 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
48 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
49 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
50 #else /* CONFIG_MTD_DOCPROBE_HIGH */
51 0xc8000, 0xca000, 0xcc000, 0xce000,
52 0xd0000, 0xd2000, 0xd4000, 0xd6000,
53 0xd8000, 0xda000, 0xdc000, 0xde000,
54 0xe0000, 0xe2000, 0xe4000, 0xe6000,
55 0xe8000, 0xea000, 0xec000, 0xee000,
56 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
57 #elif defined(__PPC__)
60 #warning Unknown architecture for DiskOnChip. No default probe locations defined
64 static struct mtd_info
*doclist
= NULL
;
67 void __iomem
*virtadr
;
68 unsigned long physadr
;
71 int chips_per_floor
; /* The number of chips detected on each floor */
76 struct mtd_info
*nextdoc
;
79 /* This is the syndrome computed by the HW ecc generator upon reading an empty
80 page, one with all 0xff for data and stored ecc code. */
81 static u_char empty_read_syndrome
[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
83 /* This is the ecc value computed by the HW ecc generator upon writing an empty
84 page, one with all 0xff for data. */
85 static u_char empty_write_ecc
[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
87 #define INFTL_BBT_RESERVED_BLOCKS 4
89 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
90 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
91 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
93 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
,
94 unsigned int bitmask
);
95 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
);
98 module_param(debug
, int, 0);
100 static int try_dword
= 1;
101 module_param(try_dword
, int, 0);
103 static int no_ecc_failures
= 0;
104 module_param(no_ecc_failures
, int, 0);
106 static int no_autopart
= 0;
107 module_param(no_autopart
, int, 0);
109 static int show_firmware_partition
= 0;
110 module_param(show_firmware_partition
, int, 0);
112 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
113 static int inftl_bbt_write
= 1;
115 static int inftl_bbt_write
= 0;
117 module_param(inftl_bbt_write
, int, 0);
119 static unsigned long doc_config_location
= CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
;
120 module_param(doc_config_location
, ulong
, 0);
121 MODULE_PARM_DESC(doc_config_location
, "Physical memory address at which to probe for DiskOnChip");
123 /* Sector size for HW ECC */
124 #define SECTOR_SIZE 512
125 /* The sector bytes are packed into NB_DATA 10 bit words */
126 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
127 /* Number of roots */
129 /* First consective root */
131 /* Number of symbols */
134 /* the Reed Solomon control structure */
135 static struct rs_control
*rs_decoder
;
138 * The HW decoder in the DoC ASIC's provides us a error syndrome,
139 * which we must convert to a standard syndrom usable by the generic
140 * Reed-Solomon library code.
142 * Fabrice Bellard figured this out in the old docecc code. I added
143 * some comments, improved a minor bit and converted it to make use
144 * of the generic Reed-Solomon libary. tglx
146 static int doc_ecc_decode(struct rs_control
*rs
, uint8_t *data
, uint8_t *ecc
)
148 int i
, j
, nerr
, errpos
[8];
150 uint16_t ds
[4], s
[5], tmp
, errval
[8], syn
[4];
152 /* Convert the ecc bytes into words */
153 ds
[0] = ((ecc
[4] & 0xff) >> 0) | ((ecc
[5] & 0x03) << 8);
154 ds
[1] = ((ecc
[5] & 0xfc) >> 2) | ((ecc
[2] & 0x0f) << 6);
155 ds
[2] = ((ecc
[2] & 0xf0) >> 4) | ((ecc
[3] & 0x3f) << 4);
156 ds
[3] = ((ecc
[3] & 0xc0) >> 6) | ((ecc
[0] & 0xff) << 2);
159 /* Initialize the syndrom buffer */
160 for (i
= 0; i
< NROOTS
; i
++)
164 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
165 * where x = alpha^(FCR + i)
167 for (j
= 1; j
< NROOTS
; j
++) {
170 tmp
= rs
->index_of
[ds
[j
]];
171 for (i
= 0; i
< NROOTS
; i
++)
172 s
[i
] ^= rs
->alpha_to
[rs_modnn(rs
, tmp
+ (FCR
+ i
) * j
)];
175 /* Calc s[i] = s[i] / alpha^(v + i) */
176 for (i
= 0; i
< NROOTS
; i
++) {
178 syn
[i
] = rs_modnn(rs
, rs
->index_of
[s
[i
]] + (NN
- FCR
- i
));
180 /* Call the decoder library */
181 nerr
= decode_rs16(rs
, NULL
, NULL
, 1019, syn
, 0, errpos
, 0, errval
);
183 /* Incorrectable errors ? */
188 * Correct the errors. The bitpositions are a bit of magic,
189 * but they are given by the design of the de/encoder circuit
192 for (i
= 0; i
< nerr
; i
++) {
193 int index
, bitpos
, pos
= 1015 - errpos
[i
];
195 if (pos
>= NB_DATA
&& pos
< 1019)
198 /* extract bit position (MSB first) */
199 pos
= 10 * (NB_DATA
- 1 - pos
) - 6;
200 /* now correct the following 10 bits. At most two bytes
201 can be modified since pos is even */
202 index
= (pos
>> 3) ^ 1;
204 if ((index
>= 0 && index
< SECTOR_SIZE
) || index
== (SECTOR_SIZE
+ 1)) {
205 val
= (uint8_t) (errval
[i
] >> (2 + bitpos
));
207 if (index
< SECTOR_SIZE
)
210 index
= ((pos
>> 3) + 1) ^ 1;
211 bitpos
= (bitpos
+ 10) & 7;
214 if ((index
>= 0 && index
< SECTOR_SIZE
) || index
== (SECTOR_SIZE
+ 1)) {
215 val
= (uint8_t) (errval
[i
] << (8 - bitpos
));
217 if (index
< SECTOR_SIZE
)
222 /* If the parity is wrong, no rescue possible */
223 return parity
? -EBADMSG
: nerr
;
226 static void DoC_Delay(struct doc_priv
*doc
, unsigned short cycles
)
231 for (i
= 0; i
< cycles
; i
++) {
232 if (DoC_is_Millennium(doc
))
233 dummy
= ReadDOC(doc
->virtadr
, NOP
);
234 else if (DoC_is_MillenniumPlus(doc
))
235 dummy
= ReadDOC(doc
->virtadr
, Mplus_NOP
);
237 dummy
= ReadDOC(doc
->virtadr
, DOCStatus
);
242 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
244 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
245 static int _DoC_WaitReady(struct doc_priv
*doc
)
247 void __iomem
*docptr
= doc
->virtadr
;
248 unsigned long timeo
= jiffies
+ (HZ
* 10);
251 printk("_DoC_WaitReady...\n");
252 /* Out-of-line routine to wait for chip response */
253 if (DoC_is_MillenniumPlus(doc
)) {
254 while ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
255 if (time_after(jiffies
, timeo
)) {
256 printk("_DoC_WaitReady timed out.\n");
263 while (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
264 if (time_after(jiffies
, timeo
)) {
265 printk("_DoC_WaitReady timed out.\n");
276 static inline int DoC_WaitReady(struct doc_priv
*doc
)
278 void __iomem
*docptr
= doc
->virtadr
;
281 if (DoC_is_MillenniumPlus(doc
)) {
284 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
)
285 /* Call the out-of-line routine to wait */
286 ret
= _DoC_WaitReady(doc
);
290 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
))
291 /* Call the out-of-line routine to wait */
292 ret
= _DoC_WaitReady(doc
);
297 printk("DoC_WaitReady OK\n");
301 static void doc2000_write_byte(struct mtd_info
*mtd
, u_char datum
)
303 struct nand_chip
*this = mtd
->priv
;
304 struct doc_priv
*doc
= this->priv
;
305 void __iomem
*docptr
= doc
->virtadr
;
308 printk("write_byte %02x\n", datum
);
309 WriteDOC(datum
, docptr
, CDSNSlowIO
);
310 WriteDOC(datum
, docptr
, 2k_CDSN_IO
);
313 static u_char
doc2000_read_byte(struct mtd_info
*mtd
)
315 struct nand_chip
*this = mtd
->priv
;
316 struct doc_priv
*doc
= this->priv
;
317 void __iomem
*docptr
= doc
->virtadr
;
320 ReadDOC(docptr
, CDSNSlowIO
);
322 ret
= ReadDOC(docptr
, 2k_CDSN_IO
);
324 printk("read_byte returns %02x\n", ret
);
328 static void doc2000_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
330 struct nand_chip
*this = mtd
->priv
;
331 struct doc_priv
*doc
= this->priv
;
332 void __iomem
*docptr
= doc
->virtadr
;
335 printk("writebuf of %d bytes: ", len
);
336 for (i
= 0; i
< len
; i
++) {
337 WriteDOC_(buf
[i
], docptr
, DoC_2k_CDSN_IO
+ i
);
339 printk("%02x ", buf
[i
]);
345 static void doc2000_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
347 struct nand_chip
*this = mtd
->priv
;
348 struct doc_priv
*doc
= this->priv
;
349 void __iomem
*docptr
= doc
->virtadr
;
353 printk("readbuf of %d bytes: ", len
);
355 for (i
= 0; i
< len
; i
++) {
356 buf
[i
] = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
360 static void doc2000_readbuf_dword(struct mtd_info
*mtd
, u_char
*buf
, int len
)
362 struct nand_chip
*this = mtd
->priv
;
363 struct doc_priv
*doc
= this->priv
;
364 void __iomem
*docptr
= doc
->virtadr
;
368 printk("readbuf_dword of %d bytes: ", len
);
370 if (unlikely((((unsigned long)buf
) | len
) & 3)) {
371 for (i
= 0; i
< len
; i
++) {
372 *(uint8_t *) (&buf
[i
]) = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
375 for (i
= 0; i
< len
; i
+= 4) {
376 *(uint32_t *) (&buf
[i
]) = readl(docptr
+ DoC_2k_CDSN_IO
+ i
);
381 static int doc2000_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
383 struct nand_chip
*this = mtd
->priv
;
384 struct doc_priv
*doc
= this->priv
;
385 void __iomem
*docptr
= doc
->virtadr
;
388 for (i
= 0; i
< len
; i
++)
389 if (buf
[i
] != ReadDOC(docptr
, 2k_CDSN_IO
))
394 static uint16_t __init
doc200x_ident_chip(struct mtd_info
*mtd
, int nr
)
396 struct nand_chip
*this = mtd
->priv
;
397 struct doc_priv
*doc
= this->priv
;
400 doc200x_select_chip(mtd
, nr
);
401 doc200x_hwcontrol(mtd
, NAND_CMD_READID
,
402 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
403 doc200x_hwcontrol(mtd
, 0, NAND_CTRL_ALE
| NAND_CTRL_CHANGE
);
404 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
406 /* We cant' use dev_ready here, but at least we wait for the
407 * command to complete
411 ret
= this->read_byte(mtd
) << 8;
412 ret
|= this->read_byte(mtd
);
414 if (doc
->ChipID
== DOC_ChipID_Doc2k
&& try_dword
&& !nr
) {
415 /* First chip probe. See if we get same results by 32-bit access */
420 void __iomem
*docptr
= doc
->virtadr
;
422 doc200x_hwcontrol(mtd
, NAND_CMD_READID
,
423 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
424 doc200x_hwcontrol(mtd
, 0, NAND_CTRL_ALE
| NAND_CTRL_CHANGE
);
425 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
,
426 NAND_NCE
| NAND_CTRL_CHANGE
);
430 ident
.dword
= readl(docptr
+ DoC_2k_CDSN_IO
);
431 if (((ident
.byte
[0] << 8) | ident
.byte
[1]) == ret
) {
432 printk(KERN_INFO
"DiskOnChip 2000 responds to DWORD access\n");
433 this->read_buf
= &doc2000_readbuf_dword
;
440 static void __init
doc2000_count_chips(struct mtd_info
*mtd
)
442 struct nand_chip
*this = mtd
->priv
;
443 struct doc_priv
*doc
= this->priv
;
447 /* Max 4 chips per floor on DiskOnChip 2000 */
448 doc
->chips_per_floor
= 4;
450 /* Find out what the first chip is */
451 mfrid
= doc200x_ident_chip(mtd
, 0);
453 /* Find how many chips in each floor. */
454 for (i
= 1; i
< 4; i
++) {
455 if (doc200x_ident_chip(mtd
, i
) != mfrid
)
458 doc
->chips_per_floor
= i
;
459 printk(KERN_DEBUG
"Detected %d chips per floor.\n", i
);
462 static int doc200x_wait(struct mtd_info
*mtd
, struct nand_chip
*this)
464 struct doc_priv
*doc
= this->priv
;
469 this->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
471 status
= (int)this->read_byte(mtd
);
476 static void doc2001_write_byte(struct mtd_info
*mtd
, u_char datum
)
478 struct nand_chip
*this = mtd
->priv
;
479 struct doc_priv
*doc
= this->priv
;
480 void __iomem
*docptr
= doc
->virtadr
;
482 WriteDOC(datum
, docptr
, CDSNSlowIO
);
483 WriteDOC(datum
, docptr
, Mil_CDSN_IO
);
484 WriteDOC(datum
, docptr
, WritePipeTerm
);
487 static u_char
doc2001_read_byte(struct mtd_info
*mtd
)
489 struct nand_chip
*this = mtd
->priv
;
490 struct doc_priv
*doc
= this->priv
;
491 void __iomem
*docptr
= doc
->virtadr
;
493 //ReadDOC(docptr, CDSNSlowIO);
494 /* 11.4.5 -- delay twice to allow extended length cycle */
496 ReadDOC(docptr
, ReadPipeInit
);
497 //return ReadDOC(docptr, Mil_CDSN_IO);
498 return ReadDOC(docptr
, LastDataRead
);
501 static void doc2001_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
503 struct nand_chip
*this = mtd
->priv
;
504 struct doc_priv
*doc
= this->priv
;
505 void __iomem
*docptr
= doc
->virtadr
;
508 for (i
= 0; i
< len
; i
++)
509 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
510 /* Terminate write pipeline */
511 WriteDOC(0x00, docptr
, WritePipeTerm
);
514 static void doc2001_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
516 struct nand_chip
*this = mtd
->priv
;
517 struct doc_priv
*doc
= this->priv
;
518 void __iomem
*docptr
= doc
->virtadr
;
521 /* Start read pipeline */
522 ReadDOC(docptr
, ReadPipeInit
);
524 for (i
= 0; i
< len
- 1; i
++)
525 buf
[i
] = ReadDOC(docptr
, Mil_CDSN_IO
+ (i
& 0xff));
527 /* Terminate read pipeline */
528 buf
[i
] = ReadDOC(docptr
, LastDataRead
);
531 static int doc2001_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
533 struct nand_chip
*this = mtd
->priv
;
534 struct doc_priv
*doc
= this->priv
;
535 void __iomem
*docptr
= doc
->virtadr
;
538 /* Start read pipeline */
539 ReadDOC(docptr
, ReadPipeInit
);
541 for (i
= 0; i
< len
- 1; i
++)
542 if (buf
[i
] != ReadDOC(docptr
, Mil_CDSN_IO
)) {
543 ReadDOC(docptr
, LastDataRead
);
546 if (buf
[i
] != ReadDOC(docptr
, LastDataRead
))
551 static u_char
doc2001plus_read_byte(struct mtd_info
*mtd
)
553 struct nand_chip
*this = mtd
->priv
;
554 struct doc_priv
*doc
= this->priv
;
555 void __iomem
*docptr
= doc
->virtadr
;
558 ReadDOC(docptr
, Mplus_ReadPipeInit
);
559 ReadDOC(docptr
, Mplus_ReadPipeInit
);
560 ret
= ReadDOC(docptr
, Mplus_LastDataRead
);
562 printk("read_byte returns %02x\n", ret
);
566 static void doc2001plus_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
568 struct nand_chip
*this = mtd
->priv
;
569 struct doc_priv
*doc
= this->priv
;
570 void __iomem
*docptr
= doc
->virtadr
;
574 printk("writebuf of %d bytes: ", len
);
575 for (i
= 0; i
< len
; i
++) {
576 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
578 printk("%02x ", buf
[i
]);
584 static void doc2001plus_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
586 struct nand_chip
*this = mtd
->priv
;
587 struct doc_priv
*doc
= this->priv
;
588 void __iomem
*docptr
= doc
->virtadr
;
592 printk("readbuf of %d bytes: ", len
);
594 /* Start read pipeline */
595 ReadDOC(docptr
, Mplus_ReadPipeInit
);
596 ReadDOC(docptr
, Mplus_ReadPipeInit
);
598 for (i
= 0; i
< len
- 2; i
++) {
599 buf
[i
] = ReadDOC(docptr
, Mil_CDSN_IO
);
601 printk("%02x ", buf
[i
]);
604 /* Terminate read pipeline */
605 buf
[len
- 2] = ReadDOC(docptr
, Mplus_LastDataRead
);
607 printk("%02x ", buf
[len
- 2]);
608 buf
[len
- 1] = ReadDOC(docptr
, Mplus_LastDataRead
);
610 printk("%02x ", buf
[len
- 1]);
615 static int doc2001plus_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
617 struct nand_chip
*this = mtd
->priv
;
618 struct doc_priv
*doc
= this->priv
;
619 void __iomem
*docptr
= doc
->virtadr
;
623 printk("verifybuf of %d bytes: ", len
);
625 /* Start read pipeline */
626 ReadDOC(docptr
, Mplus_ReadPipeInit
);
627 ReadDOC(docptr
, Mplus_ReadPipeInit
);
629 for (i
= 0; i
< len
- 2; i
++)
630 if (buf
[i
] != ReadDOC(docptr
, Mil_CDSN_IO
)) {
631 ReadDOC(docptr
, Mplus_LastDataRead
);
632 ReadDOC(docptr
, Mplus_LastDataRead
);
635 if (buf
[len
- 2] != ReadDOC(docptr
, Mplus_LastDataRead
))
637 if (buf
[len
- 1] != ReadDOC(docptr
, Mplus_LastDataRead
))
642 static void doc2001plus_select_chip(struct mtd_info
*mtd
, int chip
)
644 struct nand_chip
*this = mtd
->priv
;
645 struct doc_priv
*doc
= this->priv
;
646 void __iomem
*docptr
= doc
->virtadr
;
650 printk("select chip (%d)\n", chip
);
653 /* Disable flash internally */
654 WriteDOC(0, docptr
, Mplus_FlashSelect
);
658 floor
= chip
/ doc
->chips_per_floor
;
659 chip
-= (floor
* doc
->chips_per_floor
);
661 /* Assert ChipEnable and deassert WriteProtect */
662 WriteDOC((DOC_FLASH_CE
), docptr
, Mplus_FlashSelect
);
663 this->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
666 doc
->curfloor
= floor
;
669 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
)
671 struct nand_chip
*this = mtd
->priv
;
672 struct doc_priv
*doc
= this->priv
;
673 void __iomem
*docptr
= doc
->virtadr
;
677 printk("select chip (%d)\n", chip
);
682 floor
= chip
/ doc
->chips_per_floor
;
683 chip
-= (floor
* doc
->chips_per_floor
);
685 /* 11.4.4 -- deassert CE before changing chip */
686 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
688 WriteDOC(floor
, docptr
, FloorSelect
);
689 WriteDOC(chip
, docptr
, CDSNDeviceSelect
);
691 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
694 doc
->curfloor
= floor
;
697 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
699 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
,
702 struct nand_chip
*this = mtd
->priv
;
703 struct doc_priv
*doc
= this->priv
;
704 void __iomem
*docptr
= doc
->virtadr
;
706 if (ctrl
& NAND_CTRL_CHANGE
) {
707 doc
->CDSNControl
&= ~CDSN_CTRL_MSK
;
708 doc
->CDSNControl
|= ctrl
& CDSN_CTRL_MSK
;
710 printk("hwcontrol(%d): %02x\n", cmd
, doc
->CDSNControl
);
711 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
712 /* 11.4.3 -- 4 NOPs after CSDNControl write */
715 if (cmd
!= NAND_CMD_NONE
) {
716 if (DoC_is_2000(doc
))
717 doc2000_write_byte(mtd
, cmd
);
719 doc2001_write_byte(mtd
, cmd
);
723 static void doc2001plus_command(struct mtd_info
*mtd
, unsigned command
, int column
, int page_addr
)
725 struct nand_chip
*this = mtd
->priv
;
726 struct doc_priv
*doc
= this->priv
;
727 void __iomem
*docptr
= doc
->virtadr
;
730 * Must terminate write pipeline before sending any commands
733 if (command
== NAND_CMD_PAGEPROG
) {
734 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
735 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
739 * Write out the command to the device.
741 if (command
== NAND_CMD_SEQIN
) {
744 if (column
>= mtd
->writesize
) {
746 column
-= mtd
->writesize
;
747 readcmd
= NAND_CMD_READOOB
;
748 } else if (column
< 256) {
749 /* First 256 bytes --> READ0 */
750 readcmd
= NAND_CMD_READ0
;
753 readcmd
= NAND_CMD_READ1
;
755 WriteDOC(readcmd
, docptr
, Mplus_FlashCmd
);
757 WriteDOC(command
, docptr
, Mplus_FlashCmd
);
758 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
759 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
761 if (column
!= -1 || page_addr
!= -1) {
762 /* Serially input address */
764 /* Adjust columns for 16 bit buswidth */
765 if (this->options
& NAND_BUSWIDTH_16
)
767 WriteDOC(column
, docptr
, Mplus_FlashAddress
);
769 if (page_addr
!= -1) {
770 WriteDOC((unsigned char)(page_addr
& 0xff), docptr
, Mplus_FlashAddress
);
771 WriteDOC((unsigned char)((page_addr
>> 8) & 0xff), docptr
, Mplus_FlashAddress
);
772 /* One more address cycle for higher density devices */
773 if (this->chipsize
& 0x0c000000) {
774 WriteDOC((unsigned char)((page_addr
>> 16) & 0x0f), docptr
, Mplus_FlashAddress
);
775 printk("high density\n");
778 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
779 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
781 if (command
== NAND_CMD_READ0
|| command
== NAND_CMD_READ1
||
782 command
== NAND_CMD_READOOB
|| command
== NAND_CMD_READID
)
783 WriteDOC(0, docptr
, Mplus_FlashControl
);
787 * program and erase have their own busy handlers
788 * status and sequential in needs no delay
792 case NAND_CMD_PAGEPROG
:
793 case NAND_CMD_ERASE1
:
794 case NAND_CMD_ERASE2
:
796 case NAND_CMD_STATUS
:
802 udelay(this->chip_delay
);
803 WriteDOC(NAND_CMD_STATUS
, docptr
, Mplus_FlashCmd
);
804 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
805 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
806 while (!(this->read_byte(mtd
) & 0x40)) ;
809 /* This applies to read commands */
812 * If we don't have access to the busy pin, we apply the given
815 if (!this->dev_ready
) {
816 udelay(this->chip_delay
);
821 /* Apply this short delay always to ensure that we do wait tWB in
822 * any case on any machine. */
824 /* wait until command is processed */
825 while (!this->dev_ready(mtd
)) ;
828 static int doc200x_dev_ready(struct mtd_info
*mtd
)
830 struct nand_chip
*this = mtd
->priv
;
831 struct doc_priv
*doc
= this->priv
;
832 void __iomem
*docptr
= doc
->virtadr
;
834 if (DoC_is_MillenniumPlus(doc
)) {
835 /* 11.4.2 -- must NOP four times before checking FR/B# */
837 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
839 printk("not ready\n");
843 printk("was ready\n");
846 /* 11.4.2 -- must NOP four times before checking FR/B# */
848 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
850 printk("not ready\n");
853 /* 11.4.2 -- Must NOP twice if it's ready */
856 printk("was ready\n");
861 static int doc200x_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
863 /* This is our last resort if we couldn't find or create a BBT. Just
864 pretend all blocks are good. */
868 static void doc200x_enable_hwecc(struct mtd_info
*mtd
, int mode
)
870 struct nand_chip
*this = mtd
->priv
;
871 struct doc_priv
*doc
= this->priv
;
872 void __iomem
*docptr
= doc
->virtadr
;
874 /* Prime the ECC engine */
877 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
878 WriteDOC(DOC_ECC_EN
, docptr
, ECCConf
);
881 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
882 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, ECCConf
);
887 static void doc2001plus_enable_hwecc(struct mtd_info
*mtd
, int mode
)
889 struct nand_chip
*this = mtd
->priv
;
890 struct doc_priv
*doc
= this->priv
;
891 void __iomem
*docptr
= doc
->virtadr
;
893 /* Prime the ECC engine */
896 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
897 WriteDOC(DOC_ECC_EN
, docptr
, Mplus_ECCConf
);
900 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
901 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, Mplus_ECCConf
);
906 /* This code is only called on write */
907 static int doc200x_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, unsigned char *ecc_code
)
909 struct nand_chip
*this = mtd
->priv
;
910 struct doc_priv
*doc
= this->priv
;
911 void __iomem
*docptr
= doc
->virtadr
;
915 /* flush the pipeline */
916 if (DoC_is_2000(doc
)) {
917 WriteDOC(doc
->CDSNControl
& ~CDSN_CTRL_FLASH_IO
, docptr
, CDSNControl
);
918 WriteDOC(0, docptr
, 2k_CDSN_IO
);
919 WriteDOC(0, docptr
, 2k_CDSN_IO
);
920 WriteDOC(0, docptr
, 2k_CDSN_IO
);
921 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
922 } else if (DoC_is_MillenniumPlus(doc
)) {
923 WriteDOC(0, docptr
, Mplus_NOP
);
924 WriteDOC(0, docptr
, Mplus_NOP
);
925 WriteDOC(0, docptr
, Mplus_NOP
);
927 WriteDOC(0, docptr
, NOP
);
928 WriteDOC(0, docptr
, NOP
);
929 WriteDOC(0, docptr
, NOP
);
932 for (i
= 0; i
< 6; i
++) {
933 if (DoC_is_MillenniumPlus(doc
))
934 ecc_code
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
936 ecc_code
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
937 if (ecc_code
[i
] != empty_write_ecc
[i
])
940 if (DoC_is_MillenniumPlus(doc
))
941 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
943 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
945 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
947 /* Note: this somewhat expensive test should not be triggered
948 often. It could be optimized away by examining the data in
949 the writebuf routine, and remembering the result. */
950 for (i
= 0; i
< 512; i
++) {
957 /* If emptymatch still =1, we do have an all-0xff data buffer.
958 Return all-0xff ecc value instead of the computed one, so
959 it'll look just like a freshly-erased page. */
961 memset(ecc_code
, 0xff, 6);
966 static int doc200x_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
967 u_char
*read_ecc
, u_char
*isnull
)
970 struct nand_chip
*this = mtd
->priv
;
971 struct doc_priv
*doc
= this->priv
;
972 void __iomem
*docptr
= doc
->virtadr
;
974 volatile u_char dummy
;
977 /* flush the pipeline */
978 if (DoC_is_2000(doc
)) {
979 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
980 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
981 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
982 } else if (DoC_is_MillenniumPlus(doc
)) {
983 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
984 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
985 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
987 dummy
= ReadDOC(docptr
, ECCConf
);
988 dummy
= ReadDOC(docptr
, ECCConf
);
989 dummy
= ReadDOC(docptr
, ECCConf
);
992 /* Error occured ? */
994 for (i
= 0; i
< 6; i
++) {
995 if (DoC_is_MillenniumPlus(doc
))
996 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
998 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
999 if (calc_ecc
[i
] != empty_read_syndrome
[i
])
1002 /* If emptymatch=1, the read syndrome is consistent with an
1003 all-0xff data and stored ecc block. Check the stored ecc. */
1005 for (i
= 0; i
< 6; i
++) {
1006 if (read_ecc
[i
] == 0xff)
1012 /* If emptymatch still =1, check the data block. */
1014 /* Note: this somewhat expensive test should not be triggered
1015 often. It could be optimized away by examining the data in
1016 the readbuf routine, and remembering the result. */
1017 for (i
= 0; i
< 512; i
++) {
1024 /* If emptymatch still =1, this is almost certainly a freshly-
1025 erased block, in which case the ECC will not come out right.
1026 We'll suppress the error and tell the caller everything's
1027 OK. Because it is. */
1029 ret
= doc_ecc_decode(rs_decoder
, dat
, calc_ecc
);
1031 printk(KERN_ERR
"doc200x_correct_data corrected %d errors\n", ret
);
1033 if (DoC_is_MillenniumPlus(doc
))
1034 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
1036 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
1037 if (no_ecc_failures
&& (ret
== -EBADMSG
)) {
1038 printk(KERN_ERR
"suppressing ECC failure\n");
1044 //u_char mydatabuf[528];
1046 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1047 * attempt to retain compatibility. It used to read:
1048 * .oobfree = { {8, 8} }
1049 * Since that leaves two bytes unusable, it was changed. But the following
1050 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1051 * .oobfree = { {6, 10} }
1052 * jffs2 seems to handle the above gracefully, but the current scheme seems
1053 * safer. The only problem with it is that any code that parses oobfree must
1054 * be able to handle out-of-order segments.
1056 static struct nand_ecclayout doc200x_oobinfo
= {
1058 .eccpos
= {0, 1, 2, 3, 4, 5},
1059 .oobfree
= {{8, 8}, {6, 2}}
1062 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1063 On sucessful return, buf will contain a copy of the media header for
1064 further processing. id is the string to scan for, and will presumably be
1065 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1066 header. The page #s of the found media headers are placed in mh0_page and
1067 mh1_page in the DOC private structure. */
1068 static int __init
find_media_headers(struct mtd_info
*mtd
, u_char
*buf
, const char *id
, int findmirror
)
1070 struct nand_chip
*this = mtd
->priv
;
1071 struct doc_priv
*doc
= this->priv
;
1076 for (offs
= 0; offs
< mtd
->size
; offs
+= mtd
->erasesize
) {
1077 ret
= mtd
->read(mtd
, offs
, mtd
->writesize
, &retlen
, buf
);
1078 if (retlen
!= mtd
->writesize
)
1081 printk(KERN_WARNING
"ECC error scanning DOC at 0x%x\n", offs
);
1083 if (memcmp(buf
, id
, 6))
1085 printk(KERN_INFO
"Found DiskOnChip %s Media Header at 0x%x\n", id
, offs
);
1086 if (doc
->mh0_page
== -1) {
1087 doc
->mh0_page
= offs
>> this->page_shift
;
1092 doc
->mh1_page
= offs
>> this->page_shift
;
1095 if (doc
->mh0_page
== -1) {
1096 printk(KERN_WARNING
"DiskOnChip %s Media Header not found.\n", id
);
1099 /* Only one mediaheader was found. We want buf to contain a
1100 mediaheader on return, so we'll have to re-read the one we found. */
1101 offs
= doc
->mh0_page
<< this->page_shift
;
1102 ret
= mtd
->read(mtd
, offs
, mtd
->writesize
, &retlen
, buf
);
1103 if (retlen
!= mtd
->writesize
) {
1104 /* Insanity. Give up. */
1105 printk(KERN_ERR
"Read DiskOnChip Media Header once, but can't reread it???\n");
1111 static inline int __init
nftl_partscan(struct mtd_info
*mtd
, struct mtd_partition
*parts
)
1113 struct nand_chip
*this = mtd
->priv
;
1114 struct doc_priv
*doc
= this->priv
;
1117 struct NFTLMediaHeader
*mh
;
1118 const unsigned psize
= 1 << this->page_shift
;
1120 unsigned blocks
, maxblocks
;
1121 int offs
, numheaders
;
1123 buf
= kmalloc(mtd
->writesize
, GFP_KERNEL
);
1125 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1128 if (!(numheaders
= find_media_headers(mtd
, buf
, "ANAND", 1)))
1130 mh
= (struct NFTLMediaHeader
*)buf
;
1132 mh
->NumEraseUnits
= le16_to_cpu(mh
->NumEraseUnits
);
1133 mh
->FirstPhysicalEUN
= le16_to_cpu(mh
->FirstPhysicalEUN
);
1134 mh
->FormattedSize
= le32_to_cpu(mh
->FormattedSize
);
1136 printk(KERN_INFO
" DataOrgID = %s\n"
1137 " NumEraseUnits = %d\n"
1138 " FirstPhysicalEUN = %d\n"
1139 " FormattedSize = %d\n"
1140 " UnitSizeFactor = %d\n",
1141 mh
->DataOrgID
, mh
->NumEraseUnits
,
1142 mh
->FirstPhysicalEUN
, mh
->FormattedSize
,
1143 mh
->UnitSizeFactor
);
1145 blocks
= mtd
->size
>> this->phys_erase_shift
;
1146 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1148 if (mh
->UnitSizeFactor
== 0x00) {
1149 /* Auto-determine UnitSizeFactor. The constraints are:
1150 - There can be at most 32768 virtual blocks.
1151 - There can be at most (virtual block size - page size)
1152 virtual blocks (because MediaHeader+BBT must fit in 1).
1154 mh
->UnitSizeFactor
= 0xff;
1155 while (blocks
> maxblocks
) {
1157 maxblocks
= min(32768U, (maxblocks
<< 1) + psize
);
1158 mh
->UnitSizeFactor
--;
1160 printk(KERN_WARNING
"UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh
->UnitSizeFactor
);
1163 /* NOTE: The lines below modify internal variables of the NAND and MTD
1164 layers; variables with have already been configured by nand_scan.
1165 Unfortunately, we didn't know before this point what these values
1166 should be. Thus, this code is somewhat dependant on the exact
1167 implementation of the NAND layer. */
1168 if (mh
->UnitSizeFactor
!= 0xff) {
1169 this->bbt_erase_shift
+= (0xff - mh
->UnitSizeFactor
);
1170 mtd
->erasesize
<<= (0xff - mh
->UnitSizeFactor
);
1171 printk(KERN_INFO
"Setting virtual erase size to %d\n", mtd
->erasesize
);
1172 blocks
= mtd
->size
>> this->bbt_erase_shift
;
1173 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1176 if (blocks
> maxblocks
) {
1177 printk(KERN_ERR
"UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh
->UnitSizeFactor
);
1181 /* Skip past the media headers. */
1182 offs
= max(doc
->mh0_page
, doc
->mh1_page
);
1183 offs
<<= this->page_shift
;
1184 offs
+= mtd
->erasesize
;
1186 if (show_firmware_partition
== 1) {
1187 parts
[0].name
= " DiskOnChip Firmware / Media Header partition";
1188 parts
[0].offset
= 0;
1189 parts
[0].size
= offs
;
1193 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1194 parts
[numparts
].offset
= offs
;
1195 parts
[numparts
].size
= (mh
->NumEraseUnits
- numheaders
) << this->bbt_erase_shift
;
1197 offs
+= parts
[numparts
].size
;
1200 if (offs
< mtd
->size
) {
1201 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1202 parts
[numparts
].offset
= offs
;
1203 parts
[numparts
].size
= mtd
->size
- offs
;
1213 /* This is a stripped-down copy of the code in inftlmount.c */
1214 static inline int __init
inftl_partscan(struct mtd_info
*mtd
, struct mtd_partition
*parts
)
1216 struct nand_chip
*this = mtd
->priv
;
1217 struct doc_priv
*doc
= this->priv
;
1220 struct INFTLMediaHeader
*mh
;
1221 struct INFTLPartition
*ip
;
1224 int vshift
, lastvunit
= 0;
1226 int end
= mtd
->size
;
1228 if (inftl_bbt_write
)
1229 end
-= (INFTL_BBT_RESERVED_BLOCKS
<< this->phys_erase_shift
);
1231 buf
= kmalloc(mtd
->writesize
, GFP_KERNEL
);
1233 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1237 if (!find_media_headers(mtd
, buf
, "BNAND", 0))
1239 doc
->mh1_page
= doc
->mh0_page
+ (4096 >> this->page_shift
);
1240 mh
= (struct INFTLMediaHeader
*)buf
;
1242 mh
->NoOfBootImageBlocks
= le32_to_cpu(mh
->NoOfBootImageBlocks
);
1243 mh
->NoOfBinaryPartitions
= le32_to_cpu(mh
->NoOfBinaryPartitions
);
1244 mh
->NoOfBDTLPartitions
= le32_to_cpu(mh
->NoOfBDTLPartitions
);
1245 mh
->BlockMultiplierBits
= le32_to_cpu(mh
->BlockMultiplierBits
);
1246 mh
->FormatFlags
= le32_to_cpu(mh
->FormatFlags
);
1247 mh
->PercentUsed
= le32_to_cpu(mh
->PercentUsed
);
1249 printk(KERN_INFO
" bootRecordID = %s\n"
1250 " NoOfBootImageBlocks = %d\n"
1251 " NoOfBinaryPartitions = %d\n"
1252 " NoOfBDTLPartitions = %d\n"
1253 " BlockMultiplerBits = %d\n"
1254 " FormatFlgs = %d\n"
1255 " OsakVersion = %d.%d.%d.%d\n"
1256 " PercentUsed = %d\n",
1257 mh
->bootRecordID
, mh
->NoOfBootImageBlocks
,
1258 mh
->NoOfBinaryPartitions
,
1259 mh
->NoOfBDTLPartitions
,
1260 mh
->BlockMultiplierBits
, mh
->FormatFlags
,
1261 ((unsigned char *) &mh
->OsakVersion
)[0] & 0xf,
1262 ((unsigned char *) &mh
->OsakVersion
)[1] & 0xf,
1263 ((unsigned char *) &mh
->OsakVersion
)[2] & 0xf,
1264 ((unsigned char *) &mh
->OsakVersion
)[3] & 0xf,
1267 vshift
= this->phys_erase_shift
+ mh
->BlockMultiplierBits
;
1269 blocks
= mtd
->size
>> vshift
;
1270 if (blocks
> 32768) {
1271 printk(KERN_ERR
"BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh
->BlockMultiplierBits
);
1275 blocks
= doc
->chips_per_floor
<< (this->chip_shift
- this->phys_erase_shift
);
1276 if (inftl_bbt_write
&& (blocks
> mtd
->erasesize
)) {
1277 printk(KERN_ERR
"Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1281 /* Scan the partitions */
1282 for (i
= 0; (i
< 4); i
++) {
1283 ip
= &(mh
->Partitions
[i
]);
1284 ip
->virtualUnits
= le32_to_cpu(ip
->virtualUnits
);
1285 ip
->firstUnit
= le32_to_cpu(ip
->firstUnit
);
1286 ip
->lastUnit
= le32_to_cpu(ip
->lastUnit
);
1287 ip
->flags
= le32_to_cpu(ip
->flags
);
1288 ip
->spareUnits
= le32_to_cpu(ip
->spareUnits
);
1289 ip
->Reserved0
= le32_to_cpu(ip
->Reserved0
);
1291 printk(KERN_INFO
" PARTITION[%d] ->\n"
1292 " virtualUnits = %d\n"
1296 " spareUnits = %d\n",
1297 i
, ip
->virtualUnits
, ip
->firstUnit
,
1298 ip
->lastUnit
, ip
->flags
,
1301 if ((show_firmware_partition
== 1) &&
1302 (i
== 0) && (ip
->firstUnit
> 0)) {
1303 parts
[0].name
= " DiskOnChip IPL / Media Header partition";
1304 parts
[0].offset
= 0;
1305 parts
[0].size
= mtd
->erasesize
* ip
->firstUnit
;
1309 if (ip
->flags
& INFTL_BINARY
)
1310 parts
[numparts
].name
= " DiskOnChip BDK partition";
1312 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1313 parts
[numparts
].offset
= ip
->firstUnit
<< vshift
;
1314 parts
[numparts
].size
= (1 + ip
->lastUnit
- ip
->firstUnit
) << vshift
;
1316 if (ip
->lastUnit
> lastvunit
)
1317 lastvunit
= ip
->lastUnit
;
1318 if (ip
->flags
& INFTL_LAST
)
1322 if ((lastvunit
<< vshift
) < end
) {
1323 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1324 parts
[numparts
].offset
= lastvunit
<< vshift
;
1325 parts
[numparts
].size
= end
- parts
[numparts
].offset
;
1334 static int __init
nftl_scan_bbt(struct mtd_info
*mtd
)
1337 struct nand_chip
*this = mtd
->priv
;
1338 struct doc_priv
*doc
= this->priv
;
1339 struct mtd_partition parts
[2];
1341 memset((char *)parts
, 0, sizeof(parts
));
1342 /* On NFTL, we have to find the media headers before we can read the
1343 BBTs, since they're stored in the media header eraseblocks. */
1344 numparts
= nftl_partscan(mtd
, parts
);
1347 this->bbt_td
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1348 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1350 this->bbt_td
->veroffs
= 7;
1351 this->bbt_td
->pages
[0] = doc
->mh0_page
+ 1;
1352 if (doc
->mh1_page
!= -1) {
1353 this->bbt_md
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1354 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1356 this->bbt_md
->veroffs
= 7;
1357 this->bbt_md
->pages
[0] = doc
->mh1_page
+ 1;
1359 this->bbt_md
= NULL
;
1362 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1363 At least as nand_bbt.c is currently written. */
1364 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1366 add_mtd_device(mtd
);
1367 #ifdef CONFIG_MTD_PARTITIONS
1369 add_mtd_partitions(mtd
, parts
, numparts
);
1374 static int __init
inftl_scan_bbt(struct mtd_info
*mtd
)
1377 struct nand_chip
*this = mtd
->priv
;
1378 struct doc_priv
*doc
= this->priv
;
1379 struct mtd_partition parts
[5];
1381 if (this->numchips
> doc
->chips_per_floor
) {
1382 printk(KERN_ERR
"Multi-floor INFTL devices not yet supported.\n");
1386 if (DoC_is_MillenniumPlus(doc
)) {
1387 this->bbt_td
->options
= NAND_BBT_2BIT
| NAND_BBT_ABSPAGE
;
1388 if (inftl_bbt_write
)
1389 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1390 this->bbt_td
->pages
[0] = 2;
1391 this->bbt_md
= NULL
;
1393 this->bbt_td
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
| NAND_BBT_VERSION
;
1394 if (inftl_bbt_write
)
1395 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1396 this->bbt_td
->offs
= 8;
1397 this->bbt_td
->len
= 8;
1398 this->bbt_td
->veroffs
= 7;
1399 this->bbt_td
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1400 this->bbt_td
->reserved_block_code
= 0x01;
1401 this->bbt_td
->pattern
= "MSYS_BBT";
1403 this->bbt_md
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
| NAND_BBT_VERSION
;
1404 if (inftl_bbt_write
)
1405 this->bbt_md
->options
|= NAND_BBT_WRITE
;
1406 this->bbt_md
->offs
= 8;
1407 this->bbt_md
->len
= 8;
1408 this->bbt_md
->veroffs
= 7;
1409 this->bbt_md
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1410 this->bbt_md
->reserved_block_code
= 0x01;
1411 this->bbt_md
->pattern
= "TBB_SYSM";
1414 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1415 At least as nand_bbt.c is currently written. */
1416 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1418 memset((char *)parts
, 0, sizeof(parts
));
1419 numparts
= inftl_partscan(mtd
, parts
);
1420 /* At least for now, require the INFTL Media Header. We could probably
1421 do without it for non-INFTL use, since all it gives us is
1422 autopartitioning, but I want to give it more thought. */
1425 add_mtd_device(mtd
);
1426 #ifdef CONFIG_MTD_PARTITIONS
1428 add_mtd_partitions(mtd
, parts
, numparts
);
1433 static inline int __init
doc2000_init(struct mtd_info
*mtd
)
1435 struct nand_chip
*this = mtd
->priv
;
1436 struct doc_priv
*doc
= this->priv
;
1438 this->read_byte
= doc2000_read_byte
;
1439 this->write_buf
= doc2000_writebuf
;
1440 this->read_buf
= doc2000_readbuf
;
1441 this->verify_buf
= doc2000_verifybuf
;
1442 this->scan_bbt
= nftl_scan_bbt
;
1444 doc
->CDSNControl
= CDSN_CTRL_FLASH_IO
| CDSN_CTRL_ECC_IO
;
1445 doc2000_count_chips(mtd
);
1446 mtd
->name
= "DiskOnChip 2000 (NFTL Model)";
1447 return (4 * doc
->chips_per_floor
);
1450 static inline int __init
doc2001_init(struct mtd_info
*mtd
)
1452 struct nand_chip
*this = mtd
->priv
;
1453 struct doc_priv
*doc
= this->priv
;
1455 this->read_byte
= doc2001_read_byte
;
1456 this->write_buf
= doc2001_writebuf
;
1457 this->read_buf
= doc2001_readbuf
;
1458 this->verify_buf
= doc2001_verifybuf
;
1460 ReadDOC(doc
->virtadr
, ChipID
);
1461 ReadDOC(doc
->virtadr
, ChipID
);
1462 ReadDOC(doc
->virtadr
, ChipID
);
1463 if (ReadDOC(doc
->virtadr
, ChipID
) != DOC_ChipID_DocMil
) {
1464 /* It's not a Millennium; it's one of the newer
1465 DiskOnChip 2000 units with a similar ASIC.
1466 Treat it like a Millennium, except that it
1467 can have multiple chips. */
1468 doc2000_count_chips(mtd
);
1469 mtd
->name
= "DiskOnChip 2000 (INFTL Model)";
1470 this->scan_bbt
= inftl_scan_bbt
;
1471 return (4 * doc
->chips_per_floor
);
1473 /* Bog-standard Millennium */
1474 doc
->chips_per_floor
= 1;
1475 mtd
->name
= "DiskOnChip Millennium";
1476 this->scan_bbt
= nftl_scan_bbt
;
1481 static inline int __init
doc2001plus_init(struct mtd_info
*mtd
)
1483 struct nand_chip
*this = mtd
->priv
;
1484 struct doc_priv
*doc
= this->priv
;
1486 this->read_byte
= doc2001plus_read_byte
;
1487 this->write_buf
= doc2001plus_writebuf
;
1488 this->read_buf
= doc2001plus_readbuf
;
1489 this->verify_buf
= doc2001plus_verifybuf
;
1490 this->scan_bbt
= inftl_scan_bbt
;
1491 this->cmd_ctrl
= NULL
;
1492 this->select_chip
= doc2001plus_select_chip
;
1493 this->cmdfunc
= doc2001plus_command
;
1494 this->ecc
.hwctl
= doc2001plus_enable_hwecc
;
1496 doc
->chips_per_floor
= 1;
1497 mtd
->name
= "DiskOnChip Millennium Plus";
1502 static int __init
doc_probe(unsigned long physadr
)
1504 unsigned char ChipID
;
1505 struct mtd_info
*mtd
;
1506 struct nand_chip
*nand
;
1507 struct doc_priv
*doc
;
1508 void __iomem
*virtadr
;
1509 unsigned char save_control
;
1510 unsigned char tmp
, tmpb
, tmpc
;
1511 int reg
, len
, numchips
;
1514 virtadr
= ioremap(physadr
, DOC_IOREMAP_LEN
);
1516 printk(KERN_ERR
"Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN
, physadr
);
1520 /* It's not possible to cleanly detect the DiskOnChip - the
1521 * bootup procedure will put the device into reset mode, and
1522 * it's not possible to talk to it without actually writing
1523 * to the DOCControl register. So we store the current contents
1524 * of the DOCControl register's location, in case we later decide
1525 * that it's not a DiskOnChip, and want to put it back how we
1528 save_control
= ReadDOC(virtadr
, DOCControl
);
1530 /* Reset the DiskOnChip ASIC */
1531 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
, virtadr
, DOCControl
);
1532 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
, virtadr
, DOCControl
);
1534 /* Enable the DiskOnChip ASIC */
1535 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
, virtadr
, DOCControl
);
1536 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
, virtadr
, DOCControl
);
1538 ChipID
= ReadDOC(virtadr
, ChipID
);
1541 case DOC_ChipID_Doc2k
:
1542 reg
= DoC_2k_ECCStatus
;
1544 case DOC_ChipID_DocMil
:
1547 case DOC_ChipID_DocMilPlus16
:
1548 case DOC_ChipID_DocMilPlus32
:
1550 /* Possible Millennium Plus, need to do more checks */
1551 /* Possibly release from power down mode */
1552 for (tmp
= 0; (tmp
< 4); tmp
++)
1553 ReadDOC(virtadr
, Mplus_Power
);
1555 /* Reset the Millennium Plus ASIC */
1556 tmp
= DOC_MODE_RESET
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
| DOC_MODE_BDECT
;
1557 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1558 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1561 /* Enable the Millennium Plus ASIC */
1562 tmp
= DOC_MODE_NORMAL
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
| DOC_MODE_BDECT
;
1563 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1564 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1567 ChipID
= ReadDOC(virtadr
, ChipID
);
1570 case DOC_ChipID_DocMilPlus16
:
1571 reg
= DoC_Mplus_Toggle
;
1573 case DOC_ChipID_DocMilPlus32
:
1574 printk(KERN_ERR
"DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1585 /* Check the TOGGLE bit in the ECC register */
1586 tmp
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1587 tmpb
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1588 tmpc
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1589 if ((tmp
== tmpb
) || (tmp
!= tmpc
)) {
1590 printk(KERN_WARNING
"Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr
);
1595 for (mtd
= doclist
; mtd
; mtd
= doc
->nextdoc
) {
1596 unsigned char oldval
;
1597 unsigned char newval
;
1600 /* Use the alias resolution register to determine if this is
1601 in fact the same DOC aliased to a new address. If writes
1602 to one chip's alias resolution register change the value on
1603 the other chip, they're the same chip. */
1604 if (ChipID
== DOC_ChipID_DocMilPlus16
) {
1605 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1606 newval
= ReadDOC(virtadr
, Mplus_AliasResolution
);
1608 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1609 newval
= ReadDOC(virtadr
, AliasResolution
);
1611 if (oldval
!= newval
)
1613 if (ChipID
== DOC_ChipID_DocMilPlus16
) {
1614 WriteDOC(~newval
, virtadr
, Mplus_AliasResolution
);
1615 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1616 WriteDOC(newval
, virtadr
, Mplus_AliasResolution
); // restore it
1618 WriteDOC(~newval
, virtadr
, AliasResolution
);
1619 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1620 WriteDOC(newval
, virtadr
, AliasResolution
); // restore it
1623 if (oldval
== newval
) {
1624 printk(KERN_DEBUG
"Found alias of DOC at 0x%lx to 0x%lx\n", doc
->physadr
, physadr
);
1629 printk(KERN_NOTICE
"DiskOnChip found at 0x%lx\n", physadr
);
1631 len
= sizeof(struct mtd_info
) +
1632 sizeof(struct nand_chip
) + sizeof(struct doc_priv
) + (2 * sizeof(struct nand_bbt_descr
));
1633 mtd
= kzalloc(len
, GFP_KERNEL
);
1635 printk(KERN_ERR
"DiskOnChip kmalloc (%d bytes) failed!\n", len
);
1640 nand
= (struct nand_chip
*) (mtd
+ 1);
1641 doc
= (struct doc_priv
*) (nand
+ 1);
1642 nand
->bbt_td
= (struct nand_bbt_descr
*) (doc
+ 1);
1643 nand
->bbt_md
= nand
->bbt_td
+ 1;
1646 mtd
->owner
= THIS_MODULE
;
1649 nand
->select_chip
= doc200x_select_chip
;
1650 nand
->cmd_ctrl
= doc200x_hwcontrol
;
1651 nand
->dev_ready
= doc200x_dev_ready
;
1652 nand
->waitfunc
= doc200x_wait
;
1653 nand
->block_bad
= doc200x_block_bad
;
1654 nand
->ecc
.hwctl
= doc200x_enable_hwecc
;
1655 nand
->ecc
.calculate
= doc200x_calculate_ecc
;
1656 nand
->ecc
.correct
= doc200x_correct_data
;
1658 nand
->ecc
.layout
= &doc200x_oobinfo
;
1659 nand
->ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1660 nand
->ecc
.size
= 512;
1661 nand
->ecc
.bytes
= 6;
1662 nand
->options
= NAND_USE_FLASH_BBT
;
1664 doc
->physadr
= physadr
;
1665 doc
->virtadr
= virtadr
;
1666 doc
->ChipID
= ChipID
;
1671 doc
->nextdoc
= doclist
;
1673 if (ChipID
== DOC_ChipID_Doc2k
)
1674 numchips
= doc2000_init(mtd
);
1675 else if (ChipID
== DOC_ChipID_DocMilPlus16
)
1676 numchips
= doc2001plus_init(mtd
);
1678 numchips
= doc2001_init(mtd
);
1680 if ((ret
= nand_scan(mtd
, numchips
))) {
1681 /* DBB note: i believe nand_release is necessary here, as
1682 buffers may have been allocated in nand_base. Check with
1684 /* nand_release will call del_mtd_device, but we haven't yet
1685 added it. This is handled without incident by
1686 del_mtd_device, as far as I can tell. */
1697 /* Put back the contents of the DOCControl register, in case it's not
1698 actually a DiskOnChip. */
1699 WriteDOC(save_control
, virtadr
, DOCControl
);
1705 static void release_nanddoc(void)
1707 struct mtd_info
*mtd
, *nextmtd
;
1708 struct nand_chip
*nand
;
1709 struct doc_priv
*doc
;
1711 for (mtd
= doclist
; mtd
; mtd
= nextmtd
) {
1715 nextmtd
= doc
->nextdoc
;
1717 iounmap(doc
->virtadr
);
1722 static int __init
init_nanddoc(void)
1726 /* We could create the decoder on demand, if memory is a concern.
1727 * This way we have it handy, if an error happens
1729 * Symbolsize is 10 (bits)
1730 * Primitve polynomial is x^10+x^3+1
1731 * first consecutive root is 510
1732 * primitve element to generate roots = 1
1733 * generator polinomial degree = 4
1735 rs_decoder
= init_rs(10, 0x409, FCR
, 1, NROOTS
);
1737 printk(KERN_ERR
"DiskOnChip: Could not create a RS decoder\n");
1741 if (doc_config_location
) {
1742 printk(KERN_INFO
"Using configured DiskOnChip probe address 0x%lx\n", doc_config_location
);
1743 ret
= doc_probe(doc_config_location
);
1747 for (i
= 0; (doc_locations
[i
] != 0xffffffff); i
++) {
1748 doc_probe(doc_locations
[i
]);
1751 /* No banner message any more. Print a message if no DiskOnChip
1752 found, so the user knows we at least tried. */
1754 printk(KERN_INFO
"No valid DiskOnChip devices found\n");
1760 free_rs(rs_decoder
);
1764 static void __exit
cleanup_nanddoc(void)
1766 /* Cleanup the nand/DoC resources */
1769 /* Free the reed solomon resources */
1771 free_rs(rs_decoder
);
1775 module_init(init_nanddoc
);
1776 module_exit(cleanup_nanddoc
);
1778 MODULE_LICENSE("GPL");
1779 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1780 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");