2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * UBI input/output unit.
25 * This unit provides a uniform way to work with all kinds of the underlying
26 * MTD devices. It also implements handy functions for reading and writing UBI
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this unit
31 * validates every single header it reads from the flash media.
33 * Some words about how the eraseblock headers are stored.
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68 * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69 * prefer to use sub-pages only for EV and VID headers.
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
82 * The I/O unit does the following trick in order to avoid this extra copy.
83 * It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID header
84 * and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. When the
85 * VID header is being written out, it shifts the VID header pointer back and
86 * writes the whole sub-page.
89 #include <linux/crc32.h>
90 #include <linux/err.h>
93 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
94 static int paranoid_check_not_bad(const struct ubi_device
*ubi
, int pnum
);
95 static int paranoid_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
);
96 static int paranoid_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
97 const struct ubi_ec_hdr
*ec_hdr
);
98 static int paranoid_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
);
99 static int paranoid_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
100 const struct ubi_vid_hdr
*vid_hdr
);
101 static int paranoid_check_all_ff(struct ubi_device
*ubi
, int pnum
, int offset
,
104 #define paranoid_check_not_bad(ubi, pnum) 0
105 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
106 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
107 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
108 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
109 #define paranoid_check_all_ff(ubi, pnum, offset, len) 0
113 * ubi_io_read - read data from a physical eraseblock.
114 * @ubi: UBI device description object
115 * @buf: buffer where to store the read data
116 * @pnum: physical eraseblock number to read from
117 * @offset: offset within the physical eraseblock from where to read
118 * @len: how many bytes to read
120 * This function reads data from offset @offset of physical eraseblock @pnum
121 * and stores the read data in the @buf buffer. The following return codes are
124 * o %0 if all the requested data were successfully read;
125 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
126 * correctable bit-flips were detected; this is harmless but may indicate
127 * that this eraseblock may become bad soon (but do not have to);
128 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
129 * example it can be an ECC error in case of NAND; this most probably means
130 * that the data is corrupted;
131 * o %-EIO if some I/O error occurred;
132 * o other negative error codes in case of other errors.
134 int ubi_io_read(const struct ubi_device
*ubi
, void *buf
, int pnum
, int offset
,
137 int err
, retries
= 0;
141 dbg_io("read %d bytes from PEB %d:%d", len
, pnum
, offset
);
143 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
144 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
147 err
= paranoid_check_not_bad(ubi
, pnum
);
149 return err
> 0 ? -EINVAL
: err
;
151 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
153 err
= ubi
->mtd
->read(ubi
->mtd
, addr
, len
, &read
, buf
);
155 if (err
== -EUCLEAN
) {
157 * -EUCLEAN is reported if there was a bit-flip which
158 * was corrected, so this is harmless.
160 ubi_msg("fixable bit-flip detected at PEB %d", pnum
);
161 ubi_assert(len
== read
);
162 return UBI_IO_BITFLIPS
;
165 if (read
!= len
&& retries
++ < UBI_IO_RETRIES
) {
166 dbg_io("error %d while reading %d bytes from PEB %d:%d, "
167 "read only %zd bytes, retry",
168 err
, len
, pnum
, offset
, read
);
173 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
174 "read %zd bytes", err
, len
, pnum
, offset
, read
);
175 ubi_dbg_dump_stack();
177 ubi_assert(len
== read
);
179 if (ubi_dbg_is_bitflip()) {
180 dbg_msg("bit-flip (emulated)");
181 err
= UBI_IO_BITFLIPS
;
189 * ubi_io_write - write data to a physical eraseblock.
190 * @ubi: UBI device description object
191 * @buf: buffer with the data to write
192 * @pnum: physical eraseblock number to write to
193 * @offset: offset within the physical eraseblock where to write
194 * @len: how many bytes to write
196 * This function writes @len bytes of data from buffer @buf to offset @offset
197 * of physical eraseblock @pnum. If all the data were successfully written,
198 * zero is returned. If an error occurred, this function returns a negative
199 * error code. If %-EIO is returned, the physical eraseblock most probably went
202 * Note, in case of an error, it is possible that something was still written
203 * to the flash media, but may be some garbage.
205 int ubi_io_write(struct ubi_device
*ubi
, const void *buf
, int pnum
, int offset
,
212 dbg_io("write %d bytes to PEB %d:%d", len
, pnum
, offset
);
214 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
215 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
216 ubi_assert(offset
% ubi
->hdrs_min_io_size
== 0);
217 ubi_assert(len
> 0 && len
% ubi
->hdrs_min_io_size
== 0);
220 ubi_err("read-only mode");
224 /* The below has to be compiled out if paranoid checks are disabled */
226 err
= paranoid_check_not_bad(ubi
, pnum
);
228 return err
> 0 ? -EINVAL
: err
;
230 /* The area we are writing to has to contain all 0xFF bytes */
231 err
= paranoid_check_all_ff(ubi
, pnum
, offset
, len
);
233 return err
> 0 ? -EINVAL
: err
;
235 if (offset
>= ubi
->leb_start
) {
237 * We write to the data area of the physical eraseblock. Make
238 * sure it has valid EC and VID headers.
240 err
= paranoid_check_peb_ec_hdr(ubi
, pnum
);
242 return err
> 0 ? -EINVAL
: err
;
243 err
= paranoid_check_peb_vid_hdr(ubi
, pnum
);
245 return err
> 0 ? -EINVAL
: err
;
248 if (ubi_dbg_is_write_failure()) {
249 dbg_err("cannot write %d bytes to PEB %d:%d "
250 "(emulated)", len
, pnum
, offset
);
251 ubi_dbg_dump_stack();
255 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
256 err
= ubi
->mtd
->write(ubi
->mtd
, addr
, len
, &written
, buf
);
258 ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
259 " %zd bytes", err
, len
, pnum
, offset
, written
);
260 ubi_dbg_dump_stack();
262 ubi_assert(written
== len
);
268 * erase_callback - MTD erasure call-back.
269 * @ei: MTD erase information object.
271 * Note, even though MTD erase interface is asynchronous, all the current
272 * implementations are synchronous anyway.
274 static void erase_callback(struct erase_info
*ei
)
276 wake_up_interruptible((wait_queue_head_t
*)ei
->priv
);
280 * do_sync_erase - synchronously erase a physical eraseblock.
281 * @ubi: UBI device description object
282 * @pnum: the physical eraseblock number to erase
284 * This function synchronously erases physical eraseblock @pnum and returns
285 * zero in case of success and a negative error code in case of failure. If
286 * %-EIO is returned, the physical eraseblock most probably went bad.
288 static int do_sync_erase(struct ubi_device
*ubi
, int pnum
)
290 int err
, retries
= 0;
291 struct erase_info ei
;
292 wait_queue_head_t wq
;
294 dbg_io("erase PEB %d", pnum
);
297 init_waitqueue_head(&wq
);
298 memset(&ei
, 0, sizeof(struct erase_info
));
301 ei
.addr
= (loff_t
)pnum
* ubi
->peb_size
;
302 ei
.len
= ubi
->peb_size
;
303 ei
.callback
= erase_callback
;
304 ei
.priv
= (unsigned long)&wq
;
306 err
= ubi
->mtd
->erase(ubi
->mtd
, &ei
);
308 if (retries
++ < UBI_IO_RETRIES
) {
309 dbg_io("error %d while erasing PEB %d, retry",
314 ubi_err("cannot erase PEB %d, error %d", pnum
, err
);
315 ubi_dbg_dump_stack();
319 err
= wait_event_interruptible(wq
, ei
.state
== MTD_ERASE_DONE
||
320 ei
.state
== MTD_ERASE_FAILED
);
322 ubi_err("interrupted PEB %d erasure", pnum
);
326 if (ei
.state
== MTD_ERASE_FAILED
) {
327 if (retries
++ < UBI_IO_RETRIES
) {
328 dbg_io("error while erasing PEB %d, retry", pnum
);
332 ubi_err("cannot erase PEB %d", pnum
);
333 ubi_dbg_dump_stack();
337 err
= paranoid_check_all_ff(ubi
, pnum
, 0, ubi
->peb_size
);
339 return err
> 0 ? -EINVAL
: err
;
341 if (ubi_dbg_is_erase_failure() && !err
) {
342 dbg_err("cannot erase PEB %d (emulated)", pnum
);
350 * check_pattern - check if buffer contains only a certain byte pattern.
351 * @buf: buffer to check
352 * @patt: the pattern to check
353 * @size: buffer size in bytes
355 * This function returns %1 in there are only @patt bytes in @buf, and %0 if
356 * something else was also found.
358 static int check_pattern(const void *buf
, uint8_t patt
, int size
)
362 for (i
= 0; i
< size
; i
++)
363 if (((const uint8_t *)buf
)[i
] != patt
)
368 /* Patterns to write to a physical eraseblock when torturing it */
369 static uint8_t patterns
[] = {0xa5, 0x5a, 0x0};
372 * torture_peb - test a supposedly bad physical eraseblock.
373 * @ubi: UBI device description object
374 * @pnum: the physical eraseblock number to test
376 * This function returns %-EIO if the physical eraseblock did not pass the
377 * test, a positive number of erase operations done if the test was
378 * successfully passed, and other negative error codes in case of other errors.
380 static int torture_peb(struct ubi_device
*ubi
, int pnum
)
382 int err
, i
, patt_count
;
384 patt_count
= ARRAY_SIZE(patterns
);
385 ubi_assert(patt_count
> 0);
387 mutex_lock(&ubi
->buf_mutex
);
388 for (i
= 0; i
< patt_count
; i
++) {
389 err
= do_sync_erase(ubi
, pnum
);
393 /* Make sure the PEB contains only 0xFF bytes */
394 err
= ubi_io_read(ubi
, ubi
->peb_buf1
, pnum
, 0, ubi
->peb_size
);
398 err
= check_pattern(ubi
->peb_buf1
, 0xFF, ubi
->peb_size
);
400 ubi_err("erased PEB %d, but a non-0xFF byte found",
406 /* Write a pattern and check it */
407 memset(ubi
->peb_buf1
, patterns
[i
], ubi
->peb_size
);
408 err
= ubi_io_write(ubi
, ubi
->peb_buf1
, pnum
, 0, ubi
->peb_size
);
412 memset(ubi
->peb_buf1
, ~patterns
[i
], ubi
->peb_size
);
413 err
= ubi_io_read(ubi
, ubi
->peb_buf1
, pnum
, 0, ubi
->peb_size
);
417 err
= check_pattern(ubi
->peb_buf1
, patterns
[i
], ubi
->peb_size
);
419 ubi_err("pattern %x checking failed for PEB %d",
429 mutex_unlock(&ubi
->buf_mutex
);
430 if (err
== UBI_IO_BITFLIPS
|| err
== -EBADMSG
) {
432 * If a bit-flip or data integrity error was detected, the test
433 * has not passed because it happened on a freshly erased
434 * physical eraseblock which means something is wrong with it.
436 ubi_err("read problems on freshly erased PEB %d, must be bad",
444 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
445 * @ubi: UBI device description object
446 * @pnum: physical eraseblock number to erase
447 * @torture: if this physical eraseblock has to be tortured
449 * This function synchronously erases physical eraseblock @pnum. If @torture
450 * flag is not zero, the physical eraseblock is checked by means of writing
451 * different patterns to it and reading them back. If the torturing is enabled,
452 * the physical eraseblock is erased more then once.
454 * This function returns the number of erasures made in case of success, %-EIO
455 * if the erasure failed or the torturing test failed, and other negative error
456 * codes in case of other errors. Note, %-EIO means that the physical
459 int ubi_io_sync_erase(struct ubi_device
*ubi
, int pnum
, int torture
)
463 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
465 err
= paranoid_check_not_bad(ubi
, pnum
);
467 return err
> 0 ? -EINVAL
: err
;
470 ubi_err("read-only mode");
475 ret
= torture_peb(ubi
, pnum
);
480 err
= do_sync_erase(ubi
, pnum
);
488 * ubi_io_is_bad - check if a physical eraseblock is bad.
489 * @ubi: UBI device description object
490 * @pnum: the physical eraseblock number to check
492 * This function returns a positive number if the physical eraseblock is bad,
493 * zero if not, and a negative error code if an error occurred.
495 int ubi_io_is_bad(const struct ubi_device
*ubi
, int pnum
)
497 struct mtd_info
*mtd
= ubi
->mtd
;
499 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
501 if (ubi
->bad_allowed
) {
504 ret
= mtd
->block_isbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
506 ubi_err("error %d while checking if PEB %d is bad",
509 dbg_io("PEB %d is bad", pnum
);
517 * ubi_io_mark_bad - mark a physical eraseblock as bad.
518 * @ubi: UBI device description object
519 * @pnum: the physical eraseblock number to mark
521 * This function returns zero in case of success and a negative error code in
524 int ubi_io_mark_bad(const struct ubi_device
*ubi
, int pnum
)
527 struct mtd_info
*mtd
= ubi
->mtd
;
529 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
532 ubi_err("read-only mode");
536 if (!ubi
->bad_allowed
)
539 err
= mtd
->block_markbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
541 ubi_err("cannot mark PEB %d bad, error %d", pnum
, err
);
546 * validate_ec_hdr - validate an erase counter header.
547 * @ubi: UBI device description object
548 * @ec_hdr: the erase counter header to check
550 * This function returns zero if the erase counter header is OK, and %1 if
553 static int validate_ec_hdr(const struct ubi_device
*ubi
,
554 const struct ubi_ec_hdr
*ec_hdr
)
557 int vid_hdr_offset
, leb_start
;
559 ec
= be64_to_cpu(ec_hdr
->ec
);
560 vid_hdr_offset
= be32_to_cpu(ec_hdr
->vid_hdr_offset
);
561 leb_start
= be32_to_cpu(ec_hdr
->data_offset
);
563 if (ec_hdr
->version
!= UBI_VERSION
) {
564 ubi_err("node with incompatible UBI version found: "
565 "this UBI version is %d, image version is %d",
566 UBI_VERSION
, (int)ec_hdr
->version
);
570 if (vid_hdr_offset
!= ubi
->vid_hdr_offset
) {
571 ubi_err("bad VID header offset %d, expected %d",
572 vid_hdr_offset
, ubi
->vid_hdr_offset
);
576 if (leb_start
!= ubi
->leb_start
) {
577 ubi_err("bad data offset %d, expected %d",
578 leb_start
, ubi
->leb_start
);
582 if (ec
< 0 || ec
> UBI_MAX_ERASECOUNTER
) {
583 ubi_err("bad erase counter %lld", ec
);
590 ubi_err("bad EC header");
591 ubi_dbg_dump_ec_hdr(ec_hdr
);
592 ubi_dbg_dump_stack();
597 * ubi_io_read_ec_hdr - read and check an erase counter header.
598 * @ubi: UBI device description object
599 * @pnum: physical eraseblock to read from
600 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
602 * @verbose: be verbose if the header is corrupted or was not found
604 * This function reads erase counter header from physical eraseblock @pnum and
605 * stores it in @ec_hdr. This function also checks CRC checksum of the read
606 * erase counter header. The following codes may be returned:
608 * o %0 if the CRC checksum is correct and the header was successfully read;
609 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
610 * and corrected by the flash driver; this is harmless but may indicate that
611 * this eraseblock may become bad soon (but may be not);
612 * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
613 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
614 * o a negative error code in case of failure.
616 int ubi_io_read_ec_hdr(struct ubi_device
*ubi
, int pnum
,
617 struct ubi_ec_hdr
*ec_hdr
, int verbose
)
619 int err
, read_err
= 0;
620 uint32_t crc
, magic
, hdr_crc
;
622 dbg_io("read EC header from PEB %d", pnum
);
623 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
625 err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
627 if (err
!= UBI_IO_BITFLIPS
&& err
!= -EBADMSG
)
631 * We read all the data, but either a correctable bit-flip
632 * occurred, or MTD reported about some data integrity error,
633 * like an ECC error in case of NAND. The former is harmless,
634 * the later may mean that the read data is corrupted. But we
635 * have a CRC check-sum and we will detect this. If the EC
636 * header is still OK, we just report this as there was a
642 magic
= be32_to_cpu(ec_hdr
->magic
);
643 if (magic
!= UBI_EC_HDR_MAGIC
) {
645 * The magic field is wrong. Let's check if we have read all
646 * 0xFF. If yes, this physical eraseblock is assumed to be
649 * But if there was a read error, we do not test it for all
650 * 0xFFs. Even if it does contain all 0xFFs, this error
651 * indicates that something is still wrong with this physical
652 * eraseblock and we anyway cannot treat it as empty.
654 if (read_err
!= -EBADMSG
&&
655 check_pattern(ec_hdr
, 0xFF, UBI_EC_HDR_SIZE
)) {
656 /* The physical eraseblock is supposedly empty */
659 * The below is just a paranoid check, it has to be
660 * compiled out if paranoid checks are disabled.
662 err
= paranoid_check_all_ff(ubi
, pnum
, 0,
665 return err
> 0 ? UBI_IO_BAD_EC_HDR
: err
;
668 ubi_warn("no EC header found at PEB %d, "
669 "only 0xFF bytes", pnum
);
670 return UBI_IO_PEB_EMPTY
;
674 * This is not a valid erase counter header, and these are not
675 * 0xFF bytes. Report that the header is corrupted.
678 ubi_warn("bad magic number at PEB %d: %08x instead of "
679 "%08x", pnum
, magic
, UBI_EC_HDR_MAGIC
);
680 ubi_dbg_dump_ec_hdr(ec_hdr
);
682 return UBI_IO_BAD_EC_HDR
;
685 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
686 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
688 if (hdr_crc
!= crc
) {
690 ubi_warn("bad EC header CRC at PEB %d, calculated %#08x,"
691 " read %#08x", pnum
, crc
, hdr_crc
);
692 ubi_dbg_dump_ec_hdr(ec_hdr
);
694 return UBI_IO_BAD_EC_HDR
;
697 /* And of course validate what has just been read from the media */
698 err
= validate_ec_hdr(ubi
, ec_hdr
);
700 ubi_err("validation failed for PEB %d", pnum
);
704 return read_err
? UBI_IO_BITFLIPS
: 0;
708 * ubi_io_write_ec_hdr - write an erase counter header.
709 * @ubi: UBI device description object
710 * @pnum: physical eraseblock to write to
711 * @ec_hdr: the erase counter header to write
713 * This function writes erase counter header described by @ec_hdr to physical
714 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
715 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
718 * This function returns zero in case of success and a negative error code in
719 * case of failure. If %-EIO is returned, the physical eraseblock most probably
722 int ubi_io_write_ec_hdr(struct ubi_device
*ubi
, int pnum
,
723 struct ubi_ec_hdr
*ec_hdr
)
728 dbg_io("write EC header to PEB %d", pnum
);
729 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
731 ec_hdr
->magic
= cpu_to_be32(UBI_EC_HDR_MAGIC
);
732 ec_hdr
->version
= UBI_VERSION
;
733 ec_hdr
->vid_hdr_offset
= cpu_to_be32(ubi
->vid_hdr_offset
);
734 ec_hdr
->data_offset
= cpu_to_be32(ubi
->leb_start
);
735 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
736 ec_hdr
->hdr_crc
= cpu_to_be32(crc
);
738 err
= paranoid_check_ec_hdr(ubi
, pnum
, ec_hdr
);
742 err
= ubi_io_write(ubi
, ec_hdr
, pnum
, 0, ubi
->ec_hdr_alsize
);
747 * validate_vid_hdr - validate a volume identifier header.
748 * @ubi: UBI device description object
749 * @vid_hdr: the volume identifier header to check
751 * This function checks that data stored in the volume identifier header
752 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
754 static int validate_vid_hdr(const struct ubi_device
*ubi
,
755 const struct ubi_vid_hdr
*vid_hdr
)
757 int vol_type
= vid_hdr
->vol_type
;
758 int copy_flag
= vid_hdr
->copy_flag
;
759 int vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
760 int lnum
= be32_to_cpu(vid_hdr
->lnum
);
761 int compat
= vid_hdr
->compat
;
762 int data_size
= be32_to_cpu(vid_hdr
->data_size
);
763 int used_ebs
= be32_to_cpu(vid_hdr
->used_ebs
);
764 int data_pad
= be32_to_cpu(vid_hdr
->data_pad
);
765 int data_crc
= be32_to_cpu(vid_hdr
->data_crc
);
766 int usable_leb_size
= ubi
->leb_size
- data_pad
;
768 if (copy_flag
!= 0 && copy_flag
!= 1) {
769 dbg_err("bad copy_flag");
773 if (vol_id
< 0 || lnum
< 0 || data_size
< 0 || used_ebs
< 0 ||
775 dbg_err("negative values");
779 if (vol_id
>= UBI_MAX_VOLUMES
&& vol_id
< UBI_INTERNAL_VOL_START
) {
780 dbg_err("bad vol_id");
784 if (vol_id
< UBI_INTERNAL_VOL_START
&& compat
!= 0) {
785 dbg_err("bad compat");
789 if (vol_id
>= UBI_INTERNAL_VOL_START
&& compat
!= UBI_COMPAT_DELETE
&&
790 compat
!= UBI_COMPAT_RO
&& compat
!= UBI_COMPAT_PRESERVE
&&
791 compat
!= UBI_COMPAT_REJECT
) {
792 dbg_err("bad compat");
796 if (vol_type
!= UBI_VID_DYNAMIC
&& vol_type
!= UBI_VID_STATIC
) {
797 dbg_err("bad vol_type");
801 if (data_pad
>= ubi
->leb_size
/ 2) {
802 dbg_err("bad data_pad");
806 if (vol_type
== UBI_VID_STATIC
) {
808 * Although from high-level point of view static volumes may
809 * contain zero bytes of data, but no VID headers can contain
810 * zero at these fields, because they empty volumes do not have
811 * mapped logical eraseblocks.
814 dbg_err("zero used_ebs");
817 if (data_size
== 0) {
818 dbg_err("zero data_size");
821 if (lnum
< used_ebs
- 1) {
822 if (data_size
!= usable_leb_size
) {
823 dbg_err("bad data_size");
826 } else if (lnum
== used_ebs
- 1) {
827 if (data_size
== 0) {
828 dbg_err("bad data_size at last LEB");
832 dbg_err("too high lnum");
836 if (copy_flag
== 0) {
838 dbg_err("non-zero data CRC");
841 if (data_size
!= 0) {
842 dbg_err("non-zero data_size");
846 if (data_size
== 0) {
847 dbg_err("zero data_size of copy");
852 dbg_err("bad used_ebs");
860 ubi_err("bad VID header");
861 ubi_dbg_dump_vid_hdr(vid_hdr
);
862 ubi_dbg_dump_stack();
867 * ubi_io_read_vid_hdr - read and check a volume identifier header.
868 * @ubi: UBI device description object
869 * @pnum: physical eraseblock number to read from
870 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
872 * @verbose: be verbose if the header is corrupted or wasn't found
874 * This function reads the volume identifier header from physical eraseblock
875 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
876 * volume identifier header. The following codes may be returned:
878 * o %0 if the CRC checksum is correct and the header was successfully read;
879 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
880 * and corrected by the flash driver; this is harmless but may indicate that
881 * this eraseblock may become bad soon;
882 * o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC
884 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
886 * o a negative error code in case of failure.
888 int ubi_io_read_vid_hdr(struct ubi_device
*ubi
, int pnum
,
889 struct ubi_vid_hdr
*vid_hdr
, int verbose
)
891 int err
, read_err
= 0;
892 uint32_t crc
, magic
, hdr_crc
;
895 dbg_io("read VID header from PEB %d", pnum
);
896 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
898 p
= (char *)vid_hdr
- ubi
->vid_hdr_shift
;
899 err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
900 ubi
->vid_hdr_alsize
);
902 if (err
!= UBI_IO_BITFLIPS
&& err
!= -EBADMSG
)
906 * We read all the data, but either a correctable bit-flip
907 * occurred, or MTD reported about some data integrity error,
908 * like an ECC error in case of NAND. The former is harmless,
909 * the later may mean the read data is corrupted. But we have a
910 * CRC check-sum and we will identify this. If the VID header is
911 * still OK, we just report this as there was a bit-flip.
916 magic
= be32_to_cpu(vid_hdr
->magic
);
917 if (magic
!= UBI_VID_HDR_MAGIC
) {
919 * If we have read all 0xFF bytes, the VID header probably does
920 * not exist and the physical eraseblock is assumed to be free.
922 * But if there was a read error, we do not test the data for
923 * 0xFFs. Even if it does contain all 0xFFs, this error
924 * indicates that something is still wrong with this physical
925 * eraseblock and it cannot be regarded as free.
927 if (read_err
!= -EBADMSG
&&
928 check_pattern(vid_hdr
, 0xFF, UBI_VID_HDR_SIZE
)) {
929 /* The physical eraseblock is supposedly free */
932 * The below is just a paranoid check, it has to be
933 * compiled out if paranoid checks are disabled.
935 err
= paranoid_check_all_ff(ubi
, pnum
, ubi
->leb_start
,
938 return err
> 0 ? UBI_IO_BAD_VID_HDR
: err
;
941 ubi_warn("no VID header found at PEB %d, "
942 "only 0xFF bytes", pnum
);
943 return UBI_IO_PEB_FREE
;
947 * This is not a valid VID header, and these are not 0xFF
948 * bytes. Report that the header is corrupted.
951 ubi_warn("bad magic number at PEB %d: %08x instead of "
952 "%08x", pnum
, magic
, UBI_VID_HDR_MAGIC
);
953 ubi_dbg_dump_vid_hdr(vid_hdr
);
955 return UBI_IO_BAD_VID_HDR
;
958 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
959 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
961 if (hdr_crc
!= crc
) {
963 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
964 "read %#08x", pnum
, crc
, hdr_crc
);
965 ubi_dbg_dump_vid_hdr(vid_hdr
);
967 return UBI_IO_BAD_VID_HDR
;
970 /* Validate the VID header that we have just read */
971 err
= validate_vid_hdr(ubi
, vid_hdr
);
973 ubi_err("validation failed for PEB %d", pnum
);
977 return read_err
? UBI_IO_BITFLIPS
: 0;
981 * ubi_io_write_vid_hdr - write a volume identifier header.
982 * @ubi: UBI device description object
983 * @pnum: the physical eraseblock number to write to
984 * @vid_hdr: the volume identifier header to write
986 * This function writes the volume identifier header described by @vid_hdr to
987 * physical eraseblock @pnum. This function automatically fills the
988 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
989 * header CRC checksum and stores it at vid_hdr->hdr_crc.
991 * This function returns zero in case of success and a negative error code in
992 * case of failure. If %-EIO is returned, the physical eraseblock probably went
995 int ubi_io_write_vid_hdr(struct ubi_device
*ubi
, int pnum
,
996 struct ubi_vid_hdr
*vid_hdr
)
1002 dbg_io("write VID header to PEB %d", pnum
);
1003 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
1005 err
= paranoid_check_peb_ec_hdr(ubi
, pnum
);
1007 return err
> 0 ? -EINVAL
: err
;
1009 vid_hdr
->magic
= cpu_to_be32(UBI_VID_HDR_MAGIC
);
1010 vid_hdr
->version
= UBI_VERSION
;
1011 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1012 vid_hdr
->hdr_crc
= cpu_to_be32(crc
);
1014 err
= paranoid_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1018 p
= (char *)vid_hdr
- ubi
->vid_hdr_shift
;
1019 err
= ubi_io_write(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1020 ubi
->vid_hdr_alsize
);
1024 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1027 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1028 * @ubi: UBI device description object
1029 * @pnum: physical eraseblock number to check
1031 * This function returns zero if the physical eraseblock is good, a positive
1032 * number if it is bad and a negative error code if an error occurred.
1034 static int paranoid_check_not_bad(const struct ubi_device
*ubi
, int pnum
)
1038 err
= ubi_io_is_bad(ubi
, pnum
);
1042 ubi_err("paranoid check failed for PEB %d", pnum
);
1043 ubi_dbg_dump_stack();
1048 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1049 * @ubi: UBI device description object
1050 * @pnum: physical eraseblock number the erase counter header belongs to
1051 * @ec_hdr: the erase counter header to check
1053 * This function returns zero if the erase counter header contains valid
1054 * values, and %1 if not.
1056 static int paranoid_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
1057 const struct ubi_ec_hdr
*ec_hdr
)
1062 magic
= be32_to_cpu(ec_hdr
->magic
);
1063 if (magic
!= UBI_EC_HDR_MAGIC
) {
1064 ubi_err("bad magic %#08x, must be %#08x",
1065 magic
, UBI_EC_HDR_MAGIC
);
1069 err
= validate_ec_hdr(ubi
, ec_hdr
);
1071 ubi_err("paranoid check failed for PEB %d", pnum
);
1078 ubi_dbg_dump_ec_hdr(ec_hdr
);
1079 ubi_dbg_dump_stack();
1084 * paranoid_check_peb_ec_hdr - check that the erase counter header of a
1085 * physical eraseblock is in-place and is all right.
1086 * @ubi: UBI device description object
1087 * @pnum: the physical eraseblock number to check
1089 * This function returns zero if the erase counter header is all right, %1 if
1090 * not, and a negative error code if an error occurred.
1092 static int paranoid_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
)
1095 uint32_t crc
, hdr_crc
;
1096 struct ubi_ec_hdr
*ec_hdr
;
1098 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1102 err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
1103 if (err
&& err
!= UBI_IO_BITFLIPS
&& err
!= -EBADMSG
)
1106 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
1107 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
1108 if (hdr_crc
!= crc
) {
1109 ubi_err("bad CRC, calculated %#08x, read %#08x", crc
, hdr_crc
);
1110 ubi_err("paranoid check failed for PEB %d", pnum
);
1111 ubi_dbg_dump_ec_hdr(ec_hdr
);
1112 ubi_dbg_dump_stack();
1117 err
= paranoid_check_ec_hdr(ubi
, pnum
, ec_hdr
);
1125 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1126 * @ubi: UBI device description object
1127 * @pnum: physical eraseblock number the volume identifier header belongs to
1128 * @vid_hdr: the volume identifier header to check
1130 * This function returns zero if the volume identifier header is all right, and
1133 static int paranoid_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
1134 const struct ubi_vid_hdr
*vid_hdr
)
1139 magic
= be32_to_cpu(vid_hdr
->magic
);
1140 if (magic
!= UBI_VID_HDR_MAGIC
) {
1141 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1142 magic
, pnum
, UBI_VID_HDR_MAGIC
);
1146 err
= validate_vid_hdr(ubi
, vid_hdr
);
1148 ubi_err("paranoid check failed for PEB %d", pnum
);
1155 ubi_err("paranoid check failed for PEB %d", pnum
);
1156 ubi_dbg_dump_vid_hdr(vid_hdr
);
1157 ubi_dbg_dump_stack();
1163 * paranoid_check_peb_vid_hdr - check that the volume identifier header of a
1164 * physical eraseblock is in-place and is all right.
1165 * @ubi: UBI device description object
1166 * @pnum: the physical eraseblock number to check
1168 * This function returns zero if the volume identifier header is all right,
1169 * %1 if not, and a negative error code if an error occurred.
1171 static int paranoid_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
)
1174 uint32_t crc
, hdr_crc
;
1175 struct ubi_vid_hdr
*vid_hdr
;
1178 vid_hdr
= ubi_zalloc_vid_hdr(ubi
, GFP_NOFS
);
1182 p
= (char *)vid_hdr
- ubi
->vid_hdr_shift
;
1183 err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1184 ubi
->vid_hdr_alsize
);
1185 if (err
&& err
!= UBI_IO_BITFLIPS
&& err
!= -EBADMSG
)
1188 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_EC_HDR_SIZE_CRC
);
1189 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
1190 if (hdr_crc
!= crc
) {
1191 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1192 "read %#08x", pnum
, crc
, hdr_crc
);
1193 ubi_err("paranoid check failed for PEB %d", pnum
);
1194 ubi_dbg_dump_vid_hdr(vid_hdr
);
1195 ubi_dbg_dump_stack();
1200 err
= paranoid_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1203 ubi_free_vid_hdr(ubi
, vid_hdr
);
1208 * paranoid_check_all_ff - check that a region of flash is empty.
1209 * @ubi: UBI device description object
1210 * @pnum: the physical eraseblock number to check
1211 * @offset: the starting offset within the physical eraseblock to check
1212 * @len: the length of the region to check
1214 * This function returns zero if only 0xFF bytes are present at offset
1215 * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1216 * code if an error occurred.
1218 static int paranoid_check_all_ff(struct ubi_device
*ubi
, int pnum
, int offset
,
1223 loff_t addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
1225 mutex_lock(&ubi
->dbg_buf_mutex
);
1226 err
= ubi
->mtd
->read(ubi
->mtd
, addr
, len
, &read
, ubi
->dbg_peb_buf
);
1227 if (err
&& err
!= -EUCLEAN
) {
1228 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1229 "read %zd bytes", err
, len
, pnum
, offset
, read
);
1233 err
= check_pattern(ubi
->dbg_peb_buf
, 0xFF, len
);
1235 ubi_err("flash region at PEB %d:%d, length %d does not "
1236 "contain all 0xFF bytes", pnum
, offset
, len
);
1239 mutex_unlock(&ubi
->dbg_buf_mutex
);
1244 ubi_err("paranoid check failed for PEB %d", pnum
);
1245 dbg_msg("hex dump of the %d-%d region", offset
, offset
+ len
);
1246 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
1247 ubi
->dbg_peb_buf
, len
, 1);
1250 ubi_dbg_dump_stack();
1251 mutex_unlock(&ubi
->dbg_buf_mutex
);
1255 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */