CRISv10 fasttimer: Scrap INLINE and name timeval_cmp better
[wrt350n-kernel.git] / kernel / power / snapshot.c
blob78039b477d2bd7bbae3ab893763111475ea932a6
1 /*
2 * linux/kernel/power/snapshot.c
4 * This file provides system snapshot/restore functionality for swsusp.
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * This file is released under the GPLv2.
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <asm/io.h>
35 #include "power.h"
37 static int swsusp_page_is_free(struct page *);
38 static void swsusp_set_page_forbidden(struct page *);
39 static void swsusp_unset_page_forbidden(struct page *);
41 /* List of PBEs needed for restoring the pages that were allocated before
42 * the suspend and included in the suspend image, but have also been
43 * allocated by the "resume" kernel, so their contents cannot be written
44 * directly to their "original" page frames.
46 struct pbe *restore_pblist;
48 /* Pointer to an auxiliary buffer (1 page) */
49 static void *buffer;
51 /**
52 * @safe_needed - on resume, for storing the PBE list and the image,
53 * we can only use memory pages that do not conflict with the pages
54 * used before suspend. The unsafe pages have PageNosaveFree set
55 * and we count them using unsafe_pages.
57 * Each allocated image page is marked as PageNosave and PageNosaveFree
58 * so that swsusp_free() can release it.
61 #define PG_ANY 0
62 #define PG_SAFE 1
63 #define PG_UNSAFE_CLEAR 1
64 #define PG_UNSAFE_KEEP 0
66 static unsigned int allocated_unsafe_pages;
68 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
70 void *res;
72 res = (void *)get_zeroed_page(gfp_mask);
73 if (safe_needed)
74 while (res && swsusp_page_is_free(virt_to_page(res))) {
75 /* The page is unsafe, mark it for swsusp_free() */
76 swsusp_set_page_forbidden(virt_to_page(res));
77 allocated_unsafe_pages++;
78 res = (void *)get_zeroed_page(gfp_mask);
80 if (res) {
81 swsusp_set_page_forbidden(virt_to_page(res));
82 swsusp_set_page_free(virt_to_page(res));
84 return res;
87 unsigned long get_safe_page(gfp_t gfp_mask)
89 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
92 static struct page *alloc_image_page(gfp_t gfp_mask)
94 struct page *page;
96 page = alloc_page(gfp_mask);
97 if (page) {
98 swsusp_set_page_forbidden(page);
99 swsusp_set_page_free(page);
101 return page;
105 * free_image_page - free page represented by @addr, allocated with
106 * get_image_page (page flags set by it must be cleared)
109 static inline void free_image_page(void *addr, int clear_nosave_free)
111 struct page *page;
113 BUG_ON(!virt_addr_valid(addr));
115 page = virt_to_page(addr);
117 swsusp_unset_page_forbidden(page);
118 if (clear_nosave_free)
119 swsusp_unset_page_free(page);
121 __free_page(page);
124 /* struct linked_page is used to build chains of pages */
126 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
128 struct linked_page {
129 struct linked_page *next;
130 char data[LINKED_PAGE_DATA_SIZE];
131 } __attribute__((packed));
133 static inline void
134 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
136 while (list) {
137 struct linked_page *lp = list->next;
139 free_image_page(list, clear_page_nosave);
140 list = lp;
145 * struct chain_allocator is used for allocating small objects out of
146 * a linked list of pages called 'the chain'.
148 * The chain grows each time when there is no room for a new object in
149 * the current page. The allocated objects cannot be freed individually.
150 * It is only possible to free them all at once, by freeing the entire
151 * chain.
153 * NOTE: The chain allocator may be inefficient if the allocated objects
154 * are not much smaller than PAGE_SIZE.
157 struct chain_allocator {
158 struct linked_page *chain; /* the chain */
159 unsigned int used_space; /* total size of objects allocated out
160 * of the current page
162 gfp_t gfp_mask; /* mask for allocating pages */
163 int safe_needed; /* if set, only "safe" pages are allocated */
166 static void
167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
169 ca->chain = NULL;
170 ca->used_space = LINKED_PAGE_DATA_SIZE;
171 ca->gfp_mask = gfp_mask;
172 ca->safe_needed = safe_needed;
175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
177 void *ret;
179 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
180 struct linked_page *lp;
182 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
183 if (!lp)
184 return NULL;
186 lp->next = ca->chain;
187 ca->chain = lp;
188 ca->used_space = 0;
190 ret = ca->chain->data + ca->used_space;
191 ca->used_space += size;
192 return ret;
195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
197 free_list_of_pages(ca->chain, clear_page_nosave);
198 memset(ca, 0, sizeof(struct chain_allocator));
202 * Data types related to memory bitmaps.
204 * Memory bitmap is a structure consiting of many linked lists of
205 * objects. The main list's elements are of type struct zone_bitmap
206 * and each of them corresonds to one zone. For each zone bitmap
207 * object there is a list of objects of type struct bm_block that
208 * represent each blocks of bit chunks in which information is
209 * stored.
211 * struct memory_bitmap contains a pointer to the main list of zone
212 * bitmap objects, a struct bm_position used for browsing the bitmap,
213 * and a pointer to the list of pages used for allocating all of the
214 * zone bitmap objects and bitmap block objects.
216 * NOTE: It has to be possible to lay out the bitmap in memory
217 * using only allocations of order 0. Additionally, the bitmap is
218 * designed to work with arbitrary number of zones (this is over the
219 * top for now, but let's avoid making unnecessary assumptions ;-).
221 * struct zone_bitmap contains a pointer to a list of bitmap block
222 * objects and a pointer to the bitmap block object that has been
223 * most recently used for setting bits. Additionally, it contains the
224 * pfns that correspond to the start and end of the represented zone.
226 * struct bm_block contains a pointer to the memory page in which
227 * information is stored (in the form of a block of bit chunks
228 * of type unsigned long each). It also contains the pfns that
229 * correspond to the start and end of the represented memory area and
230 * the number of bit chunks in the block.
233 #define BM_END_OF_MAP (~0UL)
235 #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long))
236 #define BM_BITS_PER_CHUNK (sizeof(long) << 3)
237 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
239 struct bm_block {
240 struct bm_block *next; /* next element of the list */
241 unsigned long start_pfn; /* pfn represented by the first bit */
242 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
243 unsigned int size; /* number of bit chunks */
244 unsigned long *data; /* chunks of bits representing pages */
247 struct zone_bitmap {
248 struct zone_bitmap *next; /* next element of the list */
249 unsigned long start_pfn; /* minimal pfn in this zone */
250 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */
251 struct bm_block *bm_blocks; /* list of bitmap blocks */
252 struct bm_block *cur_block; /* recently used bitmap block */
255 /* strcut bm_position is used for browsing memory bitmaps */
257 struct bm_position {
258 struct zone_bitmap *zone_bm;
259 struct bm_block *block;
260 int chunk;
261 int bit;
264 struct memory_bitmap {
265 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */
266 struct linked_page *p_list; /* list of pages used to store zone
267 * bitmap objects and bitmap block
268 * objects
270 struct bm_position cur; /* most recently used bit position */
273 /* Functions that operate on memory bitmaps */
275 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
277 bm->cur.chunk = 0;
278 bm->cur.bit = -1;
281 static void memory_bm_position_reset(struct memory_bitmap *bm)
283 struct zone_bitmap *zone_bm;
285 zone_bm = bm->zone_bm_list;
286 bm->cur.zone_bm = zone_bm;
287 bm->cur.block = zone_bm->bm_blocks;
288 memory_bm_reset_chunk(bm);
291 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
294 * create_bm_block_list - create a list of block bitmap objects
297 static inline struct bm_block *
298 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
300 struct bm_block *bblist = NULL;
302 while (nr_blocks-- > 0) {
303 struct bm_block *bb;
305 bb = chain_alloc(ca, sizeof(struct bm_block));
306 if (!bb)
307 return NULL;
309 bb->next = bblist;
310 bblist = bb;
312 return bblist;
316 * create_zone_bm_list - create a list of zone bitmap objects
319 static inline struct zone_bitmap *
320 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
322 struct zone_bitmap *zbmlist = NULL;
324 while (nr_zones-- > 0) {
325 struct zone_bitmap *zbm;
327 zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
328 if (!zbm)
329 return NULL;
331 zbm->next = zbmlist;
332 zbmlist = zbm;
334 return zbmlist;
338 * memory_bm_create - allocate memory for a memory bitmap
341 static int
342 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
344 struct chain_allocator ca;
345 struct zone *zone;
346 struct zone_bitmap *zone_bm;
347 struct bm_block *bb;
348 unsigned int nr;
350 chain_init(&ca, gfp_mask, safe_needed);
352 /* Compute the number of zones */
353 nr = 0;
354 for_each_zone(zone)
355 if (populated_zone(zone))
356 nr++;
358 /* Allocate the list of zones bitmap objects */
359 zone_bm = create_zone_bm_list(nr, &ca);
360 bm->zone_bm_list = zone_bm;
361 if (!zone_bm) {
362 chain_free(&ca, PG_UNSAFE_CLEAR);
363 return -ENOMEM;
366 /* Initialize the zone bitmap objects */
367 for_each_zone(zone) {
368 unsigned long pfn;
370 if (!populated_zone(zone))
371 continue;
373 zone_bm->start_pfn = zone->zone_start_pfn;
374 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
375 /* Allocate the list of bitmap block objects */
376 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
377 bb = create_bm_block_list(nr, &ca);
378 zone_bm->bm_blocks = bb;
379 zone_bm->cur_block = bb;
380 if (!bb)
381 goto Free;
383 nr = zone->spanned_pages;
384 pfn = zone->zone_start_pfn;
385 /* Initialize the bitmap block objects */
386 while (bb) {
387 unsigned long *ptr;
389 ptr = get_image_page(gfp_mask, safe_needed);
390 bb->data = ptr;
391 if (!ptr)
392 goto Free;
394 bb->start_pfn = pfn;
395 if (nr >= BM_BITS_PER_BLOCK) {
396 pfn += BM_BITS_PER_BLOCK;
397 bb->size = BM_CHUNKS_PER_BLOCK;
398 nr -= BM_BITS_PER_BLOCK;
399 } else {
400 /* This is executed only once in the loop */
401 pfn += nr;
402 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
404 bb->end_pfn = pfn;
405 bb = bb->next;
407 zone_bm = zone_bm->next;
409 bm->p_list = ca.chain;
410 memory_bm_position_reset(bm);
411 return 0;
413 Free:
414 bm->p_list = ca.chain;
415 memory_bm_free(bm, PG_UNSAFE_CLEAR);
416 return -ENOMEM;
420 * memory_bm_free - free memory occupied by the memory bitmap @bm
423 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
425 struct zone_bitmap *zone_bm;
427 /* Free the list of bit blocks for each zone_bitmap object */
428 zone_bm = bm->zone_bm_list;
429 while (zone_bm) {
430 struct bm_block *bb;
432 bb = zone_bm->bm_blocks;
433 while (bb) {
434 if (bb->data)
435 free_image_page(bb->data, clear_nosave_free);
436 bb = bb->next;
438 zone_bm = zone_bm->next;
440 free_list_of_pages(bm->p_list, clear_nosave_free);
441 bm->zone_bm_list = NULL;
445 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
446 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
447 * of @bm->cur_zone_bm are updated.
450 static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
451 void **addr, unsigned int *bit_nr)
453 struct zone_bitmap *zone_bm;
454 struct bm_block *bb;
456 /* Check if the pfn is from the current zone */
457 zone_bm = bm->cur.zone_bm;
458 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
459 zone_bm = bm->zone_bm_list;
460 /* We don't assume that the zones are sorted by pfns */
461 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
462 zone_bm = zone_bm->next;
464 BUG_ON(!zone_bm);
466 bm->cur.zone_bm = zone_bm;
468 /* Check if the pfn corresponds to the current bitmap block */
469 bb = zone_bm->cur_block;
470 if (pfn < bb->start_pfn)
471 bb = zone_bm->bm_blocks;
473 while (pfn >= bb->end_pfn) {
474 bb = bb->next;
476 BUG_ON(!bb);
478 zone_bm->cur_block = bb;
479 pfn -= bb->start_pfn;
480 *bit_nr = pfn % BM_BITS_PER_CHUNK;
481 *addr = bb->data + pfn / BM_BITS_PER_CHUNK;
484 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
486 void *addr;
487 unsigned int bit;
489 memory_bm_find_bit(bm, pfn, &addr, &bit);
490 set_bit(bit, addr);
493 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
495 void *addr;
496 unsigned int bit;
498 memory_bm_find_bit(bm, pfn, &addr, &bit);
499 clear_bit(bit, addr);
502 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
504 void *addr;
505 unsigned int bit;
507 memory_bm_find_bit(bm, pfn, &addr, &bit);
508 return test_bit(bit, addr);
511 /* Two auxiliary functions for memory_bm_next_pfn */
513 /* Find the first set bit in the given chunk, if there is one */
515 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
517 bit++;
518 while (bit < BM_BITS_PER_CHUNK) {
519 if (test_bit(bit, chunk_p))
520 return bit;
522 bit++;
524 return -1;
527 /* Find a chunk containing some bits set in given block of bits */
529 static inline int next_chunk_in_block(int n, struct bm_block *bb)
531 n++;
532 while (n < bb->size) {
533 if (bb->data[n])
534 return n;
536 n++;
538 return -1;
542 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
543 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
544 * returned.
546 * It is required to run memory_bm_position_reset() before the first call to
547 * this function.
550 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
552 struct zone_bitmap *zone_bm;
553 struct bm_block *bb;
554 int chunk;
555 int bit;
557 do {
558 bb = bm->cur.block;
559 do {
560 chunk = bm->cur.chunk;
561 bit = bm->cur.bit;
562 do {
563 bit = next_bit_in_chunk(bit, bb->data + chunk);
564 if (bit >= 0)
565 goto Return_pfn;
567 chunk = next_chunk_in_block(chunk, bb);
568 bit = -1;
569 } while (chunk >= 0);
570 bb = bb->next;
571 bm->cur.block = bb;
572 memory_bm_reset_chunk(bm);
573 } while (bb);
574 zone_bm = bm->cur.zone_bm->next;
575 if (zone_bm) {
576 bm->cur.zone_bm = zone_bm;
577 bm->cur.block = zone_bm->bm_blocks;
578 memory_bm_reset_chunk(bm);
580 } while (zone_bm);
581 memory_bm_position_reset(bm);
582 return BM_END_OF_MAP;
584 Return_pfn:
585 bm->cur.chunk = chunk;
586 bm->cur.bit = bit;
587 return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
591 * This structure represents a range of page frames the contents of which
592 * should not be saved during the suspend.
595 struct nosave_region {
596 struct list_head list;
597 unsigned long start_pfn;
598 unsigned long end_pfn;
601 static LIST_HEAD(nosave_regions);
604 * register_nosave_region - register a range of page frames the contents
605 * of which should not be saved during the suspend (to be used in the early
606 * initialization code)
609 void __init
610 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
611 int use_kmalloc)
613 struct nosave_region *region;
615 if (start_pfn >= end_pfn)
616 return;
618 if (!list_empty(&nosave_regions)) {
619 /* Try to extend the previous region (they should be sorted) */
620 region = list_entry(nosave_regions.prev,
621 struct nosave_region, list);
622 if (region->end_pfn == start_pfn) {
623 region->end_pfn = end_pfn;
624 goto Report;
627 if (use_kmalloc) {
628 /* during init, this shouldn't fail */
629 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
630 BUG_ON(!region);
631 } else
632 /* This allocation cannot fail */
633 region = alloc_bootmem_low(sizeof(struct nosave_region));
634 region->start_pfn = start_pfn;
635 region->end_pfn = end_pfn;
636 list_add_tail(&region->list, &nosave_regions);
637 Report:
638 printk("swsusp: Registered nosave memory region: %016lx - %016lx\n",
639 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
643 * Set bits in this map correspond to the page frames the contents of which
644 * should not be saved during the suspend.
646 static struct memory_bitmap *forbidden_pages_map;
648 /* Set bits in this map correspond to free page frames. */
649 static struct memory_bitmap *free_pages_map;
652 * Each page frame allocated for creating the image is marked by setting the
653 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
656 void swsusp_set_page_free(struct page *page)
658 if (free_pages_map)
659 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
662 static int swsusp_page_is_free(struct page *page)
664 return free_pages_map ?
665 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
668 void swsusp_unset_page_free(struct page *page)
670 if (free_pages_map)
671 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
674 static void swsusp_set_page_forbidden(struct page *page)
676 if (forbidden_pages_map)
677 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
680 int swsusp_page_is_forbidden(struct page *page)
682 return forbidden_pages_map ?
683 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
686 static void swsusp_unset_page_forbidden(struct page *page)
688 if (forbidden_pages_map)
689 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
693 * mark_nosave_pages - set bits corresponding to the page frames the
694 * contents of which should not be saved in a given bitmap.
697 static void mark_nosave_pages(struct memory_bitmap *bm)
699 struct nosave_region *region;
701 if (list_empty(&nosave_regions))
702 return;
704 list_for_each_entry(region, &nosave_regions, list) {
705 unsigned long pfn;
707 printk("swsusp: Marking nosave pages: %016lx - %016lx\n",
708 region->start_pfn << PAGE_SHIFT,
709 region->end_pfn << PAGE_SHIFT);
711 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
712 if (pfn_valid(pfn))
713 memory_bm_set_bit(bm, pfn);
718 * create_basic_memory_bitmaps - create bitmaps needed for marking page
719 * frames that should not be saved and free page frames. The pointers
720 * forbidden_pages_map and free_pages_map are only modified if everything
721 * goes well, because we don't want the bits to be used before both bitmaps
722 * are set up.
725 int create_basic_memory_bitmaps(void)
727 struct memory_bitmap *bm1, *bm2;
728 int error = 0;
730 BUG_ON(forbidden_pages_map || free_pages_map);
732 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
733 if (!bm1)
734 return -ENOMEM;
736 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
737 if (error)
738 goto Free_first_object;
740 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
741 if (!bm2)
742 goto Free_first_bitmap;
744 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
745 if (error)
746 goto Free_second_object;
748 forbidden_pages_map = bm1;
749 free_pages_map = bm2;
750 mark_nosave_pages(forbidden_pages_map);
752 printk("swsusp: Basic memory bitmaps created\n");
754 return 0;
756 Free_second_object:
757 kfree(bm2);
758 Free_first_bitmap:
759 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
760 Free_first_object:
761 kfree(bm1);
762 return -ENOMEM;
766 * free_basic_memory_bitmaps - free memory bitmaps allocated by
767 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
768 * so that the bitmaps themselves are not referred to while they are being
769 * freed.
772 void free_basic_memory_bitmaps(void)
774 struct memory_bitmap *bm1, *bm2;
776 BUG_ON(!(forbidden_pages_map && free_pages_map));
778 bm1 = forbidden_pages_map;
779 bm2 = free_pages_map;
780 forbidden_pages_map = NULL;
781 free_pages_map = NULL;
782 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
783 kfree(bm1);
784 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
785 kfree(bm2);
787 printk("swsusp: Basic memory bitmaps freed\n");
791 * snapshot_additional_pages - estimate the number of additional pages
792 * be needed for setting up the suspend image data structures for given
793 * zone (usually the returned value is greater than the exact number)
796 unsigned int snapshot_additional_pages(struct zone *zone)
798 unsigned int res;
800 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
801 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
802 return 2 * res;
805 #ifdef CONFIG_HIGHMEM
807 * count_free_highmem_pages - compute the total number of free highmem
808 * pages, system-wide.
811 static unsigned int count_free_highmem_pages(void)
813 struct zone *zone;
814 unsigned int cnt = 0;
816 for_each_zone(zone)
817 if (populated_zone(zone) && is_highmem(zone))
818 cnt += zone_page_state(zone, NR_FREE_PAGES);
820 return cnt;
824 * saveable_highmem_page - Determine whether a highmem page should be
825 * included in the suspend image.
827 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
828 * and it isn't a part of a free chunk of pages.
831 static struct page *saveable_highmem_page(unsigned long pfn)
833 struct page *page;
835 if (!pfn_valid(pfn))
836 return NULL;
838 page = pfn_to_page(pfn);
840 BUG_ON(!PageHighMem(page));
842 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
843 PageReserved(page))
844 return NULL;
846 return page;
850 * count_highmem_pages - compute the total number of saveable highmem
851 * pages.
854 unsigned int count_highmem_pages(void)
856 struct zone *zone;
857 unsigned int n = 0;
859 for_each_zone(zone) {
860 unsigned long pfn, max_zone_pfn;
862 if (!is_highmem(zone))
863 continue;
865 mark_free_pages(zone);
866 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
867 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
868 if (saveable_highmem_page(pfn))
869 n++;
871 return n;
873 #else
874 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
875 static inline unsigned int count_highmem_pages(void) { return 0; }
876 #endif /* CONFIG_HIGHMEM */
879 * saveable - Determine whether a non-highmem page should be included in
880 * the suspend image.
882 * We should save the page if it isn't Nosave, and is not in the range
883 * of pages statically defined as 'unsaveable', and it isn't a part of
884 * a free chunk of pages.
887 static struct page *saveable_page(unsigned long pfn)
889 struct page *page;
891 if (!pfn_valid(pfn))
892 return NULL;
894 page = pfn_to_page(pfn);
896 BUG_ON(PageHighMem(page));
898 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
899 return NULL;
901 if (PageReserved(page) && pfn_is_nosave(pfn))
902 return NULL;
904 return page;
908 * count_data_pages - compute the total number of saveable non-highmem
909 * pages.
912 unsigned int count_data_pages(void)
914 struct zone *zone;
915 unsigned long pfn, max_zone_pfn;
916 unsigned int n = 0;
918 for_each_zone(zone) {
919 if (is_highmem(zone))
920 continue;
922 mark_free_pages(zone);
923 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
924 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
925 if(saveable_page(pfn))
926 n++;
928 return n;
931 /* This is needed, because copy_page and memcpy are not usable for copying
932 * task structs.
934 static inline void do_copy_page(long *dst, long *src)
936 int n;
938 for (n = PAGE_SIZE / sizeof(long); n; n--)
939 *dst++ = *src++;
942 #ifdef CONFIG_HIGHMEM
943 static inline struct page *
944 page_is_saveable(struct zone *zone, unsigned long pfn)
946 return is_highmem(zone) ?
947 saveable_highmem_page(pfn) : saveable_page(pfn);
950 static inline void
951 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
953 struct page *s_page, *d_page;
954 void *src, *dst;
956 s_page = pfn_to_page(src_pfn);
957 d_page = pfn_to_page(dst_pfn);
958 if (PageHighMem(s_page)) {
959 src = kmap_atomic(s_page, KM_USER0);
960 dst = kmap_atomic(d_page, KM_USER1);
961 do_copy_page(dst, src);
962 kunmap_atomic(src, KM_USER0);
963 kunmap_atomic(dst, KM_USER1);
964 } else {
965 src = page_address(s_page);
966 if (PageHighMem(d_page)) {
967 /* Page pointed to by src may contain some kernel
968 * data modified by kmap_atomic()
970 do_copy_page(buffer, src);
971 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
972 memcpy(dst, buffer, PAGE_SIZE);
973 kunmap_atomic(dst, KM_USER0);
974 } else {
975 dst = page_address(d_page);
976 do_copy_page(dst, src);
980 #else
981 #define page_is_saveable(zone, pfn) saveable_page(pfn)
983 static inline void
984 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
986 do_copy_page(page_address(pfn_to_page(dst_pfn)),
987 page_address(pfn_to_page(src_pfn)));
989 #endif /* CONFIG_HIGHMEM */
991 static void
992 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
994 struct zone *zone;
995 unsigned long pfn;
997 for_each_zone(zone) {
998 unsigned long max_zone_pfn;
1000 mark_free_pages(zone);
1001 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1002 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1003 if (page_is_saveable(zone, pfn))
1004 memory_bm_set_bit(orig_bm, pfn);
1006 memory_bm_position_reset(orig_bm);
1007 memory_bm_position_reset(copy_bm);
1008 for(;;) {
1009 pfn = memory_bm_next_pfn(orig_bm);
1010 if (unlikely(pfn == BM_END_OF_MAP))
1011 break;
1012 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1016 /* Total number of image pages */
1017 static unsigned int nr_copy_pages;
1018 /* Number of pages needed for saving the original pfns of the image pages */
1019 static unsigned int nr_meta_pages;
1022 * swsusp_free - free pages allocated for the suspend.
1024 * Suspend pages are alocated before the atomic copy is made, so we
1025 * need to release them after the resume.
1028 void swsusp_free(void)
1030 struct zone *zone;
1031 unsigned long pfn, max_zone_pfn;
1033 for_each_zone(zone) {
1034 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1035 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1036 if (pfn_valid(pfn)) {
1037 struct page *page = pfn_to_page(pfn);
1039 if (swsusp_page_is_forbidden(page) &&
1040 swsusp_page_is_free(page)) {
1041 swsusp_unset_page_forbidden(page);
1042 swsusp_unset_page_free(page);
1043 __free_page(page);
1047 nr_copy_pages = 0;
1048 nr_meta_pages = 0;
1049 restore_pblist = NULL;
1050 buffer = NULL;
1053 #ifdef CONFIG_HIGHMEM
1055 * count_pages_for_highmem - compute the number of non-highmem pages
1056 * that will be necessary for creating copies of highmem pages.
1059 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1061 unsigned int free_highmem = count_free_highmem_pages();
1063 if (free_highmem >= nr_highmem)
1064 nr_highmem = 0;
1065 else
1066 nr_highmem -= free_highmem;
1068 return nr_highmem;
1070 #else
1071 static unsigned int
1072 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1073 #endif /* CONFIG_HIGHMEM */
1076 * enough_free_mem - Make sure we have enough free memory for the
1077 * snapshot image.
1080 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1082 struct zone *zone;
1083 unsigned int free = 0, meta = 0;
1085 for_each_zone(zone) {
1086 meta += snapshot_additional_pages(zone);
1087 if (!is_highmem(zone))
1088 free += zone_page_state(zone, NR_FREE_PAGES);
1091 nr_pages += count_pages_for_highmem(nr_highmem);
1092 pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
1093 nr_pages, PAGES_FOR_IO, meta, free);
1095 return free > nr_pages + PAGES_FOR_IO + meta;
1098 #ifdef CONFIG_HIGHMEM
1100 * get_highmem_buffer - if there are some highmem pages in the suspend
1101 * image, we may need the buffer to copy them and/or load their data.
1104 static inline int get_highmem_buffer(int safe_needed)
1106 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1107 return buffer ? 0 : -ENOMEM;
1111 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1112 * Try to allocate as many pages as needed, but if the number of free
1113 * highmem pages is lesser than that, allocate them all.
1116 static inline unsigned int
1117 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1119 unsigned int to_alloc = count_free_highmem_pages();
1121 if (to_alloc > nr_highmem)
1122 to_alloc = nr_highmem;
1124 nr_highmem -= to_alloc;
1125 while (to_alloc-- > 0) {
1126 struct page *page;
1128 page = alloc_image_page(__GFP_HIGHMEM);
1129 memory_bm_set_bit(bm, page_to_pfn(page));
1131 return nr_highmem;
1133 #else
1134 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1136 static inline unsigned int
1137 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1138 #endif /* CONFIG_HIGHMEM */
1141 * swsusp_alloc - allocate memory for the suspend image
1143 * We first try to allocate as many highmem pages as there are
1144 * saveable highmem pages in the system. If that fails, we allocate
1145 * non-highmem pages for the copies of the remaining highmem ones.
1147 * In this approach it is likely that the copies of highmem pages will
1148 * also be located in the high memory, because of the way in which
1149 * copy_data_pages() works.
1152 static int
1153 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1154 unsigned int nr_pages, unsigned int nr_highmem)
1156 int error;
1158 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1159 if (error)
1160 goto Free;
1162 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1163 if (error)
1164 goto Free;
1166 if (nr_highmem > 0) {
1167 error = get_highmem_buffer(PG_ANY);
1168 if (error)
1169 goto Free;
1171 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1173 while (nr_pages-- > 0) {
1174 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1176 if (!page)
1177 goto Free;
1179 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1181 return 0;
1183 Free:
1184 swsusp_free();
1185 return -ENOMEM;
1188 /* Memory bitmap used for marking saveable pages (during suspend) or the
1189 * suspend image pages (during resume)
1191 static struct memory_bitmap orig_bm;
1192 /* Memory bitmap used on suspend for marking allocated pages that will contain
1193 * the copies of saveable pages. During resume it is initially used for
1194 * marking the suspend image pages, but then its set bits are duplicated in
1195 * @orig_bm and it is released. Next, on systems with high memory, it may be
1196 * used for marking "safe" highmem pages, but it has to be reinitialized for
1197 * this purpose.
1199 static struct memory_bitmap copy_bm;
1201 asmlinkage int swsusp_save(void)
1203 unsigned int nr_pages, nr_highmem;
1205 printk("swsusp: critical section: \n");
1207 drain_local_pages();
1208 nr_pages = count_data_pages();
1209 nr_highmem = count_highmem_pages();
1210 printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
1212 if (!enough_free_mem(nr_pages, nr_highmem)) {
1213 printk(KERN_ERR "swsusp: Not enough free memory\n");
1214 return -ENOMEM;
1217 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1218 printk(KERN_ERR "swsusp: Memory allocation failed\n");
1219 return -ENOMEM;
1222 /* During allocating of suspend pagedir, new cold pages may appear.
1223 * Kill them.
1225 drain_local_pages();
1226 copy_data_pages(&copy_bm, &orig_bm);
1229 * End of critical section. From now on, we can write to memory,
1230 * but we should not touch disk. This specially means we must _not_
1231 * touch swap space! Except we must write out our image of course.
1234 nr_pages += nr_highmem;
1235 nr_copy_pages = nr_pages;
1236 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1238 printk("swsusp: critical section: done (%d pages copied)\n", nr_pages);
1240 return 0;
1243 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1244 static int init_header_complete(struct swsusp_info *info)
1246 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1247 info->version_code = LINUX_VERSION_CODE;
1248 return 0;
1251 static char *check_image_kernel(struct swsusp_info *info)
1253 if (info->version_code != LINUX_VERSION_CODE)
1254 return "kernel version";
1255 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1256 return "system type";
1257 if (strcmp(info->uts.release,init_utsname()->release))
1258 return "kernel release";
1259 if (strcmp(info->uts.version,init_utsname()->version))
1260 return "version";
1261 if (strcmp(info->uts.machine,init_utsname()->machine))
1262 return "machine";
1263 return NULL;
1265 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1267 static int init_header(struct swsusp_info *info)
1269 memset(info, 0, sizeof(struct swsusp_info));
1270 info->num_physpages = num_physpages;
1271 info->image_pages = nr_copy_pages;
1272 info->pages = nr_copy_pages + nr_meta_pages + 1;
1273 info->size = info->pages;
1274 info->size <<= PAGE_SHIFT;
1275 return init_header_complete(info);
1279 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1280 * are stored in the array @buf[] (1 page at a time)
1283 static inline void
1284 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1286 int j;
1288 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1289 buf[j] = memory_bm_next_pfn(bm);
1290 if (unlikely(buf[j] == BM_END_OF_MAP))
1291 break;
1296 * snapshot_read_next - used for reading the system memory snapshot.
1298 * On the first call to it @handle should point to a zeroed
1299 * snapshot_handle structure. The structure gets updated and a pointer
1300 * to it should be passed to this function every next time.
1302 * The @count parameter should contain the number of bytes the caller
1303 * wants to read from the snapshot. It must not be zero.
1305 * On success the function returns a positive number. Then, the caller
1306 * is allowed to read up to the returned number of bytes from the memory
1307 * location computed by the data_of() macro. The number returned
1308 * may be smaller than @count, but this only happens if the read would
1309 * cross a page boundary otherwise.
1311 * The function returns 0 to indicate the end of data stream condition,
1312 * and a negative number is returned on error. In such cases the
1313 * structure pointed to by @handle is not updated and should not be used
1314 * any more.
1317 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1319 if (handle->cur > nr_meta_pages + nr_copy_pages)
1320 return 0;
1322 if (!buffer) {
1323 /* This makes the buffer be freed by swsusp_free() */
1324 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1325 if (!buffer)
1326 return -ENOMEM;
1328 if (!handle->offset) {
1329 int error;
1331 error = init_header((struct swsusp_info *)buffer);
1332 if (error)
1333 return error;
1334 handle->buffer = buffer;
1335 memory_bm_position_reset(&orig_bm);
1336 memory_bm_position_reset(&copy_bm);
1338 if (handle->prev < handle->cur) {
1339 if (handle->cur <= nr_meta_pages) {
1340 memset(buffer, 0, PAGE_SIZE);
1341 pack_pfns(buffer, &orig_bm);
1342 } else {
1343 struct page *page;
1345 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1346 if (PageHighMem(page)) {
1347 /* Highmem pages are copied to the buffer,
1348 * because we can't return with a kmapped
1349 * highmem page (we may not be called again).
1351 void *kaddr;
1353 kaddr = kmap_atomic(page, KM_USER0);
1354 memcpy(buffer, kaddr, PAGE_SIZE);
1355 kunmap_atomic(kaddr, KM_USER0);
1356 handle->buffer = buffer;
1357 } else {
1358 handle->buffer = page_address(page);
1361 handle->prev = handle->cur;
1363 handle->buf_offset = handle->cur_offset;
1364 if (handle->cur_offset + count >= PAGE_SIZE) {
1365 count = PAGE_SIZE - handle->cur_offset;
1366 handle->cur_offset = 0;
1367 handle->cur++;
1368 } else {
1369 handle->cur_offset += count;
1371 handle->offset += count;
1372 return count;
1376 * mark_unsafe_pages - mark the pages that cannot be used for storing
1377 * the image during resume, because they conflict with the pages that
1378 * had been used before suspend
1381 static int mark_unsafe_pages(struct memory_bitmap *bm)
1383 struct zone *zone;
1384 unsigned long pfn, max_zone_pfn;
1386 /* Clear page flags */
1387 for_each_zone(zone) {
1388 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1389 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1390 if (pfn_valid(pfn))
1391 swsusp_unset_page_free(pfn_to_page(pfn));
1394 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1395 memory_bm_position_reset(bm);
1396 do {
1397 pfn = memory_bm_next_pfn(bm);
1398 if (likely(pfn != BM_END_OF_MAP)) {
1399 if (likely(pfn_valid(pfn)))
1400 swsusp_set_page_free(pfn_to_page(pfn));
1401 else
1402 return -EFAULT;
1404 } while (pfn != BM_END_OF_MAP);
1406 allocated_unsafe_pages = 0;
1408 return 0;
1411 static void
1412 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1414 unsigned long pfn;
1416 memory_bm_position_reset(src);
1417 pfn = memory_bm_next_pfn(src);
1418 while (pfn != BM_END_OF_MAP) {
1419 memory_bm_set_bit(dst, pfn);
1420 pfn = memory_bm_next_pfn(src);
1424 static int check_header(struct swsusp_info *info)
1426 char *reason;
1428 reason = check_image_kernel(info);
1429 if (!reason && info->num_physpages != num_physpages)
1430 reason = "memory size";
1431 if (reason) {
1432 printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
1433 return -EPERM;
1435 return 0;
1439 * load header - check the image header and copy data from it
1442 static int
1443 load_header(struct swsusp_info *info)
1445 int error;
1447 restore_pblist = NULL;
1448 error = check_header(info);
1449 if (!error) {
1450 nr_copy_pages = info->image_pages;
1451 nr_meta_pages = info->pages - info->image_pages - 1;
1453 return error;
1457 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1458 * the corresponding bit in the memory bitmap @bm
1461 static inline void
1462 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1464 int j;
1466 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1467 if (unlikely(buf[j] == BM_END_OF_MAP))
1468 break;
1470 memory_bm_set_bit(bm, buf[j]);
1474 /* List of "safe" pages that may be used to store data loaded from the suspend
1475 * image
1477 static struct linked_page *safe_pages_list;
1479 #ifdef CONFIG_HIGHMEM
1480 /* struct highmem_pbe is used for creating the list of highmem pages that
1481 * should be restored atomically during the resume from disk, because the page
1482 * frames they have occupied before the suspend are in use.
1484 struct highmem_pbe {
1485 struct page *copy_page; /* data is here now */
1486 struct page *orig_page; /* data was here before the suspend */
1487 struct highmem_pbe *next;
1490 /* List of highmem PBEs needed for restoring the highmem pages that were
1491 * allocated before the suspend and included in the suspend image, but have
1492 * also been allocated by the "resume" kernel, so their contents cannot be
1493 * written directly to their "original" page frames.
1495 static struct highmem_pbe *highmem_pblist;
1498 * count_highmem_image_pages - compute the number of highmem pages in the
1499 * suspend image. The bits in the memory bitmap @bm that correspond to the
1500 * image pages are assumed to be set.
1503 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1505 unsigned long pfn;
1506 unsigned int cnt = 0;
1508 memory_bm_position_reset(bm);
1509 pfn = memory_bm_next_pfn(bm);
1510 while (pfn != BM_END_OF_MAP) {
1511 if (PageHighMem(pfn_to_page(pfn)))
1512 cnt++;
1514 pfn = memory_bm_next_pfn(bm);
1516 return cnt;
1520 * prepare_highmem_image - try to allocate as many highmem pages as
1521 * there are highmem image pages (@nr_highmem_p points to the variable
1522 * containing the number of highmem image pages). The pages that are
1523 * "safe" (ie. will not be overwritten when the suspend image is
1524 * restored) have the corresponding bits set in @bm (it must be
1525 * unitialized).
1527 * NOTE: This function should not be called if there are no highmem
1528 * image pages.
1531 static unsigned int safe_highmem_pages;
1533 static struct memory_bitmap *safe_highmem_bm;
1535 static int
1536 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1538 unsigned int to_alloc;
1540 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1541 return -ENOMEM;
1543 if (get_highmem_buffer(PG_SAFE))
1544 return -ENOMEM;
1546 to_alloc = count_free_highmem_pages();
1547 if (to_alloc > *nr_highmem_p)
1548 to_alloc = *nr_highmem_p;
1549 else
1550 *nr_highmem_p = to_alloc;
1552 safe_highmem_pages = 0;
1553 while (to_alloc-- > 0) {
1554 struct page *page;
1556 page = alloc_page(__GFP_HIGHMEM);
1557 if (!swsusp_page_is_free(page)) {
1558 /* The page is "safe", set its bit the bitmap */
1559 memory_bm_set_bit(bm, page_to_pfn(page));
1560 safe_highmem_pages++;
1562 /* Mark the page as allocated */
1563 swsusp_set_page_forbidden(page);
1564 swsusp_set_page_free(page);
1566 memory_bm_position_reset(bm);
1567 safe_highmem_bm = bm;
1568 return 0;
1572 * get_highmem_page_buffer - for given highmem image page find the buffer
1573 * that suspend_write_next() should set for its caller to write to.
1575 * If the page is to be saved to its "original" page frame or a copy of
1576 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1577 * the copy of the page is to be made in normal memory, so the address of
1578 * the copy is returned.
1580 * If @buffer is returned, the caller of suspend_write_next() will write
1581 * the page's contents to @buffer, so they will have to be copied to the
1582 * right location on the next call to suspend_write_next() and it is done
1583 * with the help of copy_last_highmem_page(). For this purpose, if
1584 * @buffer is returned, @last_highmem page is set to the page to which
1585 * the data will have to be copied from @buffer.
1588 static struct page *last_highmem_page;
1590 static void *
1591 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1593 struct highmem_pbe *pbe;
1594 void *kaddr;
1596 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1597 /* We have allocated the "original" page frame and we can
1598 * use it directly to store the loaded page.
1600 last_highmem_page = page;
1601 return buffer;
1603 /* The "original" page frame has not been allocated and we have to
1604 * use a "safe" page frame to store the loaded page.
1606 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1607 if (!pbe) {
1608 swsusp_free();
1609 return NULL;
1611 pbe->orig_page = page;
1612 if (safe_highmem_pages > 0) {
1613 struct page *tmp;
1615 /* Copy of the page will be stored in high memory */
1616 kaddr = buffer;
1617 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1618 safe_highmem_pages--;
1619 last_highmem_page = tmp;
1620 pbe->copy_page = tmp;
1621 } else {
1622 /* Copy of the page will be stored in normal memory */
1623 kaddr = safe_pages_list;
1624 safe_pages_list = safe_pages_list->next;
1625 pbe->copy_page = virt_to_page(kaddr);
1627 pbe->next = highmem_pblist;
1628 highmem_pblist = pbe;
1629 return kaddr;
1633 * copy_last_highmem_page - copy the contents of a highmem image from
1634 * @buffer, where the caller of snapshot_write_next() has place them,
1635 * to the right location represented by @last_highmem_page .
1638 static void copy_last_highmem_page(void)
1640 if (last_highmem_page) {
1641 void *dst;
1643 dst = kmap_atomic(last_highmem_page, KM_USER0);
1644 memcpy(dst, buffer, PAGE_SIZE);
1645 kunmap_atomic(dst, KM_USER0);
1646 last_highmem_page = NULL;
1650 static inline int last_highmem_page_copied(void)
1652 return !last_highmem_page;
1655 static inline void free_highmem_data(void)
1657 if (safe_highmem_bm)
1658 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1660 if (buffer)
1661 free_image_page(buffer, PG_UNSAFE_CLEAR);
1663 #else
1664 static inline int get_safe_write_buffer(void) { return 0; }
1666 static unsigned int
1667 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1669 static inline int
1670 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1672 return 0;
1675 static inline void *
1676 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1678 return NULL;
1681 static inline void copy_last_highmem_page(void) {}
1682 static inline int last_highmem_page_copied(void) { return 1; }
1683 static inline void free_highmem_data(void) {}
1684 #endif /* CONFIG_HIGHMEM */
1687 * prepare_image - use the memory bitmap @bm to mark the pages that will
1688 * be overwritten in the process of restoring the system memory state
1689 * from the suspend image ("unsafe" pages) and allocate memory for the
1690 * image.
1692 * The idea is to allocate a new memory bitmap first and then allocate
1693 * as many pages as needed for the image data, but not to assign these
1694 * pages to specific tasks initially. Instead, we just mark them as
1695 * allocated and create a lists of "safe" pages that will be used
1696 * later. On systems with high memory a list of "safe" highmem pages is
1697 * also created.
1700 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1702 static int
1703 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1705 unsigned int nr_pages, nr_highmem;
1706 struct linked_page *sp_list, *lp;
1707 int error;
1709 /* If there is no highmem, the buffer will not be necessary */
1710 free_image_page(buffer, PG_UNSAFE_CLEAR);
1711 buffer = NULL;
1713 nr_highmem = count_highmem_image_pages(bm);
1714 error = mark_unsafe_pages(bm);
1715 if (error)
1716 goto Free;
1718 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1719 if (error)
1720 goto Free;
1722 duplicate_memory_bitmap(new_bm, bm);
1723 memory_bm_free(bm, PG_UNSAFE_KEEP);
1724 if (nr_highmem > 0) {
1725 error = prepare_highmem_image(bm, &nr_highmem);
1726 if (error)
1727 goto Free;
1729 /* Reserve some safe pages for potential later use.
1731 * NOTE: This way we make sure there will be enough safe pages for the
1732 * chain_alloc() in get_buffer(). It is a bit wasteful, but
1733 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1735 sp_list = NULL;
1736 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1737 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1738 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1739 while (nr_pages > 0) {
1740 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1741 if (!lp) {
1742 error = -ENOMEM;
1743 goto Free;
1745 lp->next = sp_list;
1746 sp_list = lp;
1747 nr_pages--;
1749 /* Preallocate memory for the image */
1750 safe_pages_list = NULL;
1751 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1752 while (nr_pages > 0) {
1753 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1754 if (!lp) {
1755 error = -ENOMEM;
1756 goto Free;
1758 if (!swsusp_page_is_free(virt_to_page(lp))) {
1759 /* The page is "safe", add it to the list */
1760 lp->next = safe_pages_list;
1761 safe_pages_list = lp;
1763 /* Mark the page as allocated */
1764 swsusp_set_page_forbidden(virt_to_page(lp));
1765 swsusp_set_page_free(virt_to_page(lp));
1766 nr_pages--;
1768 /* Free the reserved safe pages so that chain_alloc() can use them */
1769 while (sp_list) {
1770 lp = sp_list->next;
1771 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1772 sp_list = lp;
1774 return 0;
1776 Free:
1777 swsusp_free();
1778 return error;
1782 * get_buffer - compute the address that snapshot_write_next() should
1783 * set for its caller to write to.
1786 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1788 struct pbe *pbe;
1789 struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1791 if (PageHighMem(page))
1792 return get_highmem_page_buffer(page, ca);
1794 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1795 /* We have allocated the "original" page frame and we can
1796 * use it directly to store the loaded page.
1798 return page_address(page);
1800 /* The "original" page frame has not been allocated and we have to
1801 * use a "safe" page frame to store the loaded page.
1803 pbe = chain_alloc(ca, sizeof(struct pbe));
1804 if (!pbe) {
1805 swsusp_free();
1806 return NULL;
1808 pbe->orig_address = page_address(page);
1809 pbe->address = safe_pages_list;
1810 safe_pages_list = safe_pages_list->next;
1811 pbe->next = restore_pblist;
1812 restore_pblist = pbe;
1813 return pbe->address;
1817 * snapshot_write_next - used for writing the system memory snapshot.
1819 * On the first call to it @handle should point to a zeroed
1820 * snapshot_handle structure. The structure gets updated and a pointer
1821 * to it should be passed to this function every next time.
1823 * The @count parameter should contain the number of bytes the caller
1824 * wants to write to the image. It must not be zero.
1826 * On success the function returns a positive number. Then, the caller
1827 * is allowed to write up to the returned number of bytes to the memory
1828 * location computed by the data_of() macro. The number returned
1829 * may be smaller than @count, but this only happens if the write would
1830 * cross a page boundary otherwise.
1832 * The function returns 0 to indicate the "end of file" condition,
1833 * and a negative number is returned on error. In such cases the
1834 * structure pointed to by @handle is not updated and should not be used
1835 * any more.
1838 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1840 static struct chain_allocator ca;
1841 int error = 0;
1843 /* Check if we have already loaded the entire image */
1844 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1845 return 0;
1847 if (handle->offset == 0) {
1848 if (!buffer)
1849 /* This makes the buffer be freed by swsusp_free() */
1850 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1852 if (!buffer)
1853 return -ENOMEM;
1855 handle->buffer = buffer;
1857 handle->sync_read = 1;
1858 if (handle->prev < handle->cur) {
1859 if (handle->prev == 0) {
1860 error = load_header(buffer);
1861 if (error)
1862 return error;
1864 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1865 if (error)
1866 return error;
1868 } else if (handle->prev <= nr_meta_pages) {
1869 unpack_orig_pfns(buffer, &copy_bm);
1870 if (handle->prev == nr_meta_pages) {
1871 error = prepare_image(&orig_bm, &copy_bm);
1872 if (error)
1873 return error;
1875 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1876 memory_bm_position_reset(&orig_bm);
1877 restore_pblist = NULL;
1878 handle->buffer = get_buffer(&orig_bm, &ca);
1879 handle->sync_read = 0;
1880 if (!handle->buffer)
1881 return -ENOMEM;
1883 } else {
1884 copy_last_highmem_page();
1885 handle->buffer = get_buffer(&orig_bm, &ca);
1886 if (handle->buffer != buffer)
1887 handle->sync_read = 0;
1889 handle->prev = handle->cur;
1891 handle->buf_offset = handle->cur_offset;
1892 if (handle->cur_offset + count >= PAGE_SIZE) {
1893 count = PAGE_SIZE - handle->cur_offset;
1894 handle->cur_offset = 0;
1895 handle->cur++;
1896 } else {
1897 handle->cur_offset += count;
1899 handle->offset += count;
1900 return count;
1904 * snapshot_write_finalize - must be called after the last call to
1905 * snapshot_write_next() in case the last page in the image happens
1906 * to be a highmem page and its contents should be stored in the
1907 * highmem. Additionally, it releases the memory that will not be
1908 * used any more.
1911 void snapshot_write_finalize(struct snapshot_handle *handle)
1913 copy_last_highmem_page();
1914 /* Free only if we have loaded the image entirely */
1915 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1916 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1917 free_highmem_data();
1921 int snapshot_image_loaded(struct snapshot_handle *handle)
1923 return !(!nr_copy_pages || !last_highmem_page_copied() ||
1924 handle->cur <= nr_meta_pages + nr_copy_pages);
1927 #ifdef CONFIG_HIGHMEM
1928 /* Assumes that @buf is ready and points to a "safe" page */
1929 static inline void
1930 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1932 void *kaddr1, *kaddr2;
1934 kaddr1 = kmap_atomic(p1, KM_USER0);
1935 kaddr2 = kmap_atomic(p2, KM_USER1);
1936 memcpy(buf, kaddr1, PAGE_SIZE);
1937 memcpy(kaddr1, kaddr2, PAGE_SIZE);
1938 memcpy(kaddr2, buf, PAGE_SIZE);
1939 kunmap_atomic(kaddr1, KM_USER0);
1940 kunmap_atomic(kaddr2, KM_USER1);
1944 * restore_highmem - for each highmem page that was allocated before
1945 * the suspend and included in the suspend image, and also has been
1946 * allocated by the "resume" kernel swap its current (ie. "before
1947 * resume") contents with the previous (ie. "before suspend") one.
1949 * If the resume eventually fails, we can call this function once
1950 * again and restore the "before resume" highmem state.
1953 int restore_highmem(void)
1955 struct highmem_pbe *pbe = highmem_pblist;
1956 void *buf;
1958 if (!pbe)
1959 return 0;
1961 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1962 if (!buf)
1963 return -ENOMEM;
1965 while (pbe) {
1966 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1967 pbe = pbe->next;
1969 free_image_page(buf, PG_UNSAFE_CLEAR);
1970 return 0;
1972 #endif /* CONFIG_HIGHMEM */