sched: tune multi-core idle balancing
[wrt350n-kernel.git] / arch / x86 / kvm / mmu.c
blobd8172aabc660de7503c43b697fea470d81f7eb9a
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
20 #include "vmx.h"
21 #include "mmu.h"
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
31 #include <asm/page.h>
32 #include <asm/cmpxchg.h>
33 #include <asm/io.h>
35 #undef MMU_DEBUG
37 #undef AUDIT
39 #ifdef AUDIT
40 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
41 #else
42 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
43 #endif
45 #ifdef MMU_DEBUG
47 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
48 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
50 #else
52 #define pgprintk(x...) do { } while (0)
53 #define rmap_printk(x...) do { } while (0)
55 #endif
57 #if defined(MMU_DEBUG) || defined(AUDIT)
58 static int dbg = 1;
59 #endif
61 #ifndef MMU_DEBUG
62 #define ASSERT(x) do { } while (0)
63 #else
64 #define ASSERT(x) \
65 if (!(x)) { \
66 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
67 __FILE__, __LINE__, #x); \
69 #endif
71 #define PT64_PT_BITS 9
72 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
73 #define PT32_PT_BITS 10
74 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
76 #define PT_WRITABLE_SHIFT 1
78 #define PT_PRESENT_MASK (1ULL << 0)
79 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
80 #define PT_USER_MASK (1ULL << 2)
81 #define PT_PWT_MASK (1ULL << 3)
82 #define PT_PCD_MASK (1ULL << 4)
83 #define PT_ACCESSED_MASK (1ULL << 5)
84 #define PT_DIRTY_MASK (1ULL << 6)
85 #define PT_PAGE_SIZE_MASK (1ULL << 7)
86 #define PT_PAT_MASK (1ULL << 7)
87 #define PT_GLOBAL_MASK (1ULL << 8)
88 #define PT64_NX_SHIFT 63
89 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
91 #define PT_PAT_SHIFT 7
92 #define PT_DIR_PAT_SHIFT 12
93 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
95 #define PT32_DIR_PSE36_SIZE 4
96 #define PT32_DIR_PSE36_SHIFT 13
97 #define PT32_DIR_PSE36_MASK \
98 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
101 #define PT_FIRST_AVAIL_BITS_SHIFT 9
102 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
104 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
106 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
108 #define PT64_LEVEL_BITS 9
110 #define PT64_LEVEL_SHIFT(level) \
111 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
113 #define PT64_LEVEL_MASK(level) \
114 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
116 #define PT64_INDEX(address, level)\
117 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
120 #define PT32_LEVEL_BITS 10
122 #define PT32_LEVEL_SHIFT(level) \
123 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
125 #define PT32_LEVEL_MASK(level) \
126 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
128 #define PT32_INDEX(address, level)\
129 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
132 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
133 #define PT64_DIR_BASE_ADDR_MASK \
134 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
136 #define PT32_BASE_ADDR_MASK PAGE_MASK
137 #define PT32_DIR_BASE_ADDR_MASK \
138 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
140 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
141 | PT64_NX_MASK)
143 #define PFERR_PRESENT_MASK (1U << 0)
144 #define PFERR_WRITE_MASK (1U << 1)
145 #define PFERR_USER_MASK (1U << 2)
146 #define PFERR_FETCH_MASK (1U << 4)
148 #define PT64_ROOT_LEVEL 4
149 #define PT32_ROOT_LEVEL 2
150 #define PT32E_ROOT_LEVEL 3
152 #define PT_DIRECTORY_LEVEL 2
153 #define PT_PAGE_TABLE_LEVEL 1
155 #define RMAP_EXT 4
157 #define ACC_EXEC_MASK 1
158 #define ACC_WRITE_MASK PT_WRITABLE_MASK
159 #define ACC_USER_MASK PT_USER_MASK
160 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
162 struct kvm_rmap_desc {
163 u64 *shadow_ptes[RMAP_EXT];
164 struct kvm_rmap_desc *more;
167 static struct kmem_cache *pte_chain_cache;
168 static struct kmem_cache *rmap_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
171 static u64 __read_mostly shadow_trap_nonpresent_pte;
172 static u64 __read_mostly shadow_notrap_nonpresent_pte;
174 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
176 shadow_trap_nonpresent_pte = trap_pte;
177 shadow_notrap_nonpresent_pte = notrap_pte;
179 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
181 static int is_write_protection(struct kvm_vcpu *vcpu)
183 return vcpu->arch.cr0 & X86_CR0_WP;
186 static int is_cpuid_PSE36(void)
188 return 1;
191 static int is_nx(struct kvm_vcpu *vcpu)
193 return vcpu->arch.shadow_efer & EFER_NX;
196 static int is_present_pte(unsigned long pte)
198 return pte & PT_PRESENT_MASK;
201 static int is_shadow_present_pte(u64 pte)
203 pte &= ~PT_SHADOW_IO_MARK;
204 return pte != shadow_trap_nonpresent_pte
205 && pte != shadow_notrap_nonpresent_pte;
208 static int is_writeble_pte(unsigned long pte)
210 return pte & PT_WRITABLE_MASK;
213 static int is_dirty_pte(unsigned long pte)
215 return pte & PT_DIRTY_MASK;
218 static int is_io_pte(unsigned long pte)
220 return pte & PT_SHADOW_IO_MARK;
223 static int is_rmap_pte(u64 pte)
225 return pte != shadow_trap_nonpresent_pte
226 && pte != shadow_notrap_nonpresent_pte;
229 static gfn_t pse36_gfn_delta(u32 gpte)
231 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
233 return (gpte & PT32_DIR_PSE36_MASK) << shift;
236 static void set_shadow_pte(u64 *sptep, u64 spte)
238 #ifdef CONFIG_X86_64
239 set_64bit((unsigned long *)sptep, spte);
240 #else
241 set_64bit((unsigned long long *)sptep, spte);
242 #endif
245 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
246 struct kmem_cache *base_cache, int min)
248 void *obj;
250 if (cache->nobjs >= min)
251 return 0;
252 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
253 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
254 if (!obj)
255 return -ENOMEM;
256 cache->objects[cache->nobjs++] = obj;
258 return 0;
261 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
263 while (mc->nobjs)
264 kfree(mc->objects[--mc->nobjs]);
267 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
268 int min)
270 struct page *page;
272 if (cache->nobjs >= min)
273 return 0;
274 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
275 page = alloc_page(GFP_KERNEL);
276 if (!page)
277 return -ENOMEM;
278 set_page_private(page, 0);
279 cache->objects[cache->nobjs++] = page_address(page);
281 return 0;
284 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
286 while (mc->nobjs)
287 free_page((unsigned long)mc->objects[--mc->nobjs]);
290 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
292 int r;
294 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
295 pte_chain_cache, 4);
296 if (r)
297 goto out;
298 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
299 rmap_desc_cache, 1);
300 if (r)
301 goto out;
302 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
303 if (r)
304 goto out;
305 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
306 mmu_page_header_cache, 4);
307 out:
308 return r;
311 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
313 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
314 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
315 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
316 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
319 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
320 size_t size)
322 void *p;
324 BUG_ON(!mc->nobjs);
325 p = mc->objects[--mc->nobjs];
326 memset(p, 0, size);
327 return p;
330 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
332 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
333 sizeof(struct kvm_pte_chain));
336 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
338 kfree(pc);
341 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
343 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
344 sizeof(struct kvm_rmap_desc));
347 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
349 kfree(rd);
353 * Take gfn and return the reverse mapping to it.
354 * Note: gfn must be unaliased before this function get called
357 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
359 struct kvm_memory_slot *slot;
361 slot = gfn_to_memslot(kvm, gfn);
362 return &slot->rmap[gfn - slot->base_gfn];
366 * Reverse mapping data structures:
368 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
369 * that points to page_address(page).
371 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
372 * containing more mappings.
374 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
376 struct kvm_mmu_page *sp;
377 struct kvm_rmap_desc *desc;
378 unsigned long *rmapp;
379 int i;
381 if (!is_rmap_pte(*spte))
382 return;
383 gfn = unalias_gfn(vcpu->kvm, gfn);
384 sp = page_header(__pa(spte));
385 sp->gfns[spte - sp->spt] = gfn;
386 rmapp = gfn_to_rmap(vcpu->kvm, gfn);
387 if (!*rmapp) {
388 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
389 *rmapp = (unsigned long)spte;
390 } else if (!(*rmapp & 1)) {
391 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
392 desc = mmu_alloc_rmap_desc(vcpu);
393 desc->shadow_ptes[0] = (u64 *)*rmapp;
394 desc->shadow_ptes[1] = spte;
395 *rmapp = (unsigned long)desc | 1;
396 } else {
397 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
398 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
399 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
400 desc = desc->more;
401 if (desc->shadow_ptes[RMAP_EXT-1]) {
402 desc->more = mmu_alloc_rmap_desc(vcpu);
403 desc = desc->more;
405 for (i = 0; desc->shadow_ptes[i]; ++i)
407 desc->shadow_ptes[i] = spte;
411 static void rmap_desc_remove_entry(unsigned long *rmapp,
412 struct kvm_rmap_desc *desc,
413 int i,
414 struct kvm_rmap_desc *prev_desc)
416 int j;
418 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
420 desc->shadow_ptes[i] = desc->shadow_ptes[j];
421 desc->shadow_ptes[j] = NULL;
422 if (j != 0)
423 return;
424 if (!prev_desc && !desc->more)
425 *rmapp = (unsigned long)desc->shadow_ptes[0];
426 else
427 if (prev_desc)
428 prev_desc->more = desc->more;
429 else
430 *rmapp = (unsigned long)desc->more | 1;
431 mmu_free_rmap_desc(desc);
434 static void rmap_remove(struct kvm *kvm, u64 *spte)
436 struct kvm_rmap_desc *desc;
437 struct kvm_rmap_desc *prev_desc;
438 struct kvm_mmu_page *sp;
439 struct page *page;
440 unsigned long *rmapp;
441 int i;
443 if (!is_rmap_pte(*spte))
444 return;
445 sp = page_header(__pa(spte));
446 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
447 mark_page_accessed(page);
448 if (is_writeble_pte(*spte))
449 kvm_release_page_dirty(page);
450 else
451 kvm_release_page_clean(page);
452 rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt]);
453 if (!*rmapp) {
454 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
455 BUG();
456 } else if (!(*rmapp & 1)) {
457 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
458 if ((u64 *)*rmapp != spte) {
459 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
460 spte, *spte);
461 BUG();
463 *rmapp = 0;
464 } else {
465 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
466 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
467 prev_desc = NULL;
468 while (desc) {
469 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
470 if (desc->shadow_ptes[i] == spte) {
471 rmap_desc_remove_entry(rmapp,
472 desc, i,
473 prev_desc);
474 return;
476 prev_desc = desc;
477 desc = desc->more;
479 BUG();
483 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
485 struct kvm_rmap_desc *desc;
486 struct kvm_rmap_desc *prev_desc;
487 u64 *prev_spte;
488 int i;
490 if (!*rmapp)
491 return NULL;
492 else if (!(*rmapp & 1)) {
493 if (!spte)
494 return (u64 *)*rmapp;
495 return NULL;
497 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
498 prev_desc = NULL;
499 prev_spte = NULL;
500 while (desc) {
501 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
502 if (prev_spte == spte)
503 return desc->shadow_ptes[i];
504 prev_spte = desc->shadow_ptes[i];
506 desc = desc->more;
508 return NULL;
511 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
513 unsigned long *rmapp;
514 u64 *spte;
515 int write_protected = 0;
517 gfn = unalias_gfn(kvm, gfn);
518 rmapp = gfn_to_rmap(kvm, gfn);
520 spte = rmap_next(kvm, rmapp, NULL);
521 while (spte) {
522 BUG_ON(!spte);
523 BUG_ON(!(*spte & PT_PRESENT_MASK));
524 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
525 if (is_writeble_pte(*spte)) {
526 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
527 write_protected = 1;
529 spte = rmap_next(kvm, rmapp, spte);
531 if (write_protected)
532 kvm_flush_remote_tlbs(kvm);
535 #ifdef MMU_DEBUG
536 static int is_empty_shadow_page(u64 *spt)
538 u64 *pos;
539 u64 *end;
541 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
542 if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
543 printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
544 pos, *pos);
545 return 0;
547 return 1;
549 #endif
551 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
553 ASSERT(is_empty_shadow_page(sp->spt));
554 list_del(&sp->link);
555 __free_page(virt_to_page(sp->spt));
556 __free_page(virt_to_page(sp->gfns));
557 kfree(sp);
558 ++kvm->arch.n_free_mmu_pages;
561 static unsigned kvm_page_table_hashfn(gfn_t gfn)
563 return gfn;
566 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
567 u64 *parent_pte)
569 struct kvm_mmu_page *sp;
571 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
572 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
573 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
574 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
575 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
576 ASSERT(is_empty_shadow_page(sp->spt));
577 sp->slot_bitmap = 0;
578 sp->multimapped = 0;
579 sp->parent_pte = parent_pte;
580 --vcpu->kvm->arch.n_free_mmu_pages;
581 return sp;
584 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
585 struct kvm_mmu_page *sp, u64 *parent_pte)
587 struct kvm_pte_chain *pte_chain;
588 struct hlist_node *node;
589 int i;
591 if (!parent_pte)
592 return;
593 if (!sp->multimapped) {
594 u64 *old = sp->parent_pte;
596 if (!old) {
597 sp->parent_pte = parent_pte;
598 return;
600 sp->multimapped = 1;
601 pte_chain = mmu_alloc_pte_chain(vcpu);
602 INIT_HLIST_HEAD(&sp->parent_ptes);
603 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
604 pte_chain->parent_ptes[0] = old;
606 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
607 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
608 continue;
609 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
610 if (!pte_chain->parent_ptes[i]) {
611 pte_chain->parent_ptes[i] = parent_pte;
612 return;
615 pte_chain = mmu_alloc_pte_chain(vcpu);
616 BUG_ON(!pte_chain);
617 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
618 pte_chain->parent_ptes[0] = parent_pte;
621 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
622 u64 *parent_pte)
624 struct kvm_pte_chain *pte_chain;
625 struct hlist_node *node;
626 int i;
628 if (!sp->multimapped) {
629 BUG_ON(sp->parent_pte != parent_pte);
630 sp->parent_pte = NULL;
631 return;
633 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
634 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
635 if (!pte_chain->parent_ptes[i])
636 break;
637 if (pte_chain->parent_ptes[i] != parent_pte)
638 continue;
639 while (i + 1 < NR_PTE_CHAIN_ENTRIES
640 && pte_chain->parent_ptes[i + 1]) {
641 pte_chain->parent_ptes[i]
642 = pte_chain->parent_ptes[i + 1];
643 ++i;
645 pte_chain->parent_ptes[i] = NULL;
646 if (i == 0) {
647 hlist_del(&pte_chain->link);
648 mmu_free_pte_chain(pte_chain);
649 if (hlist_empty(&sp->parent_ptes)) {
650 sp->multimapped = 0;
651 sp->parent_pte = NULL;
654 return;
656 BUG();
659 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
661 unsigned index;
662 struct hlist_head *bucket;
663 struct kvm_mmu_page *sp;
664 struct hlist_node *node;
666 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
667 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
668 bucket = &kvm->arch.mmu_page_hash[index];
669 hlist_for_each_entry(sp, node, bucket, hash_link)
670 if (sp->gfn == gfn && !sp->role.metaphysical) {
671 pgprintk("%s: found role %x\n",
672 __FUNCTION__, sp->role.word);
673 return sp;
675 return NULL;
678 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
679 gfn_t gfn,
680 gva_t gaddr,
681 unsigned level,
682 int metaphysical,
683 unsigned access,
684 u64 *parent_pte)
686 union kvm_mmu_page_role role;
687 unsigned index;
688 unsigned quadrant;
689 struct hlist_head *bucket;
690 struct kvm_mmu_page *sp;
691 struct hlist_node *node;
693 role.word = 0;
694 role.glevels = vcpu->arch.mmu.root_level;
695 role.level = level;
696 role.metaphysical = metaphysical;
697 role.access = access;
698 if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
699 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
700 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
701 role.quadrant = quadrant;
703 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
704 gfn, role.word);
705 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
706 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
707 hlist_for_each_entry(sp, node, bucket, hash_link)
708 if (sp->gfn == gfn && sp->role.word == role.word) {
709 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
710 pgprintk("%s: found\n", __FUNCTION__);
711 return sp;
713 ++vcpu->kvm->stat.mmu_cache_miss;
714 sp = kvm_mmu_alloc_page(vcpu, parent_pte);
715 if (!sp)
716 return sp;
717 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
718 sp->gfn = gfn;
719 sp->role = role;
720 hlist_add_head(&sp->hash_link, bucket);
721 vcpu->arch.mmu.prefetch_page(vcpu, sp);
722 if (!metaphysical)
723 rmap_write_protect(vcpu->kvm, gfn);
724 return sp;
727 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
728 struct kvm_mmu_page *sp)
730 unsigned i;
731 u64 *pt;
732 u64 ent;
734 pt = sp->spt;
736 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
737 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
738 if (is_shadow_present_pte(pt[i]))
739 rmap_remove(kvm, &pt[i]);
740 pt[i] = shadow_trap_nonpresent_pte;
742 kvm_flush_remote_tlbs(kvm);
743 return;
746 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
747 ent = pt[i];
749 pt[i] = shadow_trap_nonpresent_pte;
750 if (!is_shadow_present_pte(ent))
751 continue;
752 ent &= PT64_BASE_ADDR_MASK;
753 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
755 kvm_flush_remote_tlbs(kvm);
758 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
760 mmu_page_remove_parent_pte(sp, parent_pte);
763 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
765 int i;
767 for (i = 0; i < KVM_MAX_VCPUS; ++i)
768 if (kvm->vcpus[i])
769 kvm->vcpus[i]->arch.last_pte_updated = NULL;
772 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
774 u64 *parent_pte;
776 ++kvm->stat.mmu_shadow_zapped;
777 while (sp->multimapped || sp->parent_pte) {
778 if (!sp->multimapped)
779 parent_pte = sp->parent_pte;
780 else {
781 struct kvm_pte_chain *chain;
783 chain = container_of(sp->parent_ptes.first,
784 struct kvm_pte_chain, link);
785 parent_pte = chain->parent_ptes[0];
787 BUG_ON(!parent_pte);
788 kvm_mmu_put_page(sp, parent_pte);
789 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
791 kvm_mmu_page_unlink_children(kvm, sp);
792 if (!sp->root_count) {
793 hlist_del(&sp->hash_link);
794 kvm_mmu_free_page(kvm, sp);
795 } else
796 list_move(&sp->link, &kvm->arch.active_mmu_pages);
797 kvm_mmu_reset_last_pte_updated(kvm);
801 * Changing the number of mmu pages allocated to the vm
802 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
804 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
807 * If we set the number of mmu pages to be smaller be than the
808 * number of actived pages , we must to free some mmu pages before we
809 * change the value
812 if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
813 kvm_nr_mmu_pages) {
814 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
815 - kvm->arch.n_free_mmu_pages;
817 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
818 struct kvm_mmu_page *page;
820 page = container_of(kvm->arch.active_mmu_pages.prev,
821 struct kvm_mmu_page, link);
822 kvm_mmu_zap_page(kvm, page);
823 n_used_mmu_pages--;
825 kvm->arch.n_free_mmu_pages = 0;
827 else
828 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
829 - kvm->arch.n_alloc_mmu_pages;
831 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
834 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
836 unsigned index;
837 struct hlist_head *bucket;
838 struct kvm_mmu_page *sp;
839 struct hlist_node *node, *n;
840 int r;
842 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
843 r = 0;
844 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
845 bucket = &kvm->arch.mmu_page_hash[index];
846 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
847 if (sp->gfn == gfn && !sp->role.metaphysical) {
848 pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
849 sp->role.word);
850 kvm_mmu_zap_page(kvm, sp);
851 r = 1;
853 return r;
856 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
858 struct kvm_mmu_page *sp;
860 while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
861 pgprintk("%s: zap %lx %x\n", __FUNCTION__, gfn, sp->role.word);
862 kvm_mmu_zap_page(kvm, sp);
866 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
868 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
869 struct kvm_mmu_page *sp = page_header(__pa(pte));
871 __set_bit(slot, &sp->slot_bitmap);
874 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
876 struct page *page;
878 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
880 if (gpa == UNMAPPED_GVA)
881 return NULL;
883 down_read(&current->mm->mmap_sem);
884 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
885 up_read(&current->mm->mmap_sem);
887 return page;
890 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
891 unsigned pt_access, unsigned pte_access,
892 int user_fault, int write_fault, int dirty,
893 int *ptwrite, gfn_t gfn, struct page *page)
895 u64 spte;
896 int was_rmapped = is_rmap_pte(*shadow_pte);
897 int was_writeble = is_writeble_pte(*shadow_pte);
899 pgprintk("%s: spte %llx access %x write_fault %d"
900 " user_fault %d gfn %lx\n",
901 __FUNCTION__, *shadow_pte, pt_access,
902 write_fault, user_fault, gfn);
905 * We don't set the accessed bit, since we sometimes want to see
906 * whether the guest actually used the pte (in order to detect
907 * demand paging).
909 spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
910 if (!dirty)
911 pte_access &= ~ACC_WRITE_MASK;
912 if (!(pte_access & ACC_EXEC_MASK))
913 spte |= PT64_NX_MASK;
915 spte |= PT_PRESENT_MASK;
916 if (pte_access & ACC_USER_MASK)
917 spte |= PT_USER_MASK;
919 if (is_error_page(page)) {
920 set_shadow_pte(shadow_pte,
921 shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
922 kvm_release_page_clean(page);
923 return;
926 spte |= page_to_phys(page);
928 if ((pte_access & ACC_WRITE_MASK)
929 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
930 struct kvm_mmu_page *shadow;
932 spte |= PT_WRITABLE_MASK;
933 if (user_fault) {
934 mmu_unshadow(vcpu->kvm, gfn);
935 goto unshadowed;
938 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
939 if (shadow) {
940 pgprintk("%s: found shadow page for %lx, marking ro\n",
941 __FUNCTION__, gfn);
942 pte_access &= ~ACC_WRITE_MASK;
943 if (is_writeble_pte(spte)) {
944 spte &= ~PT_WRITABLE_MASK;
945 kvm_x86_ops->tlb_flush(vcpu);
947 if (write_fault)
948 *ptwrite = 1;
952 unshadowed:
954 if (pte_access & ACC_WRITE_MASK)
955 mark_page_dirty(vcpu->kvm, gfn);
957 pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
958 set_shadow_pte(shadow_pte, spte);
959 page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
960 if (!was_rmapped) {
961 rmap_add(vcpu, shadow_pte, gfn);
962 if (!is_rmap_pte(*shadow_pte))
963 kvm_release_page_clean(page);
964 } else {
965 if (was_writeble)
966 kvm_release_page_dirty(page);
967 else
968 kvm_release_page_clean(page);
970 if (!ptwrite || !*ptwrite)
971 vcpu->arch.last_pte_updated = shadow_pte;
974 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
978 static int __nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write,
979 gfn_t gfn, struct page *page)
981 int level = PT32E_ROOT_LEVEL;
982 hpa_t table_addr = vcpu->arch.mmu.root_hpa;
983 int pt_write = 0;
985 for (; ; level--) {
986 u32 index = PT64_INDEX(v, level);
987 u64 *table;
989 ASSERT(VALID_PAGE(table_addr));
990 table = __va(table_addr);
992 if (level == 1) {
993 mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
994 0, write, 1, &pt_write, gfn, page);
995 return pt_write || is_io_pte(table[index]);
998 if (table[index] == shadow_trap_nonpresent_pte) {
999 struct kvm_mmu_page *new_table;
1000 gfn_t pseudo_gfn;
1002 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1003 >> PAGE_SHIFT;
1004 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1005 v, level - 1,
1006 1, ACC_ALL, &table[index]);
1007 if (!new_table) {
1008 pgprintk("nonpaging_map: ENOMEM\n");
1009 kvm_release_page_clean(page);
1010 return -ENOMEM;
1013 table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
1014 | PT_WRITABLE_MASK | PT_USER_MASK;
1016 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1020 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1022 int r;
1024 struct page *page;
1026 down_read(&vcpu->kvm->slots_lock);
1028 down_read(&current->mm->mmap_sem);
1029 page = gfn_to_page(vcpu->kvm, gfn);
1030 up_read(&current->mm->mmap_sem);
1032 spin_lock(&vcpu->kvm->mmu_lock);
1033 kvm_mmu_free_some_pages(vcpu);
1034 r = __nonpaging_map(vcpu, v, write, gfn, page);
1035 spin_unlock(&vcpu->kvm->mmu_lock);
1037 up_read(&vcpu->kvm->slots_lock);
1039 return r;
1043 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1044 struct kvm_mmu_page *sp)
1046 int i;
1048 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1049 sp->spt[i] = shadow_trap_nonpresent_pte;
1052 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1054 int i;
1055 struct kvm_mmu_page *sp;
1057 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1058 return;
1059 spin_lock(&vcpu->kvm->mmu_lock);
1060 #ifdef CONFIG_X86_64
1061 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1062 hpa_t root = vcpu->arch.mmu.root_hpa;
1064 sp = page_header(root);
1065 --sp->root_count;
1066 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1067 spin_unlock(&vcpu->kvm->mmu_lock);
1068 return;
1070 #endif
1071 for (i = 0; i < 4; ++i) {
1072 hpa_t root = vcpu->arch.mmu.pae_root[i];
1074 if (root) {
1075 root &= PT64_BASE_ADDR_MASK;
1076 sp = page_header(root);
1077 --sp->root_count;
1079 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1081 spin_unlock(&vcpu->kvm->mmu_lock);
1082 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1085 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1087 int i;
1088 gfn_t root_gfn;
1089 struct kvm_mmu_page *sp;
1091 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1093 #ifdef CONFIG_X86_64
1094 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1095 hpa_t root = vcpu->arch.mmu.root_hpa;
1097 ASSERT(!VALID_PAGE(root));
1098 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1099 PT64_ROOT_LEVEL, 0, ACC_ALL, NULL);
1100 root = __pa(sp->spt);
1101 ++sp->root_count;
1102 vcpu->arch.mmu.root_hpa = root;
1103 return;
1105 #endif
1106 for (i = 0; i < 4; ++i) {
1107 hpa_t root = vcpu->arch.mmu.pae_root[i];
1109 ASSERT(!VALID_PAGE(root));
1110 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1111 if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1112 vcpu->arch.mmu.pae_root[i] = 0;
1113 continue;
1115 root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1116 } else if (vcpu->arch.mmu.root_level == 0)
1117 root_gfn = 0;
1118 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1119 PT32_ROOT_LEVEL, !is_paging(vcpu),
1120 ACC_ALL, NULL);
1121 root = __pa(sp->spt);
1122 ++sp->root_count;
1123 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1125 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1128 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1130 return vaddr;
1133 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1134 u32 error_code)
1136 gfn_t gfn;
1137 int r;
1139 pgprintk("%s: gva %lx error %x\n", __FUNCTION__, gva, error_code);
1140 r = mmu_topup_memory_caches(vcpu);
1141 if (r)
1142 return r;
1144 ASSERT(vcpu);
1145 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1147 gfn = gva >> PAGE_SHIFT;
1149 return nonpaging_map(vcpu, gva & PAGE_MASK,
1150 error_code & PFERR_WRITE_MASK, gfn);
1153 static void nonpaging_free(struct kvm_vcpu *vcpu)
1155 mmu_free_roots(vcpu);
1158 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1160 struct kvm_mmu *context = &vcpu->arch.mmu;
1162 context->new_cr3 = nonpaging_new_cr3;
1163 context->page_fault = nonpaging_page_fault;
1164 context->gva_to_gpa = nonpaging_gva_to_gpa;
1165 context->free = nonpaging_free;
1166 context->prefetch_page = nonpaging_prefetch_page;
1167 context->root_level = 0;
1168 context->shadow_root_level = PT32E_ROOT_LEVEL;
1169 context->root_hpa = INVALID_PAGE;
1170 return 0;
1173 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1175 ++vcpu->stat.tlb_flush;
1176 kvm_x86_ops->tlb_flush(vcpu);
1179 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1181 pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->arch.cr3);
1182 mmu_free_roots(vcpu);
1185 static void inject_page_fault(struct kvm_vcpu *vcpu,
1186 u64 addr,
1187 u32 err_code)
1189 kvm_inject_page_fault(vcpu, addr, err_code);
1192 static void paging_free(struct kvm_vcpu *vcpu)
1194 nonpaging_free(vcpu);
1197 #define PTTYPE 64
1198 #include "paging_tmpl.h"
1199 #undef PTTYPE
1201 #define PTTYPE 32
1202 #include "paging_tmpl.h"
1203 #undef PTTYPE
1205 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1207 struct kvm_mmu *context = &vcpu->arch.mmu;
1209 ASSERT(is_pae(vcpu));
1210 context->new_cr3 = paging_new_cr3;
1211 context->page_fault = paging64_page_fault;
1212 context->gva_to_gpa = paging64_gva_to_gpa;
1213 context->prefetch_page = paging64_prefetch_page;
1214 context->free = paging_free;
1215 context->root_level = level;
1216 context->shadow_root_level = level;
1217 context->root_hpa = INVALID_PAGE;
1218 return 0;
1221 static int paging64_init_context(struct kvm_vcpu *vcpu)
1223 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1226 static int paging32_init_context(struct kvm_vcpu *vcpu)
1228 struct kvm_mmu *context = &vcpu->arch.mmu;
1230 context->new_cr3 = paging_new_cr3;
1231 context->page_fault = paging32_page_fault;
1232 context->gva_to_gpa = paging32_gva_to_gpa;
1233 context->free = paging_free;
1234 context->prefetch_page = paging32_prefetch_page;
1235 context->root_level = PT32_ROOT_LEVEL;
1236 context->shadow_root_level = PT32E_ROOT_LEVEL;
1237 context->root_hpa = INVALID_PAGE;
1238 return 0;
1241 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1243 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1246 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1248 ASSERT(vcpu);
1249 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1251 if (!is_paging(vcpu))
1252 return nonpaging_init_context(vcpu);
1253 else if (is_long_mode(vcpu))
1254 return paging64_init_context(vcpu);
1255 else if (is_pae(vcpu))
1256 return paging32E_init_context(vcpu);
1257 else
1258 return paging32_init_context(vcpu);
1261 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1263 ASSERT(vcpu);
1264 if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1265 vcpu->arch.mmu.free(vcpu);
1266 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1270 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1272 destroy_kvm_mmu(vcpu);
1273 return init_kvm_mmu(vcpu);
1275 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1277 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1279 int r;
1281 r = mmu_topup_memory_caches(vcpu);
1282 if (r)
1283 goto out;
1284 spin_lock(&vcpu->kvm->mmu_lock);
1285 kvm_mmu_free_some_pages(vcpu);
1286 mmu_alloc_roots(vcpu);
1287 spin_unlock(&vcpu->kvm->mmu_lock);
1288 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1289 kvm_mmu_flush_tlb(vcpu);
1290 out:
1291 return r;
1293 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1295 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1297 mmu_free_roots(vcpu);
1300 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1301 struct kvm_mmu_page *sp,
1302 u64 *spte)
1304 u64 pte;
1305 struct kvm_mmu_page *child;
1307 pte = *spte;
1308 if (is_shadow_present_pte(pte)) {
1309 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
1310 rmap_remove(vcpu->kvm, spte);
1311 else {
1312 child = page_header(pte & PT64_BASE_ADDR_MASK);
1313 mmu_page_remove_parent_pte(child, spte);
1316 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1319 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1320 struct kvm_mmu_page *sp,
1321 u64 *spte,
1322 const void *new, int bytes,
1323 int offset_in_pte)
1325 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
1326 ++vcpu->kvm->stat.mmu_pde_zapped;
1327 return;
1330 ++vcpu->kvm->stat.mmu_pte_updated;
1331 if (sp->role.glevels == PT32_ROOT_LEVEL)
1332 paging32_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1333 else
1334 paging64_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1337 static bool need_remote_flush(u64 old, u64 new)
1339 if (!is_shadow_present_pte(old))
1340 return false;
1341 if (!is_shadow_present_pte(new))
1342 return true;
1343 if ((old ^ new) & PT64_BASE_ADDR_MASK)
1344 return true;
1345 old ^= PT64_NX_MASK;
1346 new ^= PT64_NX_MASK;
1347 return (old & ~new & PT64_PERM_MASK) != 0;
1350 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1352 if (need_remote_flush(old, new))
1353 kvm_flush_remote_tlbs(vcpu->kvm);
1354 else
1355 kvm_mmu_flush_tlb(vcpu);
1358 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1360 u64 *spte = vcpu->arch.last_pte_updated;
1362 return !!(spte && (*spte & PT_ACCESSED_MASK));
1365 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1366 const u8 *new, int bytes)
1368 gfn_t gfn;
1369 int r;
1370 u64 gpte = 0;
1371 struct page *page;
1373 if (bytes != 4 && bytes != 8)
1374 return;
1377 * Assume that the pte write on a page table of the same type
1378 * as the current vcpu paging mode. This is nearly always true
1379 * (might be false while changing modes). Note it is verified later
1380 * by update_pte().
1382 if (is_pae(vcpu)) {
1383 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1384 if ((bytes == 4) && (gpa % 4 == 0)) {
1385 r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
1386 if (r)
1387 return;
1388 memcpy((void *)&gpte + (gpa % 8), new, 4);
1389 } else if ((bytes == 8) && (gpa % 8 == 0)) {
1390 memcpy((void *)&gpte, new, 8);
1392 } else {
1393 if ((bytes == 4) && (gpa % 4 == 0))
1394 memcpy((void *)&gpte, new, 4);
1396 if (!is_present_pte(gpte))
1397 return;
1398 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1400 down_read(&current->mm->mmap_sem);
1401 page = gfn_to_page(vcpu->kvm, gfn);
1402 up_read(&current->mm->mmap_sem);
1404 vcpu->arch.update_pte.gfn = gfn;
1405 vcpu->arch.update_pte.page = gfn_to_page(vcpu->kvm, gfn);
1408 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1409 const u8 *new, int bytes)
1411 gfn_t gfn = gpa >> PAGE_SHIFT;
1412 struct kvm_mmu_page *sp;
1413 struct hlist_node *node, *n;
1414 struct hlist_head *bucket;
1415 unsigned index;
1416 u64 entry;
1417 u64 *spte;
1418 unsigned offset = offset_in_page(gpa);
1419 unsigned pte_size;
1420 unsigned page_offset;
1421 unsigned misaligned;
1422 unsigned quadrant;
1423 int level;
1424 int flooded = 0;
1425 int npte;
1427 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1428 mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
1429 spin_lock(&vcpu->kvm->mmu_lock);
1430 kvm_mmu_free_some_pages(vcpu);
1431 ++vcpu->kvm->stat.mmu_pte_write;
1432 kvm_mmu_audit(vcpu, "pre pte write");
1433 if (gfn == vcpu->arch.last_pt_write_gfn
1434 && !last_updated_pte_accessed(vcpu)) {
1435 ++vcpu->arch.last_pt_write_count;
1436 if (vcpu->arch.last_pt_write_count >= 3)
1437 flooded = 1;
1438 } else {
1439 vcpu->arch.last_pt_write_gfn = gfn;
1440 vcpu->arch.last_pt_write_count = 1;
1441 vcpu->arch.last_pte_updated = NULL;
1443 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1444 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1445 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1446 if (sp->gfn != gfn || sp->role.metaphysical)
1447 continue;
1448 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1449 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1450 misaligned |= bytes < 4;
1451 if (misaligned || flooded) {
1453 * Misaligned accesses are too much trouble to fix
1454 * up; also, they usually indicate a page is not used
1455 * as a page table.
1457 * If we're seeing too many writes to a page,
1458 * it may no longer be a page table, or we may be
1459 * forking, in which case it is better to unmap the
1460 * page.
1462 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1463 gpa, bytes, sp->role.word);
1464 kvm_mmu_zap_page(vcpu->kvm, sp);
1465 ++vcpu->kvm->stat.mmu_flooded;
1466 continue;
1468 page_offset = offset;
1469 level = sp->role.level;
1470 npte = 1;
1471 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1472 page_offset <<= 1; /* 32->64 */
1474 * A 32-bit pde maps 4MB while the shadow pdes map
1475 * only 2MB. So we need to double the offset again
1476 * and zap two pdes instead of one.
1478 if (level == PT32_ROOT_LEVEL) {
1479 page_offset &= ~7; /* kill rounding error */
1480 page_offset <<= 1;
1481 npte = 2;
1483 quadrant = page_offset >> PAGE_SHIFT;
1484 page_offset &= ~PAGE_MASK;
1485 if (quadrant != sp->role.quadrant)
1486 continue;
1488 spte = &sp->spt[page_offset / sizeof(*spte)];
1489 while (npte--) {
1490 entry = *spte;
1491 mmu_pte_write_zap_pte(vcpu, sp, spte);
1492 mmu_pte_write_new_pte(vcpu, sp, spte, new, bytes,
1493 page_offset & (pte_size - 1));
1494 mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1495 ++spte;
1498 kvm_mmu_audit(vcpu, "post pte write");
1499 spin_unlock(&vcpu->kvm->mmu_lock);
1500 if (vcpu->arch.update_pte.page) {
1501 kvm_release_page_clean(vcpu->arch.update_pte.page);
1502 vcpu->arch.update_pte.page = NULL;
1506 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1508 gpa_t gpa;
1509 int r;
1511 down_read(&vcpu->kvm->slots_lock);
1512 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1513 up_read(&vcpu->kvm->slots_lock);
1515 spin_lock(&vcpu->kvm->mmu_lock);
1516 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1517 spin_unlock(&vcpu->kvm->mmu_lock);
1518 return r;
1521 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1523 while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1524 struct kvm_mmu_page *sp;
1526 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1527 struct kvm_mmu_page, link);
1528 kvm_mmu_zap_page(vcpu->kvm, sp);
1529 ++vcpu->kvm->stat.mmu_recycled;
1533 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1535 int r;
1536 enum emulation_result er;
1538 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1539 if (r < 0)
1540 goto out;
1542 if (!r) {
1543 r = 1;
1544 goto out;
1547 r = mmu_topup_memory_caches(vcpu);
1548 if (r)
1549 goto out;
1551 er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1553 switch (er) {
1554 case EMULATE_DONE:
1555 return 1;
1556 case EMULATE_DO_MMIO:
1557 ++vcpu->stat.mmio_exits;
1558 return 0;
1559 case EMULATE_FAIL:
1560 kvm_report_emulation_failure(vcpu, "pagetable");
1561 return 1;
1562 default:
1563 BUG();
1565 out:
1566 return r;
1568 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1570 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1572 struct kvm_mmu_page *sp;
1574 while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
1575 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
1576 struct kvm_mmu_page, link);
1577 kvm_mmu_zap_page(vcpu->kvm, sp);
1579 free_page((unsigned long)vcpu->arch.mmu.pae_root);
1582 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1584 struct page *page;
1585 int i;
1587 ASSERT(vcpu);
1589 if (vcpu->kvm->arch.n_requested_mmu_pages)
1590 vcpu->kvm->arch.n_free_mmu_pages =
1591 vcpu->kvm->arch.n_requested_mmu_pages;
1592 else
1593 vcpu->kvm->arch.n_free_mmu_pages =
1594 vcpu->kvm->arch.n_alloc_mmu_pages;
1596 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1597 * Therefore we need to allocate shadow page tables in the first
1598 * 4GB of memory, which happens to fit the DMA32 zone.
1600 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1601 if (!page)
1602 goto error_1;
1603 vcpu->arch.mmu.pae_root = page_address(page);
1604 for (i = 0; i < 4; ++i)
1605 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1607 return 0;
1609 error_1:
1610 free_mmu_pages(vcpu);
1611 return -ENOMEM;
1614 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1616 ASSERT(vcpu);
1617 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1619 return alloc_mmu_pages(vcpu);
1622 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1624 ASSERT(vcpu);
1625 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1627 return init_kvm_mmu(vcpu);
1630 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1632 ASSERT(vcpu);
1634 destroy_kvm_mmu(vcpu);
1635 free_mmu_pages(vcpu);
1636 mmu_free_memory_caches(vcpu);
1639 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1641 struct kvm_mmu_page *sp;
1643 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
1644 int i;
1645 u64 *pt;
1647 if (!test_bit(slot, &sp->slot_bitmap))
1648 continue;
1650 pt = sp->spt;
1651 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1652 /* avoid RMW */
1653 if (pt[i] & PT_WRITABLE_MASK)
1654 pt[i] &= ~PT_WRITABLE_MASK;
1658 void kvm_mmu_zap_all(struct kvm *kvm)
1660 struct kvm_mmu_page *sp, *node;
1662 spin_lock(&kvm->mmu_lock);
1663 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
1664 kvm_mmu_zap_page(kvm, sp);
1665 spin_unlock(&kvm->mmu_lock);
1667 kvm_flush_remote_tlbs(kvm);
1670 void kvm_mmu_module_exit(void)
1672 if (pte_chain_cache)
1673 kmem_cache_destroy(pte_chain_cache);
1674 if (rmap_desc_cache)
1675 kmem_cache_destroy(rmap_desc_cache);
1676 if (mmu_page_header_cache)
1677 kmem_cache_destroy(mmu_page_header_cache);
1680 int kvm_mmu_module_init(void)
1682 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1683 sizeof(struct kvm_pte_chain),
1684 0, 0, NULL);
1685 if (!pte_chain_cache)
1686 goto nomem;
1687 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1688 sizeof(struct kvm_rmap_desc),
1689 0, 0, NULL);
1690 if (!rmap_desc_cache)
1691 goto nomem;
1693 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1694 sizeof(struct kvm_mmu_page),
1695 0, 0, NULL);
1696 if (!mmu_page_header_cache)
1697 goto nomem;
1699 return 0;
1701 nomem:
1702 kvm_mmu_module_exit();
1703 return -ENOMEM;
1707 * Caculate mmu pages needed for kvm.
1709 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
1711 int i;
1712 unsigned int nr_mmu_pages;
1713 unsigned int nr_pages = 0;
1715 for (i = 0; i < kvm->nmemslots; i++)
1716 nr_pages += kvm->memslots[i].npages;
1718 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
1719 nr_mmu_pages = max(nr_mmu_pages,
1720 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
1722 return nr_mmu_pages;
1725 #ifdef AUDIT
1727 static const char *audit_msg;
1729 static gva_t canonicalize(gva_t gva)
1731 #ifdef CONFIG_X86_64
1732 gva = (long long)(gva << 16) >> 16;
1733 #endif
1734 return gva;
1737 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1738 gva_t va, int level)
1740 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1741 int i;
1742 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1744 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1745 u64 ent = pt[i];
1747 if (ent == shadow_trap_nonpresent_pte)
1748 continue;
1750 va = canonicalize(va);
1751 if (level > 1) {
1752 if (ent == shadow_notrap_nonpresent_pte)
1753 printk(KERN_ERR "audit: (%s) nontrapping pte"
1754 " in nonleaf level: levels %d gva %lx"
1755 " level %d pte %llx\n", audit_msg,
1756 vcpu->arch.mmu.root_level, va, level, ent);
1758 audit_mappings_page(vcpu, ent, va, level - 1);
1759 } else {
1760 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
1761 struct page *page = gpa_to_page(vcpu, gpa);
1762 hpa_t hpa = page_to_phys(page);
1764 if (is_shadow_present_pte(ent)
1765 && (ent & PT64_BASE_ADDR_MASK) != hpa)
1766 printk(KERN_ERR "xx audit error: (%s) levels %d"
1767 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
1768 audit_msg, vcpu->arch.mmu.root_level,
1769 va, gpa, hpa, ent,
1770 is_shadow_present_pte(ent));
1771 else if (ent == shadow_notrap_nonpresent_pte
1772 && !is_error_hpa(hpa))
1773 printk(KERN_ERR "audit: (%s) notrap shadow,"
1774 " valid guest gva %lx\n", audit_msg, va);
1775 kvm_release_page_clean(page);
1781 static void audit_mappings(struct kvm_vcpu *vcpu)
1783 unsigned i;
1785 if (vcpu->arch.mmu.root_level == 4)
1786 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
1787 else
1788 for (i = 0; i < 4; ++i)
1789 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
1790 audit_mappings_page(vcpu,
1791 vcpu->arch.mmu.pae_root[i],
1792 i << 30,
1796 static int count_rmaps(struct kvm_vcpu *vcpu)
1798 int nmaps = 0;
1799 int i, j, k;
1801 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1802 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1803 struct kvm_rmap_desc *d;
1805 for (j = 0; j < m->npages; ++j) {
1806 unsigned long *rmapp = &m->rmap[j];
1808 if (!*rmapp)
1809 continue;
1810 if (!(*rmapp & 1)) {
1811 ++nmaps;
1812 continue;
1814 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
1815 while (d) {
1816 for (k = 0; k < RMAP_EXT; ++k)
1817 if (d->shadow_ptes[k])
1818 ++nmaps;
1819 else
1820 break;
1821 d = d->more;
1825 return nmaps;
1828 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1830 int nmaps = 0;
1831 struct kvm_mmu_page *sp;
1832 int i;
1834 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
1835 u64 *pt = sp->spt;
1837 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
1838 continue;
1840 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1841 u64 ent = pt[i];
1843 if (!(ent & PT_PRESENT_MASK))
1844 continue;
1845 if (!(ent & PT_WRITABLE_MASK))
1846 continue;
1847 ++nmaps;
1850 return nmaps;
1853 static void audit_rmap(struct kvm_vcpu *vcpu)
1855 int n_rmap = count_rmaps(vcpu);
1856 int n_actual = count_writable_mappings(vcpu);
1858 if (n_rmap != n_actual)
1859 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1860 __FUNCTION__, audit_msg, n_rmap, n_actual);
1863 static void audit_write_protection(struct kvm_vcpu *vcpu)
1865 struct kvm_mmu_page *sp;
1866 struct kvm_memory_slot *slot;
1867 unsigned long *rmapp;
1868 gfn_t gfn;
1870 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
1871 if (sp->role.metaphysical)
1872 continue;
1874 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
1875 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
1876 rmapp = &slot->rmap[gfn - slot->base_gfn];
1877 if (*rmapp)
1878 printk(KERN_ERR "%s: (%s) shadow page has writable"
1879 " mappings: gfn %lx role %x\n",
1880 __FUNCTION__, audit_msg, sp->gfn,
1881 sp->role.word);
1885 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1887 int olddbg = dbg;
1889 dbg = 0;
1890 audit_msg = msg;
1891 audit_rmap(vcpu);
1892 audit_write_protection(vcpu);
1893 audit_mappings(vcpu);
1894 dbg = olddbg;
1897 #endif