sched: tune multi-core idle balancing
[wrt350n-kernel.git] / arch / x86 / kvm / vmx.c
blob94ea724638fda63b87ec248c2c3b40783ad93e08
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "irq.h"
19 #include "vmx.h"
20 #include "segment_descriptor.h"
21 #include "mmu.h"
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
31 #include <asm/io.h>
32 #include <asm/desc.h>
34 MODULE_AUTHOR("Qumranet");
35 MODULE_LICENSE("GPL");
37 static int bypass_guest_pf = 1;
38 module_param(bypass_guest_pf, bool, 0);
40 struct vmcs {
41 u32 revision_id;
42 u32 abort;
43 char data[0];
46 struct vcpu_vmx {
47 struct kvm_vcpu vcpu;
48 int launched;
49 u8 fail;
50 u32 idt_vectoring_info;
51 struct kvm_msr_entry *guest_msrs;
52 struct kvm_msr_entry *host_msrs;
53 int nmsrs;
54 int save_nmsrs;
55 int msr_offset_efer;
56 #ifdef CONFIG_X86_64
57 int msr_offset_kernel_gs_base;
58 #endif
59 struct vmcs *vmcs;
60 struct {
61 int loaded;
62 u16 fs_sel, gs_sel, ldt_sel;
63 int gs_ldt_reload_needed;
64 int fs_reload_needed;
65 int guest_efer_loaded;
66 } host_state;
67 struct {
68 struct {
69 bool pending;
70 u8 vector;
71 unsigned rip;
72 } irq;
73 } rmode;
76 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
78 return container_of(vcpu, struct vcpu_vmx, vcpu);
81 static int init_rmode_tss(struct kvm *kvm);
83 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
84 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
86 static struct page *vmx_io_bitmap_a;
87 static struct page *vmx_io_bitmap_b;
89 static struct vmcs_config {
90 int size;
91 int order;
92 u32 revision_id;
93 u32 pin_based_exec_ctrl;
94 u32 cpu_based_exec_ctrl;
95 u32 cpu_based_2nd_exec_ctrl;
96 u32 vmexit_ctrl;
97 u32 vmentry_ctrl;
98 } vmcs_config;
100 #define VMX_SEGMENT_FIELD(seg) \
101 [VCPU_SREG_##seg] = { \
102 .selector = GUEST_##seg##_SELECTOR, \
103 .base = GUEST_##seg##_BASE, \
104 .limit = GUEST_##seg##_LIMIT, \
105 .ar_bytes = GUEST_##seg##_AR_BYTES, \
108 static struct kvm_vmx_segment_field {
109 unsigned selector;
110 unsigned base;
111 unsigned limit;
112 unsigned ar_bytes;
113 } kvm_vmx_segment_fields[] = {
114 VMX_SEGMENT_FIELD(CS),
115 VMX_SEGMENT_FIELD(DS),
116 VMX_SEGMENT_FIELD(ES),
117 VMX_SEGMENT_FIELD(FS),
118 VMX_SEGMENT_FIELD(GS),
119 VMX_SEGMENT_FIELD(SS),
120 VMX_SEGMENT_FIELD(TR),
121 VMX_SEGMENT_FIELD(LDTR),
125 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
126 * away by decrementing the array size.
128 static const u32 vmx_msr_index[] = {
129 #ifdef CONFIG_X86_64
130 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
131 #endif
132 MSR_EFER, MSR_K6_STAR,
134 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
136 static void load_msrs(struct kvm_msr_entry *e, int n)
138 int i;
140 for (i = 0; i < n; ++i)
141 wrmsrl(e[i].index, e[i].data);
144 static void save_msrs(struct kvm_msr_entry *e, int n)
146 int i;
148 for (i = 0; i < n; ++i)
149 rdmsrl(e[i].index, e[i].data);
152 static inline int is_page_fault(u32 intr_info)
154 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
155 INTR_INFO_VALID_MASK)) ==
156 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
159 static inline int is_no_device(u32 intr_info)
161 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
162 INTR_INFO_VALID_MASK)) ==
163 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
166 static inline int is_invalid_opcode(u32 intr_info)
168 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
169 INTR_INFO_VALID_MASK)) ==
170 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
173 static inline int is_external_interrupt(u32 intr_info)
175 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
176 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
179 static inline int cpu_has_vmx_tpr_shadow(void)
181 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
184 static inline int vm_need_tpr_shadow(struct kvm *kvm)
186 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
189 static inline int cpu_has_secondary_exec_ctrls(void)
191 return (vmcs_config.cpu_based_exec_ctrl &
192 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
195 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
197 return (vmcs_config.cpu_based_2nd_exec_ctrl &
198 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
201 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
203 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
204 (irqchip_in_kernel(kvm)));
207 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
209 int i;
211 for (i = 0; i < vmx->nmsrs; ++i)
212 if (vmx->guest_msrs[i].index == msr)
213 return i;
214 return -1;
217 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
219 int i;
221 i = __find_msr_index(vmx, msr);
222 if (i >= 0)
223 return &vmx->guest_msrs[i];
224 return NULL;
227 static void vmcs_clear(struct vmcs *vmcs)
229 u64 phys_addr = __pa(vmcs);
230 u8 error;
232 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
233 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
234 : "cc", "memory");
235 if (error)
236 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
237 vmcs, phys_addr);
240 static void __vcpu_clear(void *arg)
242 struct vcpu_vmx *vmx = arg;
243 int cpu = raw_smp_processor_id();
245 if (vmx->vcpu.cpu == cpu)
246 vmcs_clear(vmx->vmcs);
247 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
248 per_cpu(current_vmcs, cpu) = NULL;
249 rdtscll(vmx->vcpu.arch.host_tsc);
252 static void vcpu_clear(struct vcpu_vmx *vmx)
254 if (vmx->vcpu.cpu == -1)
255 return;
256 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
257 vmx->launched = 0;
260 static unsigned long vmcs_readl(unsigned long field)
262 unsigned long value;
264 asm volatile (ASM_VMX_VMREAD_RDX_RAX
265 : "=a"(value) : "d"(field) : "cc");
266 return value;
269 static u16 vmcs_read16(unsigned long field)
271 return vmcs_readl(field);
274 static u32 vmcs_read32(unsigned long field)
276 return vmcs_readl(field);
279 static u64 vmcs_read64(unsigned long field)
281 #ifdef CONFIG_X86_64
282 return vmcs_readl(field);
283 #else
284 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
285 #endif
288 static noinline void vmwrite_error(unsigned long field, unsigned long value)
290 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
291 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
292 dump_stack();
295 static void vmcs_writel(unsigned long field, unsigned long value)
297 u8 error;
299 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
300 : "=q"(error) : "a"(value), "d"(field) : "cc");
301 if (unlikely(error))
302 vmwrite_error(field, value);
305 static void vmcs_write16(unsigned long field, u16 value)
307 vmcs_writel(field, value);
310 static void vmcs_write32(unsigned long field, u32 value)
312 vmcs_writel(field, value);
315 static void vmcs_write64(unsigned long field, u64 value)
317 #ifdef CONFIG_X86_64
318 vmcs_writel(field, value);
319 #else
320 vmcs_writel(field, value);
321 asm volatile ("");
322 vmcs_writel(field+1, value >> 32);
323 #endif
326 static void vmcs_clear_bits(unsigned long field, u32 mask)
328 vmcs_writel(field, vmcs_readl(field) & ~mask);
331 static void vmcs_set_bits(unsigned long field, u32 mask)
333 vmcs_writel(field, vmcs_readl(field) | mask);
336 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
338 u32 eb;
340 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
341 if (!vcpu->fpu_active)
342 eb |= 1u << NM_VECTOR;
343 if (vcpu->guest_debug.enabled)
344 eb |= 1u << 1;
345 if (vcpu->arch.rmode.active)
346 eb = ~0;
347 vmcs_write32(EXCEPTION_BITMAP, eb);
350 static void reload_tss(void)
352 #ifndef CONFIG_X86_64
355 * VT restores TR but not its size. Useless.
357 struct descriptor_table gdt;
358 struct segment_descriptor *descs;
360 get_gdt(&gdt);
361 descs = (void *)gdt.base;
362 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
363 load_TR_desc();
364 #endif
367 static void load_transition_efer(struct vcpu_vmx *vmx)
369 int efer_offset = vmx->msr_offset_efer;
370 u64 host_efer = vmx->host_msrs[efer_offset].data;
371 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
372 u64 ignore_bits;
374 if (efer_offset < 0)
375 return;
377 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
378 * outside long mode
380 ignore_bits = EFER_NX | EFER_SCE;
381 #ifdef CONFIG_X86_64
382 ignore_bits |= EFER_LMA | EFER_LME;
383 /* SCE is meaningful only in long mode on Intel */
384 if (guest_efer & EFER_LMA)
385 ignore_bits &= ~(u64)EFER_SCE;
386 #endif
387 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
388 return;
390 vmx->host_state.guest_efer_loaded = 1;
391 guest_efer &= ~ignore_bits;
392 guest_efer |= host_efer & ignore_bits;
393 wrmsrl(MSR_EFER, guest_efer);
394 vmx->vcpu.stat.efer_reload++;
397 static void reload_host_efer(struct vcpu_vmx *vmx)
399 if (vmx->host_state.guest_efer_loaded) {
400 vmx->host_state.guest_efer_loaded = 0;
401 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
405 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
407 struct vcpu_vmx *vmx = to_vmx(vcpu);
409 if (vmx->host_state.loaded)
410 return;
412 vmx->host_state.loaded = 1;
414 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
415 * allow segment selectors with cpl > 0 or ti == 1.
417 vmx->host_state.ldt_sel = read_ldt();
418 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
419 vmx->host_state.fs_sel = read_fs();
420 if (!(vmx->host_state.fs_sel & 7)) {
421 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
422 vmx->host_state.fs_reload_needed = 0;
423 } else {
424 vmcs_write16(HOST_FS_SELECTOR, 0);
425 vmx->host_state.fs_reload_needed = 1;
427 vmx->host_state.gs_sel = read_gs();
428 if (!(vmx->host_state.gs_sel & 7))
429 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
430 else {
431 vmcs_write16(HOST_GS_SELECTOR, 0);
432 vmx->host_state.gs_ldt_reload_needed = 1;
435 #ifdef CONFIG_X86_64
436 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
437 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
438 #else
439 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
440 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
441 #endif
443 #ifdef CONFIG_X86_64
444 if (is_long_mode(&vmx->vcpu))
445 save_msrs(vmx->host_msrs +
446 vmx->msr_offset_kernel_gs_base, 1);
448 #endif
449 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
450 load_transition_efer(vmx);
453 static void vmx_load_host_state(struct vcpu_vmx *vmx)
455 unsigned long flags;
457 if (!vmx->host_state.loaded)
458 return;
460 ++vmx->vcpu.stat.host_state_reload;
461 vmx->host_state.loaded = 0;
462 if (vmx->host_state.fs_reload_needed)
463 load_fs(vmx->host_state.fs_sel);
464 if (vmx->host_state.gs_ldt_reload_needed) {
465 load_ldt(vmx->host_state.ldt_sel);
467 * If we have to reload gs, we must take care to
468 * preserve our gs base.
470 local_irq_save(flags);
471 load_gs(vmx->host_state.gs_sel);
472 #ifdef CONFIG_X86_64
473 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
474 #endif
475 local_irq_restore(flags);
477 reload_tss();
478 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
479 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
480 reload_host_efer(vmx);
484 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
485 * vcpu mutex is already taken.
487 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
489 struct vcpu_vmx *vmx = to_vmx(vcpu);
490 u64 phys_addr = __pa(vmx->vmcs);
491 u64 tsc_this, delta;
493 if (vcpu->cpu != cpu) {
494 vcpu_clear(vmx);
495 kvm_migrate_apic_timer(vcpu);
498 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
499 u8 error;
501 per_cpu(current_vmcs, cpu) = vmx->vmcs;
502 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
503 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
504 : "cc");
505 if (error)
506 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
507 vmx->vmcs, phys_addr);
510 if (vcpu->cpu != cpu) {
511 struct descriptor_table dt;
512 unsigned long sysenter_esp;
514 vcpu->cpu = cpu;
516 * Linux uses per-cpu TSS and GDT, so set these when switching
517 * processors.
519 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
520 get_gdt(&dt);
521 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
523 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
524 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
527 * Make sure the time stamp counter is monotonous.
529 rdtscll(tsc_this);
530 delta = vcpu->arch.host_tsc - tsc_this;
531 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
535 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
537 vmx_load_host_state(to_vmx(vcpu));
540 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
542 if (vcpu->fpu_active)
543 return;
544 vcpu->fpu_active = 1;
545 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
546 if (vcpu->arch.cr0 & X86_CR0_TS)
547 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
548 update_exception_bitmap(vcpu);
551 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
553 if (!vcpu->fpu_active)
554 return;
555 vcpu->fpu_active = 0;
556 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
557 update_exception_bitmap(vcpu);
560 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
562 vcpu_clear(to_vmx(vcpu));
565 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
567 return vmcs_readl(GUEST_RFLAGS);
570 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
572 if (vcpu->arch.rmode.active)
573 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
574 vmcs_writel(GUEST_RFLAGS, rflags);
577 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
579 unsigned long rip;
580 u32 interruptibility;
582 rip = vmcs_readl(GUEST_RIP);
583 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
584 vmcs_writel(GUEST_RIP, rip);
587 * We emulated an instruction, so temporary interrupt blocking
588 * should be removed, if set.
590 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
591 if (interruptibility & 3)
592 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
593 interruptibility & ~3);
594 vcpu->arch.interrupt_window_open = 1;
597 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
598 bool has_error_code, u32 error_code)
600 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
601 nr | INTR_TYPE_EXCEPTION
602 | (has_error_code ? INTR_INFO_DELIEVER_CODE_MASK : 0)
603 | INTR_INFO_VALID_MASK);
604 if (has_error_code)
605 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
608 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
610 struct vcpu_vmx *vmx = to_vmx(vcpu);
612 return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
616 * Swap MSR entry in host/guest MSR entry array.
618 #ifdef CONFIG_X86_64
619 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
621 struct kvm_msr_entry tmp;
623 tmp = vmx->guest_msrs[to];
624 vmx->guest_msrs[to] = vmx->guest_msrs[from];
625 vmx->guest_msrs[from] = tmp;
626 tmp = vmx->host_msrs[to];
627 vmx->host_msrs[to] = vmx->host_msrs[from];
628 vmx->host_msrs[from] = tmp;
630 #endif
633 * Set up the vmcs to automatically save and restore system
634 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
635 * mode, as fiddling with msrs is very expensive.
637 static void setup_msrs(struct vcpu_vmx *vmx)
639 int save_nmsrs;
641 vmx_load_host_state(vmx);
642 save_nmsrs = 0;
643 #ifdef CONFIG_X86_64
644 if (is_long_mode(&vmx->vcpu)) {
645 int index;
647 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
648 if (index >= 0)
649 move_msr_up(vmx, index, save_nmsrs++);
650 index = __find_msr_index(vmx, MSR_LSTAR);
651 if (index >= 0)
652 move_msr_up(vmx, index, save_nmsrs++);
653 index = __find_msr_index(vmx, MSR_CSTAR);
654 if (index >= 0)
655 move_msr_up(vmx, index, save_nmsrs++);
656 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
657 if (index >= 0)
658 move_msr_up(vmx, index, save_nmsrs++);
660 * MSR_K6_STAR is only needed on long mode guests, and only
661 * if efer.sce is enabled.
663 index = __find_msr_index(vmx, MSR_K6_STAR);
664 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
665 move_msr_up(vmx, index, save_nmsrs++);
667 #endif
668 vmx->save_nmsrs = save_nmsrs;
670 #ifdef CONFIG_X86_64
671 vmx->msr_offset_kernel_gs_base =
672 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
673 #endif
674 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
678 * reads and returns guest's timestamp counter "register"
679 * guest_tsc = host_tsc + tsc_offset -- 21.3
681 static u64 guest_read_tsc(void)
683 u64 host_tsc, tsc_offset;
685 rdtscll(host_tsc);
686 tsc_offset = vmcs_read64(TSC_OFFSET);
687 return host_tsc + tsc_offset;
691 * writes 'guest_tsc' into guest's timestamp counter "register"
692 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
694 static void guest_write_tsc(u64 guest_tsc)
696 u64 host_tsc;
698 rdtscll(host_tsc);
699 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
703 * Reads an msr value (of 'msr_index') into 'pdata'.
704 * Returns 0 on success, non-0 otherwise.
705 * Assumes vcpu_load() was already called.
707 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
709 u64 data;
710 struct kvm_msr_entry *msr;
712 if (!pdata) {
713 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
714 return -EINVAL;
717 switch (msr_index) {
718 #ifdef CONFIG_X86_64
719 case MSR_FS_BASE:
720 data = vmcs_readl(GUEST_FS_BASE);
721 break;
722 case MSR_GS_BASE:
723 data = vmcs_readl(GUEST_GS_BASE);
724 break;
725 case MSR_EFER:
726 return kvm_get_msr_common(vcpu, msr_index, pdata);
727 #endif
728 case MSR_IA32_TIME_STAMP_COUNTER:
729 data = guest_read_tsc();
730 break;
731 case MSR_IA32_SYSENTER_CS:
732 data = vmcs_read32(GUEST_SYSENTER_CS);
733 break;
734 case MSR_IA32_SYSENTER_EIP:
735 data = vmcs_readl(GUEST_SYSENTER_EIP);
736 break;
737 case MSR_IA32_SYSENTER_ESP:
738 data = vmcs_readl(GUEST_SYSENTER_ESP);
739 break;
740 default:
741 msr = find_msr_entry(to_vmx(vcpu), msr_index);
742 if (msr) {
743 data = msr->data;
744 break;
746 return kvm_get_msr_common(vcpu, msr_index, pdata);
749 *pdata = data;
750 return 0;
754 * Writes msr value into into the appropriate "register".
755 * Returns 0 on success, non-0 otherwise.
756 * Assumes vcpu_load() was already called.
758 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
760 struct vcpu_vmx *vmx = to_vmx(vcpu);
761 struct kvm_msr_entry *msr;
762 int ret = 0;
764 switch (msr_index) {
765 #ifdef CONFIG_X86_64
766 case MSR_EFER:
767 ret = kvm_set_msr_common(vcpu, msr_index, data);
768 if (vmx->host_state.loaded) {
769 reload_host_efer(vmx);
770 load_transition_efer(vmx);
772 break;
773 case MSR_FS_BASE:
774 vmcs_writel(GUEST_FS_BASE, data);
775 break;
776 case MSR_GS_BASE:
777 vmcs_writel(GUEST_GS_BASE, data);
778 break;
779 #endif
780 case MSR_IA32_SYSENTER_CS:
781 vmcs_write32(GUEST_SYSENTER_CS, data);
782 break;
783 case MSR_IA32_SYSENTER_EIP:
784 vmcs_writel(GUEST_SYSENTER_EIP, data);
785 break;
786 case MSR_IA32_SYSENTER_ESP:
787 vmcs_writel(GUEST_SYSENTER_ESP, data);
788 break;
789 case MSR_IA32_TIME_STAMP_COUNTER:
790 guest_write_tsc(data);
791 break;
792 default:
793 msr = find_msr_entry(vmx, msr_index);
794 if (msr) {
795 msr->data = data;
796 if (vmx->host_state.loaded)
797 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
798 break;
800 ret = kvm_set_msr_common(vcpu, msr_index, data);
803 return ret;
807 * Sync the rsp and rip registers into the vcpu structure. This allows
808 * registers to be accessed by indexing vcpu->arch.regs.
810 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
812 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
813 vcpu->arch.rip = vmcs_readl(GUEST_RIP);
817 * Syncs rsp and rip back into the vmcs. Should be called after possible
818 * modification.
820 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
822 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
823 vmcs_writel(GUEST_RIP, vcpu->arch.rip);
826 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
828 unsigned long dr7 = 0x400;
829 int old_singlestep;
831 old_singlestep = vcpu->guest_debug.singlestep;
833 vcpu->guest_debug.enabled = dbg->enabled;
834 if (vcpu->guest_debug.enabled) {
835 int i;
837 dr7 |= 0x200; /* exact */
838 for (i = 0; i < 4; ++i) {
839 if (!dbg->breakpoints[i].enabled)
840 continue;
841 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
842 dr7 |= 2 << (i*2); /* global enable */
843 dr7 |= 0 << (i*4+16); /* execution breakpoint */
846 vcpu->guest_debug.singlestep = dbg->singlestep;
847 } else
848 vcpu->guest_debug.singlestep = 0;
850 if (old_singlestep && !vcpu->guest_debug.singlestep) {
851 unsigned long flags;
853 flags = vmcs_readl(GUEST_RFLAGS);
854 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
855 vmcs_writel(GUEST_RFLAGS, flags);
858 update_exception_bitmap(vcpu);
859 vmcs_writel(GUEST_DR7, dr7);
861 return 0;
864 static int vmx_get_irq(struct kvm_vcpu *vcpu)
866 struct vcpu_vmx *vmx = to_vmx(vcpu);
867 u32 idtv_info_field;
869 idtv_info_field = vmx->idt_vectoring_info;
870 if (idtv_info_field & INTR_INFO_VALID_MASK) {
871 if (is_external_interrupt(idtv_info_field))
872 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
873 else
874 printk(KERN_DEBUG "pending exception: not handled yet\n");
876 return -1;
879 static __init int cpu_has_kvm_support(void)
881 unsigned long ecx = cpuid_ecx(1);
882 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
885 static __init int vmx_disabled_by_bios(void)
887 u64 msr;
889 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
890 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
891 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
892 == MSR_IA32_FEATURE_CONTROL_LOCKED;
893 /* locked but not enabled */
896 static void hardware_enable(void *garbage)
898 int cpu = raw_smp_processor_id();
899 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
900 u64 old;
902 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
903 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
904 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
905 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
906 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
907 /* enable and lock */
908 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
909 MSR_IA32_FEATURE_CONTROL_LOCKED |
910 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
911 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
912 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
913 : "memory", "cc");
916 static void hardware_disable(void *garbage)
918 asm volatile (ASM_VMX_VMXOFF : : : "cc");
921 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
922 u32 msr, u32 *result)
924 u32 vmx_msr_low, vmx_msr_high;
925 u32 ctl = ctl_min | ctl_opt;
927 rdmsr(msr, vmx_msr_low, vmx_msr_high);
929 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
930 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
932 /* Ensure minimum (required) set of control bits are supported. */
933 if (ctl_min & ~ctl)
934 return -EIO;
936 *result = ctl;
937 return 0;
940 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
942 u32 vmx_msr_low, vmx_msr_high;
943 u32 min, opt;
944 u32 _pin_based_exec_control = 0;
945 u32 _cpu_based_exec_control = 0;
946 u32 _cpu_based_2nd_exec_control = 0;
947 u32 _vmexit_control = 0;
948 u32 _vmentry_control = 0;
950 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
951 opt = 0;
952 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
953 &_pin_based_exec_control) < 0)
954 return -EIO;
956 min = CPU_BASED_HLT_EXITING |
957 #ifdef CONFIG_X86_64
958 CPU_BASED_CR8_LOAD_EXITING |
959 CPU_BASED_CR8_STORE_EXITING |
960 #endif
961 CPU_BASED_USE_IO_BITMAPS |
962 CPU_BASED_MOV_DR_EXITING |
963 CPU_BASED_USE_TSC_OFFSETING;
964 opt = CPU_BASED_TPR_SHADOW |
965 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
966 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
967 &_cpu_based_exec_control) < 0)
968 return -EIO;
969 #ifdef CONFIG_X86_64
970 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
971 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
972 ~CPU_BASED_CR8_STORE_EXITING;
973 #endif
974 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
975 min = 0;
976 opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
977 SECONDARY_EXEC_WBINVD_EXITING;
978 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
979 &_cpu_based_2nd_exec_control) < 0)
980 return -EIO;
982 #ifndef CONFIG_X86_64
983 if (!(_cpu_based_2nd_exec_control &
984 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
985 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
986 #endif
988 min = 0;
989 #ifdef CONFIG_X86_64
990 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
991 #endif
992 opt = 0;
993 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
994 &_vmexit_control) < 0)
995 return -EIO;
997 min = opt = 0;
998 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
999 &_vmentry_control) < 0)
1000 return -EIO;
1002 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1004 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1005 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1006 return -EIO;
1008 #ifdef CONFIG_X86_64
1009 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1010 if (vmx_msr_high & (1u<<16))
1011 return -EIO;
1012 #endif
1014 /* Require Write-Back (WB) memory type for VMCS accesses. */
1015 if (((vmx_msr_high >> 18) & 15) != 6)
1016 return -EIO;
1018 vmcs_conf->size = vmx_msr_high & 0x1fff;
1019 vmcs_conf->order = get_order(vmcs_config.size);
1020 vmcs_conf->revision_id = vmx_msr_low;
1022 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1023 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1024 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1025 vmcs_conf->vmexit_ctrl = _vmexit_control;
1026 vmcs_conf->vmentry_ctrl = _vmentry_control;
1028 return 0;
1031 static struct vmcs *alloc_vmcs_cpu(int cpu)
1033 int node = cpu_to_node(cpu);
1034 struct page *pages;
1035 struct vmcs *vmcs;
1037 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1038 if (!pages)
1039 return NULL;
1040 vmcs = page_address(pages);
1041 memset(vmcs, 0, vmcs_config.size);
1042 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1043 return vmcs;
1046 static struct vmcs *alloc_vmcs(void)
1048 return alloc_vmcs_cpu(raw_smp_processor_id());
1051 static void free_vmcs(struct vmcs *vmcs)
1053 free_pages((unsigned long)vmcs, vmcs_config.order);
1056 static void free_kvm_area(void)
1058 int cpu;
1060 for_each_online_cpu(cpu)
1061 free_vmcs(per_cpu(vmxarea, cpu));
1064 static __init int alloc_kvm_area(void)
1066 int cpu;
1068 for_each_online_cpu(cpu) {
1069 struct vmcs *vmcs;
1071 vmcs = alloc_vmcs_cpu(cpu);
1072 if (!vmcs) {
1073 free_kvm_area();
1074 return -ENOMEM;
1077 per_cpu(vmxarea, cpu) = vmcs;
1079 return 0;
1082 static __init int hardware_setup(void)
1084 if (setup_vmcs_config(&vmcs_config) < 0)
1085 return -EIO;
1086 return alloc_kvm_area();
1089 static __exit void hardware_unsetup(void)
1091 free_kvm_area();
1094 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1096 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1098 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1099 vmcs_write16(sf->selector, save->selector);
1100 vmcs_writel(sf->base, save->base);
1101 vmcs_write32(sf->limit, save->limit);
1102 vmcs_write32(sf->ar_bytes, save->ar);
1103 } else {
1104 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1105 << AR_DPL_SHIFT;
1106 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1110 static void enter_pmode(struct kvm_vcpu *vcpu)
1112 unsigned long flags;
1114 vcpu->arch.rmode.active = 0;
1116 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1117 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1118 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1120 flags = vmcs_readl(GUEST_RFLAGS);
1121 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1122 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1123 vmcs_writel(GUEST_RFLAGS, flags);
1125 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1126 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1128 update_exception_bitmap(vcpu);
1130 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1131 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1132 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1133 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1135 vmcs_write16(GUEST_SS_SELECTOR, 0);
1136 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1138 vmcs_write16(GUEST_CS_SELECTOR,
1139 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1140 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1143 static gva_t rmode_tss_base(struct kvm *kvm)
1145 if (!kvm->arch.tss_addr) {
1146 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1147 kvm->memslots[0].npages - 3;
1148 return base_gfn << PAGE_SHIFT;
1150 return kvm->arch.tss_addr;
1153 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1155 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1157 save->selector = vmcs_read16(sf->selector);
1158 save->base = vmcs_readl(sf->base);
1159 save->limit = vmcs_read32(sf->limit);
1160 save->ar = vmcs_read32(sf->ar_bytes);
1161 vmcs_write16(sf->selector, save->base >> 4);
1162 vmcs_write32(sf->base, save->base & 0xfffff);
1163 vmcs_write32(sf->limit, 0xffff);
1164 vmcs_write32(sf->ar_bytes, 0xf3);
1167 static void enter_rmode(struct kvm_vcpu *vcpu)
1169 unsigned long flags;
1171 vcpu->arch.rmode.active = 1;
1173 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1174 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1176 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1177 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1179 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1180 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1182 flags = vmcs_readl(GUEST_RFLAGS);
1183 vcpu->arch.rmode.save_iopl
1184 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1186 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1188 vmcs_writel(GUEST_RFLAGS, flags);
1189 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1190 update_exception_bitmap(vcpu);
1192 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1193 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1194 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1196 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1197 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1198 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1199 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1200 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1202 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1203 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1204 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1205 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1207 kvm_mmu_reset_context(vcpu);
1208 init_rmode_tss(vcpu->kvm);
1211 #ifdef CONFIG_X86_64
1213 static void enter_lmode(struct kvm_vcpu *vcpu)
1215 u32 guest_tr_ar;
1217 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1218 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1219 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1220 __FUNCTION__);
1221 vmcs_write32(GUEST_TR_AR_BYTES,
1222 (guest_tr_ar & ~AR_TYPE_MASK)
1223 | AR_TYPE_BUSY_64_TSS);
1226 vcpu->arch.shadow_efer |= EFER_LMA;
1228 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1229 vmcs_write32(VM_ENTRY_CONTROLS,
1230 vmcs_read32(VM_ENTRY_CONTROLS)
1231 | VM_ENTRY_IA32E_MODE);
1234 static void exit_lmode(struct kvm_vcpu *vcpu)
1236 vcpu->arch.shadow_efer &= ~EFER_LMA;
1238 vmcs_write32(VM_ENTRY_CONTROLS,
1239 vmcs_read32(VM_ENTRY_CONTROLS)
1240 & ~VM_ENTRY_IA32E_MODE);
1243 #endif
1245 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1247 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1248 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1251 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1253 vmx_fpu_deactivate(vcpu);
1255 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1256 enter_pmode(vcpu);
1258 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1259 enter_rmode(vcpu);
1261 #ifdef CONFIG_X86_64
1262 if (vcpu->arch.shadow_efer & EFER_LME) {
1263 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1264 enter_lmode(vcpu);
1265 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1266 exit_lmode(vcpu);
1268 #endif
1270 vmcs_writel(CR0_READ_SHADOW, cr0);
1271 vmcs_writel(GUEST_CR0,
1272 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1273 vcpu->arch.cr0 = cr0;
1275 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1276 vmx_fpu_activate(vcpu);
1279 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1281 vmcs_writel(GUEST_CR3, cr3);
1282 if (vcpu->arch.cr0 & X86_CR0_PE)
1283 vmx_fpu_deactivate(vcpu);
1286 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1288 vmcs_writel(CR4_READ_SHADOW, cr4);
1289 vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
1290 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1291 vcpu->arch.cr4 = cr4;
1294 #ifdef CONFIG_X86_64
1296 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1298 struct vcpu_vmx *vmx = to_vmx(vcpu);
1299 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1301 vcpu->arch.shadow_efer = efer;
1302 if (efer & EFER_LMA) {
1303 vmcs_write32(VM_ENTRY_CONTROLS,
1304 vmcs_read32(VM_ENTRY_CONTROLS) |
1305 VM_ENTRY_IA32E_MODE);
1306 msr->data = efer;
1308 } else {
1309 vmcs_write32(VM_ENTRY_CONTROLS,
1310 vmcs_read32(VM_ENTRY_CONTROLS) &
1311 ~VM_ENTRY_IA32E_MODE);
1313 msr->data = efer & ~EFER_LME;
1315 setup_msrs(vmx);
1318 #endif
1320 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1322 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1324 return vmcs_readl(sf->base);
1327 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1328 struct kvm_segment *var, int seg)
1330 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1331 u32 ar;
1333 var->base = vmcs_readl(sf->base);
1334 var->limit = vmcs_read32(sf->limit);
1335 var->selector = vmcs_read16(sf->selector);
1336 ar = vmcs_read32(sf->ar_bytes);
1337 if (ar & AR_UNUSABLE_MASK)
1338 ar = 0;
1339 var->type = ar & 15;
1340 var->s = (ar >> 4) & 1;
1341 var->dpl = (ar >> 5) & 3;
1342 var->present = (ar >> 7) & 1;
1343 var->avl = (ar >> 12) & 1;
1344 var->l = (ar >> 13) & 1;
1345 var->db = (ar >> 14) & 1;
1346 var->g = (ar >> 15) & 1;
1347 var->unusable = (ar >> 16) & 1;
1350 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1352 u32 ar;
1354 if (var->unusable)
1355 ar = 1 << 16;
1356 else {
1357 ar = var->type & 15;
1358 ar |= (var->s & 1) << 4;
1359 ar |= (var->dpl & 3) << 5;
1360 ar |= (var->present & 1) << 7;
1361 ar |= (var->avl & 1) << 12;
1362 ar |= (var->l & 1) << 13;
1363 ar |= (var->db & 1) << 14;
1364 ar |= (var->g & 1) << 15;
1366 if (ar == 0) /* a 0 value means unusable */
1367 ar = AR_UNUSABLE_MASK;
1369 return ar;
1372 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1373 struct kvm_segment *var, int seg)
1375 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1376 u32 ar;
1378 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1379 vcpu->arch.rmode.tr.selector = var->selector;
1380 vcpu->arch.rmode.tr.base = var->base;
1381 vcpu->arch.rmode.tr.limit = var->limit;
1382 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1383 return;
1385 vmcs_writel(sf->base, var->base);
1386 vmcs_write32(sf->limit, var->limit);
1387 vmcs_write16(sf->selector, var->selector);
1388 if (vcpu->arch.rmode.active && var->s) {
1390 * Hack real-mode segments into vm86 compatibility.
1392 if (var->base == 0xffff0000 && var->selector == 0xf000)
1393 vmcs_writel(sf->base, 0xf0000);
1394 ar = 0xf3;
1395 } else
1396 ar = vmx_segment_access_rights(var);
1397 vmcs_write32(sf->ar_bytes, ar);
1400 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1402 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1404 *db = (ar >> 14) & 1;
1405 *l = (ar >> 13) & 1;
1408 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1410 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1411 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1414 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1416 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1417 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1420 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1422 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1423 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1426 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1428 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1429 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1432 static int init_rmode_tss(struct kvm *kvm)
1434 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1435 u16 data = 0;
1436 int ret = 0;
1437 int r;
1439 down_read(&current->mm->mmap_sem);
1440 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1441 if (r < 0)
1442 goto out;
1443 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1444 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1445 if (r < 0)
1446 goto out;
1447 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1448 if (r < 0)
1449 goto out;
1450 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1451 if (r < 0)
1452 goto out;
1453 data = ~0;
1454 r = kvm_write_guest_page(kvm, fn, &data,
1455 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1456 sizeof(u8));
1457 if (r < 0)
1458 goto out;
1460 ret = 1;
1461 out:
1462 up_read(&current->mm->mmap_sem);
1463 return ret;
1466 static void seg_setup(int seg)
1468 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1470 vmcs_write16(sf->selector, 0);
1471 vmcs_writel(sf->base, 0);
1472 vmcs_write32(sf->limit, 0xffff);
1473 vmcs_write32(sf->ar_bytes, 0x93);
1476 static int alloc_apic_access_page(struct kvm *kvm)
1478 struct kvm_userspace_memory_region kvm_userspace_mem;
1479 int r = 0;
1481 down_write(&kvm->slots_lock);
1482 if (kvm->arch.apic_access_page)
1483 goto out;
1484 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1485 kvm_userspace_mem.flags = 0;
1486 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1487 kvm_userspace_mem.memory_size = PAGE_SIZE;
1488 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1489 if (r)
1490 goto out;
1492 down_read(&current->mm->mmap_sem);
1493 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1494 up_read(&current->mm->mmap_sem);
1495 out:
1496 up_write(&kvm->slots_lock);
1497 return r;
1501 * Sets up the vmcs for emulated real mode.
1503 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1505 u32 host_sysenter_cs;
1506 u32 junk;
1507 unsigned long a;
1508 struct descriptor_table dt;
1509 int i;
1510 unsigned long kvm_vmx_return;
1511 u32 exec_control;
1513 /* I/O */
1514 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1515 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1517 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1519 /* Control */
1520 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1521 vmcs_config.pin_based_exec_ctrl);
1523 exec_control = vmcs_config.cpu_based_exec_ctrl;
1524 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1525 exec_control &= ~CPU_BASED_TPR_SHADOW;
1526 #ifdef CONFIG_X86_64
1527 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1528 CPU_BASED_CR8_LOAD_EXITING;
1529 #endif
1531 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1533 if (cpu_has_secondary_exec_ctrls()) {
1534 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1535 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1536 exec_control &=
1537 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1538 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1541 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1542 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1543 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1545 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1546 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1547 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1549 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1550 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1551 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1552 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1553 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1554 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1555 #ifdef CONFIG_X86_64
1556 rdmsrl(MSR_FS_BASE, a);
1557 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1558 rdmsrl(MSR_GS_BASE, a);
1559 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1560 #else
1561 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1562 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1563 #endif
1565 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1567 get_idt(&dt);
1568 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1570 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1571 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1572 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1573 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1574 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1576 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1577 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1578 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1579 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1580 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1581 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1583 for (i = 0; i < NR_VMX_MSR; ++i) {
1584 u32 index = vmx_msr_index[i];
1585 u32 data_low, data_high;
1586 u64 data;
1587 int j = vmx->nmsrs;
1589 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1590 continue;
1591 if (wrmsr_safe(index, data_low, data_high) < 0)
1592 continue;
1593 data = data_low | ((u64)data_high << 32);
1594 vmx->host_msrs[j].index = index;
1595 vmx->host_msrs[j].reserved = 0;
1596 vmx->host_msrs[j].data = data;
1597 vmx->guest_msrs[j] = vmx->host_msrs[j];
1598 ++vmx->nmsrs;
1601 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1603 /* 22.2.1, 20.8.1 */
1604 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1606 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1607 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1610 return 0;
1613 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1615 struct vcpu_vmx *vmx = to_vmx(vcpu);
1616 u64 msr;
1617 int ret;
1619 if (!init_rmode_tss(vmx->vcpu.kvm)) {
1620 ret = -ENOMEM;
1621 goto out;
1624 vmx->vcpu.arch.rmode.active = 0;
1626 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1627 set_cr8(&vmx->vcpu, 0);
1628 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1629 if (vmx->vcpu.vcpu_id == 0)
1630 msr |= MSR_IA32_APICBASE_BSP;
1631 kvm_set_apic_base(&vmx->vcpu, msr);
1633 fx_init(&vmx->vcpu);
1636 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1637 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1639 if (vmx->vcpu.vcpu_id == 0) {
1640 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1641 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1642 } else {
1643 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
1644 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
1646 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1647 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1649 seg_setup(VCPU_SREG_DS);
1650 seg_setup(VCPU_SREG_ES);
1651 seg_setup(VCPU_SREG_FS);
1652 seg_setup(VCPU_SREG_GS);
1653 seg_setup(VCPU_SREG_SS);
1655 vmcs_write16(GUEST_TR_SELECTOR, 0);
1656 vmcs_writel(GUEST_TR_BASE, 0);
1657 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1658 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1660 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1661 vmcs_writel(GUEST_LDTR_BASE, 0);
1662 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1663 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1665 vmcs_write32(GUEST_SYSENTER_CS, 0);
1666 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1667 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1669 vmcs_writel(GUEST_RFLAGS, 0x02);
1670 if (vmx->vcpu.vcpu_id == 0)
1671 vmcs_writel(GUEST_RIP, 0xfff0);
1672 else
1673 vmcs_writel(GUEST_RIP, 0);
1674 vmcs_writel(GUEST_RSP, 0);
1676 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
1677 vmcs_writel(GUEST_DR7, 0x400);
1679 vmcs_writel(GUEST_GDTR_BASE, 0);
1680 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1682 vmcs_writel(GUEST_IDTR_BASE, 0);
1683 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1685 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1686 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1687 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1689 guest_write_tsc(0);
1691 /* Special registers */
1692 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1694 setup_msrs(vmx);
1696 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1698 if (cpu_has_vmx_tpr_shadow()) {
1699 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1700 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1701 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1702 page_to_phys(vmx->vcpu.arch.apic->regs_page));
1703 vmcs_write32(TPR_THRESHOLD, 0);
1706 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1707 vmcs_write64(APIC_ACCESS_ADDR,
1708 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
1710 vmx->vcpu.arch.cr0 = 0x60000010;
1711 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
1712 vmx_set_cr4(&vmx->vcpu, 0);
1713 #ifdef CONFIG_X86_64
1714 vmx_set_efer(&vmx->vcpu, 0);
1715 #endif
1716 vmx_fpu_activate(&vmx->vcpu);
1717 update_exception_bitmap(&vmx->vcpu);
1719 return 0;
1721 out:
1722 return ret;
1725 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1727 struct vcpu_vmx *vmx = to_vmx(vcpu);
1729 if (vcpu->arch.rmode.active) {
1730 vmx->rmode.irq.pending = true;
1731 vmx->rmode.irq.vector = irq;
1732 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
1733 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1734 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
1735 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1736 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
1737 return;
1739 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1740 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1743 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1745 int word_index = __ffs(vcpu->arch.irq_summary);
1746 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1747 int irq = word_index * BITS_PER_LONG + bit_index;
1749 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1750 if (!vcpu->arch.irq_pending[word_index])
1751 clear_bit(word_index, &vcpu->arch.irq_summary);
1752 vmx_inject_irq(vcpu, irq);
1756 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1757 struct kvm_run *kvm_run)
1759 u32 cpu_based_vm_exec_control;
1761 vcpu->arch.interrupt_window_open =
1762 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1763 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1765 if (vcpu->arch.interrupt_window_open &&
1766 vcpu->arch.irq_summary &&
1767 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1769 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1771 kvm_do_inject_irq(vcpu);
1773 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1774 if (!vcpu->arch.interrupt_window_open &&
1775 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
1777 * Interrupts blocked. Wait for unblock.
1779 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1780 else
1781 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1782 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1785 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
1787 int ret;
1788 struct kvm_userspace_memory_region tss_mem = {
1789 .slot = 8,
1790 .guest_phys_addr = addr,
1791 .memory_size = PAGE_SIZE * 3,
1792 .flags = 0,
1795 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
1796 if (ret)
1797 return ret;
1798 kvm->arch.tss_addr = addr;
1799 return 0;
1802 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1804 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1806 set_debugreg(dbg->bp[0], 0);
1807 set_debugreg(dbg->bp[1], 1);
1808 set_debugreg(dbg->bp[2], 2);
1809 set_debugreg(dbg->bp[3], 3);
1811 if (dbg->singlestep) {
1812 unsigned long flags;
1814 flags = vmcs_readl(GUEST_RFLAGS);
1815 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1816 vmcs_writel(GUEST_RFLAGS, flags);
1820 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1821 int vec, u32 err_code)
1823 if (!vcpu->arch.rmode.active)
1824 return 0;
1827 * Instruction with address size override prefix opcode 0x67
1828 * Cause the #SS fault with 0 error code in VM86 mode.
1830 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1831 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
1832 return 1;
1833 return 0;
1836 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1838 struct vcpu_vmx *vmx = to_vmx(vcpu);
1839 u32 intr_info, error_code;
1840 unsigned long cr2, rip;
1841 u32 vect_info;
1842 enum emulation_result er;
1844 vect_info = vmx->idt_vectoring_info;
1845 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1847 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1848 !is_page_fault(intr_info))
1849 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1850 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1852 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1853 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1854 set_bit(irq, vcpu->arch.irq_pending);
1855 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1858 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1859 return 1; /* already handled by vmx_vcpu_run() */
1861 if (is_no_device(intr_info)) {
1862 vmx_fpu_activate(vcpu);
1863 return 1;
1866 if (is_invalid_opcode(intr_info)) {
1867 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1868 if (er != EMULATE_DONE)
1869 kvm_queue_exception(vcpu, UD_VECTOR);
1870 return 1;
1873 error_code = 0;
1874 rip = vmcs_readl(GUEST_RIP);
1875 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1876 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1877 if (is_page_fault(intr_info)) {
1878 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1879 return kvm_mmu_page_fault(vcpu, cr2, error_code);
1882 if (vcpu->arch.rmode.active &&
1883 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1884 error_code)) {
1885 if (vcpu->arch.halt_request) {
1886 vcpu->arch.halt_request = 0;
1887 return kvm_emulate_halt(vcpu);
1889 return 1;
1892 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
1893 (INTR_TYPE_EXCEPTION | 1)) {
1894 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1895 return 0;
1897 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1898 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1899 kvm_run->ex.error_code = error_code;
1900 return 0;
1903 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1904 struct kvm_run *kvm_run)
1906 ++vcpu->stat.irq_exits;
1907 return 1;
1910 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1912 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1913 return 0;
1916 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1918 unsigned long exit_qualification;
1919 int size, down, in, string, rep;
1920 unsigned port;
1922 ++vcpu->stat.io_exits;
1923 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1924 string = (exit_qualification & 16) != 0;
1926 if (string) {
1927 if (emulate_instruction(vcpu,
1928 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1929 return 0;
1930 return 1;
1933 size = (exit_qualification & 7) + 1;
1934 in = (exit_qualification & 8) != 0;
1935 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1936 rep = (exit_qualification & 32) != 0;
1937 port = exit_qualification >> 16;
1939 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1942 static void
1943 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1946 * Patch in the VMCALL instruction:
1948 hypercall[0] = 0x0f;
1949 hypercall[1] = 0x01;
1950 hypercall[2] = 0xc1;
1953 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1955 unsigned long exit_qualification;
1956 int cr;
1957 int reg;
1959 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1960 cr = exit_qualification & 15;
1961 reg = (exit_qualification >> 8) & 15;
1962 switch ((exit_qualification >> 4) & 3) {
1963 case 0: /* mov to cr */
1964 switch (cr) {
1965 case 0:
1966 vcpu_load_rsp_rip(vcpu);
1967 set_cr0(vcpu, vcpu->arch.regs[reg]);
1968 skip_emulated_instruction(vcpu);
1969 return 1;
1970 case 3:
1971 vcpu_load_rsp_rip(vcpu);
1972 set_cr3(vcpu, vcpu->arch.regs[reg]);
1973 skip_emulated_instruction(vcpu);
1974 return 1;
1975 case 4:
1976 vcpu_load_rsp_rip(vcpu);
1977 set_cr4(vcpu, vcpu->arch.regs[reg]);
1978 skip_emulated_instruction(vcpu);
1979 return 1;
1980 case 8:
1981 vcpu_load_rsp_rip(vcpu);
1982 set_cr8(vcpu, vcpu->arch.regs[reg]);
1983 skip_emulated_instruction(vcpu);
1984 if (irqchip_in_kernel(vcpu->kvm))
1985 return 1;
1986 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1987 return 0;
1989 break;
1990 case 2: /* clts */
1991 vcpu_load_rsp_rip(vcpu);
1992 vmx_fpu_deactivate(vcpu);
1993 vcpu->arch.cr0 &= ~X86_CR0_TS;
1994 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1995 vmx_fpu_activate(vcpu);
1996 skip_emulated_instruction(vcpu);
1997 return 1;
1998 case 1: /*mov from cr*/
1999 switch (cr) {
2000 case 3:
2001 vcpu_load_rsp_rip(vcpu);
2002 vcpu->arch.regs[reg] = vcpu->arch.cr3;
2003 vcpu_put_rsp_rip(vcpu);
2004 skip_emulated_instruction(vcpu);
2005 return 1;
2006 case 8:
2007 vcpu_load_rsp_rip(vcpu);
2008 vcpu->arch.regs[reg] = get_cr8(vcpu);
2009 vcpu_put_rsp_rip(vcpu);
2010 skip_emulated_instruction(vcpu);
2011 return 1;
2013 break;
2014 case 3: /* lmsw */
2015 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2017 skip_emulated_instruction(vcpu);
2018 return 1;
2019 default:
2020 break;
2022 kvm_run->exit_reason = 0;
2023 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2024 (int)(exit_qualification >> 4) & 3, cr);
2025 return 0;
2028 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2030 unsigned long exit_qualification;
2031 unsigned long val;
2032 int dr, reg;
2035 * FIXME: this code assumes the host is debugging the guest.
2036 * need to deal with guest debugging itself too.
2038 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2039 dr = exit_qualification & 7;
2040 reg = (exit_qualification >> 8) & 15;
2041 vcpu_load_rsp_rip(vcpu);
2042 if (exit_qualification & 16) {
2043 /* mov from dr */
2044 switch (dr) {
2045 case 6:
2046 val = 0xffff0ff0;
2047 break;
2048 case 7:
2049 val = 0x400;
2050 break;
2051 default:
2052 val = 0;
2054 vcpu->arch.regs[reg] = val;
2055 } else {
2056 /* mov to dr */
2058 vcpu_put_rsp_rip(vcpu);
2059 skip_emulated_instruction(vcpu);
2060 return 1;
2063 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2065 kvm_emulate_cpuid(vcpu);
2066 return 1;
2069 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2071 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2072 u64 data;
2074 if (vmx_get_msr(vcpu, ecx, &data)) {
2075 kvm_inject_gp(vcpu, 0);
2076 return 1;
2079 /* FIXME: handling of bits 32:63 of rax, rdx */
2080 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2081 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2082 skip_emulated_instruction(vcpu);
2083 return 1;
2086 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2088 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2089 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2090 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2092 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2093 kvm_inject_gp(vcpu, 0);
2094 return 1;
2097 skip_emulated_instruction(vcpu);
2098 return 1;
2101 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2102 struct kvm_run *kvm_run)
2104 return 1;
2107 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2108 struct kvm_run *kvm_run)
2110 u32 cpu_based_vm_exec_control;
2112 /* clear pending irq */
2113 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2114 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2115 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2117 * If the user space waits to inject interrupts, exit as soon as
2118 * possible
2120 if (kvm_run->request_interrupt_window &&
2121 !vcpu->arch.irq_summary) {
2122 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2123 ++vcpu->stat.irq_window_exits;
2124 return 0;
2126 return 1;
2129 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2131 skip_emulated_instruction(vcpu);
2132 return kvm_emulate_halt(vcpu);
2135 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2137 skip_emulated_instruction(vcpu);
2138 kvm_emulate_hypercall(vcpu);
2139 return 1;
2142 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2144 skip_emulated_instruction(vcpu);
2145 /* TODO: Add support for VT-d/pass-through device */
2146 return 1;
2149 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2151 u64 exit_qualification;
2152 enum emulation_result er;
2153 unsigned long offset;
2155 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2156 offset = exit_qualification & 0xffful;
2158 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2160 if (er != EMULATE_DONE) {
2161 printk(KERN_ERR
2162 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2163 offset);
2164 return -ENOTSUPP;
2166 return 1;
2170 * The exit handlers return 1 if the exit was handled fully and guest execution
2171 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2172 * to be done to userspace and return 0.
2174 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2175 struct kvm_run *kvm_run) = {
2176 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2177 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2178 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2179 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2180 [EXIT_REASON_CR_ACCESS] = handle_cr,
2181 [EXIT_REASON_DR_ACCESS] = handle_dr,
2182 [EXIT_REASON_CPUID] = handle_cpuid,
2183 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2184 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2185 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2186 [EXIT_REASON_HLT] = handle_halt,
2187 [EXIT_REASON_VMCALL] = handle_vmcall,
2188 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2189 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2190 [EXIT_REASON_WBINVD] = handle_wbinvd,
2193 static const int kvm_vmx_max_exit_handlers =
2194 ARRAY_SIZE(kvm_vmx_exit_handlers);
2197 * The guest has exited. See if we can fix it or if we need userspace
2198 * assistance.
2200 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2202 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2203 struct vcpu_vmx *vmx = to_vmx(vcpu);
2204 u32 vectoring_info = vmx->idt_vectoring_info;
2206 if (unlikely(vmx->fail)) {
2207 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2208 kvm_run->fail_entry.hardware_entry_failure_reason
2209 = vmcs_read32(VM_INSTRUCTION_ERROR);
2210 return 0;
2213 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2214 exit_reason != EXIT_REASON_EXCEPTION_NMI)
2215 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2216 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2217 if (exit_reason < kvm_vmx_max_exit_handlers
2218 && kvm_vmx_exit_handlers[exit_reason])
2219 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2220 else {
2221 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2222 kvm_run->hw.hardware_exit_reason = exit_reason;
2224 return 0;
2227 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2231 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2233 int max_irr, tpr;
2235 if (!vm_need_tpr_shadow(vcpu->kvm))
2236 return;
2238 if (!kvm_lapic_enabled(vcpu) ||
2239 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2240 vmcs_write32(TPR_THRESHOLD, 0);
2241 return;
2244 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2245 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2248 static void enable_irq_window(struct kvm_vcpu *vcpu)
2250 u32 cpu_based_vm_exec_control;
2252 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2253 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2254 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2257 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2259 struct vcpu_vmx *vmx = to_vmx(vcpu);
2260 u32 idtv_info_field, intr_info_field;
2261 int has_ext_irq, interrupt_window_open;
2262 int vector;
2264 update_tpr_threshold(vcpu);
2266 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2267 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2268 idtv_info_field = vmx->idt_vectoring_info;
2269 if (intr_info_field & INTR_INFO_VALID_MASK) {
2270 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2271 /* TODO: fault when IDT_Vectoring */
2272 if (printk_ratelimit())
2273 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2275 if (has_ext_irq)
2276 enable_irq_window(vcpu);
2277 return;
2279 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2280 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2281 == INTR_TYPE_EXT_INTR
2282 && vcpu->arch.rmode.active) {
2283 u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2285 vmx_inject_irq(vcpu, vect);
2286 if (unlikely(has_ext_irq))
2287 enable_irq_window(vcpu);
2288 return;
2291 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2292 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2293 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2295 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2296 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2297 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2298 if (unlikely(has_ext_irq))
2299 enable_irq_window(vcpu);
2300 return;
2302 if (!has_ext_irq)
2303 return;
2304 interrupt_window_open =
2305 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2306 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2307 if (interrupt_window_open) {
2308 vector = kvm_cpu_get_interrupt(vcpu);
2309 vmx_inject_irq(vcpu, vector);
2310 kvm_timer_intr_post(vcpu, vector);
2311 } else
2312 enable_irq_window(vcpu);
2316 * Failure to inject an interrupt should give us the information
2317 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2318 * when fetching the interrupt redirection bitmap in the real-mode
2319 * tss, this doesn't happen. So we do it ourselves.
2321 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2323 vmx->rmode.irq.pending = 0;
2324 if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2325 return;
2326 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2327 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2328 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2329 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2330 return;
2332 vmx->idt_vectoring_info =
2333 VECTORING_INFO_VALID_MASK
2334 | INTR_TYPE_EXT_INTR
2335 | vmx->rmode.irq.vector;
2338 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2340 struct vcpu_vmx *vmx = to_vmx(vcpu);
2341 u32 intr_info;
2344 * Loading guest fpu may have cleared host cr0.ts
2346 vmcs_writel(HOST_CR0, read_cr0());
2348 asm(
2349 /* Store host registers */
2350 #ifdef CONFIG_X86_64
2351 "push %%rdx; push %%rbp;"
2352 "push %%rcx \n\t"
2353 #else
2354 "push %%edx; push %%ebp;"
2355 "push %%ecx \n\t"
2356 #endif
2357 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2358 /* Check if vmlaunch of vmresume is needed */
2359 "cmpl $0, %c[launched](%0) \n\t"
2360 /* Load guest registers. Don't clobber flags. */
2361 #ifdef CONFIG_X86_64
2362 "mov %c[cr2](%0), %%rax \n\t"
2363 "mov %%rax, %%cr2 \n\t"
2364 "mov %c[rax](%0), %%rax \n\t"
2365 "mov %c[rbx](%0), %%rbx \n\t"
2366 "mov %c[rdx](%0), %%rdx \n\t"
2367 "mov %c[rsi](%0), %%rsi \n\t"
2368 "mov %c[rdi](%0), %%rdi \n\t"
2369 "mov %c[rbp](%0), %%rbp \n\t"
2370 "mov %c[r8](%0), %%r8 \n\t"
2371 "mov %c[r9](%0), %%r9 \n\t"
2372 "mov %c[r10](%0), %%r10 \n\t"
2373 "mov %c[r11](%0), %%r11 \n\t"
2374 "mov %c[r12](%0), %%r12 \n\t"
2375 "mov %c[r13](%0), %%r13 \n\t"
2376 "mov %c[r14](%0), %%r14 \n\t"
2377 "mov %c[r15](%0), %%r15 \n\t"
2378 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2379 #else
2380 "mov %c[cr2](%0), %%eax \n\t"
2381 "mov %%eax, %%cr2 \n\t"
2382 "mov %c[rax](%0), %%eax \n\t"
2383 "mov %c[rbx](%0), %%ebx \n\t"
2384 "mov %c[rdx](%0), %%edx \n\t"
2385 "mov %c[rsi](%0), %%esi \n\t"
2386 "mov %c[rdi](%0), %%edi \n\t"
2387 "mov %c[rbp](%0), %%ebp \n\t"
2388 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2389 #endif
2390 /* Enter guest mode */
2391 "jne .Llaunched \n\t"
2392 ASM_VMX_VMLAUNCH "\n\t"
2393 "jmp .Lkvm_vmx_return \n\t"
2394 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2395 ".Lkvm_vmx_return: "
2396 /* Save guest registers, load host registers, keep flags */
2397 #ifdef CONFIG_X86_64
2398 "xchg %0, (%%rsp) \n\t"
2399 "mov %%rax, %c[rax](%0) \n\t"
2400 "mov %%rbx, %c[rbx](%0) \n\t"
2401 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2402 "mov %%rdx, %c[rdx](%0) \n\t"
2403 "mov %%rsi, %c[rsi](%0) \n\t"
2404 "mov %%rdi, %c[rdi](%0) \n\t"
2405 "mov %%rbp, %c[rbp](%0) \n\t"
2406 "mov %%r8, %c[r8](%0) \n\t"
2407 "mov %%r9, %c[r9](%0) \n\t"
2408 "mov %%r10, %c[r10](%0) \n\t"
2409 "mov %%r11, %c[r11](%0) \n\t"
2410 "mov %%r12, %c[r12](%0) \n\t"
2411 "mov %%r13, %c[r13](%0) \n\t"
2412 "mov %%r14, %c[r14](%0) \n\t"
2413 "mov %%r15, %c[r15](%0) \n\t"
2414 "mov %%cr2, %%rax \n\t"
2415 "mov %%rax, %c[cr2](%0) \n\t"
2417 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
2418 #else
2419 "xchg %0, (%%esp) \n\t"
2420 "mov %%eax, %c[rax](%0) \n\t"
2421 "mov %%ebx, %c[rbx](%0) \n\t"
2422 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2423 "mov %%edx, %c[rdx](%0) \n\t"
2424 "mov %%esi, %c[rsi](%0) \n\t"
2425 "mov %%edi, %c[rdi](%0) \n\t"
2426 "mov %%ebp, %c[rbp](%0) \n\t"
2427 "mov %%cr2, %%eax \n\t"
2428 "mov %%eax, %c[cr2](%0) \n\t"
2430 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2431 #endif
2432 "setbe %c[fail](%0) \n\t"
2433 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2434 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2435 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2436 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
2437 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
2438 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
2439 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
2440 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
2441 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
2442 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
2443 #ifdef CONFIG_X86_64
2444 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
2445 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
2446 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
2447 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
2448 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
2449 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
2450 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
2451 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
2452 #endif
2453 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
2454 : "cc", "memory"
2455 #ifdef CONFIG_X86_64
2456 , "rbx", "rdi", "rsi"
2457 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2458 #else
2459 , "ebx", "edi", "rsi"
2460 #endif
2463 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2464 if (vmx->rmode.irq.pending)
2465 fixup_rmode_irq(vmx);
2467 vcpu->arch.interrupt_window_open =
2468 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2470 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2471 vmx->launched = 1;
2473 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2475 /* We need to handle NMIs before interrupts are enabled */
2476 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2477 asm("int $2");
2480 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2482 struct vcpu_vmx *vmx = to_vmx(vcpu);
2484 if (vmx->vmcs) {
2485 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2486 free_vmcs(vmx->vmcs);
2487 vmx->vmcs = NULL;
2491 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2493 struct vcpu_vmx *vmx = to_vmx(vcpu);
2495 vmx_free_vmcs(vcpu);
2496 kfree(vmx->host_msrs);
2497 kfree(vmx->guest_msrs);
2498 kvm_vcpu_uninit(vcpu);
2499 kmem_cache_free(kvm_vcpu_cache, vmx);
2502 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2504 int err;
2505 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2506 int cpu;
2508 if (!vmx)
2509 return ERR_PTR(-ENOMEM);
2511 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2512 if (err)
2513 goto free_vcpu;
2515 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2516 if (!vmx->guest_msrs) {
2517 err = -ENOMEM;
2518 goto uninit_vcpu;
2521 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2522 if (!vmx->host_msrs)
2523 goto free_guest_msrs;
2525 vmx->vmcs = alloc_vmcs();
2526 if (!vmx->vmcs)
2527 goto free_msrs;
2529 vmcs_clear(vmx->vmcs);
2531 cpu = get_cpu();
2532 vmx_vcpu_load(&vmx->vcpu, cpu);
2533 err = vmx_vcpu_setup(vmx);
2534 vmx_vcpu_put(&vmx->vcpu);
2535 put_cpu();
2536 if (err)
2537 goto free_vmcs;
2538 if (vm_need_virtualize_apic_accesses(kvm))
2539 if (alloc_apic_access_page(kvm) != 0)
2540 goto free_vmcs;
2542 return &vmx->vcpu;
2544 free_vmcs:
2545 free_vmcs(vmx->vmcs);
2546 free_msrs:
2547 kfree(vmx->host_msrs);
2548 free_guest_msrs:
2549 kfree(vmx->guest_msrs);
2550 uninit_vcpu:
2551 kvm_vcpu_uninit(&vmx->vcpu);
2552 free_vcpu:
2553 kmem_cache_free(kvm_vcpu_cache, vmx);
2554 return ERR_PTR(err);
2557 static void __init vmx_check_processor_compat(void *rtn)
2559 struct vmcs_config vmcs_conf;
2561 *(int *)rtn = 0;
2562 if (setup_vmcs_config(&vmcs_conf) < 0)
2563 *(int *)rtn = -EIO;
2564 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2565 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2566 smp_processor_id());
2567 *(int *)rtn = -EIO;
2571 static struct kvm_x86_ops vmx_x86_ops = {
2572 .cpu_has_kvm_support = cpu_has_kvm_support,
2573 .disabled_by_bios = vmx_disabled_by_bios,
2574 .hardware_setup = hardware_setup,
2575 .hardware_unsetup = hardware_unsetup,
2576 .check_processor_compatibility = vmx_check_processor_compat,
2577 .hardware_enable = hardware_enable,
2578 .hardware_disable = hardware_disable,
2579 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
2581 .vcpu_create = vmx_create_vcpu,
2582 .vcpu_free = vmx_free_vcpu,
2583 .vcpu_reset = vmx_vcpu_reset,
2585 .prepare_guest_switch = vmx_save_host_state,
2586 .vcpu_load = vmx_vcpu_load,
2587 .vcpu_put = vmx_vcpu_put,
2588 .vcpu_decache = vmx_vcpu_decache,
2590 .set_guest_debug = set_guest_debug,
2591 .guest_debug_pre = kvm_guest_debug_pre,
2592 .get_msr = vmx_get_msr,
2593 .set_msr = vmx_set_msr,
2594 .get_segment_base = vmx_get_segment_base,
2595 .get_segment = vmx_get_segment,
2596 .set_segment = vmx_set_segment,
2597 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2598 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2599 .set_cr0 = vmx_set_cr0,
2600 .set_cr3 = vmx_set_cr3,
2601 .set_cr4 = vmx_set_cr4,
2602 #ifdef CONFIG_X86_64
2603 .set_efer = vmx_set_efer,
2604 #endif
2605 .get_idt = vmx_get_idt,
2606 .set_idt = vmx_set_idt,
2607 .get_gdt = vmx_get_gdt,
2608 .set_gdt = vmx_set_gdt,
2609 .cache_regs = vcpu_load_rsp_rip,
2610 .decache_regs = vcpu_put_rsp_rip,
2611 .get_rflags = vmx_get_rflags,
2612 .set_rflags = vmx_set_rflags,
2614 .tlb_flush = vmx_flush_tlb,
2616 .run = vmx_vcpu_run,
2617 .handle_exit = kvm_handle_exit,
2618 .skip_emulated_instruction = skip_emulated_instruction,
2619 .patch_hypercall = vmx_patch_hypercall,
2620 .get_irq = vmx_get_irq,
2621 .set_irq = vmx_inject_irq,
2622 .queue_exception = vmx_queue_exception,
2623 .exception_injected = vmx_exception_injected,
2624 .inject_pending_irq = vmx_intr_assist,
2625 .inject_pending_vectors = do_interrupt_requests,
2627 .set_tss_addr = vmx_set_tss_addr,
2630 static int __init vmx_init(void)
2632 void *iova;
2633 int r;
2635 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2636 if (!vmx_io_bitmap_a)
2637 return -ENOMEM;
2639 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2640 if (!vmx_io_bitmap_b) {
2641 r = -ENOMEM;
2642 goto out;
2646 * Allow direct access to the PC debug port (it is often used for I/O
2647 * delays, but the vmexits simply slow things down).
2649 iova = kmap(vmx_io_bitmap_a);
2650 memset(iova, 0xff, PAGE_SIZE);
2651 clear_bit(0x80, iova);
2652 kunmap(vmx_io_bitmap_a);
2654 iova = kmap(vmx_io_bitmap_b);
2655 memset(iova, 0xff, PAGE_SIZE);
2656 kunmap(vmx_io_bitmap_b);
2658 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2659 if (r)
2660 goto out1;
2662 if (bypass_guest_pf)
2663 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
2665 return 0;
2667 out1:
2668 __free_page(vmx_io_bitmap_b);
2669 out:
2670 __free_page(vmx_io_bitmap_a);
2671 return r;
2674 static void __exit vmx_exit(void)
2676 __free_page(vmx_io_bitmap_b);
2677 __free_page(vmx_io_bitmap_a);
2679 kvm_exit();
2682 module_init(vmx_init)
2683 module_exit(vmx_exit)