sched: tune multi-core idle balancing
[wrt350n-kernel.git] / arch / x86 / xen / enlighten.c
blob8b9ee27805fdd10be4cb19b082131745d1c4a670
1 /*
2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
29 #include <xen/interface/xen.h>
30 #include <xen/interface/physdev.h>
31 #include <xen/interface/vcpu.h>
32 #include <xen/interface/sched.h>
33 #include <xen/features.h>
34 #include <xen/page.h>
36 #include <asm/paravirt.h>
37 #include <asm/page.h>
38 #include <asm/xen/hypercall.h>
39 #include <asm/xen/hypervisor.h>
40 #include <asm/fixmap.h>
41 #include <asm/processor.h>
42 #include <asm/setup.h>
43 #include <asm/desc.h>
44 #include <asm/pgtable.h>
45 #include <asm/tlbflush.h>
46 #include <asm/reboot.h>
48 #include "xen-ops.h"
49 #include "mmu.h"
50 #include "multicalls.h"
52 EXPORT_SYMBOL_GPL(hypercall_page);
54 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
55 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
58 * Note about cr3 (pagetable base) values:
60 * xen_cr3 contains the current logical cr3 value; it contains the
61 * last set cr3. This may not be the current effective cr3, because
62 * its update may be being lazily deferred. However, a vcpu looking
63 * at its own cr3 can use this value knowing that it everything will
64 * be self-consistent.
66 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
67 * hypercall to set the vcpu cr3 is complete (so it may be a little
68 * out of date, but it will never be set early). If one vcpu is
69 * looking at another vcpu's cr3 value, it should use this variable.
71 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
72 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
74 struct start_info *xen_start_info;
75 EXPORT_SYMBOL_GPL(xen_start_info);
77 static /* __initdata */ struct shared_info dummy_shared_info;
80 * Point at some empty memory to start with. We map the real shared_info
81 * page as soon as fixmap is up and running.
83 struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;
86 * Flag to determine whether vcpu info placement is available on all
87 * VCPUs. We assume it is to start with, and then set it to zero on
88 * the first failure. This is because it can succeed on some VCPUs
89 * and not others, since it can involve hypervisor memory allocation,
90 * or because the guest failed to guarantee all the appropriate
91 * constraints on all VCPUs (ie buffer can't cross a page boundary).
93 * Note that any particular CPU may be using a placed vcpu structure,
94 * but we can only optimise if the all are.
96 * 0: not available, 1: available
98 static int have_vcpu_info_placement = 0;
100 static void __init xen_vcpu_setup(int cpu)
102 struct vcpu_register_vcpu_info info;
103 int err;
104 struct vcpu_info *vcpup;
106 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
108 if (!have_vcpu_info_placement)
109 return; /* already tested, not available */
111 vcpup = &per_cpu(xen_vcpu_info, cpu);
113 info.mfn = virt_to_mfn(vcpup);
114 info.offset = offset_in_page(vcpup);
116 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
117 cpu, vcpup, info.mfn, info.offset);
119 /* Check to see if the hypervisor will put the vcpu_info
120 structure where we want it, which allows direct access via
121 a percpu-variable. */
122 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
124 if (err) {
125 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
126 have_vcpu_info_placement = 0;
127 } else {
128 /* This cpu is using the registered vcpu info, even if
129 later ones fail to. */
130 per_cpu(xen_vcpu, cpu) = vcpup;
132 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
133 cpu, vcpup);
137 static void __init xen_banner(void)
139 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
140 pv_info.name);
141 printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
144 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
145 unsigned int *cx, unsigned int *dx)
147 unsigned maskedx = ~0;
150 * Mask out inconvenient features, to try and disable as many
151 * unsupported kernel subsystems as possible.
153 if (*ax == 1)
154 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
155 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
156 (1 << X86_FEATURE_SEP) | /* disable SEP */
157 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
159 asm(XEN_EMULATE_PREFIX "cpuid"
160 : "=a" (*ax),
161 "=b" (*bx),
162 "=c" (*cx),
163 "=d" (*dx)
164 : "0" (*ax), "2" (*cx));
165 *dx &= maskedx;
168 static void xen_set_debugreg(int reg, unsigned long val)
170 HYPERVISOR_set_debugreg(reg, val);
173 static unsigned long xen_get_debugreg(int reg)
175 return HYPERVISOR_get_debugreg(reg);
178 static unsigned long xen_save_fl(void)
180 struct vcpu_info *vcpu;
181 unsigned long flags;
183 vcpu = x86_read_percpu(xen_vcpu);
185 /* flag has opposite sense of mask */
186 flags = !vcpu->evtchn_upcall_mask;
188 /* convert to IF type flag
189 -0 -> 0x00000000
190 -1 -> 0xffffffff
192 return (-flags) & X86_EFLAGS_IF;
195 static void xen_restore_fl(unsigned long flags)
197 struct vcpu_info *vcpu;
199 /* convert from IF type flag */
200 flags = !(flags & X86_EFLAGS_IF);
202 /* There's a one instruction preempt window here. We need to
203 make sure we're don't switch CPUs between getting the vcpu
204 pointer and updating the mask. */
205 preempt_disable();
206 vcpu = x86_read_percpu(xen_vcpu);
207 vcpu->evtchn_upcall_mask = flags;
208 preempt_enable_no_resched();
210 /* Doesn't matter if we get preempted here, because any
211 pending event will get dealt with anyway. */
213 if (flags == 0) {
214 preempt_check_resched();
215 barrier(); /* unmask then check (avoid races) */
216 if (unlikely(vcpu->evtchn_upcall_pending))
217 force_evtchn_callback();
221 static void xen_irq_disable(void)
223 /* There's a one instruction preempt window here. We need to
224 make sure we're don't switch CPUs between getting the vcpu
225 pointer and updating the mask. */
226 preempt_disable();
227 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
228 preempt_enable_no_resched();
231 static void xen_irq_enable(void)
233 struct vcpu_info *vcpu;
235 /* There's a one instruction preempt window here. We need to
236 make sure we're don't switch CPUs between getting the vcpu
237 pointer and updating the mask. */
238 preempt_disable();
239 vcpu = x86_read_percpu(xen_vcpu);
240 vcpu->evtchn_upcall_mask = 0;
241 preempt_enable_no_resched();
243 /* Doesn't matter if we get preempted here, because any
244 pending event will get dealt with anyway. */
246 barrier(); /* unmask then check (avoid races) */
247 if (unlikely(vcpu->evtchn_upcall_pending))
248 force_evtchn_callback();
251 static void xen_safe_halt(void)
253 /* Blocking includes an implicit local_irq_enable(). */
254 if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
255 BUG();
258 static void xen_halt(void)
260 if (irqs_disabled())
261 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
262 else
263 xen_safe_halt();
266 static void xen_leave_lazy(void)
268 paravirt_leave_lazy(paravirt_get_lazy_mode());
269 xen_mc_flush();
272 static unsigned long xen_store_tr(void)
274 return 0;
277 static void xen_set_ldt(const void *addr, unsigned entries)
279 struct mmuext_op *op;
280 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
282 op = mcs.args;
283 op->cmd = MMUEXT_SET_LDT;
284 op->arg1.linear_addr = (unsigned long)addr;
285 op->arg2.nr_ents = entries;
287 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
289 xen_mc_issue(PARAVIRT_LAZY_CPU);
292 static void xen_load_gdt(const struct desc_ptr *dtr)
294 unsigned long *frames;
295 unsigned long va = dtr->address;
296 unsigned int size = dtr->size + 1;
297 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
298 int f;
299 struct multicall_space mcs;
301 /* A GDT can be up to 64k in size, which corresponds to 8192
302 8-byte entries, or 16 4k pages.. */
304 BUG_ON(size > 65536);
305 BUG_ON(va & ~PAGE_MASK);
307 mcs = xen_mc_entry(sizeof(*frames) * pages);
308 frames = mcs.args;
310 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
311 frames[f] = virt_to_mfn(va);
312 make_lowmem_page_readonly((void *)va);
315 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
317 xen_mc_issue(PARAVIRT_LAZY_CPU);
320 static void load_TLS_descriptor(struct thread_struct *t,
321 unsigned int cpu, unsigned int i)
323 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
324 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
325 struct multicall_space mc = __xen_mc_entry(0);
327 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
330 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
332 xen_mc_batch();
334 load_TLS_descriptor(t, cpu, 0);
335 load_TLS_descriptor(t, cpu, 1);
336 load_TLS_descriptor(t, cpu, 2);
338 xen_mc_issue(PARAVIRT_LAZY_CPU);
341 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
342 * it means we're in a context switch, and %gs has just been
343 * saved. This means we can zero it out to prevent faults on
344 * exit from the hypervisor if the next process has no %gs.
345 * Either way, it has been saved, and the new value will get
346 * loaded properly. This will go away as soon as Xen has been
347 * modified to not save/restore %gs for normal hypercalls.
349 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
350 loadsegment(gs, 0);
353 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
354 const void *ptr)
356 unsigned long lp = (unsigned long)&dt[entrynum];
357 xmaddr_t mach_lp = virt_to_machine(lp);
358 u64 entry = *(u64 *)ptr;
360 preempt_disable();
362 xen_mc_flush();
363 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
364 BUG();
366 preempt_enable();
369 static int cvt_gate_to_trap(int vector, u32 low, u32 high,
370 struct trap_info *info)
372 u8 type, dpl;
374 type = (high >> 8) & 0x1f;
375 dpl = (high >> 13) & 3;
377 if (type != 0xf && type != 0xe)
378 return 0;
380 info->vector = vector;
381 info->address = (high & 0xffff0000) | (low & 0x0000ffff);
382 info->cs = low >> 16;
383 info->flags = dpl;
384 /* interrupt gates clear IF */
385 if (type == 0xe)
386 info->flags |= 4;
388 return 1;
391 /* Locations of each CPU's IDT */
392 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
394 /* Set an IDT entry. If the entry is part of the current IDT, then
395 also update Xen. */
396 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
398 unsigned long p = (unsigned long)&dt[entrynum];
399 unsigned long start, end;
401 preempt_disable();
403 start = __get_cpu_var(idt_desc).address;
404 end = start + __get_cpu_var(idt_desc).size + 1;
406 xen_mc_flush();
408 native_write_idt_entry(dt, entrynum, g);
410 if (p >= start && (p + 8) <= end) {
411 struct trap_info info[2];
412 u32 *desc = (u32 *)g;
414 info[1].address = 0;
416 if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
417 if (HYPERVISOR_set_trap_table(info))
418 BUG();
421 preempt_enable();
424 static void xen_convert_trap_info(const struct desc_ptr *desc,
425 struct trap_info *traps)
427 unsigned in, out, count;
429 count = (desc->size+1) / 8;
430 BUG_ON(count > 256);
432 for (in = out = 0; in < count; in++) {
433 const u32 *entry = (u32 *)(desc->address + in * 8);
435 if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
436 out++;
438 traps[out].address = 0;
441 void xen_copy_trap_info(struct trap_info *traps)
443 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
445 xen_convert_trap_info(desc, traps);
448 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
449 hold a spinlock to protect the static traps[] array (static because
450 it avoids allocation, and saves stack space). */
451 static void xen_load_idt(const struct desc_ptr *desc)
453 static DEFINE_SPINLOCK(lock);
454 static struct trap_info traps[257];
456 spin_lock(&lock);
458 __get_cpu_var(idt_desc) = *desc;
460 xen_convert_trap_info(desc, traps);
462 xen_mc_flush();
463 if (HYPERVISOR_set_trap_table(traps))
464 BUG();
466 spin_unlock(&lock);
469 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
470 they're handled differently. */
471 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
472 const void *desc, int type)
474 preempt_disable();
476 switch (type) {
477 case DESC_LDT:
478 case DESC_TSS:
479 /* ignore */
480 break;
482 default: {
483 xmaddr_t maddr = virt_to_machine(&dt[entry]);
485 xen_mc_flush();
486 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
487 BUG();
492 preempt_enable();
495 static void xen_load_sp0(struct tss_struct *tss,
496 struct thread_struct *thread)
498 struct multicall_space mcs = xen_mc_entry(0);
499 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
500 xen_mc_issue(PARAVIRT_LAZY_CPU);
503 static void xen_set_iopl_mask(unsigned mask)
505 struct physdev_set_iopl set_iopl;
507 /* Force the change at ring 0. */
508 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
509 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
512 static void xen_io_delay(void)
516 #ifdef CONFIG_X86_LOCAL_APIC
517 static u32 xen_apic_read(unsigned long reg)
519 return 0;
522 static void xen_apic_write(unsigned long reg, u32 val)
524 /* Warn to see if there's any stray references */
525 WARN_ON(1);
527 #endif
529 static void xen_flush_tlb(void)
531 struct mmuext_op *op;
532 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
534 op = mcs.args;
535 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
536 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
538 xen_mc_issue(PARAVIRT_LAZY_MMU);
541 static void xen_flush_tlb_single(unsigned long addr)
543 struct mmuext_op *op;
544 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
546 op = mcs.args;
547 op->cmd = MMUEXT_INVLPG_LOCAL;
548 op->arg1.linear_addr = addr & PAGE_MASK;
549 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
551 xen_mc_issue(PARAVIRT_LAZY_MMU);
554 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
555 unsigned long va)
557 struct {
558 struct mmuext_op op;
559 cpumask_t mask;
560 } *args;
561 cpumask_t cpumask = *cpus;
562 struct multicall_space mcs;
565 * A couple of (to be removed) sanity checks:
567 * - current CPU must not be in mask
568 * - mask must exist :)
570 BUG_ON(cpus_empty(cpumask));
571 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
572 BUG_ON(!mm);
574 /* If a CPU which we ran on has gone down, OK. */
575 cpus_and(cpumask, cpumask, cpu_online_map);
576 if (cpus_empty(cpumask))
577 return;
579 mcs = xen_mc_entry(sizeof(*args));
580 args = mcs.args;
581 args->mask = cpumask;
582 args->op.arg2.vcpumask = &args->mask;
584 if (va == TLB_FLUSH_ALL) {
585 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
586 } else {
587 args->op.cmd = MMUEXT_INVLPG_MULTI;
588 args->op.arg1.linear_addr = va;
591 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
593 xen_mc_issue(PARAVIRT_LAZY_MMU);
596 static void xen_write_cr2(unsigned long cr2)
598 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
601 static unsigned long xen_read_cr2(void)
603 return x86_read_percpu(xen_vcpu)->arch.cr2;
606 static unsigned long xen_read_cr2_direct(void)
608 return x86_read_percpu(xen_vcpu_info.arch.cr2);
611 static void xen_write_cr4(unsigned long cr4)
613 /* Just ignore cr4 changes; Xen doesn't allow us to do
614 anything anyway. */
617 static unsigned long xen_read_cr3(void)
619 return x86_read_percpu(xen_cr3);
622 static void set_current_cr3(void *v)
624 x86_write_percpu(xen_current_cr3, (unsigned long)v);
627 static void xen_write_cr3(unsigned long cr3)
629 struct mmuext_op *op;
630 struct multicall_space mcs;
631 unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
633 BUG_ON(preemptible());
635 mcs = xen_mc_entry(sizeof(*op)); /* disables interrupts */
637 /* Update while interrupts are disabled, so its atomic with
638 respect to ipis */
639 x86_write_percpu(xen_cr3, cr3);
641 op = mcs.args;
642 op->cmd = MMUEXT_NEW_BASEPTR;
643 op->arg1.mfn = mfn;
645 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
647 /* Update xen_update_cr3 once the batch has actually
648 been submitted. */
649 xen_mc_callback(set_current_cr3, (void *)cr3);
651 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
654 /* Early in boot, while setting up the initial pagetable, assume
655 everything is pinned. */
656 static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
658 BUG_ON(mem_map); /* should only be used early */
659 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
662 /* Early release_pt assumes that all pts are pinned, since there's
663 only init_mm and anything attached to that is pinned. */
664 static void xen_release_pt_init(u32 pfn)
666 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
669 static void pin_pagetable_pfn(unsigned level, unsigned long pfn)
671 struct mmuext_op op;
672 op.cmd = level;
673 op.arg1.mfn = pfn_to_mfn(pfn);
674 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
675 BUG();
678 /* This needs to make sure the new pte page is pinned iff its being
679 attached to a pinned pagetable. */
680 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
682 struct page *page = pfn_to_page(pfn);
684 if (PagePinned(virt_to_page(mm->pgd))) {
685 SetPagePinned(page);
687 if (!PageHighMem(page)) {
688 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
689 pin_pagetable_pfn(level, pfn);
690 } else
691 /* make sure there are no stray mappings of
692 this page */
693 kmap_flush_unused();
697 static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
699 xen_alloc_ptpage(mm, pfn, MMUEXT_PIN_L1_TABLE);
702 static void xen_alloc_pd(struct mm_struct *mm, u32 pfn)
704 xen_alloc_ptpage(mm, pfn, MMUEXT_PIN_L2_TABLE);
707 /* This should never happen until we're OK to use struct page */
708 static void xen_release_pt(u32 pfn)
710 struct page *page = pfn_to_page(pfn);
712 if (PagePinned(page)) {
713 if (!PageHighMem(page)) {
714 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
715 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
720 #ifdef CONFIG_HIGHPTE
721 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
723 pgprot_t prot = PAGE_KERNEL;
725 if (PagePinned(page))
726 prot = PAGE_KERNEL_RO;
728 if (0 && PageHighMem(page))
729 printk("mapping highpte %lx type %d prot %s\n",
730 page_to_pfn(page), type,
731 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
733 return kmap_atomic_prot(page, type, prot);
735 #endif
737 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
739 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
740 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
741 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
742 pte_val_ma(pte));
744 return pte;
747 /* Init-time set_pte while constructing initial pagetables, which
748 doesn't allow RO pagetable pages to be remapped RW */
749 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
751 pte = mask_rw_pte(ptep, pte);
753 xen_set_pte(ptep, pte);
756 static __init void xen_pagetable_setup_start(pgd_t *base)
758 pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
760 /* special set_pte for pagetable initialization */
761 pv_mmu_ops.set_pte = xen_set_pte_init;
763 init_mm.pgd = base;
765 * copy top-level of Xen-supplied pagetable into place. For
766 * !PAE we can use this as-is, but for PAE it is a stand-in
767 * while we copy the pmd pages.
769 memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
771 if (PTRS_PER_PMD > 1) {
772 int i;
774 * For PAE, need to allocate new pmds, rather than
775 * share Xen's, since Xen doesn't like pmd's being
776 * shared between address spaces.
778 for (i = 0; i < PTRS_PER_PGD; i++) {
779 if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
780 pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
782 memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
783 PAGE_SIZE);
785 make_lowmem_page_readonly(pmd);
787 set_pgd(&base[i], __pgd(1 + __pa(pmd)));
788 } else
789 pgd_clear(&base[i]);
793 /* make sure zero_page is mapped RO so we can use it in pagetables */
794 make_lowmem_page_readonly(empty_zero_page);
795 make_lowmem_page_readonly(base);
797 * Switch to new pagetable. This is done before
798 * pagetable_init has done anything so that the new pages
799 * added to the table can be prepared properly for Xen.
801 xen_write_cr3(__pa(base));
803 /* Unpin initial Xen pagetable */
804 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
805 PFN_DOWN(__pa(xen_start_info->pt_base)));
808 static __init void xen_pagetable_setup_done(pgd_t *base)
810 /* This will work as long as patching hasn't happened yet
811 (which it hasn't) */
812 pv_mmu_ops.alloc_pt = xen_alloc_pt;
813 pv_mmu_ops.alloc_pd = xen_alloc_pd;
814 pv_mmu_ops.release_pt = xen_release_pt;
815 pv_mmu_ops.release_pd = xen_release_pt;
816 pv_mmu_ops.set_pte = xen_set_pte;
818 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
820 * Create a mapping for the shared info page.
821 * Should be set_fixmap(), but shared_info is a machine
822 * address with no corresponding pseudo-phys address.
824 set_pte_mfn(fix_to_virt(FIX_PARAVIRT_BOOTMAP),
825 PFN_DOWN(xen_start_info->shared_info),
826 PAGE_KERNEL);
828 HYPERVISOR_shared_info =
829 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
831 } else
832 HYPERVISOR_shared_info =
833 (struct shared_info *)__va(xen_start_info->shared_info);
835 /* Actually pin the pagetable down, but we can't set PG_pinned
836 yet because the page structures don't exist yet. */
838 unsigned level;
840 #ifdef CONFIG_X86_PAE
841 level = MMUEXT_PIN_L3_TABLE;
842 #else
843 level = MMUEXT_PIN_L2_TABLE;
844 #endif
846 pin_pagetable_pfn(level, PFN_DOWN(__pa(base)));
850 /* This is called once we have the cpu_possible_map */
851 void __init xen_setup_vcpu_info_placement(void)
853 int cpu;
855 for_each_possible_cpu(cpu)
856 xen_vcpu_setup(cpu);
858 /* xen_vcpu_setup managed to place the vcpu_info within the
859 percpu area for all cpus, so make use of it */
860 if (have_vcpu_info_placement) {
861 printk(KERN_INFO "Xen: using vcpu_info placement\n");
863 pv_irq_ops.save_fl = xen_save_fl_direct;
864 pv_irq_ops.restore_fl = xen_restore_fl_direct;
865 pv_irq_ops.irq_disable = xen_irq_disable_direct;
866 pv_irq_ops.irq_enable = xen_irq_enable_direct;
867 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
868 pv_cpu_ops.iret = xen_iret_direct;
872 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
873 unsigned long addr, unsigned len)
875 char *start, *end, *reloc;
876 unsigned ret;
878 start = end = reloc = NULL;
880 #define SITE(op, x) \
881 case PARAVIRT_PATCH(op.x): \
882 if (have_vcpu_info_placement) { \
883 start = (char *)xen_##x##_direct; \
884 end = xen_##x##_direct_end; \
885 reloc = xen_##x##_direct_reloc; \
887 goto patch_site
889 switch (type) {
890 SITE(pv_irq_ops, irq_enable);
891 SITE(pv_irq_ops, irq_disable);
892 SITE(pv_irq_ops, save_fl);
893 SITE(pv_irq_ops, restore_fl);
894 #undef SITE
896 patch_site:
897 if (start == NULL || (end-start) > len)
898 goto default_patch;
900 ret = paravirt_patch_insns(insnbuf, len, start, end);
902 /* Note: because reloc is assigned from something that
903 appears to be an array, gcc assumes it's non-null,
904 but doesn't know its relationship with start and
905 end. */
906 if (reloc > start && reloc < end) {
907 int reloc_off = reloc - start;
908 long *relocp = (long *)(insnbuf + reloc_off);
909 long delta = start - (char *)addr;
911 *relocp += delta;
913 break;
915 default_patch:
916 default:
917 ret = paravirt_patch_default(type, clobbers, insnbuf,
918 addr, len);
919 break;
922 return ret;
925 static const struct pv_info xen_info __initdata = {
926 .paravirt_enabled = 1,
927 .shared_kernel_pmd = 0,
929 .name = "Xen",
932 static const struct pv_init_ops xen_init_ops __initdata = {
933 .patch = xen_patch,
935 .banner = xen_banner,
936 .memory_setup = xen_memory_setup,
937 .arch_setup = xen_arch_setup,
938 .post_allocator_init = xen_mark_init_mm_pinned,
941 static const struct pv_time_ops xen_time_ops __initdata = {
942 .time_init = xen_time_init,
944 .set_wallclock = xen_set_wallclock,
945 .get_wallclock = xen_get_wallclock,
946 .get_cpu_khz = xen_cpu_khz,
947 .sched_clock = xen_sched_clock,
950 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
951 .cpuid = xen_cpuid,
953 .set_debugreg = xen_set_debugreg,
954 .get_debugreg = xen_get_debugreg,
956 .clts = native_clts,
958 .read_cr0 = native_read_cr0,
959 .write_cr0 = native_write_cr0,
961 .read_cr4 = native_read_cr4,
962 .read_cr4_safe = native_read_cr4_safe,
963 .write_cr4 = xen_write_cr4,
965 .wbinvd = native_wbinvd,
967 .read_msr = native_read_msr_safe,
968 .write_msr = native_write_msr_safe,
969 .read_tsc = native_read_tsc,
970 .read_pmc = native_read_pmc,
972 .iret = (void *)&hypercall_page[__HYPERVISOR_iret],
973 .irq_enable_syscall_ret = NULL, /* never called */
975 .load_tr_desc = paravirt_nop,
976 .set_ldt = xen_set_ldt,
977 .load_gdt = xen_load_gdt,
978 .load_idt = xen_load_idt,
979 .load_tls = xen_load_tls,
981 .store_gdt = native_store_gdt,
982 .store_idt = native_store_idt,
983 .store_tr = xen_store_tr,
985 .write_ldt_entry = xen_write_ldt_entry,
986 .write_gdt_entry = xen_write_gdt_entry,
987 .write_idt_entry = xen_write_idt_entry,
988 .load_sp0 = xen_load_sp0,
990 .set_iopl_mask = xen_set_iopl_mask,
991 .io_delay = xen_io_delay,
993 .lazy_mode = {
994 .enter = paravirt_enter_lazy_cpu,
995 .leave = xen_leave_lazy,
999 static const struct pv_irq_ops xen_irq_ops __initdata = {
1000 .init_IRQ = xen_init_IRQ,
1001 .save_fl = xen_save_fl,
1002 .restore_fl = xen_restore_fl,
1003 .irq_disable = xen_irq_disable,
1004 .irq_enable = xen_irq_enable,
1005 .safe_halt = xen_safe_halt,
1006 .halt = xen_halt,
1009 static const struct pv_apic_ops xen_apic_ops __initdata = {
1010 #ifdef CONFIG_X86_LOCAL_APIC
1011 .apic_write = xen_apic_write,
1012 .apic_write_atomic = xen_apic_write,
1013 .apic_read = xen_apic_read,
1014 .setup_boot_clock = paravirt_nop,
1015 .setup_secondary_clock = paravirt_nop,
1016 .startup_ipi_hook = paravirt_nop,
1017 #endif
1020 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1021 .pagetable_setup_start = xen_pagetable_setup_start,
1022 .pagetable_setup_done = xen_pagetable_setup_done,
1024 .read_cr2 = xen_read_cr2,
1025 .write_cr2 = xen_write_cr2,
1027 .read_cr3 = xen_read_cr3,
1028 .write_cr3 = xen_write_cr3,
1030 .flush_tlb_user = xen_flush_tlb,
1031 .flush_tlb_kernel = xen_flush_tlb,
1032 .flush_tlb_single = xen_flush_tlb_single,
1033 .flush_tlb_others = xen_flush_tlb_others,
1035 .pte_update = paravirt_nop,
1036 .pte_update_defer = paravirt_nop,
1038 .alloc_pt = xen_alloc_pt_init,
1039 .release_pt = xen_release_pt_init,
1040 .alloc_pd = xen_alloc_pt_init,
1041 .alloc_pd_clone = paravirt_nop,
1042 .release_pd = xen_release_pt_init,
1044 #ifdef CONFIG_HIGHPTE
1045 .kmap_atomic_pte = xen_kmap_atomic_pte,
1046 #endif
1048 .set_pte = NULL, /* see xen_pagetable_setup_* */
1049 .set_pte_at = xen_set_pte_at,
1050 .set_pmd = xen_set_pmd,
1052 .pte_val = xen_pte_val,
1053 .pgd_val = xen_pgd_val,
1055 .make_pte = xen_make_pte,
1056 .make_pgd = xen_make_pgd,
1058 #ifdef CONFIG_X86_PAE
1059 .set_pte_atomic = xen_set_pte_atomic,
1060 .set_pte_present = xen_set_pte_at,
1061 .set_pud = xen_set_pud,
1062 .pte_clear = xen_pte_clear,
1063 .pmd_clear = xen_pmd_clear,
1065 .make_pmd = xen_make_pmd,
1066 .pmd_val = xen_pmd_val,
1067 #endif /* PAE */
1069 .activate_mm = xen_activate_mm,
1070 .dup_mmap = xen_dup_mmap,
1071 .exit_mmap = xen_exit_mmap,
1073 .lazy_mode = {
1074 .enter = paravirt_enter_lazy_mmu,
1075 .leave = xen_leave_lazy,
1079 #ifdef CONFIG_SMP
1080 static const struct smp_ops xen_smp_ops __initdata = {
1081 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
1082 .smp_prepare_cpus = xen_smp_prepare_cpus,
1083 .cpu_up = xen_cpu_up,
1084 .smp_cpus_done = xen_smp_cpus_done,
1086 .smp_send_stop = xen_smp_send_stop,
1087 .smp_send_reschedule = xen_smp_send_reschedule,
1088 .smp_call_function_mask = xen_smp_call_function_mask,
1090 #endif /* CONFIG_SMP */
1092 static void xen_reboot(int reason)
1094 #ifdef CONFIG_SMP
1095 smp_send_stop();
1096 #endif
1098 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
1099 BUG();
1102 static void xen_restart(char *msg)
1104 xen_reboot(SHUTDOWN_reboot);
1107 static void xen_emergency_restart(void)
1109 xen_reboot(SHUTDOWN_reboot);
1112 static void xen_machine_halt(void)
1114 xen_reboot(SHUTDOWN_poweroff);
1117 static void xen_crash_shutdown(struct pt_regs *regs)
1119 xen_reboot(SHUTDOWN_crash);
1122 static const struct machine_ops __initdata xen_machine_ops = {
1123 .restart = xen_restart,
1124 .halt = xen_machine_halt,
1125 .power_off = xen_machine_halt,
1126 .shutdown = xen_machine_halt,
1127 .crash_shutdown = xen_crash_shutdown,
1128 .emergency_restart = xen_emergency_restart,
1132 static void __init xen_reserve_top(void)
1134 unsigned long top = HYPERVISOR_VIRT_START;
1135 struct xen_platform_parameters pp;
1137 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1138 top = pp.virt_start;
1140 reserve_top_address(-top + 2 * PAGE_SIZE);
1143 /* First C function to be called on Xen boot */
1144 asmlinkage void __init xen_start_kernel(void)
1146 pgd_t *pgd;
1148 if (!xen_start_info)
1149 return;
1151 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1153 /* Install Xen paravirt ops */
1154 pv_info = xen_info;
1155 pv_init_ops = xen_init_ops;
1156 pv_time_ops = xen_time_ops;
1157 pv_cpu_ops = xen_cpu_ops;
1158 pv_irq_ops = xen_irq_ops;
1159 pv_apic_ops = xen_apic_ops;
1160 pv_mmu_ops = xen_mmu_ops;
1162 machine_ops = xen_machine_ops;
1164 #ifdef CONFIG_SMP
1165 smp_ops = xen_smp_ops;
1166 #endif
1168 xen_setup_features();
1170 /* Get mfn list */
1171 if (!xen_feature(XENFEAT_auto_translated_physmap))
1172 phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;
1174 pgd = (pgd_t *)xen_start_info->pt_base;
1176 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1178 init_mm.pgd = pgd; /* use the Xen pagetables to start */
1180 /* keep using Xen gdt for now; no urgent need to change it */
1182 x86_write_percpu(xen_cr3, __pa(pgd));
1183 x86_write_percpu(xen_current_cr3, __pa(pgd));
1185 #ifdef CONFIG_SMP
1186 /* Don't do the full vcpu_info placement stuff until we have a
1187 possible map. */
1188 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1189 #else
1190 /* May as well do it now, since there's no good time to call
1191 it later on UP. */
1192 xen_setup_vcpu_info_placement();
1193 #endif
1195 pv_info.kernel_rpl = 1;
1196 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1197 pv_info.kernel_rpl = 0;
1199 /* set the limit of our address space */
1200 xen_reserve_top();
1202 /* set up basic CPUID stuff */
1203 cpu_detect(&new_cpu_data);
1204 new_cpu_data.hard_math = 1;
1205 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1207 /* Poke various useful things into boot_params */
1208 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1209 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1210 ? __pa(xen_start_info->mod_start) : 0;
1211 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1213 /* Start the world */
1214 start_kernel();