1 /* SCTP kernel reference Implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 * This file is part of the SCTP kernel reference Implementation
6 * The SCTP reference implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
12 * The SCTP reference implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, write to
20 * the Free Software Foundation, 59 Temple Place - Suite 330,
21 * Boston, MA 02111-1307, USA.
23 * Please send any bug reports or fixes you make to the
25 * lksctp developers <lksctp-developers@lists.sourceforge.net>
27 * Or submit a bug report through the following website:
28 * http://www.sf.net/projects/lksctp
30 * Written or modified by:
31 * Vlad Yasevich <vladislav.yasevich@hp.com>
33 * Any bugs reported given to us we will try to fix... any fixes shared will
34 * be incorporated into the next SCTP release.
37 #include <linux/types.h>
38 #include <linux/crypto.h>
39 #include <linux/scatterlist.h>
40 #include <net/sctp/sctp.h>
41 #include <net/sctp/auth.h>
43 static struct sctp_hmac sctp_hmac_list
[SCTP_AUTH_NUM_HMACS
] = {
45 /* id 0 is reserved. as all 0 */
46 .hmac_id
= SCTP_AUTH_HMAC_ID_RESERVED_0
,
49 .hmac_id
= SCTP_AUTH_HMAC_ID_SHA1
,
50 .hmac_name
="hmac(sha1)",
51 .hmac_len
= SCTP_SHA1_SIG_SIZE
,
54 /* id 2 is reserved as well */
55 .hmac_id
= SCTP_AUTH_HMAC_ID_RESERVED_2
,
58 .hmac_id
= SCTP_AUTH_HMAC_ID_SHA256
,
59 .hmac_name
="hmac(sha256)",
60 .hmac_len
= SCTP_SHA256_SIG_SIZE
,
65 void sctp_auth_key_put(struct sctp_auth_bytes
*key
)
70 if (atomic_dec_and_test(&key
->refcnt
)) {
72 SCTP_DBG_OBJCNT_DEC(keys
);
76 /* Create a new key structure of a given length */
77 static struct sctp_auth_bytes
*sctp_auth_create_key(__u32 key_len
, gfp_t gfp
)
79 struct sctp_auth_bytes
*key
;
81 /* Allocate the shared key */
82 key
= kmalloc(sizeof(struct sctp_auth_bytes
) + key_len
, gfp
);
87 atomic_set(&key
->refcnt
, 1);
88 SCTP_DBG_OBJCNT_INC(keys
);
93 /* Create a new shared key container with a give key id */
94 struct sctp_shared_key
*sctp_auth_shkey_create(__u16 key_id
, gfp_t gfp
)
96 struct sctp_shared_key
*new;
98 /* Allocate the shared key container */
99 new = kzalloc(sizeof(struct sctp_shared_key
), gfp
);
103 INIT_LIST_HEAD(&new->key_list
);
104 new->key_id
= key_id
;
109 /* Free the shared key stucture */
110 void sctp_auth_shkey_free(struct sctp_shared_key
*sh_key
)
112 BUG_ON(!list_empty(&sh_key
->key_list
));
113 sctp_auth_key_put(sh_key
->key
);
118 /* Destory the entire key list. This is done during the
119 * associon and endpoint free process.
121 void sctp_auth_destroy_keys(struct list_head
*keys
)
123 struct sctp_shared_key
*ep_key
;
124 struct sctp_shared_key
*tmp
;
126 if (list_empty(keys
))
129 key_for_each_safe(ep_key
, tmp
, keys
) {
130 list_del_init(&ep_key
->key_list
);
131 sctp_auth_shkey_free(ep_key
);
135 /* Compare two byte vectors as numbers. Return values
137 * 0 - vectors are equal
138 * < 0 - vector 1 is smaller then vector2
139 * > 0 - vector 1 is greater then vector2
142 * This is performed by selecting the numerically smaller key vector...
143 * If the key vectors are equal as numbers but differ in length ...
144 * the shorter vector is considered smaller
146 * Examples (with small values):
147 * 000123456789 > 123456789 (first number is longer)
148 * 000123456789 < 234567891 (second number is larger numerically)
149 * 123456789 > 2345678 (first number is both larger & longer)
151 static int sctp_auth_compare_vectors(struct sctp_auth_bytes
*vector1
,
152 struct sctp_auth_bytes
*vector2
)
158 diff
= vector1
->len
- vector2
->len
;
160 longer
= (diff
> 0) ? vector1
->data
: vector2
->data
;
162 /* Check to see if the longer number is
163 * lead-zero padded. If it is not, it
164 * is automatically larger numerically.
166 for (i
= 0; i
< abs(diff
); i
++ ) {
172 /* lengths are the same, compare numbers */
173 return memcmp(vector1
->data
, vector2
->data
, vector1
->len
);
177 * Create a key vector as described in SCTP-AUTH, Section 6.1
178 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
179 * parameter sent by each endpoint are concatenated as byte vectors.
180 * These parameters include the parameter type, parameter length, and
181 * the parameter value, but padding is omitted; all padding MUST be
182 * removed from this concatenation before proceeding with further
183 * computation of keys. Parameters which were not sent are simply
184 * omitted from the concatenation process. The resulting two vectors
185 * are called the two key vectors.
187 static struct sctp_auth_bytes
*sctp_auth_make_key_vector(
188 sctp_random_param_t
*random
,
189 sctp_chunks_param_t
*chunks
,
190 sctp_hmac_algo_param_t
*hmacs
,
193 struct sctp_auth_bytes
*new;
197 len
= ntohs(random
->param_hdr
.length
) + ntohs(hmacs
->param_hdr
.length
);
199 len
+= ntohs(chunks
->param_hdr
.length
);
201 new = kmalloc(sizeof(struct sctp_auth_bytes
) + len
, gfp
);
207 memcpy(new->data
, random
, ntohs(random
->param_hdr
.length
));
208 offset
+= ntohs(random
->param_hdr
.length
);
211 memcpy(new->data
+ offset
, chunks
,
212 ntohs(chunks
->param_hdr
.length
));
213 offset
+= ntohs(chunks
->param_hdr
.length
);
216 memcpy(new->data
+ offset
, hmacs
, ntohs(hmacs
->param_hdr
.length
));
222 /* Make a key vector based on our local parameters */
223 struct sctp_auth_bytes
*sctp_auth_make_local_vector(
224 const struct sctp_association
*asoc
,
227 return sctp_auth_make_key_vector(
228 (sctp_random_param_t
*)asoc
->c
.auth_random
,
229 (sctp_chunks_param_t
*)asoc
->c
.auth_chunks
,
230 (sctp_hmac_algo_param_t
*)asoc
->c
.auth_hmacs
,
234 /* Make a key vector based on peer's parameters */
235 struct sctp_auth_bytes
*sctp_auth_make_peer_vector(
236 const struct sctp_association
*asoc
,
239 return sctp_auth_make_key_vector(asoc
->peer
.peer_random
,
240 asoc
->peer
.peer_chunks
,
241 asoc
->peer
.peer_hmacs
,
246 /* Set the value of the association shared key base on the parameters
247 * given. The algorithm is:
248 * From the endpoint pair shared keys and the key vectors the
249 * association shared keys are computed. This is performed by selecting
250 * the numerically smaller key vector and concatenating it to the
251 * endpoint pair shared key, and then concatenating the numerically
252 * larger key vector to that. The result of the concatenation is the
253 * association shared key.
255 static struct sctp_auth_bytes
*sctp_auth_asoc_set_secret(
256 struct sctp_shared_key
*ep_key
,
257 struct sctp_auth_bytes
*first_vector
,
258 struct sctp_auth_bytes
*last_vector
,
261 struct sctp_auth_bytes
*secret
;
265 auth_len
= first_vector
->len
+ last_vector
->len
;
267 auth_len
+= ep_key
->key
->len
;
269 secret
= sctp_auth_create_key(auth_len
, gfp
);
274 memcpy(secret
->data
, ep_key
->key
->data
, ep_key
->key
->len
);
275 offset
+= ep_key
->key
->len
;
278 memcpy(secret
->data
+ offset
, first_vector
->data
, first_vector
->len
);
279 offset
+= first_vector
->len
;
281 memcpy(secret
->data
+ offset
, last_vector
->data
, last_vector
->len
);
286 /* Create an association shared key. Follow the algorithm
287 * described in SCTP-AUTH, Section 6.1
289 static struct sctp_auth_bytes
*sctp_auth_asoc_create_secret(
290 const struct sctp_association
*asoc
,
291 struct sctp_shared_key
*ep_key
,
294 struct sctp_auth_bytes
*local_key_vector
;
295 struct sctp_auth_bytes
*peer_key_vector
;
296 struct sctp_auth_bytes
*first_vector
,
298 struct sctp_auth_bytes
*secret
= NULL
;
302 /* Now we need to build the key vectors
303 * SCTP-AUTH , Section 6.1
304 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
305 * parameter sent by each endpoint are concatenated as byte vectors.
306 * These parameters include the parameter type, parameter length, and
307 * the parameter value, but padding is omitted; all padding MUST be
308 * removed from this concatenation before proceeding with further
309 * computation of keys. Parameters which were not sent are simply
310 * omitted from the concatenation process. The resulting two vectors
311 * are called the two key vectors.
314 local_key_vector
= sctp_auth_make_local_vector(asoc
, gfp
);
315 peer_key_vector
= sctp_auth_make_peer_vector(asoc
, gfp
);
317 if (!peer_key_vector
|| !local_key_vector
)
320 /* Figure out the order in wich the key_vectors will be
321 * added to the endpoint shared key.
322 * SCTP-AUTH, Section 6.1:
323 * This is performed by selecting the numerically smaller key
324 * vector and concatenating it to the endpoint pair shared
325 * key, and then concatenating the numerically larger key
326 * vector to that. If the key vectors are equal as numbers
327 * but differ in length, then the concatenation order is the
328 * endpoint shared key, followed by the shorter key vector,
329 * followed by the longer key vector. Otherwise, the key
330 * vectors are identical, and may be concatenated to the
331 * endpoint pair key in any order.
333 cmp
= sctp_auth_compare_vectors(local_key_vector
,
336 first_vector
= local_key_vector
;
337 last_vector
= peer_key_vector
;
339 first_vector
= peer_key_vector
;
340 last_vector
= local_key_vector
;
343 secret
= sctp_auth_asoc_set_secret(ep_key
, first_vector
, last_vector
,
346 kfree(local_key_vector
);
347 kfree(peer_key_vector
);
353 * Populate the association overlay list with the list
356 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint
*ep
,
357 struct sctp_association
*asoc
,
360 struct sctp_shared_key
*sh_key
;
361 struct sctp_shared_key
*new;
363 BUG_ON(!list_empty(&asoc
->endpoint_shared_keys
));
365 key_for_each(sh_key
, &ep
->endpoint_shared_keys
) {
366 new = sctp_auth_shkey_create(sh_key
->key_id
, gfp
);
370 new->key
= sh_key
->key
;
371 sctp_auth_key_hold(new->key
);
372 list_add(&new->key_list
, &asoc
->endpoint_shared_keys
);
378 sctp_auth_destroy_keys(&asoc
->endpoint_shared_keys
);
383 /* Public interface to creat the association shared key.
384 * See code above for the algorithm.
386 int sctp_auth_asoc_init_active_key(struct sctp_association
*asoc
, gfp_t gfp
)
388 struct sctp_auth_bytes
*secret
;
389 struct sctp_shared_key
*ep_key
;
391 /* If we don't support AUTH, or peer is not capable
392 * we don't need to do anything.
394 if (!sctp_auth_enable
|| !asoc
->peer
.auth_capable
)
397 /* If the key_id is non-zero and we couldn't find an
398 * endpoint pair shared key, we can't compute the
400 * For key_id 0, endpoint pair shared key is a NULL key.
402 ep_key
= sctp_auth_get_shkey(asoc
, asoc
->active_key_id
);
405 secret
= sctp_auth_asoc_create_secret(asoc
, ep_key
, gfp
);
409 sctp_auth_key_put(asoc
->asoc_shared_key
);
410 asoc
->asoc_shared_key
= secret
;
416 /* Find the endpoint pair shared key based on the key_id */
417 struct sctp_shared_key
*sctp_auth_get_shkey(
418 const struct sctp_association
*asoc
,
421 struct sctp_shared_key
*key
= NULL
;
423 /* First search associations set of endpoint pair shared keys */
424 key_for_each(key
, &asoc
->endpoint_shared_keys
) {
425 if (key
->key_id
== key_id
)
433 * Initialize all the possible digest transforms that we can use. Right now
434 * now, the supported digests are SHA1 and SHA256. We do this here once
435 * because of the restrictiong that transforms may only be allocated in
436 * user context. This forces us to pre-allocated all possible transforms
437 * at the endpoint init time.
439 int sctp_auth_init_hmacs(struct sctp_endpoint
*ep
, gfp_t gfp
)
441 struct crypto_hash
*tfm
= NULL
;
444 /* if the transforms are already allocted, we are done */
445 if (!sctp_auth_enable
) {
446 ep
->auth_hmacs
= NULL
;
453 /* Allocated the array of pointers to transorms */
454 ep
->auth_hmacs
= kzalloc(
455 sizeof(struct crypto_hash
*) * SCTP_AUTH_NUM_HMACS
,
460 for (id
= 0; id
< SCTP_AUTH_NUM_HMACS
; id
++) {
462 /* See is we support the id. Supported IDs have name and
463 * length fields set, so that we can allocated and use
464 * them. We can safely just check for name, for without the
465 * name, we can't allocate the TFM.
467 if (!sctp_hmac_list
[id
].hmac_name
)
470 /* If this TFM has been allocated, we are all set */
471 if (ep
->auth_hmacs
[id
])
474 /* Allocate the ID */
475 tfm
= crypto_alloc_hash(sctp_hmac_list
[id
].hmac_name
, 0,
480 ep
->auth_hmacs
[id
] = tfm
;
486 /* Clean up any successfull allocations */
487 sctp_auth_destroy_hmacs(ep
->auth_hmacs
);
491 /* Destroy the hmac tfm array */
492 void sctp_auth_destroy_hmacs(struct crypto_hash
*auth_hmacs
[])
499 for (i
= 0; i
< SCTP_AUTH_NUM_HMACS
; i
++)
502 crypto_free_hash(auth_hmacs
[i
]);
508 struct sctp_hmac
*sctp_auth_get_hmac(__u16 hmac_id
)
510 return &sctp_hmac_list
[hmac_id
];
513 /* Get an hmac description information that we can use to build
516 struct sctp_hmac
*sctp_auth_asoc_get_hmac(const struct sctp_association
*asoc
)
518 struct sctp_hmac_algo_param
*hmacs
;
523 /* If we have a default entry, use it */
524 if (asoc
->default_hmac_id
)
525 return &sctp_hmac_list
[asoc
->default_hmac_id
];
527 /* Since we do not have a default entry, find the first entry
528 * we support and return that. Do not cache that id.
530 hmacs
= asoc
->peer
.peer_hmacs
;
534 n_elt
= (ntohs(hmacs
->param_hdr
.length
) - sizeof(sctp_paramhdr_t
)) >> 1;
535 for (i
= 0; i
< n_elt
; i
++) {
536 id
= ntohs(hmacs
->hmac_ids
[i
]);
538 /* Check the id is in the supported range */
539 if (id
> SCTP_AUTH_HMAC_ID_MAX
)
542 /* See is we support the id. Supported IDs have name and
543 * length fields set, so that we can allocated and use
544 * them. We can safely just check for name, for without the
545 * name, we can't allocate the TFM.
547 if (!sctp_hmac_list
[id
].hmac_name
)
556 return &sctp_hmac_list
[id
];
559 static int __sctp_auth_find_hmacid(__u16
*hmacs
, int n_elts
, __u16 hmac_id
)
564 for (i
= 0; i
< n_elts
; i
++) {
565 if (hmac_id
== hmacs
[i
]) {
574 /* See if the HMAC_ID is one that we claim as supported */
575 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association
*asoc
,
578 struct sctp_hmac_algo_param
*hmacs
;
584 hmacs
= (struct sctp_hmac_algo_param
*)asoc
->c
.auth_hmacs
;
585 n_elt
= (ntohs(hmacs
->param_hdr
.length
) - sizeof(sctp_paramhdr_t
)) >> 1;
587 return __sctp_auth_find_hmacid(hmacs
->hmac_ids
, n_elt
, hmac_id
);
591 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
593 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
594 * algorithm it supports.
596 void sctp_auth_asoc_set_default_hmac(struct sctp_association
*asoc
,
597 struct sctp_hmac_algo_param
*hmacs
)
599 struct sctp_endpoint
*ep
;
604 /* if the default id is already set, use it */
605 if (asoc
->default_hmac_id
)
608 n_params
= (ntohs(hmacs
->param_hdr
.length
)
609 - sizeof(sctp_paramhdr_t
)) >> 1;
611 for (i
= 0; i
< n_params
; i
++) {
612 id
= ntohs(hmacs
->hmac_ids
[i
]);
614 /* Check the id is in the supported range */
615 if (id
> SCTP_AUTH_HMAC_ID_MAX
)
618 /* If this TFM has been allocated, use this id */
619 if (ep
->auth_hmacs
[id
]) {
620 asoc
->default_hmac_id
= id
;
627 /* Check to see if the given chunk is supposed to be authenticated */
628 static int __sctp_auth_cid(sctp_cid_t chunk
, struct sctp_chunks_param
*param
)
637 len
= ntohs(param
->param_hdr
.length
) - sizeof(sctp_paramhdr_t
);
639 /* SCTP-AUTH, Section 3.2
640 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
641 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
642 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
643 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
645 for (i
= 0; !found
&& i
< len
; i
++) {
646 switch (param
->chunks
[i
]) {
648 case SCTP_CID_INIT_ACK
:
649 case SCTP_CID_SHUTDOWN_COMPLETE
:
654 if (param
->chunks
[i
] == chunk
)
663 /* Check if peer requested that this chunk is authenticated */
664 int sctp_auth_send_cid(sctp_cid_t chunk
, const struct sctp_association
*asoc
)
666 if (!sctp_auth_enable
|| !asoc
|| !asoc
->peer
.auth_capable
)
669 return __sctp_auth_cid(chunk
, asoc
->peer
.peer_chunks
);
672 /* Check if we requested that peer authenticate this chunk. */
673 int sctp_auth_recv_cid(sctp_cid_t chunk
, const struct sctp_association
*asoc
)
675 if (!sctp_auth_enable
|| !asoc
)
678 return __sctp_auth_cid(chunk
,
679 (struct sctp_chunks_param
*)asoc
->c
.auth_chunks
);
682 /* SCTP-AUTH: Section 6.2:
683 * The sender MUST calculate the MAC as described in RFC2104 [2] using
684 * the hash function H as described by the MAC Identifier and the shared
685 * association key K based on the endpoint pair shared key described by
686 * the shared key identifier. The 'data' used for the computation of
687 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
688 * zero (as shown in Figure 6) followed by all chunks that are placed
689 * after the AUTH chunk in the SCTP packet.
691 void sctp_auth_calculate_hmac(const struct sctp_association
*asoc
,
693 struct sctp_auth_chunk
*auth
,
696 struct scatterlist sg
;
697 struct hash_desc desc
;
698 struct sctp_auth_bytes
*asoc_key
;
699 __u16 key_id
, hmac_id
;
704 /* Extract the info we need:
708 key_id
= ntohs(auth
->auth_hdr
.shkey_id
);
709 hmac_id
= ntohs(auth
->auth_hdr
.hmac_id
);
711 if (key_id
== asoc
->active_key_id
)
712 asoc_key
= asoc
->asoc_shared_key
;
714 struct sctp_shared_key
*ep_key
;
716 ep_key
= sctp_auth_get_shkey(asoc
, key_id
);
720 asoc_key
= sctp_auth_asoc_create_secret(asoc
, ep_key
, gfp
);
727 /* set up scatter list */
728 end
= skb_tail_pointer(skb
);
729 sg
.page
= virt_to_page(auth
);
730 sg
.offset
= (unsigned long)(auth
) % PAGE_SIZE
;
731 sg
.length
= end
- (unsigned char *)auth
;
733 desc
.tfm
= asoc
->ep
->auth_hmacs
[hmac_id
];
736 digest
= auth
->auth_hdr
.hmac
;
737 if (crypto_hash_setkey(desc
.tfm
, &asoc_key
->data
[0], asoc_key
->len
))
740 crypto_hash_digest(&desc
, &sg
, sg
.length
, digest
);
744 sctp_auth_key_put(asoc_key
);
749 /* Add a chunk to the endpoint authenticated chunk list */
750 int sctp_auth_ep_add_chunkid(struct sctp_endpoint
*ep
, __u8 chunk_id
)
752 struct sctp_chunks_param
*p
= ep
->auth_chunk_list
;
756 /* If this chunk is already specified, we are done */
757 if (__sctp_auth_cid(chunk_id
, p
))
760 /* Check if we can add this chunk to the array */
761 param_len
= ntohs(p
->param_hdr
.length
);
762 nchunks
= param_len
- sizeof(sctp_paramhdr_t
);
763 if (nchunks
== SCTP_NUM_CHUNK_TYPES
)
766 p
->chunks
[nchunks
] = chunk_id
;
767 p
->param_hdr
.length
= htons(param_len
+ 1);
771 /* Add hmac identifires to the endpoint list of supported hmac ids */
772 int sctp_auth_ep_set_hmacs(struct sctp_endpoint
*ep
,
773 struct sctp_hmacalgo
*hmacs
)
779 /* Scan the list looking for unsupported id. Also make sure that
782 for (i
= 0; i
< hmacs
->shmac_num_idents
; i
++) {
783 id
= hmacs
->shmac_idents
[i
];
785 if (SCTP_AUTH_HMAC_ID_SHA1
== id
)
788 if (!sctp_hmac_list
[id
].hmac_name
)
795 memcpy(ep
->auth_hmacs_list
->hmac_ids
, &hmacs
->shmac_idents
[0],
796 hmacs
->shmac_num_idents
* sizeof(__u16
));
797 ep
->auth_hmacs_list
->param_hdr
.length
= htons(sizeof(sctp_paramhdr_t
) +
798 hmacs
->shmac_num_idents
* sizeof(__u16
));
802 /* Set a new shared key on either endpoint or association. If the
803 * the key with a same ID already exists, replace the key (remove the
804 * old key and add a new one).
806 int sctp_auth_set_key(struct sctp_endpoint
*ep
,
807 struct sctp_association
*asoc
,
808 struct sctp_authkey
*auth_key
)
810 struct sctp_shared_key
*cur_key
= NULL
;
811 struct sctp_auth_bytes
*key
;
812 struct list_head
*sh_keys
;
815 /* Try to find the given key id to see if
816 * we are doing a replace, or adding a new key
819 sh_keys
= &asoc
->endpoint_shared_keys
;
821 sh_keys
= &ep
->endpoint_shared_keys
;
823 key_for_each(cur_key
, sh_keys
) {
824 if (cur_key
->key_id
== auth_key
->sca_keynumber
) {
830 /* If we are not replacing a key id, we need to allocate
834 cur_key
= sctp_auth_shkey_create(auth_key
->sca_keynumber
,
840 /* Create a new key data based on the info passed in */
841 key
= sctp_auth_create_key(auth_key
->sca_keylen
, GFP_KERNEL
);
845 memcpy(key
->data
, &auth_key
->sca_key
[0], auth_key
->sca_keylen
);
847 /* If we are replacing, remove the old keys data from the
848 * key id. If we are adding new key id, add it to the
852 sctp_auth_key_put(cur_key
->key
);
854 list_add(&cur_key
->key_list
, sh_keys
);
857 sctp_auth_key_hold(key
);
862 sctp_auth_shkey_free(cur_key
);
867 int sctp_auth_set_active_key(struct sctp_endpoint
*ep
,
868 struct sctp_association
*asoc
,
871 struct sctp_shared_key
*key
;
872 struct list_head
*sh_keys
;
875 /* The key identifier MUST correst to an existing key */
877 sh_keys
= &asoc
->endpoint_shared_keys
;
879 sh_keys
= &ep
->endpoint_shared_keys
;
881 key_for_each(key
, sh_keys
) {
882 if (key
->key_id
== key_id
) {
892 asoc
->active_key_id
= key_id
;
893 sctp_auth_asoc_init_active_key(asoc
, GFP_KERNEL
);
895 ep
->active_key_id
= key_id
;
900 int sctp_auth_del_key_id(struct sctp_endpoint
*ep
,
901 struct sctp_association
*asoc
,
904 struct sctp_shared_key
*key
;
905 struct list_head
*sh_keys
;
908 /* The key identifier MUST NOT be the current active key
909 * The key identifier MUST correst to an existing key
912 if (asoc
->active_key_id
== key_id
)
915 sh_keys
= &asoc
->endpoint_shared_keys
;
917 if (ep
->active_key_id
== key_id
)
920 sh_keys
= &ep
->endpoint_shared_keys
;
923 key_for_each(key
, sh_keys
) {
924 if (key
->key_id
== key_id
) {
933 /* Delete the shared key */
934 list_del_init(&key
->key_list
);
935 sctp_auth_shkey_free(key
);