x86: relax RAM check in ioremap()
[wrt350n-kernel.git] / arch / ppc / 8260_io / enet.c
blob25ef55bacd99e50545caf74b8a493b15622425a6
1 /*
2 * Ethernet driver for Motorola MPC8260.
3 * Copyright (c) 1999 Dan Malek (dmalek@jlc.net)
4 * Copyright (c) 2000 MontaVista Software Inc. (source@mvista.com)
5 * 2.3.99 Updates
7 * I copied this from the 8xx CPM Ethernet driver, so follow the
8 * credits back through that.
10 * This version of the driver is somewhat selectable for the different
11 * processor/board combinations. It works for the boards I know about
12 * now, and should be easily modified to include others. Some of the
13 * configuration information is contained in <asm/cpm1.h> and the
14 * remainder is here.
16 * Buffer descriptors are kept in the CPM dual port RAM, and the frame
17 * buffers are in the host memory.
19 * Right now, I am very watseful with the buffers. I allocate memory
20 * pages and then divide them into 2K frame buffers. This way I know I
21 * have buffers large enough to hold one frame within one buffer descriptor.
22 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
23 * will be much more memory efficient and will easily handle lots of
24 * small packets.
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/string.h>
30 #include <linux/ptrace.h>
31 #include <linux/errno.h>
32 #include <linux/ioport.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/spinlock.h>
41 #include <linux/bitops.h>
43 #include <asm/immap_cpm2.h>
44 #include <asm/pgtable.h>
45 #include <asm/mpc8260.h>
46 #include <asm/uaccess.h>
47 #include <asm/cpm2.h>
48 #include <asm/irq.h>
51 * Theory of Operation
53 * The MPC8260 CPM performs the Ethernet processing on an SCC. It can use
54 * an aribtrary number of buffers on byte boundaries, but must have at
55 * least two receive buffers to prevent constant overrun conditions.
57 * The buffer descriptors are allocated from the CPM dual port memory
58 * with the data buffers allocated from host memory, just like all other
59 * serial communication protocols. The host memory buffers are allocated
60 * from the free page pool, and then divided into smaller receive and
61 * transmit buffers. The size of the buffers should be a power of two,
62 * since that nicely divides the page. This creates a ring buffer
63 * structure similar to the LANCE and other controllers.
65 * Like the LANCE driver:
66 * The driver runs as two independent, single-threaded flows of control. One
67 * is the send-packet routine, which enforces single-threaded use by the
68 * cep->tx_busy flag. The other thread is the interrupt handler, which is
69 * single threaded by the hardware and other software.
72 /* The transmitter timeout
74 #define TX_TIMEOUT (2*HZ)
76 /* The number of Tx and Rx buffers. These are allocated from the page
77 * pool. The code may assume these are power of two, so it is best
78 * to keep them that size.
79 * We don't need to allocate pages for the transmitter. We just use
80 * the skbuffer directly.
82 #define CPM_ENET_RX_PAGES 4
83 #define CPM_ENET_RX_FRSIZE 2048
84 #define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE)
85 #define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES)
86 #define TX_RING_SIZE 8 /* Must be power of two */
87 #define TX_RING_MOD_MASK 7 /* for this to work */
89 /* The CPM stores dest/src/type, data, and checksum for receive packets.
91 #define PKT_MAXBUF_SIZE 1518
92 #define PKT_MINBUF_SIZE 64
93 #define PKT_MAXBLR_SIZE 1520
95 /* The CPM buffer descriptors track the ring buffers. The rx_bd_base and
96 * tx_bd_base always point to the base of the buffer descriptors. The
97 * cur_rx and cur_tx point to the currently available buffer.
98 * The dirty_tx tracks the current buffer that is being sent by the
99 * controller. The cur_tx and dirty_tx are equal under both completely
100 * empty and completely full conditions. The empty/ready indicator in
101 * the buffer descriptor determines the actual condition.
103 struct scc_enet_private {
104 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
105 struct sk_buff* tx_skbuff[TX_RING_SIZE];
106 ushort skb_cur;
107 ushort skb_dirty;
109 /* CPM dual port RAM relative addresses.
111 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
112 cbd_t *tx_bd_base;
113 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
114 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
115 scc_t *sccp;
116 struct net_device_stats stats;
117 uint tx_full;
118 spinlock_t lock;
121 static int scc_enet_open(struct net_device *dev);
122 static int scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
123 static int scc_enet_rx(struct net_device *dev);
124 static irqreturn_t scc_enet_interrupt(int irq, void *dev_id);
125 static int scc_enet_close(struct net_device *dev);
126 static struct net_device_stats *scc_enet_get_stats(struct net_device *dev);
127 static void set_multicast_list(struct net_device *dev);
129 /* These will be configurable for the SCC choice.
131 #define CPM_ENET_BLOCK CPM_CR_SCC1_SBLOCK
132 #define CPM_ENET_PAGE CPM_CR_SCC1_PAGE
133 #define PROFF_ENET PROFF_SCC1
134 #define SCC_ENET 0
135 #define SIU_INT_ENET SIU_INT_SCC1
137 /* These are both board and SCC dependent....
139 #define PD_ENET_RXD ((uint)0x00000001)
140 #define PD_ENET_TXD ((uint)0x00000002)
141 #define PD_ENET_TENA ((uint)0x00000004)
142 #define PC_ENET_RENA ((uint)0x00020000)
143 #define PC_ENET_CLSN ((uint)0x00000004)
144 #define PC_ENET_TXCLK ((uint)0x00000800)
145 #define PC_ENET_RXCLK ((uint)0x00000400)
146 #define CMX_CLK_ROUTE ((uint)0x25000000)
147 #define CMX_CLK_MASK ((uint)0xff000000)
149 /* Specific to a board.
151 #define PC_EST8260_ENET_LOOPBACK ((uint)0x80000000)
152 #define PC_EST8260_ENET_SQE ((uint)0x40000000)
153 #define PC_EST8260_ENET_NOTFD ((uint)0x20000000)
155 static int
156 scc_enet_open(struct net_device *dev)
159 /* I should reset the ring buffers here, but I don't yet know
160 * a simple way to do that.
162 netif_start_queue(dev);
163 return 0; /* Always succeed */
166 static int
167 scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
169 struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
170 volatile cbd_t *bdp;
173 /* Fill in a Tx ring entry */
174 bdp = cep->cur_tx;
176 #ifndef final_version
177 if (bdp->cbd_sc & BD_ENET_TX_READY) {
178 /* Ooops. All transmit buffers are full. Bail out.
179 * This should not happen, since cep->tx_full should be set.
181 printk("%s: tx queue full!.\n", dev->name);
182 return 1;
184 #endif
186 /* Clear all of the status flags.
188 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
190 /* If the frame is short, tell CPM to pad it.
192 if (skb->len <= ETH_ZLEN)
193 bdp->cbd_sc |= BD_ENET_TX_PAD;
194 else
195 bdp->cbd_sc &= ~BD_ENET_TX_PAD;
197 /* Set buffer length and buffer pointer.
199 bdp->cbd_datlen = skb->len;
200 bdp->cbd_bufaddr = __pa(skb->data);
202 /* Save skb pointer.
204 cep->tx_skbuff[cep->skb_cur] = skb;
206 cep->stats.tx_bytes += skb->len;
207 cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
209 spin_lock_irq(&cep->lock);
211 /* Send it on its way. Tell CPM its ready, interrupt when done,
212 * its the last BD of the frame, and to put the CRC on the end.
214 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
216 dev->trans_start = jiffies;
218 /* If this was the last BD in the ring, start at the beginning again.
220 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
221 bdp = cep->tx_bd_base;
222 else
223 bdp++;
225 if (bdp->cbd_sc & BD_ENET_TX_READY) {
226 netif_stop_queue(dev);
227 cep->tx_full = 1;
230 cep->cur_tx = (cbd_t *)bdp;
232 spin_unlock_irq(&cep->lock);
234 return 0;
237 static void
238 scc_enet_timeout(struct net_device *dev)
240 struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
242 printk("%s: transmit timed out.\n", dev->name);
243 cep->stats.tx_errors++;
244 #ifndef final_version
246 int i;
247 cbd_t *bdp;
248 printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n",
249 cep->cur_tx, cep->tx_full ? " (full)" : "",
250 cep->cur_rx);
251 bdp = cep->tx_bd_base;
252 printk(" Tx @base %p :\n", bdp);
253 for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
254 printk("%04x %04x %08x\n",
255 bdp->cbd_sc,
256 bdp->cbd_datlen,
257 bdp->cbd_bufaddr);
258 bdp = cep->rx_bd_base;
259 printk(" Rx @base %p :\n", bdp);
260 for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
261 printk("%04x %04x %08x\n",
262 bdp->cbd_sc,
263 bdp->cbd_datlen,
264 bdp->cbd_bufaddr);
266 #endif
267 if (!cep->tx_full)
268 netif_wake_queue(dev);
271 /* The interrupt handler.
272 * This is called from the CPM handler, not the MPC core interrupt.
274 static irqreturn_t
275 scc_enet_interrupt(int irq, void *dev_id)
277 struct net_device *dev = dev_id;
278 volatile struct scc_enet_private *cep;
279 volatile cbd_t *bdp;
280 ushort int_events;
281 int must_restart;
283 cep = dev->priv;
285 /* Get the interrupt events that caused us to be here.
287 int_events = cep->sccp->scc_scce;
288 cep->sccp->scc_scce = int_events;
289 must_restart = 0;
291 /* Handle receive event in its own function.
293 if (int_events & SCCE_ENET_RXF)
294 scc_enet_rx(dev_id);
296 /* Check for a transmit error. The manual is a little unclear
297 * about this, so the debug code until I get it figured out. It
298 * appears that if TXE is set, then TXB is not set. However,
299 * if carrier sense is lost during frame transmission, the TXE
300 * bit is set, "and continues the buffer transmission normally."
301 * I don't know if "normally" implies TXB is set when the buffer
302 * descriptor is closed.....trial and error :-).
305 /* Transmit OK, or non-fatal error. Update the buffer descriptors.
307 if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) {
308 spin_lock(&cep->lock);
309 bdp = cep->dirty_tx;
310 while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
311 if ((bdp==cep->cur_tx) && (cep->tx_full == 0))
312 break;
314 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
315 cep->stats.tx_heartbeat_errors++;
316 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
317 cep->stats.tx_window_errors++;
318 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
319 cep->stats.tx_aborted_errors++;
320 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
321 cep->stats.tx_fifo_errors++;
322 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
323 cep->stats.tx_carrier_errors++;
326 /* No heartbeat or Lost carrier are not really bad errors.
327 * The others require a restart transmit command.
329 if (bdp->cbd_sc &
330 (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
331 must_restart = 1;
332 cep->stats.tx_errors++;
335 cep->stats.tx_packets++;
337 /* Deferred means some collisions occurred during transmit,
338 * but we eventually sent the packet OK.
340 if (bdp->cbd_sc & BD_ENET_TX_DEF)
341 cep->stats.collisions++;
343 /* Free the sk buffer associated with this last transmit.
345 dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
346 cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
348 /* Update pointer to next buffer descriptor to be transmitted.
350 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
351 bdp = cep->tx_bd_base;
352 else
353 bdp++;
355 /* I don't know if we can be held off from processing these
356 * interrupts for more than one frame time. I really hope
357 * not. In such a case, we would now want to check the
358 * currently available BD (cur_tx) and determine if any
359 * buffers between the dirty_tx and cur_tx have also been
360 * sent. We would want to process anything in between that
361 * does not have BD_ENET_TX_READY set.
364 /* Since we have freed up a buffer, the ring is no longer
365 * full.
367 if (cep->tx_full) {
368 cep->tx_full = 0;
369 if (netif_queue_stopped(dev)) {
370 netif_wake_queue(dev);
374 cep->dirty_tx = (cbd_t *)bdp;
377 if (must_restart) {
378 volatile cpm_cpm2_t *cp;
380 /* Some transmit errors cause the transmitter to shut
381 * down. We now issue a restart transmit. Since the
382 * errors close the BD and update the pointers, the restart
383 * _should_ pick up without having to reset any of our
384 * pointers either.
387 cp = cpmp;
388 cp->cp_cpcr =
389 mk_cr_cmd(CPM_ENET_PAGE, CPM_ENET_BLOCK, 0,
390 CPM_CR_RESTART_TX) | CPM_CR_FLG;
391 while (cp->cp_cpcr & CPM_CR_FLG);
393 spin_unlock(&cep->lock);
396 /* Check for receive busy, i.e. packets coming but no place to
397 * put them. This "can't happen" because the receive interrupt
398 * is tossing previous frames.
400 if (int_events & SCCE_ENET_BSY) {
401 cep->stats.rx_dropped++;
402 printk("SCC ENET: BSY can't happen.\n");
405 return IRQ_HANDLED;
408 /* During a receive, the cur_rx points to the current incoming buffer.
409 * When we update through the ring, if the next incoming buffer has
410 * not been given to the system, we just set the empty indicator,
411 * effectively tossing the packet.
413 static int
414 scc_enet_rx(struct net_device *dev)
416 struct scc_enet_private *cep;
417 volatile cbd_t *bdp;
418 struct sk_buff *skb;
419 ushort pkt_len;
421 cep = (struct scc_enet_private *)dev->priv;
423 /* First, grab all of the stats for the incoming packet.
424 * These get messed up if we get called due to a busy condition.
426 bdp = cep->cur_rx;
428 for (;;) {
429 if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
430 break;
432 #ifndef final_version
433 /* Since we have allocated space to hold a complete frame, both
434 * the first and last indicators should be set.
436 if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
437 (BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
438 printk("CPM ENET: rcv is not first+last\n");
439 #endif
441 /* Frame too long or too short.
443 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
444 cep->stats.rx_length_errors++;
445 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
446 cep->stats.rx_frame_errors++;
447 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
448 cep->stats.rx_crc_errors++;
449 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
450 cep->stats.rx_crc_errors++;
452 /* Report late collisions as a frame error.
453 * On this error, the BD is closed, but we don't know what we
454 * have in the buffer. So, just drop this frame on the floor.
456 if (bdp->cbd_sc & BD_ENET_RX_CL) {
457 cep->stats.rx_frame_errors++;
459 else {
461 /* Process the incoming frame.
463 cep->stats.rx_packets++;
464 pkt_len = bdp->cbd_datlen;
465 cep->stats.rx_bytes += pkt_len;
467 /* This does 16 byte alignment, much more than we need.
468 * The packet length includes FCS, but we don't want to
469 * include that when passing upstream as it messes up
470 * bridging applications.
472 skb = dev_alloc_skb(pkt_len-4);
474 if (skb == NULL) {
475 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
476 cep->stats.rx_dropped++;
478 else {
479 skb_put(skb,pkt_len-4); /* Make room */
480 skb_copy_to_linear_data(skb,
481 (unsigned char *)__va(bdp->cbd_bufaddr),
482 pkt_len-4);
483 skb->protocol=eth_type_trans(skb,dev);
484 netif_rx(skb);
488 /* Clear the status flags for this buffer.
490 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
492 /* Mark the buffer empty.
494 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
496 /* Update BD pointer to next entry.
498 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
499 bdp = cep->rx_bd_base;
500 else
501 bdp++;
504 cep->cur_rx = (cbd_t *)bdp;
506 return 0;
509 static int
510 scc_enet_close(struct net_device *dev)
512 /* Don't know what to do yet.
514 netif_stop_queue(dev);
516 return 0;
519 static struct net_device_stats *scc_enet_get_stats(struct net_device *dev)
521 struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
523 return &cep->stats;
526 /* Set or clear the multicast filter for this adaptor.
527 * Skeleton taken from sunlance driver.
528 * The CPM Ethernet implementation allows Multicast as well as individual
529 * MAC address filtering. Some of the drivers check to make sure it is
530 * a group multicast address, and discard those that are not. I guess I
531 * will do the same for now, but just remove the test if you want
532 * individual filtering as well (do the upper net layers want or support
533 * this kind of feature?).
536 static void set_multicast_list(struct net_device *dev)
538 struct scc_enet_private *cep;
539 struct dev_mc_list *dmi;
540 u_char *mcptr, *tdptr;
541 volatile scc_enet_t *ep;
542 int i, j;
543 cep = (struct scc_enet_private *)dev->priv;
545 /* Get pointer to SCC area in parameter RAM.
547 ep = (scc_enet_t *)dev->base_addr;
549 if (dev->flags&IFF_PROMISC) {
551 /* Log any net taps. */
552 printk("%s: Promiscuous mode enabled.\n", dev->name);
553 cep->sccp->scc_psmr |= SCC_PSMR_PRO;
554 } else {
556 cep->sccp->scc_psmr &= ~SCC_PSMR_PRO;
558 if (dev->flags & IFF_ALLMULTI) {
559 /* Catch all multicast addresses, so set the
560 * filter to all 1's.
562 ep->sen_gaddr1 = 0xffff;
563 ep->sen_gaddr2 = 0xffff;
564 ep->sen_gaddr3 = 0xffff;
565 ep->sen_gaddr4 = 0xffff;
567 else {
568 /* Clear filter and add the addresses in the list.
570 ep->sen_gaddr1 = 0;
571 ep->sen_gaddr2 = 0;
572 ep->sen_gaddr3 = 0;
573 ep->sen_gaddr4 = 0;
575 dmi = dev->mc_list;
577 for (i=0; i<dev->mc_count; i++) {
579 /* Only support group multicast for now.
581 if (!(dmi->dmi_addr[0] & 1))
582 continue;
584 /* The address in dmi_addr is LSB first,
585 * and taddr is MSB first. We have to
586 * copy bytes MSB first from dmi_addr.
588 mcptr = (u_char *)dmi->dmi_addr + 5;
589 tdptr = (u_char *)&ep->sen_taddrh;
590 for (j=0; j<6; j++)
591 *tdptr++ = *mcptr--;
593 /* Ask CPM to run CRC and set bit in
594 * filter mask.
596 cpmp->cp_cpcr = mk_cr_cmd(CPM_ENET_PAGE,
597 CPM_ENET_BLOCK, 0,
598 CPM_CR_SET_GADDR) | CPM_CR_FLG;
599 /* this delay is necessary here -- Cort */
600 udelay(10);
601 while (cpmp->cp_cpcr & CPM_CR_FLG);
607 /* Initialize the CPM Ethernet on SCC.
609 static int __init scc_enet_init(void)
611 struct net_device *dev;
612 struct scc_enet_private *cep;
613 int i, j, err;
614 uint dp_offset;
615 unsigned char *eap;
616 unsigned long mem_addr;
617 bd_t *bd;
618 volatile cbd_t *bdp;
619 volatile cpm_cpm2_t *cp;
620 volatile scc_t *sccp;
621 volatile scc_enet_t *ep;
622 volatile cpm2_map_t *immap;
623 volatile iop_cpm2_t *io;
625 cp = cpmp; /* Get pointer to Communication Processor */
627 immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */
628 io = &immap->im_ioport;
630 bd = (bd_t *)__res;
632 /* Create an Ethernet device instance.
634 dev = alloc_etherdev(sizeof(*cep));
635 if (!dev)
636 return -ENOMEM;
638 cep = dev->priv;
639 spin_lock_init(&cep->lock);
641 /* Get pointer to SCC area in parameter RAM.
643 ep = (scc_enet_t *)(&immap->im_dprambase[PROFF_ENET]);
645 /* And another to the SCC register area.
647 sccp = (volatile scc_t *)(&immap->im_scc[SCC_ENET]);
648 cep->sccp = (scc_t *)sccp; /* Keep the pointer handy */
650 /* Disable receive and transmit in case someone left it running.
652 sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);
654 /* Configure port C and D pins for SCC Ethernet. This
655 * won't work for all SCC possibilities....it will be
656 * board/port specific.
658 io->iop_pparc |=
659 (PC_ENET_RENA | PC_ENET_CLSN | PC_ENET_TXCLK | PC_ENET_RXCLK);
660 io->iop_pdirc &=
661 ~(PC_ENET_RENA | PC_ENET_CLSN | PC_ENET_TXCLK | PC_ENET_RXCLK);
662 io->iop_psorc &=
663 ~(PC_ENET_RENA | PC_ENET_TXCLK | PC_ENET_RXCLK);
664 io->iop_psorc |= PC_ENET_CLSN;
666 io->iop_ppard |= (PD_ENET_RXD | PD_ENET_TXD | PD_ENET_TENA);
667 io->iop_pdird |= (PD_ENET_TXD | PD_ENET_TENA);
668 io->iop_pdird &= ~PD_ENET_RXD;
669 io->iop_psord |= PD_ENET_TXD;
670 io->iop_psord &= ~(PD_ENET_RXD | PD_ENET_TENA);
672 /* Configure Serial Interface clock routing.
673 * First, clear all SCC bits to zero, then set the ones we want.
675 immap->im_cpmux.cmx_scr &= ~CMX_CLK_MASK;
676 immap->im_cpmux.cmx_scr |= CMX_CLK_ROUTE;
678 /* Allocate space for the buffer descriptors in the DP ram.
679 * These are relative offsets in the DP ram address space.
680 * Initialize base addresses for the buffer descriptors.
682 dp_offset = cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
683 ep->sen_genscc.scc_rbase = dp_offset;
684 cep->rx_bd_base = (cbd_t *)cpm_dpram_addr(dp_offset);
686 dp_offset = cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
687 ep->sen_genscc.scc_tbase = dp_offset;
688 cep->tx_bd_base = (cbd_t *)cpm_dpram_addr(dp_offset);
690 cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
691 cep->cur_rx = cep->rx_bd_base;
693 ep->sen_genscc.scc_rfcr = CPMFCR_GBL | CPMFCR_EB;
694 ep->sen_genscc.scc_tfcr = CPMFCR_GBL | CPMFCR_EB;
696 /* Set maximum bytes per receive buffer.
697 * This appears to be an Ethernet frame size, not the buffer
698 * fragment size. It must be a multiple of four.
700 ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE;
702 /* Set CRC preset and mask.
704 ep->sen_cpres = 0xffffffff;
705 ep->sen_cmask = 0xdebb20e3;
707 ep->sen_crcec = 0; /* CRC Error counter */
708 ep->sen_alec = 0; /* alignment error counter */
709 ep->sen_disfc = 0; /* discard frame counter */
711 ep->sen_pads = 0x8888; /* Tx short frame pad character */
712 ep->sen_retlim = 15; /* Retry limit threshold */
714 ep->sen_maxflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
715 ep->sen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
717 ep->sen_maxd1 = PKT_MAXBLR_SIZE; /* maximum DMA1 length */
718 ep->sen_maxd2 = PKT_MAXBLR_SIZE; /* maximum DMA2 length */
720 /* Clear hash tables.
722 ep->sen_gaddr1 = 0;
723 ep->sen_gaddr2 = 0;
724 ep->sen_gaddr3 = 0;
725 ep->sen_gaddr4 = 0;
726 ep->sen_iaddr1 = 0;
727 ep->sen_iaddr2 = 0;
728 ep->sen_iaddr3 = 0;
729 ep->sen_iaddr4 = 0;
731 /* Set Ethernet station address.
733 * This is supplied in the board information structure, so we
734 * copy that into the controller.
736 eap = (unsigned char *)&(ep->sen_paddrh);
737 for (i=5; i>=0; i--)
738 *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
740 ep->sen_pper = 0; /* 'cause the book says so */
741 ep->sen_taddrl = 0; /* temp address (LSB) */
742 ep->sen_taddrm = 0;
743 ep->sen_taddrh = 0; /* temp address (MSB) */
745 /* Now allocate the host memory pages and initialize the
746 * buffer descriptors.
748 bdp = cep->tx_bd_base;
749 for (i=0; i<TX_RING_SIZE; i++) {
751 /* Initialize the BD for every fragment in the page.
753 bdp->cbd_sc = 0;
754 bdp->cbd_bufaddr = 0;
755 bdp++;
758 /* Set the last buffer to wrap.
760 bdp--;
761 bdp->cbd_sc |= BD_SC_WRAP;
763 bdp = cep->rx_bd_base;
764 for (i=0; i<CPM_ENET_RX_PAGES; i++) {
766 /* Allocate a page.
768 mem_addr = __get_free_page(GFP_KERNEL);
769 /* BUG: no check for failure */
771 /* Initialize the BD for every fragment in the page.
773 for (j=0; j<CPM_ENET_RX_FRPPG; j++) {
774 bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
775 bdp->cbd_bufaddr = __pa(mem_addr);
776 mem_addr += CPM_ENET_RX_FRSIZE;
777 bdp++;
781 /* Set the last buffer to wrap.
783 bdp--;
784 bdp->cbd_sc |= BD_SC_WRAP;
786 /* Let's re-initialize the channel now. We have to do it later
787 * than the manual describes because we have just now finished
788 * the BD initialization.
790 cpmp->cp_cpcr = mk_cr_cmd(CPM_ENET_PAGE, CPM_ENET_BLOCK, 0,
791 CPM_CR_INIT_TRX) | CPM_CR_FLG;
792 while (cp->cp_cpcr & CPM_CR_FLG);
794 cep->skb_cur = cep->skb_dirty = 0;
796 sccp->scc_scce = 0xffff; /* Clear any pending events */
798 /* Enable interrupts for transmit error, complete frame
799 * received, and any transmit buffer we have also set the
800 * interrupt flag.
802 sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
804 /* Install our interrupt handler.
806 request_irq(SIU_INT_ENET, scc_enet_interrupt, 0, "enet", dev);
807 /* BUG: no check for failure */
809 /* Set GSMR_H to enable all normal operating modes.
810 * Set GSMR_L to enable Ethernet to MC68160.
812 sccp->scc_gsmrh = 0;
813 sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET);
815 /* Set sync/delimiters.
817 sccp->scc_dsr = 0xd555;
819 /* Set processing mode. Use Ethernet CRC, catch broadcast, and
820 * start frame search 22 bit times after RENA.
822 sccp->scc_psmr = (SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
824 /* It is now OK to enable the Ethernet transmitter.
825 * Unfortunately, there are board implementation differences here.
827 io->iop_pparc &= ~(PC_EST8260_ENET_LOOPBACK |
828 PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD);
829 io->iop_psorc &= ~(PC_EST8260_ENET_LOOPBACK |
830 PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD);
831 io->iop_pdirc |= (PC_EST8260_ENET_LOOPBACK |
832 PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD);
833 io->iop_pdatc &= ~(PC_EST8260_ENET_LOOPBACK | PC_EST8260_ENET_SQE);
834 io->iop_pdatc |= PC_EST8260_ENET_NOTFD;
836 dev->base_addr = (unsigned long)ep;
838 /* The CPM Ethernet specific entries in the device structure. */
839 dev->open = scc_enet_open;
840 dev->hard_start_xmit = scc_enet_start_xmit;
841 dev->tx_timeout = scc_enet_timeout;
842 dev->watchdog_timeo = TX_TIMEOUT;
843 dev->stop = scc_enet_close;
844 dev->get_stats = scc_enet_get_stats;
845 dev->set_multicast_list = set_multicast_list;
847 /* And last, enable the transmit and receive processing.
849 sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);
851 err = register_netdev(dev);
852 if (err) {
853 free_netdev(dev);
854 return err;
857 printk("%s: SCC ENET Version 0.1, ", dev->name);
858 for (i=0; i<5; i++)
859 printk("%02x:", dev->dev_addr[i]);
860 printk("%02x\n", dev->dev_addr[5]);
862 return 0;
865 module_init(scc_enet_init);