[NETFILTER]: Switch to using ctl_paths in nf_queue and conntrack modules
[wrt350n-kernel.git] / drivers / char / tty_io.c
blobf36fecd3fd264a67cf7d66b2fd8e74369a38f406
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
108 #undef TTY_DEBUG_HANGUP
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
124 EXPORT_SYMBOL(tty_std_termios);
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
137 #ifdef CONFIG_UNIX98_PTYS
138 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
139 extern int pty_limit; /* Config limit on Unix98 ptys */
140 static DEFINE_IDR(allocated_ptys);
141 static DECLARE_MUTEX(allocated_ptys_lock);
142 static int ptmx_open(struct inode *, struct file *);
143 #endif
145 static void initialize_tty_struct(struct tty_struct *tty);
147 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
148 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
149 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
150 static unsigned int tty_poll(struct file *, poll_table *);
151 static int tty_open(struct inode *, struct file *);
152 static int tty_release(struct inode *, struct file *);
153 int tty_ioctl(struct inode * inode, struct file * file,
154 unsigned int cmd, unsigned long arg);
155 #ifdef CONFIG_COMPAT
156 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
157 unsigned long arg);
158 #else
159 #define tty_compat_ioctl NULL
160 #endif
161 static int tty_fasync(int fd, struct file * filp, int on);
162 static void release_tty(struct tty_struct *tty, int idx);
163 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
164 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
167 * alloc_tty_struct - allocate a tty object
169 * Return a new empty tty structure. The data fields have not
170 * been initialized in any way but has been zeroed
172 * Locking: none
175 static struct tty_struct *alloc_tty_struct(void)
177 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
180 static void tty_buffer_free_all(struct tty_struct *);
183 * free_tty_struct - free a disused tty
184 * @tty: tty struct to free
186 * Free the write buffers, tty queue and tty memory itself.
188 * Locking: none. Must be called after tty is definitely unused
191 static inline void free_tty_struct(struct tty_struct *tty)
193 kfree(tty->write_buf);
194 tty_buffer_free_all(tty);
195 kfree(tty);
198 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
201 * tty_name - return tty naming
202 * @tty: tty structure
203 * @buf: buffer for output
205 * Convert a tty structure into a name. The name reflects the kernel
206 * naming policy and if udev is in use may not reflect user space
208 * Locking: none
211 char *tty_name(struct tty_struct *tty, char *buf)
213 if (!tty) /* Hmm. NULL pointer. That's fun. */
214 strcpy(buf, "NULL tty");
215 else
216 strcpy(buf, tty->name);
217 return buf;
220 EXPORT_SYMBOL(tty_name);
222 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
223 const char *routine)
225 #ifdef TTY_PARANOIA_CHECK
226 if (!tty) {
227 printk(KERN_WARNING
228 "null TTY for (%d:%d) in %s\n",
229 imajor(inode), iminor(inode), routine);
230 return 1;
232 if (tty->magic != TTY_MAGIC) {
233 printk(KERN_WARNING
234 "bad magic number for tty struct (%d:%d) in %s\n",
235 imajor(inode), iminor(inode), routine);
236 return 1;
238 #endif
239 return 0;
242 static int check_tty_count(struct tty_struct *tty, const char *routine)
244 #ifdef CHECK_TTY_COUNT
245 struct list_head *p;
246 int count = 0;
248 file_list_lock();
249 list_for_each(p, &tty->tty_files) {
250 count++;
252 file_list_unlock();
253 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
254 tty->driver->subtype == PTY_TYPE_SLAVE &&
255 tty->link && tty->link->count)
256 count++;
257 if (tty->count != count) {
258 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
259 "!= #fd's(%d) in %s\n",
260 tty->name, tty->count, count, routine);
261 return count;
263 #endif
264 return 0;
268 * Tty buffer allocation management
272 * tty_buffer_free_all - free buffers used by a tty
273 * @tty: tty to free from
275 * Remove all the buffers pending on a tty whether queued with data
276 * or in the free ring. Must be called when the tty is no longer in use
278 * Locking: none
281 static void tty_buffer_free_all(struct tty_struct *tty)
283 struct tty_buffer *thead;
284 while((thead = tty->buf.head) != NULL) {
285 tty->buf.head = thead->next;
286 kfree(thead);
288 while((thead = tty->buf.free) != NULL) {
289 tty->buf.free = thead->next;
290 kfree(thead);
292 tty->buf.tail = NULL;
293 tty->buf.memory_used = 0;
297 * tty_buffer_init - prepare a tty buffer structure
298 * @tty: tty to initialise
300 * Set up the initial state of the buffer management for a tty device.
301 * Must be called before the other tty buffer functions are used.
303 * Locking: none
306 static void tty_buffer_init(struct tty_struct *tty)
308 spin_lock_init(&tty->buf.lock);
309 tty->buf.head = NULL;
310 tty->buf.tail = NULL;
311 tty->buf.free = NULL;
312 tty->buf.memory_used = 0;
316 * tty_buffer_alloc - allocate a tty buffer
317 * @tty: tty device
318 * @size: desired size (characters)
320 * Allocate a new tty buffer to hold the desired number of characters.
321 * Return NULL if out of memory or the allocation would exceed the
322 * per device queue
324 * Locking: Caller must hold tty->buf.lock
327 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
329 struct tty_buffer *p;
331 if (tty->buf.memory_used + size > 65536)
332 return NULL;
333 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
334 if(p == NULL)
335 return NULL;
336 p->used = 0;
337 p->size = size;
338 p->next = NULL;
339 p->commit = 0;
340 p->read = 0;
341 p->char_buf_ptr = (char *)(p->data);
342 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
343 tty->buf.memory_used += size;
344 return p;
348 * tty_buffer_free - free a tty buffer
349 * @tty: tty owning the buffer
350 * @b: the buffer to free
352 * Free a tty buffer, or add it to the free list according to our
353 * internal strategy
355 * Locking: Caller must hold tty->buf.lock
358 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
360 /* Dumb strategy for now - should keep some stats */
361 tty->buf.memory_used -= b->size;
362 WARN_ON(tty->buf.memory_used < 0);
364 if(b->size >= 512)
365 kfree(b);
366 else {
367 b->next = tty->buf.free;
368 tty->buf.free = b;
373 * __tty_buffer_flush - flush full tty buffers
374 * @tty: tty to flush
376 * flush all the buffers containing receive data. Caller must
377 * hold the buffer lock and must have ensured no parallel flush to
378 * ldisc is running.
380 * Locking: Caller must hold tty->buf.lock
383 static void __tty_buffer_flush(struct tty_struct *tty)
385 struct tty_buffer *thead;
387 while((thead = tty->buf.head) != NULL) {
388 tty->buf.head = thead->next;
389 tty_buffer_free(tty, thead);
391 tty->buf.tail = NULL;
395 * tty_buffer_flush - flush full tty buffers
396 * @tty: tty to flush
398 * flush all the buffers containing receive data. If the buffer is
399 * being processed by flush_to_ldisc then we defer the processing
400 * to that function
402 * Locking: none
405 static void tty_buffer_flush(struct tty_struct *tty)
407 unsigned long flags;
408 spin_lock_irqsave(&tty->buf.lock, flags);
410 /* If the data is being pushed to the tty layer then we can't
411 process it here. Instead set a flag and the flush_to_ldisc
412 path will process the flush request before it exits */
413 if (test_bit(TTY_FLUSHING, &tty->flags)) {
414 set_bit(TTY_FLUSHPENDING, &tty->flags);
415 spin_unlock_irqrestore(&tty->buf.lock, flags);
416 wait_event(tty->read_wait,
417 test_bit(TTY_FLUSHPENDING, &tty->flags) == 0);
418 return;
419 } else
420 __tty_buffer_flush(tty);
421 spin_unlock_irqrestore(&tty->buf.lock, flags);
425 * tty_buffer_find - find a free tty buffer
426 * @tty: tty owning the buffer
427 * @size: characters wanted
429 * Locate an existing suitable tty buffer or if we are lacking one then
430 * allocate a new one. We round our buffers off in 256 character chunks
431 * to get better allocation behaviour.
433 * Locking: Caller must hold tty->buf.lock
436 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
438 struct tty_buffer **tbh = &tty->buf.free;
439 while((*tbh) != NULL) {
440 struct tty_buffer *t = *tbh;
441 if(t->size >= size) {
442 *tbh = t->next;
443 t->next = NULL;
444 t->used = 0;
445 t->commit = 0;
446 t->read = 0;
447 tty->buf.memory_used += t->size;
448 return t;
450 tbh = &((*tbh)->next);
452 /* Round the buffer size out */
453 size = (size + 0xFF) & ~ 0xFF;
454 return tty_buffer_alloc(tty, size);
455 /* Should possibly check if this fails for the largest buffer we
456 have queued and recycle that ? */
460 * tty_buffer_request_room - grow tty buffer if needed
461 * @tty: tty structure
462 * @size: size desired
464 * Make at least size bytes of linear space available for the tty
465 * buffer. If we fail return the size we managed to find.
467 * Locking: Takes tty->buf.lock
469 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
471 struct tty_buffer *b, *n;
472 int left;
473 unsigned long flags;
475 spin_lock_irqsave(&tty->buf.lock, flags);
477 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
478 remove this conditional if its worth it. This would be invisible
479 to the callers */
480 if ((b = tty->buf.tail) != NULL)
481 left = b->size - b->used;
482 else
483 left = 0;
485 if (left < size) {
486 /* This is the slow path - looking for new buffers to use */
487 if ((n = tty_buffer_find(tty, size)) != NULL) {
488 if (b != NULL) {
489 b->next = n;
490 b->commit = b->used;
491 } else
492 tty->buf.head = n;
493 tty->buf.tail = n;
494 } else
495 size = left;
498 spin_unlock_irqrestore(&tty->buf.lock, flags);
499 return size;
501 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
504 * tty_insert_flip_string - Add characters to the tty buffer
505 * @tty: tty structure
506 * @chars: characters
507 * @size: size
509 * Queue a series of bytes to the tty buffering. All the characters
510 * passed are marked as without error. Returns the number added.
512 * Locking: Called functions may take tty->buf.lock
515 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
516 size_t size)
518 int copied = 0;
519 do {
520 int space = tty_buffer_request_room(tty, size - copied);
521 struct tty_buffer *tb = tty->buf.tail;
522 /* If there is no space then tb may be NULL */
523 if(unlikely(space == 0))
524 break;
525 memcpy(tb->char_buf_ptr + tb->used, chars, space);
526 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
527 tb->used += space;
528 copied += space;
529 chars += space;
530 /* There is a small chance that we need to split the data over
531 several buffers. If this is the case we must loop */
532 } while (unlikely(size > copied));
533 return copied;
535 EXPORT_SYMBOL(tty_insert_flip_string);
538 * tty_insert_flip_string_flags - Add characters to the tty buffer
539 * @tty: tty structure
540 * @chars: characters
541 * @flags: flag bytes
542 * @size: size
544 * Queue a series of bytes to the tty buffering. For each character
545 * the flags array indicates the status of the character. Returns the
546 * number added.
548 * Locking: Called functions may take tty->buf.lock
551 int tty_insert_flip_string_flags(struct tty_struct *tty,
552 const unsigned char *chars, const char *flags, size_t size)
554 int copied = 0;
555 do {
556 int space = tty_buffer_request_room(tty, size - copied);
557 struct tty_buffer *tb = tty->buf.tail;
558 /* If there is no space then tb may be NULL */
559 if(unlikely(space == 0))
560 break;
561 memcpy(tb->char_buf_ptr + tb->used, chars, space);
562 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
563 tb->used += space;
564 copied += space;
565 chars += space;
566 flags += space;
567 /* There is a small chance that we need to split the data over
568 several buffers. If this is the case we must loop */
569 } while (unlikely(size > copied));
570 return copied;
572 EXPORT_SYMBOL(tty_insert_flip_string_flags);
575 * tty_schedule_flip - push characters to ldisc
576 * @tty: tty to push from
578 * Takes any pending buffers and transfers their ownership to the
579 * ldisc side of the queue. It then schedules those characters for
580 * processing by the line discipline.
582 * Locking: Takes tty->buf.lock
585 void tty_schedule_flip(struct tty_struct *tty)
587 unsigned long flags;
588 spin_lock_irqsave(&tty->buf.lock, flags);
589 if (tty->buf.tail != NULL)
590 tty->buf.tail->commit = tty->buf.tail->used;
591 spin_unlock_irqrestore(&tty->buf.lock, flags);
592 schedule_delayed_work(&tty->buf.work, 1);
594 EXPORT_SYMBOL(tty_schedule_flip);
597 * tty_prepare_flip_string - make room for characters
598 * @tty: tty
599 * @chars: return pointer for character write area
600 * @size: desired size
602 * Prepare a block of space in the buffer for data. Returns the length
603 * available and buffer pointer to the space which is now allocated and
604 * accounted for as ready for normal characters. This is used for drivers
605 * that need their own block copy routines into the buffer. There is no
606 * guarantee the buffer is a DMA target!
608 * Locking: May call functions taking tty->buf.lock
611 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
613 int space = tty_buffer_request_room(tty, size);
614 if (likely(space)) {
615 struct tty_buffer *tb = tty->buf.tail;
616 *chars = tb->char_buf_ptr + tb->used;
617 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
618 tb->used += space;
620 return space;
623 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
626 * tty_prepare_flip_string_flags - make room for characters
627 * @tty: tty
628 * @chars: return pointer for character write area
629 * @flags: return pointer for status flag write area
630 * @size: desired size
632 * Prepare a block of space in the buffer for data. Returns the length
633 * available and buffer pointer to the space which is now allocated and
634 * accounted for as ready for characters. This is used for drivers
635 * that need their own block copy routines into the buffer. There is no
636 * guarantee the buffer is a DMA target!
638 * Locking: May call functions taking tty->buf.lock
641 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
643 int space = tty_buffer_request_room(tty, size);
644 if (likely(space)) {
645 struct tty_buffer *tb = tty->buf.tail;
646 *chars = tb->char_buf_ptr + tb->used;
647 *flags = tb->flag_buf_ptr + tb->used;
648 tb->used += space;
650 return space;
653 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
658 * tty_set_termios_ldisc - set ldisc field
659 * @tty: tty structure
660 * @num: line discipline number
662 * This is probably overkill for real world processors but
663 * they are not on hot paths so a little discipline won't do
664 * any harm.
666 * Locking: takes termios_mutex
669 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
671 mutex_lock(&tty->termios_mutex);
672 tty->termios->c_line = num;
673 mutex_unlock(&tty->termios_mutex);
677 * This guards the refcounted line discipline lists. The lock
678 * must be taken with irqs off because there are hangup path
679 * callers who will do ldisc lookups and cannot sleep.
682 static DEFINE_SPINLOCK(tty_ldisc_lock);
683 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
684 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
687 * tty_register_ldisc - install a line discipline
688 * @disc: ldisc number
689 * @new_ldisc: pointer to the ldisc object
691 * Installs a new line discipline into the kernel. The discipline
692 * is set up as unreferenced and then made available to the kernel
693 * from this point onwards.
695 * Locking:
696 * takes tty_ldisc_lock to guard against ldisc races
699 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
701 unsigned long flags;
702 int ret = 0;
704 if (disc < N_TTY || disc >= NR_LDISCS)
705 return -EINVAL;
707 spin_lock_irqsave(&tty_ldisc_lock, flags);
708 tty_ldiscs[disc] = *new_ldisc;
709 tty_ldiscs[disc].num = disc;
710 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
711 tty_ldiscs[disc].refcount = 0;
712 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
714 return ret;
716 EXPORT_SYMBOL(tty_register_ldisc);
719 * tty_unregister_ldisc - unload a line discipline
720 * @disc: ldisc number
721 * @new_ldisc: pointer to the ldisc object
723 * Remove a line discipline from the kernel providing it is not
724 * currently in use.
726 * Locking:
727 * takes tty_ldisc_lock to guard against ldisc races
730 int tty_unregister_ldisc(int disc)
732 unsigned long flags;
733 int ret = 0;
735 if (disc < N_TTY || disc >= NR_LDISCS)
736 return -EINVAL;
738 spin_lock_irqsave(&tty_ldisc_lock, flags);
739 if (tty_ldiscs[disc].refcount)
740 ret = -EBUSY;
741 else
742 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
743 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
745 return ret;
747 EXPORT_SYMBOL(tty_unregister_ldisc);
750 * tty_ldisc_get - take a reference to an ldisc
751 * @disc: ldisc number
753 * Takes a reference to a line discipline. Deals with refcounts and
754 * module locking counts. Returns NULL if the discipline is not available.
755 * Returns a pointer to the discipline and bumps the ref count if it is
756 * available
758 * Locking:
759 * takes tty_ldisc_lock to guard against ldisc races
762 struct tty_ldisc *tty_ldisc_get(int disc)
764 unsigned long flags;
765 struct tty_ldisc *ld;
767 if (disc < N_TTY || disc >= NR_LDISCS)
768 return NULL;
770 spin_lock_irqsave(&tty_ldisc_lock, flags);
772 ld = &tty_ldiscs[disc];
773 /* Check the entry is defined */
774 if(ld->flags & LDISC_FLAG_DEFINED)
776 /* If the module is being unloaded we can't use it */
777 if (!try_module_get(ld->owner))
778 ld = NULL;
779 else /* lock it */
780 ld->refcount++;
782 else
783 ld = NULL;
784 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
785 return ld;
788 EXPORT_SYMBOL_GPL(tty_ldisc_get);
791 * tty_ldisc_put - drop ldisc reference
792 * @disc: ldisc number
794 * Drop a reference to a line discipline. Manage refcounts and
795 * module usage counts
797 * Locking:
798 * takes tty_ldisc_lock to guard against ldisc races
801 void tty_ldisc_put(int disc)
803 struct tty_ldisc *ld;
804 unsigned long flags;
806 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
808 spin_lock_irqsave(&tty_ldisc_lock, flags);
809 ld = &tty_ldiscs[disc];
810 BUG_ON(ld->refcount == 0);
811 ld->refcount--;
812 module_put(ld->owner);
813 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
816 EXPORT_SYMBOL_GPL(tty_ldisc_put);
819 * tty_ldisc_assign - set ldisc on a tty
820 * @tty: tty to assign
821 * @ld: line discipline
823 * Install an instance of a line discipline into a tty structure. The
824 * ldisc must have a reference count above zero to ensure it remains/
825 * The tty instance refcount starts at zero.
827 * Locking:
828 * Caller must hold references
831 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
833 tty->ldisc = *ld;
834 tty->ldisc.refcount = 0;
838 * tty_ldisc_try - internal helper
839 * @tty: the tty
841 * Make a single attempt to grab and bump the refcount on
842 * the tty ldisc. Return 0 on failure or 1 on success. This is
843 * used to implement both the waiting and non waiting versions
844 * of tty_ldisc_ref
846 * Locking: takes tty_ldisc_lock
849 static int tty_ldisc_try(struct tty_struct *tty)
851 unsigned long flags;
852 struct tty_ldisc *ld;
853 int ret = 0;
855 spin_lock_irqsave(&tty_ldisc_lock, flags);
856 ld = &tty->ldisc;
857 if(test_bit(TTY_LDISC, &tty->flags))
859 ld->refcount++;
860 ret = 1;
862 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
863 return ret;
867 * tty_ldisc_ref_wait - wait for the tty ldisc
868 * @tty: tty device
870 * Dereference the line discipline for the terminal and take a
871 * reference to it. If the line discipline is in flux then
872 * wait patiently until it changes.
874 * Note: Must not be called from an IRQ/timer context. The caller
875 * must also be careful not to hold other locks that will deadlock
876 * against a discipline change, such as an existing ldisc reference
877 * (which we check for)
879 * Locking: call functions take tty_ldisc_lock
882 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
884 /* wait_event is a macro */
885 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
886 if(tty->ldisc.refcount == 0)
887 printk(KERN_ERR "tty_ldisc_ref_wait\n");
888 return &tty->ldisc;
891 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
894 * tty_ldisc_ref - get the tty ldisc
895 * @tty: tty device
897 * Dereference the line discipline for the terminal and take a
898 * reference to it. If the line discipline is in flux then
899 * return NULL. Can be called from IRQ and timer functions.
901 * Locking: called functions take tty_ldisc_lock
904 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
906 if(tty_ldisc_try(tty))
907 return &tty->ldisc;
908 return NULL;
911 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
914 * tty_ldisc_deref - free a tty ldisc reference
915 * @ld: reference to free up
917 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
918 * be called in IRQ context.
920 * Locking: takes tty_ldisc_lock
923 void tty_ldisc_deref(struct tty_ldisc *ld)
925 unsigned long flags;
927 BUG_ON(ld == NULL);
929 spin_lock_irqsave(&tty_ldisc_lock, flags);
930 if(ld->refcount == 0)
931 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
932 else
933 ld->refcount--;
934 if(ld->refcount == 0)
935 wake_up(&tty_ldisc_wait);
936 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
939 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
942 * tty_ldisc_enable - allow ldisc use
943 * @tty: terminal to activate ldisc on
945 * Set the TTY_LDISC flag when the line discipline can be called
946 * again. Do necessary wakeups for existing sleepers.
948 * Note: nobody should set this bit except via this function. Clearing
949 * directly is allowed.
952 static void tty_ldisc_enable(struct tty_struct *tty)
954 set_bit(TTY_LDISC, &tty->flags);
955 wake_up(&tty_ldisc_wait);
959 * tty_set_ldisc - set line discipline
960 * @tty: the terminal to set
961 * @ldisc: the line discipline
963 * Set the discipline of a tty line. Must be called from a process
964 * context.
966 * Locking: takes tty_ldisc_lock.
967 * called functions take termios_mutex
970 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
972 int retval = 0;
973 struct tty_ldisc o_ldisc;
974 char buf[64];
975 int work;
976 unsigned long flags;
977 struct tty_ldisc *ld;
978 struct tty_struct *o_tty;
980 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
981 return -EINVAL;
983 restart:
985 ld = tty_ldisc_get(ldisc);
986 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
987 /* Cyrus Durgin <cider@speakeasy.org> */
988 if (ld == NULL) {
989 request_module("tty-ldisc-%d", ldisc);
990 ld = tty_ldisc_get(ldisc);
992 if (ld == NULL)
993 return -EINVAL;
996 * Problem: What do we do if this blocks ?
999 tty_wait_until_sent(tty, 0);
1001 if (tty->ldisc.num == ldisc) {
1002 tty_ldisc_put(ldisc);
1003 return 0;
1007 * No more input please, we are switching. The new ldisc
1008 * will update this value in the ldisc open function
1011 tty->receive_room = 0;
1013 o_ldisc = tty->ldisc;
1014 o_tty = tty->link;
1017 * Make sure we don't change while someone holds a
1018 * reference to the line discipline. The TTY_LDISC bit
1019 * prevents anyone taking a reference once it is clear.
1020 * We need the lock to avoid racing reference takers.
1023 spin_lock_irqsave(&tty_ldisc_lock, flags);
1024 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
1025 if(tty->ldisc.refcount) {
1026 /* Free the new ldisc we grabbed. Must drop the lock
1027 first. */
1028 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1029 tty_ldisc_put(ldisc);
1031 * There are several reasons we may be busy, including
1032 * random momentary I/O traffic. We must therefore
1033 * retry. We could distinguish between blocking ops
1034 * and retries if we made tty_ldisc_wait() smarter. That
1035 * is up for discussion.
1037 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
1038 return -ERESTARTSYS;
1039 goto restart;
1041 if(o_tty && o_tty->ldisc.refcount) {
1042 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1043 tty_ldisc_put(ldisc);
1044 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
1045 return -ERESTARTSYS;
1046 goto restart;
1050 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
1052 if (!test_bit(TTY_LDISC, &tty->flags)) {
1053 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1054 tty_ldisc_put(ldisc);
1055 ld = tty_ldisc_ref_wait(tty);
1056 tty_ldisc_deref(ld);
1057 goto restart;
1060 clear_bit(TTY_LDISC, &tty->flags);
1061 if (o_tty)
1062 clear_bit(TTY_LDISC, &o_tty->flags);
1063 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1066 * From this point on we know nobody has an ldisc
1067 * usage reference, nor can they obtain one until
1068 * we say so later on.
1071 work = cancel_delayed_work(&tty->buf.work);
1073 * Wait for ->hangup_work and ->buf.work handlers to terminate
1076 flush_scheduled_work();
1077 /* Shutdown the current discipline. */
1078 if (tty->ldisc.close)
1079 (tty->ldisc.close)(tty);
1081 /* Now set up the new line discipline. */
1082 tty_ldisc_assign(tty, ld);
1083 tty_set_termios_ldisc(tty, ldisc);
1084 if (tty->ldisc.open)
1085 retval = (tty->ldisc.open)(tty);
1086 if (retval < 0) {
1087 tty_ldisc_put(ldisc);
1088 /* There is an outstanding reference here so this is safe */
1089 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1090 tty_set_termios_ldisc(tty, tty->ldisc.num);
1091 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1092 tty_ldisc_put(o_ldisc.num);
1093 /* This driver is always present */
1094 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1095 tty_set_termios_ldisc(tty, N_TTY);
1096 if (tty->ldisc.open) {
1097 int r = tty->ldisc.open(tty);
1099 if (r < 0)
1100 panic("Couldn't open N_TTY ldisc for "
1101 "%s --- error %d.",
1102 tty_name(tty, buf), r);
1106 /* At this point we hold a reference to the new ldisc and a
1107 a reference to the old ldisc. If we ended up flipping back
1108 to the existing ldisc we have two references to it */
1110 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1111 tty->driver->set_ldisc(tty);
1113 tty_ldisc_put(o_ldisc.num);
1116 * Allow ldisc referencing to occur as soon as the driver
1117 * ldisc callback completes.
1120 tty_ldisc_enable(tty);
1121 if (o_tty)
1122 tty_ldisc_enable(o_tty);
1124 /* Restart it in case no characters kick it off. Safe if
1125 already running */
1126 if (work)
1127 schedule_delayed_work(&tty->buf.work, 1);
1128 return retval;
1132 * get_tty_driver - find device of a tty
1133 * @dev_t: device identifier
1134 * @index: returns the index of the tty
1136 * This routine returns a tty driver structure, given a device number
1137 * and also passes back the index number.
1139 * Locking: caller must hold tty_mutex
1142 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1144 struct tty_driver *p;
1146 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1147 dev_t base = MKDEV(p->major, p->minor_start);
1148 if (device < base || device >= base + p->num)
1149 continue;
1150 *index = device - base;
1151 return p;
1153 return NULL;
1157 * tty_check_change - check for POSIX terminal changes
1158 * @tty: tty to check
1160 * If we try to write to, or set the state of, a terminal and we're
1161 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1162 * ignored, go ahead and perform the operation. (POSIX 7.2)
1164 * Locking: none
1167 int tty_check_change(struct tty_struct * tty)
1169 if (current->signal->tty != tty)
1170 return 0;
1171 if (!tty->pgrp) {
1172 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1173 return 0;
1175 if (task_pgrp(current) == tty->pgrp)
1176 return 0;
1177 if (is_ignored(SIGTTOU))
1178 return 0;
1179 if (is_current_pgrp_orphaned())
1180 return -EIO;
1181 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1182 set_thread_flag(TIF_SIGPENDING);
1183 return -ERESTARTSYS;
1186 EXPORT_SYMBOL(tty_check_change);
1188 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1189 size_t count, loff_t *ppos)
1191 return 0;
1194 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1195 size_t count, loff_t *ppos)
1197 return -EIO;
1200 /* No kernel lock held - none needed ;) */
1201 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1203 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1206 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1207 unsigned int cmd, unsigned long arg)
1209 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1212 static long hung_up_tty_compat_ioctl(struct file * file,
1213 unsigned int cmd, unsigned long arg)
1215 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1218 static const struct file_operations tty_fops = {
1219 .llseek = no_llseek,
1220 .read = tty_read,
1221 .write = tty_write,
1222 .poll = tty_poll,
1223 .ioctl = tty_ioctl,
1224 .compat_ioctl = tty_compat_ioctl,
1225 .open = tty_open,
1226 .release = tty_release,
1227 .fasync = tty_fasync,
1230 #ifdef CONFIG_UNIX98_PTYS
1231 static const struct file_operations ptmx_fops = {
1232 .llseek = no_llseek,
1233 .read = tty_read,
1234 .write = tty_write,
1235 .poll = tty_poll,
1236 .ioctl = tty_ioctl,
1237 .compat_ioctl = tty_compat_ioctl,
1238 .open = ptmx_open,
1239 .release = tty_release,
1240 .fasync = tty_fasync,
1242 #endif
1244 static const struct file_operations console_fops = {
1245 .llseek = no_llseek,
1246 .read = tty_read,
1247 .write = redirected_tty_write,
1248 .poll = tty_poll,
1249 .ioctl = tty_ioctl,
1250 .compat_ioctl = tty_compat_ioctl,
1251 .open = tty_open,
1252 .release = tty_release,
1253 .fasync = tty_fasync,
1256 static const struct file_operations hung_up_tty_fops = {
1257 .llseek = no_llseek,
1258 .read = hung_up_tty_read,
1259 .write = hung_up_tty_write,
1260 .poll = hung_up_tty_poll,
1261 .ioctl = hung_up_tty_ioctl,
1262 .compat_ioctl = hung_up_tty_compat_ioctl,
1263 .release = tty_release,
1266 static DEFINE_SPINLOCK(redirect_lock);
1267 static struct file *redirect;
1270 * tty_wakeup - request more data
1271 * @tty: terminal
1273 * Internal and external helper for wakeups of tty. This function
1274 * informs the line discipline if present that the driver is ready
1275 * to receive more output data.
1278 void tty_wakeup(struct tty_struct *tty)
1280 struct tty_ldisc *ld;
1282 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1283 ld = tty_ldisc_ref(tty);
1284 if(ld) {
1285 if(ld->write_wakeup)
1286 ld->write_wakeup(tty);
1287 tty_ldisc_deref(ld);
1290 wake_up_interruptible(&tty->write_wait);
1293 EXPORT_SYMBOL_GPL(tty_wakeup);
1296 * tty_ldisc_flush - flush line discipline queue
1297 * @tty: tty
1299 * Flush the line discipline queue (if any) for this tty. If there
1300 * is no line discipline active this is a no-op.
1303 void tty_ldisc_flush(struct tty_struct *tty)
1305 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1306 if(ld) {
1307 if(ld->flush_buffer)
1308 ld->flush_buffer(tty);
1309 tty_ldisc_deref(ld);
1311 tty_buffer_flush(tty);
1314 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1317 * tty_reset_termios - reset terminal state
1318 * @tty: tty to reset
1320 * Restore a terminal to the driver default state
1323 static void tty_reset_termios(struct tty_struct *tty)
1325 mutex_lock(&tty->termios_mutex);
1326 *tty->termios = tty->driver->init_termios;
1327 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1328 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1329 mutex_unlock(&tty->termios_mutex);
1333 * do_tty_hangup - actual handler for hangup events
1334 * @work: tty device
1336 * This can be called by the "eventd" kernel thread. That is process
1337 * synchronous but doesn't hold any locks, so we need to make sure we
1338 * have the appropriate locks for what we're doing.
1340 * The hangup event clears any pending redirections onto the hung up
1341 * device. It ensures future writes will error and it does the needed
1342 * line discipline hangup and signal delivery. The tty object itself
1343 * remains intact.
1345 * Locking:
1346 * BKL
1347 * redirect lock for undoing redirection
1348 * file list lock for manipulating list of ttys
1349 * tty_ldisc_lock from called functions
1350 * termios_mutex resetting termios data
1351 * tasklist_lock to walk task list for hangup event
1352 * ->siglock to protect ->signal/->sighand
1354 static void do_tty_hangup(struct work_struct *work)
1356 struct tty_struct *tty =
1357 container_of(work, struct tty_struct, hangup_work);
1358 struct file * cons_filp = NULL;
1359 struct file *filp, *f = NULL;
1360 struct task_struct *p;
1361 struct tty_ldisc *ld;
1362 int closecount = 0, n;
1364 if (!tty)
1365 return;
1367 /* inuse_filps is protected by the single kernel lock */
1368 lock_kernel();
1370 spin_lock(&redirect_lock);
1371 if (redirect && redirect->private_data == tty) {
1372 f = redirect;
1373 redirect = NULL;
1375 spin_unlock(&redirect_lock);
1377 check_tty_count(tty, "do_tty_hangup");
1378 file_list_lock();
1379 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1380 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1381 if (filp->f_op->write == redirected_tty_write)
1382 cons_filp = filp;
1383 if (filp->f_op->write != tty_write)
1384 continue;
1385 closecount++;
1386 tty_fasync(-1, filp, 0); /* can't block */
1387 filp->f_op = &hung_up_tty_fops;
1389 file_list_unlock();
1391 /* FIXME! What are the locking issues here? This may me overdoing things..
1392 * this question is especially important now that we've removed the irqlock. */
1394 ld = tty_ldisc_ref(tty);
1395 if(ld != NULL) /* We may have no line discipline at this point */
1397 if (ld->flush_buffer)
1398 ld->flush_buffer(tty);
1399 if (tty->driver->flush_buffer)
1400 tty->driver->flush_buffer(tty);
1401 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1402 ld->write_wakeup)
1403 ld->write_wakeup(tty);
1404 if (ld->hangup)
1405 ld->hangup(tty);
1408 /* FIXME: Once we trust the LDISC code better we can wait here for
1409 ldisc completion and fix the driver call race */
1411 wake_up_interruptible(&tty->write_wait);
1412 wake_up_interruptible(&tty->read_wait);
1415 * Shutdown the current line discipline, and reset it to
1416 * N_TTY.
1418 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1419 tty_reset_termios(tty);
1421 /* Defer ldisc switch */
1422 /* tty_deferred_ldisc_switch(N_TTY);
1424 This should get done automatically when the port closes and
1425 tty_release is called */
1427 read_lock(&tasklist_lock);
1428 if (tty->session) {
1429 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1430 spin_lock_irq(&p->sighand->siglock);
1431 if (p->signal->tty == tty)
1432 p->signal->tty = NULL;
1433 if (!p->signal->leader) {
1434 spin_unlock_irq(&p->sighand->siglock);
1435 continue;
1437 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1438 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1439 put_pid(p->signal->tty_old_pgrp); /* A noop */
1440 if (tty->pgrp)
1441 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1442 spin_unlock_irq(&p->sighand->siglock);
1443 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1445 read_unlock(&tasklist_lock);
1447 tty->flags = 0;
1448 put_pid(tty->session);
1449 put_pid(tty->pgrp);
1450 tty->session = NULL;
1451 tty->pgrp = NULL;
1452 tty->ctrl_status = 0;
1454 * If one of the devices matches a console pointer, we
1455 * cannot just call hangup() because that will cause
1456 * tty->count and state->count to go out of sync.
1457 * So we just call close() the right number of times.
1459 if (cons_filp) {
1460 if (tty->driver->close)
1461 for (n = 0; n < closecount; n++)
1462 tty->driver->close(tty, cons_filp);
1463 } else if (tty->driver->hangup)
1464 (tty->driver->hangup)(tty);
1466 /* We don't want to have driver/ldisc interactions beyond
1467 the ones we did here. The driver layer expects no
1468 calls after ->hangup() from the ldisc side. However we
1469 can't yet guarantee all that */
1471 set_bit(TTY_HUPPED, &tty->flags);
1472 if (ld) {
1473 tty_ldisc_enable(tty);
1474 tty_ldisc_deref(ld);
1476 unlock_kernel();
1477 if (f)
1478 fput(f);
1482 * tty_hangup - trigger a hangup event
1483 * @tty: tty to hangup
1485 * A carrier loss (virtual or otherwise) has occurred on this like
1486 * schedule a hangup sequence to run after this event.
1489 void tty_hangup(struct tty_struct * tty)
1491 #ifdef TTY_DEBUG_HANGUP
1492 char buf[64];
1494 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1495 #endif
1496 schedule_work(&tty->hangup_work);
1499 EXPORT_SYMBOL(tty_hangup);
1502 * tty_vhangup - process vhangup
1503 * @tty: tty to hangup
1505 * The user has asked via system call for the terminal to be hung up.
1506 * We do this synchronously so that when the syscall returns the process
1507 * is complete. That guarantee is necessary for security reasons.
1510 void tty_vhangup(struct tty_struct * tty)
1512 #ifdef TTY_DEBUG_HANGUP
1513 char buf[64];
1515 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1516 #endif
1517 do_tty_hangup(&tty->hangup_work);
1519 EXPORT_SYMBOL(tty_vhangup);
1522 * tty_hung_up_p - was tty hung up
1523 * @filp: file pointer of tty
1525 * Return true if the tty has been subject to a vhangup or a carrier
1526 * loss
1529 int tty_hung_up_p(struct file * filp)
1531 return (filp->f_op == &hung_up_tty_fops);
1534 EXPORT_SYMBOL(tty_hung_up_p);
1537 * is_tty - checker whether file is a TTY
1539 int is_tty(struct file *filp)
1541 return filp->f_op->read == tty_read
1542 || filp->f_op->read == hung_up_tty_read;
1545 static void session_clear_tty(struct pid *session)
1547 struct task_struct *p;
1548 do_each_pid_task(session, PIDTYPE_SID, p) {
1549 proc_clear_tty(p);
1550 } while_each_pid_task(session, PIDTYPE_SID, p);
1554 * disassociate_ctty - disconnect controlling tty
1555 * @on_exit: true if exiting so need to "hang up" the session
1557 * This function is typically called only by the session leader, when
1558 * it wants to disassociate itself from its controlling tty.
1560 * It performs the following functions:
1561 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1562 * (2) Clears the tty from being controlling the session
1563 * (3) Clears the controlling tty for all processes in the
1564 * session group.
1566 * The argument on_exit is set to 1 if called when a process is
1567 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1569 * Locking:
1570 * BKL is taken for hysterical raisins
1571 * tty_mutex is taken to protect tty
1572 * ->siglock is taken to protect ->signal/->sighand
1573 * tasklist_lock is taken to walk process list for sessions
1574 * ->siglock is taken to protect ->signal/->sighand
1577 void disassociate_ctty(int on_exit)
1579 struct tty_struct *tty;
1580 struct pid *tty_pgrp = NULL;
1582 lock_kernel();
1584 mutex_lock(&tty_mutex);
1585 tty = get_current_tty();
1586 if (tty) {
1587 tty_pgrp = get_pid(tty->pgrp);
1588 mutex_unlock(&tty_mutex);
1589 /* XXX: here we race, there is nothing protecting tty */
1590 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1591 tty_vhangup(tty);
1592 } else if (on_exit) {
1593 struct pid *old_pgrp;
1594 spin_lock_irq(&current->sighand->siglock);
1595 old_pgrp = current->signal->tty_old_pgrp;
1596 current->signal->tty_old_pgrp = NULL;
1597 spin_unlock_irq(&current->sighand->siglock);
1598 if (old_pgrp) {
1599 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1600 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1601 put_pid(old_pgrp);
1603 mutex_unlock(&tty_mutex);
1604 unlock_kernel();
1605 return;
1607 if (tty_pgrp) {
1608 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1609 if (!on_exit)
1610 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1611 put_pid(tty_pgrp);
1614 spin_lock_irq(&current->sighand->siglock);
1615 put_pid(current->signal->tty_old_pgrp);
1616 current->signal->tty_old_pgrp = NULL;
1617 spin_unlock_irq(&current->sighand->siglock);
1619 mutex_lock(&tty_mutex);
1620 /* It is possible that do_tty_hangup has free'd this tty */
1621 tty = get_current_tty();
1622 if (tty) {
1623 put_pid(tty->session);
1624 put_pid(tty->pgrp);
1625 tty->session = NULL;
1626 tty->pgrp = NULL;
1627 } else {
1628 #ifdef TTY_DEBUG_HANGUP
1629 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1630 " = NULL", tty);
1631 #endif
1633 mutex_unlock(&tty_mutex);
1635 /* Now clear signal->tty under the lock */
1636 read_lock(&tasklist_lock);
1637 session_clear_tty(task_session(current));
1638 read_unlock(&tasklist_lock);
1639 unlock_kernel();
1644 * no_tty - Ensure the current process does not have a controlling tty
1646 void no_tty(void)
1648 struct task_struct *tsk = current;
1649 if (tsk->signal->leader)
1650 disassociate_ctty(0);
1651 proc_clear_tty(tsk);
1656 * stop_tty - propagate flow control
1657 * @tty: tty to stop
1659 * Perform flow control to the driver. For PTY/TTY pairs we
1660 * must also propagate the TIOCKPKT status. May be called
1661 * on an already stopped device and will not re-call the driver
1662 * method.
1664 * This functionality is used by both the line disciplines for
1665 * halting incoming flow and by the driver. It may therefore be
1666 * called from any context, may be under the tty atomic_write_lock
1667 * but not always.
1669 * Locking:
1670 * Broken. Relies on BKL which is unsafe here.
1673 void stop_tty(struct tty_struct *tty)
1675 if (tty->stopped)
1676 return;
1677 tty->stopped = 1;
1678 if (tty->link && tty->link->packet) {
1679 tty->ctrl_status &= ~TIOCPKT_START;
1680 tty->ctrl_status |= TIOCPKT_STOP;
1681 wake_up_interruptible(&tty->link->read_wait);
1683 if (tty->driver->stop)
1684 (tty->driver->stop)(tty);
1687 EXPORT_SYMBOL(stop_tty);
1690 * start_tty - propagate flow control
1691 * @tty: tty to start
1693 * Start a tty that has been stopped if at all possible. Perform
1694 * any necessary wakeups and propagate the TIOCPKT status. If this
1695 * is the tty was previous stopped and is being started then the
1696 * driver start method is invoked and the line discipline woken.
1698 * Locking:
1699 * Broken. Relies on BKL which is unsafe here.
1702 void start_tty(struct tty_struct *tty)
1704 if (!tty->stopped || tty->flow_stopped)
1705 return;
1706 tty->stopped = 0;
1707 if (tty->link && tty->link->packet) {
1708 tty->ctrl_status &= ~TIOCPKT_STOP;
1709 tty->ctrl_status |= TIOCPKT_START;
1710 wake_up_interruptible(&tty->link->read_wait);
1712 if (tty->driver->start)
1713 (tty->driver->start)(tty);
1715 /* If we have a running line discipline it may need kicking */
1716 tty_wakeup(tty);
1719 EXPORT_SYMBOL(start_tty);
1722 * tty_read - read method for tty device files
1723 * @file: pointer to tty file
1724 * @buf: user buffer
1725 * @count: size of user buffer
1726 * @ppos: unused
1728 * Perform the read system call function on this terminal device. Checks
1729 * for hung up devices before calling the line discipline method.
1731 * Locking:
1732 * Locks the line discipline internally while needed
1733 * For historical reasons the line discipline read method is
1734 * invoked under the BKL. This will go away in time so do not rely on it
1735 * in new code. Multiple read calls may be outstanding in parallel.
1738 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1739 loff_t *ppos)
1741 int i;
1742 struct tty_struct * tty;
1743 struct inode *inode;
1744 struct tty_ldisc *ld;
1746 tty = (struct tty_struct *)file->private_data;
1747 inode = file->f_path.dentry->d_inode;
1748 if (tty_paranoia_check(tty, inode, "tty_read"))
1749 return -EIO;
1750 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1751 return -EIO;
1753 /* We want to wait for the line discipline to sort out in this
1754 situation */
1755 ld = tty_ldisc_ref_wait(tty);
1756 lock_kernel();
1757 if (ld->read)
1758 i = (ld->read)(tty,file,buf,count);
1759 else
1760 i = -EIO;
1761 tty_ldisc_deref(ld);
1762 unlock_kernel();
1763 if (i > 0)
1764 inode->i_atime = current_fs_time(inode->i_sb);
1765 return i;
1768 void tty_write_unlock(struct tty_struct *tty)
1770 mutex_unlock(&tty->atomic_write_lock);
1771 wake_up_interruptible(&tty->write_wait);
1774 int tty_write_lock(struct tty_struct *tty, int ndelay)
1776 if (!mutex_trylock(&tty->atomic_write_lock)) {
1777 if (ndelay)
1778 return -EAGAIN;
1779 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1780 return -ERESTARTSYS;
1782 return 0;
1786 * Split writes up in sane blocksizes to avoid
1787 * denial-of-service type attacks
1789 static inline ssize_t do_tty_write(
1790 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1791 struct tty_struct *tty,
1792 struct file *file,
1793 const char __user *buf,
1794 size_t count)
1796 ssize_t ret, written = 0;
1797 unsigned int chunk;
1799 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1800 if (ret < 0)
1801 return ret;
1804 * We chunk up writes into a temporary buffer. This
1805 * simplifies low-level drivers immensely, since they
1806 * don't have locking issues and user mode accesses.
1808 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1809 * big chunk-size..
1811 * The default chunk-size is 2kB, because the NTTY
1812 * layer has problems with bigger chunks. It will
1813 * claim to be able to handle more characters than
1814 * it actually does.
1816 * FIXME: This can probably go away now except that 64K chunks
1817 * are too likely to fail unless switched to vmalloc...
1819 chunk = 2048;
1820 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1821 chunk = 65536;
1822 if (count < chunk)
1823 chunk = count;
1825 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1826 if (tty->write_cnt < chunk) {
1827 unsigned char *buf;
1829 if (chunk < 1024)
1830 chunk = 1024;
1832 buf = kmalloc(chunk, GFP_KERNEL);
1833 if (!buf) {
1834 ret = -ENOMEM;
1835 goto out;
1837 kfree(tty->write_buf);
1838 tty->write_cnt = chunk;
1839 tty->write_buf = buf;
1842 /* Do the write .. */
1843 for (;;) {
1844 size_t size = count;
1845 if (size > chunk)
1846 size = chunk;
1847 ret = -EFAULT;
1848 if (copy_from_user(tty->write_buf, buf, size))
1849 break;
1850 lock_kernel();
1851 ret = write(tty, file, tty->write_buf, size);
1852 unlock_kernel();
1853 if (ret <= 0)
1854 break;
1855 written += ret;
1856 buf += ret;
1857 count -= ret;
1858 if (!count)
1859 break;
1860 ret = -ERESTARTSYS;
1861 if (signal_pending(current))
1862 break;
1863 cond_resched();
1865 if (written) {
1866 struct inode *inode = file->f_path.dentry->d_inode;
1867 inode->i_mtime = current_fs_time(inode->i_sb);
1868 ret = written;
1870 out:
1871 tty_write_unlock(tty);
1872 return ret;
1877 * tty_write - write method for tty device file
1878 * @file: tty file pointer
1879 * @buf: user data to write
1880 * @count: bytes to write
1881 * @ppos: unused
1883 * Write data to a tty device via the line discipline.
1885 * Locking:
1886 * Locks the line discipline as required
1887 * Writes to the tty driver are serialized by the atomic_write_lock
1888 * and are then processed in chunks to the device. The line discipline
1889 * write method will not be involked in parallel for each device
1890 * The line discipline write method is called under the big
1891 * kernel lock for historical reasons. New code should not rely on this.
1894 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1895 loff_t *ppos)
1897 struct tty_struct * tty;
1898 struct inode *inode = file->f_path.dentry->d_inode;
1899 ssize_t ret;
1900 struct tty_ldisc *ld;
1902 tty = (struct tty_struct *)file->private_data;
1903 if (tty_paranoia_check(tty, inode, "tty_write"))
1904 return -EIO;
1905 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1906 return -EIO;
1908 ld = tty_ldisc_ref_wait(tty);
1909 if (!ld->write)
1910 ret = -EIO;
1911 else
1912 ret = do_tty_write(ld->write, tty, file, buf, count);
1913 tty_ldisc_deref(ld);
1914 return ret;
1917 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1918 loff_t *ppos)
1920 struct file *p = NULL;
1922 spin_lock(&redirect_lock);
1923 if (redirect) {
1924 get_file(redirect);
1925 p = redirect;
1927 spin_unlock(&redirect_lock);
1929 if (p) {
1930 ssize_t res;
1931 res = vfs_write(p, buf, count, &p->f_pos);
1932 fput(p);
1933 return res;
1936 return tty_write(file, buf, count, ppos);
1939 static char ptychar[] = "pqrstuvwxyzabcde";
1942 * pty_line_name - generate name for a pty
1943 * @driver: the tty driver in use
1944 * @index: the minor number
1945 * @p: output buffer of at least 6 bytes
1947 * Generate a name from a driver reference and write it to the output
1948 * buffer.
1950 * Locking: None
1952 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1954 int i = index + driver->name_base;
1955 /* ->name is initialized to "ttyp", but "tty" is expected */
1956 sprintf(p, "%s%c%x",
1957 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1958 ptychar[i >> 4 & 0xf], i & 0xf);
1962 * pty_line_name - generate name for a tty
1963 * @driver: the tty driver in use
1964 * @index: the minor number
1965 * @p: output buffer of at least 7 bytes
1967 * Generate a name from a driver reference and write it to the output
1968 * buffer.
1970 * Locking: None
1972 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1974 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1978 * init_dev - initialise a tty device
1979 * @driver: tty driver we are opening a device on
1980 * @idx: device index
1981 * @tty: returned tty structure
1983 * Prepare a tty device. This may not be a "new" clean device but
1984 * could also be an active device. The pty drivers require special
1985 * handling because of this.
1987 * Locking:
1988 * The function is called under the tty_mutex, which
1989 * protects us from the tty struct or driver itself going away.
1991 * On exit the tty device has the line discipline attached and
1992 * a reference count of 1. If a pair was created for pty/tty use
1993 * and the other was a pty master then it too has a reference count of 1.
1995 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1996 * failed open. The new code protects the open with a mutex, so it's
1997 * really quite straightforward. The mutex locking can probably be
1998 * relaxed for the (most common) case of reopening a tty.
2001 static int init_dev(struct tty_driver *driver, int idx,
2002 struct tty_struct **ret_tty)
2004 struct tty_struct *tty, *o_tty;
2005 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
2006 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
2007 int retval = 0;
2009 /* check whether we're reopening an existing tty */
2010 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2011 tty = devpts_get_tty(idx);
2013 * If we don't have a tty here on a slave open, it's because
2014 * the master already started the close process and there's
2015 * no relation between devpts file and tty anymore.
2017 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
2018 retval = -EIO;
2019 goto end_init;
2022 * It's safe from now on because init_dev() is called with
2023 * tty_mutex held and release_dev() won't change tty->count
2024 * or tty->flags without having to grab tty_mutex
2026 if (tty && driver->subtype == PTY_TYPE_MASTER)
2027 tty = tty->link;
2028 } else {
2029 tty = driver->ttys[idx];
2031 if (tty) goto fast_track;
2034 * First time open is complex, especially for PTY devices.
2035 * This code guarantees that either everything succeeds and the
2036 * TTY is ready for operation, or else the table slots are vacated
2037 * and the allocated memory released. (Except that the termios
2038 * and locked termios may be retained.)
2041 if (!try_module_get(driver->owner)) {
2042 retval = -ENODEV;
2043 goto end_init;
2046 o_tty = NULL;
2047 tp = o_tp = NULL;
2048 ltp = o_ltp = NULL;
2050 tty = alloc_tty_struct();
2051 if(!tty)
2052 goto fail_no_mem;
2053 initialize_tty_struct(tty);
2054 tty->driver = driver;
2055 tty->index = idx;
2056 tty_line_name(driver, idx, tty->name);
2058 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2059 tp_loc = &tty->termios;
2060 ltp_loc = &tty->termios_locked;
2061 } else {
2062 tp_loc = &driver->termios[idx];
2063 ltp_loc = &driver->termios_locked[idx];
2066 if (!*tp_loc) {
2067 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2068 if (!tp)
2069 goto free_mem_out;
2070 *tp = driver->init_termios;
2073 if (!*ltp_loc) {
2074 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2075 if (!ltp)
2076 goto free_mem_out;
2079 if (driver->type == TTY_DRIVER_TYPE_PTY) {
2080 o_tty = alloc_tty_struct();
2081 if (!o_tty)
2082 goto free_mem_out;
2083 initialize_tty_struct(o_tty);
2084 o_tty->driver = driver->other;
2085 o_tty->index = idx;
2086 tty_line_name(driver->other, idx, o_tty->name);
2088 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2089 o_tp_loc = &o_tty->termios;
2090 o_ltp_loc = &o_tty->termios_locked;
2091 } else {
2092 o_tp_loc = &driver->other->termios[idx];
2093 o_ltp_loc = &driver->other->termios_locked[idx];
2096 if (!*o_tp_loc) {
2097 o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2098 if (!o_tp)
2099 goto free_mem_out;
2100 *o_tp = driver->other->init_termios;
2103 if (!*o_ltp_loc) {
2104 o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2105 if (!o_ltp)
2106 goto free_mem_out;
2110 * Everything allocated ... set up the o_tty structure.
2112 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
2113 driver->other->ttys[idx] = o_tty;
2115 if (!*o_tp_loc)
2116 *o_tp_loc = o_tp;
2117 if (!*o_ltp_loc)
2118 *o_ltp_loc = o_ltp;
2119 o_tty->termios = *o_tp_loc;
2120 o_tty->termios_locked = *o_ltp_loc;
2121 driver->other->refcount++;
2122 if (driver->subtype == PTY_TYPE_MASTER)
2123 o_tty->count++;
2125 /* Establish the links in both directions */
2126 tty->link = o_tty;
2127 o_tty->link = tty;
2131 * All structures have been allocated, so now we install them.
2132 * Failures after this point use release_tty to clean up, so
2133 * there's no need to null out the local pointers.
2135 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2136 driver->ttys[idx] = tty;
2139 if (!*tp_loc)
2140 *tp_loc = tp;
2141 if (!*ltp_loc)
2142 *ltp_loc = ltp;
2143 tty->termios = *tp_loc;
2144 tty->termios_locked = *ltp_loc;
2145 /* Compatibility until drivers always set this */
2146 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2147 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2148 driver->refcount++;
2149 tty->count++;
2152 * Structures all installed ... call the ldisc open routines.
2153 * If we fail here just call release_tty to clean up. No need
2154 * to decrement the use counts, as release_tty doesn't care.
2157 if (tty->ldisc.open) {
2158 retval = (tty->ldisc.open)(tty);
2159 if (retval)
2160 goto release_mem_out;
2162 if (o_tty && o_tty->ldisc.open) {
2163 retval = (o_tty->ldisc.open)(o_tty);
2164 if (retval) {
2165 if (tty->ldisc.close)
2166 (tty->ldisc.close)(tty);
2167 goto release_mem_out;
2169 tty_ldisc_enable(o_tty);
2171 tty_ldisc_enable(tty);
2172 goto success;
2175 * This fast open can be used if the tty is already open.
2176 * No memory is allocated, and the only failures are from
2177 * attempting to open a closing tty or attempting multiple
2178 * opens on a pty master.
2180 fast_track:
2181 if (test_bit(TTY_CLOSING, &tty->flags)) {
2182 retval = -EIO;
2183 goto end_init;
2185 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2186 driver->subtype == PTY_TYPE_MASTER) {
2188 * special case for PTY masters: only one open permitted,
2189 * and the slave side open count is incremented as well.
2191 if (tty->count) {
2192 retval = -EIO;
2193 goto end_init;
2195 tty->link->count++;
2197 tty->count++;
2198 tty->driver = driver; /* N.B. why do this every time?? */
2200 /* FIXME */
2201 if(!test_bit(TTY_LDISC, &tty->flags))
2202 printk(KERN_ERR "init_dev but no ldisc\n");
2203 success:
2204 *ret_tty = tty;
2206 /* All paths come through here to release the mutex */
2207 end_init:
2208 return retval;
2210 /* Release locally allocated memory ... nothing placed in slots */
2211 free_mem_out:
2212 kfree(o_tp);
2213 if (o_tty)
2214 free_tty_struct(o_tty);
2215 kfree(ltp);
2216 kfree(tp);
2217 free_tty_struct(tty);
2219 fail_no_mem:
2220 module_put(driver->owner);
2221 retval = -ENOMEM;
2222 goto end_init;
2224 /* call the tty release_tty routine to clean out this slot */
2225 release_mem_out:
2226 if (printk_ratelimit())
2227 printk(KERN_INFO "init_dev: ldisc open failed, "
2228 "clearing slot %d\n", idx);
2229 release_tty(tty, idx);
2230 goto end_init;
2234 * release_one_tty - release tty structure memory
2236 * Releases memory associated with a tty structure, and clears out the
2237 * driver table slots. This function is called when a device is no longer
2238 * in use. It also gets called when setup of a device fails.
2240 * Locking:
2241 * tty_mutex - sometimes only
2242 * takes the file list lock internally when working on the list
2243 * of ttys that the driver keeps.
2244 * FIXME: should we require tty_mutex is held here ??
2246 static void release_one_tty(struct tty_struct *tty, int idx)
2248 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2249 struct ktermios *tp;
2251 if (!devpts)
2252 tty->driver->ttys[idx] = NULL;
2254 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2255 tp = tty->termios;
2256 if (!devpts)
2257 tty->driver->termios[idx] = NULL;
2258 kfree(tp);
2260 tp = tty->termios_locked;
2261 if (!devpts)
2262 tty->driver->termios_locked[idx] = NULL;
2263 kfree(tp);
2267 tty->magic = 0;
2268 tty->driver->refcount--;
2270 file_list_lock();
2271 list_del_init(&tty->tty_files);
2272 file_list_unlock();
2274 free_tty_struct(tty);
2278 * release_tty - release tty structure memory
2280 * Release both @tty and a possible linked partner (think pty pair),
2281 * and decrement the refcount of the backing module.
2283 * Locking:
2284 * tty_mutex - sometimes only
2285 * takes the file list lock internally when working on the list
2286 * of ttys that the driver keeps.
2287 * FIXME: should we require tty_mutex is held here ??
2289 static void release_tty(struct tty_struct *tty, int idx)
2291 struct tty_driver *driver = tty->driver;
2293 if (tty->link)
2294 release_one_tty(tty->link, idx);
2295 release_one_tty(tty, idx);
2296 module_put(driver->owner);
2300 * Even releasing the tty structures is a tricky business.. We have
2301 * to be very careful that the structures are all released at the
2302 * same time, as interrupts might otherwise get the wrong pointers.
2304 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2305 * lead to double frees or releasing memory still in use.
2307 static void release_dev(struct file * filp)
2309 struct tty_struct *tty, *o_tty;
2310 int pty_master, tty_closing, o_tty_closing, do_sleep;
2311 int devpts;
2312 int idx;
2313 char buf[64];
2314 unsigned long flags;
2316 tty = (struct tty_struct *)filp->private_data;
2317 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2318 return;
2320 check_tty_count(tty, "release_dev");
2322 tty_fasync(-1, filp, 0);
2324 idx = tty->index;
2325 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2326 tty->driver->subtype == PTY_TYPE_MASTER);
2327 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2328 o_tty = tty->link;
2330 #ifdef TTY_PARANOIA_CHECK
2331 if (idx < 0 || idx >= tty->driver->num) {
2332 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2333 "free (%s)\n", tty->name);
2334 return;
2336 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2337 if (tty != tty->driver->ttys[idx]) {
2338 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2339 "for (%s)\n", idx, tty->name);
2340 return;
2342 if (tty->termios != tty->driver->termios[idx]) {
2343 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2344 "for (%s)\n",
2345 idx, tty->name);
2346 return;
2348 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2349 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2350 "termios_locked for (%s)\n",
2351 idx, tty->name);
2352 return;
2355 #endif
2357 #ifdef TTY_DEBUG_HANGUP
2358 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2359 tty_name(tty, buf), tty->count);
2360 #endif
2362 #ifdef TTY_PARANOIA_CHECK
2363 if (tty->driver->other &&
2364 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2365 if (o_tty != tty->driver->other->ttys[idx]) {
2366 printk(KERN_DEBUG "release_dev: other->table[%d] "
2367 "not o_tty for (%s)\n",
2368 idx, tty->name);
2369 return;
2371 if (o_tty->termios != tty->driver->other->termios[idx]) {
2372 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2373 "not o_termios for (%s)\n",
2374 idx, tty->name);
2375 return;
2377 if (o_tty->termios_locked !=
2378 tty->driver->other->termios_locked[idx]) {
2379 printk(KERN_DEBUG "release_dev: other->termios_locked["
2380 "%d] not o_termios_locked for (%s)\n",
2381 idx, tty->name);
2382 return;
2384 if (o_tty->link != tty) {
2385 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2386 return;
2389 #endif
2390 if (tty->driver->close)
2391 tty->driver->close(tty, filp);
2394 * Sanity check: if tty->count is going to zero, there shouldn't be
2395 * any waiters on tty->read_wait or tty->write_wait. We test the
2396 * wait queues and kick everyone out _before_ actually starting to
2397 * close. This ensures that we won't block while releasing the tty
2398 * structure.
2400 * The test for the o_tty closing is necessary, since the master and
2401 * slave sides may close in any order. If the slave side closes out
2402 * first, its count will be one, since the master side holds an open.
2403 * Thus this test wouldn't be triggered at the time the slave closes,
2404 * so we do it now.
2406 * Note that it's possible for the tty to be opened again while we're
2407 * flushing out waiters. By recalculating the closing flags before
2408 * each iteration we avoid any problems.
2410 while (1) {
2411 /* Guard against races with tty->count changes elsewhere and
2412 opens on /dev/tty */
2414 mutex_lock(&tty_mutex);
2415 tty_closing = tty->count <= 1;
2416 o_tty_closing = o_tty &&
2417 (o_tty->count <= (pty_master ? 1 : 0));
2418 do_sleep = 0;
2420 if (tty_closing) {
2421 if (waitqueue_active(&tty->read_wait)) {
2422 wake_up(&tty->read_wait);
2423 do_sleep++;
2425 if (waitqueue_active(&tty->write_wait)) {
2426 wake_up(&tty->write_wait);
2427 do_sleep++;
2430 if (o_tty_closing) {
2431 if (waitqueue_active(&o_tty->read_wait)) {
2432 wake_up(&o_tty->read_wait);
2433 do_sleep++;
2435 if (waitqueue_active(&o_tty->write_wait)) {
2436 wake_up(&o_tty->write_wait);
2437 do_sleep++;
2440 if (!do_sleep)
2441 break;
2443 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2444 "active!\n", tty_name(tty, buf));
2445 mutex_unlock(&tty_mutex);
2446 schedule();
2450 * The closing flags are now consistent with the open counts on
2451 * both sides, and we've completed the last operation that could
2452 * block, so it's safe to proceed with closing.
2454 if (pty_master) {
2455 if (--o_tty->count < 0) {
2456 printk(KERN_WARNING "release_dev: bad pty slave count "
2457 "(%d) for %s\n",
2458 o_tty->count, tty_name(o_tty, buf));
2459 o_tty->count = 0;
2462 if (--tty->count < 0) {
2463 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2464 tty->count, tty_name(tty, buf));
2465 tty->count = 0;
2469 * We've decremented tty->count, so we need to remove this file
2470 * descriptor off the tty->tty_files list; this serves two
2471 * purposes:
2472 * - check_tty_count sees the correct number of file descriptors
2473 * associated with this tty.
2474 * - do_tty_hangup no longer sees this file descriptor as
2475 * something that needs to be handled for hangups.
2477 file_kill(filp);
2478 filp->private_data = NULL;
2481 * Perform some housekeeping before deciding whether to return.
2483 * Set the TTY_CLOSING flag if this was the last open. In the
2484 * case of a pty we may have to wait around for the other side
2485 * to close, and TTY_CLOSING makes sure we can't be reopened.
2487 if(tty_closing)
2488 set_bit(TTY_CLOSING, &tty->flags);
2489 if(o_tty_closing)
2490 set_bit(TTY_CLOSING, &o_tty->flags);
2493 * If _either_ side is closing, make sure there aren't any
2494 * processes that still think tty or o_tty is their controlling
2495 * tty.
2497 if (tty_closing || o_tty_closing) {
2498 read_lock(&tasklist_lock);
2499 session_clear_tty(tty->session);
2500 if (o_tty)
2501 session_clear_tty(o_tty->session);
2502 read_unlock(&tasklist_lock);
2505 mutex_unlock(&tty_mutex);
2507 /* check whether both sides are closing ... */
2508 if (!tty_closing || (o_tty && !o_tty_closing))
2509 return;
2511 #ifdef TTY_DEBUG_HANGUP
2512 printk(KERN_DEBUG "freeing tty structure...");
2513 #endif
2515 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2516 * kill any delayed work. As this is the final close it does not
2517 * race with the set_ldisc code path.
2519 clear_bit(TTY_LDISC, &tty->flags);
2520 cancel_delayed_work(&tty->buf.work);
2523 * Wait for ->hangup_work and ->buf.work handlers to terminate
2526 flush_scheduled_work();
2529 * Wait for any short term users (we know they are just driver
2530 * side waiters as the file is closing so user count on the file
2531 * side is zero.
2533 spin_lock_irqsave(&tty_ldisc_lock, flags);
2534 while(tty->ldisc.refcount)
2536 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2537 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2538 spin_lock_irqsave(&tty_ldisc_lock, flags);
2540 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2542 * Shutdown the current line discipline, and reset it to N_TTY.
2543 * N.B. why reset ldisc when we're releasing the memory??
2545 * FIXME: this MUST get fixed for the new reflocking
2547 if (tty->ldisc.close)
2548 (tty->ldisc.close)(tty);
2549 tty_ldisc_put(tty->ldisc.num);
2552 * Switch the line discipline back
2554 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2555 tty_set_termios_ldisc(tty,N_TTY);
2556 if (o_tty) {
2557 /* FIXME: could o_tty be in setldisc here ? */
2558 clear_bit(TTY_LDISC, &o_tty->flags);
2559 if (o_tty->ldisc.close)
2560 (o_tty->ldisc.close)(o_tty);
2561 tty_ldisc_put(o_tty->ldisc.num);
2562 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2563 tty_set_termios_ldisc(o_tty,N_TTY);
2566 * The release_tty function takes care of the details of clearing
2567 * the slots and preserving the termios structure.
2569 release_tty(tty, idx);
2571 #ifdef CONFIG_UNIX98_PTYS
2572 /* Make this pty number available for reallocation */
2573 if (devpts) {
2574 down(&allocated_ptys_lock);
2575 idr_remove(&allocated_ptys, idx);
2576 up(&allocated_ptys_lock);
2578 #endif
2583 * tty_open - open a tty device
2584 * @inode: inode of device file
2585 * @filp: file pointer to tty
2587 * tty_open and tty_release keep up the tty count that contains the
2588 * number of opens done on a tty. We cannot use the inode-count, as
2589 * different inodes might point to the same tty.
2591 * Open-counting is needed for pty masters, as well as for keeping
2592 * track of serial lines: DTR is dropped when the last close happens.
2593 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2595 * The termios state of a pty is reset on first open so that
2596 * settings don't persist across reuse.
2598 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2599 * tty->count should protect the rest.
2600 * ->siglock protects ->signal/->sighand
2603 static int tty_open(struct inode * inode, struct file * filp)
2605 struct tty_struct *tty;
2606 int noctty, retval;
2607 struct tty_driver *driver;
2608 int index;
2609 dev_t device = inode->i_rdev;
2610 unsigned short saved_flags = filp->f_flags;
2612 nonseekable_open(inode, filp);
2614 retry_open:
2615 noctty = filp->f_flags & O_NOCTTY;
2616 index = -1;
2617 retval = 0;
2619 mutex_lock(&tty_mutex);
2621 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2622 tty = get_current_tty();
2623 if (!tty) {
2624 mutex_unlock(&tty_mutex);
2625 return -ENXIO;
2627 driver = tty->driver;
2628 index = tty->index;
2629 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2630 /* noctty = 1; */
2631 goto got_driver;
2633 #ifdef CONFIG_VT
2634 if (device == MKDEV(TTY_MAJOR,0)) {
2635 extern struct tty_driver *console_driver;
2636 driver = console_driver;
2637 index = fg_console;
2638 noctty = 1;
2639 goto got_driver;
2641 #endif
2642 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2643 driver = console_device(&index);
2644 if (driver) {
2645 /* Don't let /dev/console block */
2646 filp->f_flags |= O_NONBLOCK;
2647 noctty = 1;
2648 goto got_driver;
2650 mutex_unlock(&tty_mutex);
2651 return -ENODEV;
2654 driver = get_tty_driver(device, &index);
2655 if (!driver) {
2656 mutex_unlock(&tty_mutex);
2657 return -ENODEV;
2659 got_driver:
2660 retval = init_dev(driver, index, &tty);
2661 mutex_unlock(&tty_mutex);
2662 if (retval)
2663 return retval;
2665 filp->private_data = tty;
2666 file_move(filp, &tty->tty_files);
2667 check_tty_count(tty, "tty_open");
2668 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2669 tty->driver->subtype == PTY_TYPE_MASTER)
2670 noctty = 1;
2671 #ifdef TTY_DEBUG_HANGUP
2672 printk(KERN_DEBUG "opening %s...", tty->name);
2673 #endif
2674 if (!retval) {
2675 if (tty->driver->open)
2676 retval = tty->driver->open(tty, filp);
2677 else
2678 retval = -ENODEV;
2680 filp->f_flags = saved_flags;
2682 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2683 retval = -EBUSY;
2685 if (retval) {
2686 #ifdef TTY_DEBUG_HANGUP
2687 printk(KERN_DEBUG "error %d in opening %s...", retval,
2688 tty->name);
2689 #endif
2690 release_dev(filp);
2691 if (retval != -ERESTARTSYS)
2692 return retval;
2693 if (signal_pending(current))
2694 return retval;
2695 schedule();
2697 * Need to reset f_op in case a hangup happened.
2699 if (filp->f_op == &hung_up_tty_fops)
2700 filp->f_op = &tty_fops;
2701 goto retry_open;
2704 mutex_lock(&tty_mutex);
2705 spin_lock_irq(&current->sighand->siglock);
2706 if (!noctty &&
2707 current->signal->leader &&
2708 !current->signal->tty &&
2709 tty->session == NULL)
2710 __proc_set_tty(current, tty);
2711 spin_unlock_irq(&current->sighand->siglock);
2712 mutex_unlock(&tty_mutex);
2713 tty_audit_opening();
2714 return 0;
2717 #ifdef CONFIG_UNIX98_PTYS
2719 * ptmx_open - open a unix 98 pty master
2720 * @inode: inode of device file
2721 * @filp: file pointer to tty
2723 * Allocate a unix98 pty master device from the ptmx driver.
2725 * Locking: tty_mutex protects theinit_dev work. tty->count should
2726 protect the rest.
2727 * allocated_ptys_lock handles the list of free pty numbers
2730 static int ptmx_open(struct inode * inode, struct file * filp)
2732 struct tty_struct *tty;
2733 int retval;
2734 int index;
2735 int idr_ret;
2737 nonseekable_open(inode, filp);
2739 /* find a device that is not in use. */
2740 down(&allocated_ptys_lock);
2741 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2742 up(&allocated_ptys_lock);
2743 return -ENOMEM;
2745 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2746 if (idr_ret < 0) {
2747 up(&allocated_ptys_lock);
2748 if (idr_ret == -EAGAIN)
2749 return -ENOMEM;
2750 return -EIO;
2752 if (index >= pty_limit) {
2753 idr_remove(&allocated_ptys, index);
2754 up(&allocated_ptys_lock);
2755 return -EIO;
2757 up(&allocated_ptys_lock);
2759 mutex_lock(&tty_mutex);
2760 retval = init_dev(ptm_driver, index, &tty);
2761 mutex_unlock(&tty_mutex);
2763 if (retval)
2764 goto out;
2766 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2767 filp->private_data = tty;
2768 file_move(filp, &tty->tty_files);
2770 retval = -ENOMEM;
2771 if (devpts_pty_new(tty->link))
2772 goto out1;
2774 check_tty_count(tty, "tty_open");
2775 retval = ptm_driver->open(tty, filp);
2776 if (!retval) {
2777 tty_audit_opening();
2778 return 0;
2780 out1:
2781 release_dev(filp);
2782 return retval;
2783 out:
2784 down(&allocated_ptys_lock);
2785 idr_remove(&allocated_ptys, index);
2786 up(&allocated_ptys_lock);
2787 return retval;
2789 #endif
2792 * tty_release - vfs callback for close
2793 * @inode: inode of tty
2794 * @filp: file pointer for handle to tty
2796 * Called the last time each file handle is closed that references
2797 * this tty. There may however be several such references.
2799 * Locking:
2800 * Takes bkl. See release_dev
2803 static int tty_release(struct inode * inode, struct file * filp)
2805 lock_kernel();
2806 release_dev(filp);
2807 unlock_kernel();
2808 return 0;
2812 * tty_poll - check tty status
2813 * @filp: file being polled
2814 * @wait: poll wait structures to update
2816 * Call the line discipline polling method to obtain the poll
2817 * status of the device.
2819 * Locking: locks called line discipline but ldisc poll method
2820 * may be re-entered freely by other callers.
2823 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2825 struct tty_struct * tty;
2826 struct tty_ldisc *ld;
2827 int ret = 0;
2829 tty = (struct tty_struct *)filp->private_data;
2830 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2831 return 0;
2833 ld = tty_ldisc_ref_wait(tty);
2834 if (ld->poll)
2835 ret = (ld->poll)(tty, filp, wait);
2836 tty_ldisc_deref(ld);
2837 return ret;
2840 static int tty_fasync(int fd, struct file * filp, int on)
2842 struct tty_struct * tty;
2843 int retval;
2845 tty = (struct tty_struct *)filp->private_data;
2846 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2847 return 0;
2849 retval = fasync_helper(fd, filp, on, &tty->fasync);
2850 if (retval <= 0)
2851 return retval;
2853 if (on) {
2854 enum pid_type type;
2855 struct pid *pid;
2856 if (!waitqueue_active(&tty->read_wait))
2857 tty->minimum_to_wake = 1;
2858 if (tty->pgrp) {
2859 pid = tty->pgrp;
2860 type = PIDTYPE_PGID;
2861 } else {
2862 pid = task_pid(current);
2863 type = PIDTYPE_PID;
2865 retval = __f_setown(filp, pid, type, 0);
2866 if (retval)
2867 return retval;
2868 } else {
2869 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2870 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2872 return 0;
2876 * tiocsti - fake input character
2877 * @tty: tty to fake input into
2878 * @p: pointer to character
2880 * Fake input to a tty device. Does the necessary locking and
2881 * input management.
2883 * FIXME: does not honour flow control ??
2885 * Locking:
2886 * Called functions take tty_ldisc_lock
2887 * current->signal->tty check is safe without locks
2889 * FIXME: may race normal receive processing
2892 static int tiocsti(struct tty_struct *tty, char __user *p)
2894 char ch, mbz = 0;
2895 struct tty_ldisc *ld;
2897 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2898 return -EPERM;
2899 if (get_user(ch, p))
2900 return -EFAULT;
2901 ld = tty_ldisc_ref_wait(tty);
2902 ld->receive_buf(tty, &ch, &mbz, 1);
2903 tty_ldisc_deref(ld);
2904 return 0;
2908 * tiocgwinsz - implement window query ioctl
2909 * @tty; tty
2910 * @arg: user buffer for result
2912 * Copies the kernel idea of the window size into the user buffer.
2914 * Locking: tty->termios_mutex is taken to ensure the winsize data
2915 * is consistent.
2918 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2920 int err;
2922 mutex_lock(&tty->termios_mutex);
2923 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2924 mutex_unlock(&tty->termios_mutex);
2926 return err ? -EFAULT: 0;
2930 * tiocswinsz - implement window size set ioctl
2931 * @tty; tty
2932 * @arg: user buffer for result
2934 * Copies the user idea of the window size to the kernel. Traditionally
2935 * this is just advisory information but for the Linux console it
2936 * actually has driver level meaning and triggers a VC resize.
2938 * Locking:
2939 * Called function use the console_sem is used to ensure we do
2940 * not try and resize the console twice at once.
2941 * The tty->termios_mutex is used to ensure we don't double
2942 * resize and get confused. Lock order - tty->termios_mutex before
2943 * console sem
2946 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2947 struct winsize __user * arg)
2949 struct winsize tmp_ws;
2951 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2952 return -EFAULT;
2954 mutex_lock(&tty->termios_mutex);
2955 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2956 goto done;
2958 #ifdef CONFIG_VT
2959 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2960 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2961 tmp_ws.ws_row)) {
2962 mutex_unlock(&tty->termios_mutex);
2963 return -ENXIO;
2966 #endif
2967 if (tty->pgrp)
2968 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2969 if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2970 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2971 tty->winsize = tmp_ws;
2972 real_tty->winsize = tmp_ws;
2973 done:
2974 mutex_unlock(&tty->termios_mutex);
2975 return 0;
2979 * tioccons - allow admin to move logical console
2980 * @file: the file to become console
2982 * Allow the adminstrator to move the redirected console device
2984 * Locking: uses redirect_lock to guard the redirect information
2987 static int tioccons(struct file *file)
2989 if (!capable(CAP_SYS_ADMIN))
2990 return -EPERM;
2991 if (file->f_op->write == redirected_tty_write) {
2992 struct file *f;
2993 spin_lock(&redirect_lock);
2994 f = redirect;
2995 redirect = NULL;
2996 spin_unlock(&redirect_lock);
2997 if (f)
2998 fput(f);
2999 return 0;
3001 spin_lock(&redirect_lock);
3002 if (redirect) {
3003 spin_unlock(&redirect_lock);
3004 return -EBUSY;
3006 get_file(file);
3007 redirect = file;
3008 spin_unlock(&redirect_lock);
3009 return 0;
3013 * fionbio - non blocking ioctl
3014 * @file: file to set blocking value
3015 * @p: user parameter
3017 * Historical tty interfaces had a blocking control ioctl before
3018 * the generic functionality existed. This piece of history is preserved
3019 * in the expected tty API of posix OS's.
3021 * Locking: none, the open fle handle ensures it won't go away.
3024 static int fionbio(struct file *file, int __user *p)
3026 int nonblock;
3028 if (get_user(nonblock, p))
3029 return -EFAULT;
3031 if (nonblock)
3032 file->f_flags |= O_NONBLOCK;
3033 else
3034 file->f_flags &= ~O_NONBLOCK;
3035 return 0;
3039 * tiocsctty - set controlling tty
3040 * @tty: tty structure
3041 * @arg: user argument
3043 * This ioctl is used to manage job control. It permits a session
3044 * leader to set this tty as the controlling tty for the session.
3046 * Locking:
3047 * Takes tty_mutex() to protect tty instance
3048 * Takes tasklist_lock internally to walk sessions
3049 * Takes ->siglock() when updating signal->tty
3052 static int tiocsctty(struct tty_struct *tty, int arg)
3054 int ret = 0;
3055 if (current->signal->leader && (task_session(current) == tty->session))
3056 return ret;
3058 mutex_lock(&tty_mutex);
3060 * The process must be a session leader and
3061 * not have a controlling tty already.
3063 if (!current->signal->leader || current->signal->tty) {
3064 ret = -EPERM;
3065 goto unlock;
3068 if (tty->session) {
3070 * This tty is already the controlling
3071 * tty for another session group!
3073 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
3075 * Steal it away
3077 read_lock(&tasklist_lock);
3078 session_clear_tty(tty->session);
3079 read_unlock(&tasklist_lock);
3080 } else {
3081 ret = -EPERM;
3082 goto unlock;
3085 proc_set_tty(current, tty);
3086 unlock:
3087 mutex_unlock(&tty_mutex);
3088 return ret;
3092 * tiocgpgrp - get process group
3093 * @tty: tty passed by user
3094 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3095 * @p: returned pid
3097 * Obtain the process group of the tty. If there is no process group
3098 * return an error.
3100 * Locking: none. Reference to current->signal->tty is safe.
3103 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3106 * (tty == real_tty) is a cheap way of
3107 * testing if the tty is NOT a master pty.
3109 if (tty == real_tty && current->signal->tty != real_tty)
3110 return -ENOTTY;
3111 return put_user(pid_vnr(real_tty->pgrp), p);
3115 * tiocspgrp - attempt to set process group
3116 * @tty: tty passed by user
3117 * @real_tty: tty side device matching tty passed by user
3118 * @p: pid pointer
3120 * Set the process group of the tty to the session passed. Only
3121 * permitted where the tty session is our session.
3123 * Locking: None
3126 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3128 struct pid *pgrp;
3129 pid_t pgrp_nr;
3130 int retval = tty_check_change(real_tty);
3132 if (retval == -EIO)
3133 return -ENOTTY;
3134 if (retval)
3135 return retval;
3136 if (!current->signal->tty ||
3137 (current->signal->tty != real_tty) ||
3138 (real_tty->session != task_session(current)))
3139 return -ENOTTY;
3140 if (get_user(pgrp_nr, p))
3141 return -EFAULT;
3142 if (pgrp_nr < 0)
3143 return -EINVAL;
3144 rcu_read_lock();
3145 pgrp = find_vpid(pgrp_nr);
3146 retval = -ESRCH;
3147 if (!pgrp)
3148 goto out_unlock;
3149 retval = -EPERM;
3150 if (session_of_pgrp(pgrp) != task_session(current))
3151 goto out_unlock;
3152 retval = 0;
3153 put_pid(real_tty->pgrp);
3154 real_tty->pgrp = get_pid(pgrp);
3155 out_unlock:
3156 rcu_read_unlock();
3157 return retval;
3161 * tiocgsid - get session id
3162 * @tty: tty passed by user
3163 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3164 * @p: pointer to returned session id
3166 * Obtain the session id of the tty. If there is no session
3167 * return an error.
3169 * Locking: none. Reference to current->signal->tty is safe.
3172 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3175 * (tty == real_tty) is a cheap way of
3176 * testing if the tty is NOT a master pty.
3178 if (tty == real_tty && current->signal->tty != real_tty)
3179 return -ENOTTY;
3180 if (!real_tty->session)
3181 return -ENOTTY;
3182 return put_user(pid_vnr(real_tty->session), p);
3186 * tiocsetd - set line discipline
3187 * @tty: tty device
3188 * @p: pointer to user data
3190 * Set the line discipline according to user request.
3192 * Locking: see tty_set_ldisc, this function is just a helper
3195 static int tiocsetd(struct tty_struct *tty, int __user *p)
3197 int ldisc;
3199 if (get_user(ldisc, p))
3200 return -EFAULT;
3201 return tty_set_ldisc(tty, ldisc);
3205 * send_break - performed time break
3206 * @tty: device to break on
3207 * @duration: timeout in mS
3209 * Perform a timed break on hardware that lacks its own driver level
3210 * timed break functionality.
3212 * Locking:
3213 * atomic_write_lock serializes
3217 static int send_break(struct tty_struct *tty, unsigned int duration)
3219 if (tty_write_lock(tty, 0) < 0)
3220 return -EINTR;
3221 tty->driver->break_ctl(tty, -1);
3222 if (!signal_pending(current))
3223 msleep_interruptible(duration);
3224 tty->driver->break_ctl(tty, 0);
3225 tty_write_unlock(tty);
3226 if (signal_pending(current))
3227 return -EINTR;
3228 return 0;
3232 * tiocmget - get modem status
3233 * @tty: tty device
3234 * @file: user file pointer
3235 * @p: pointer to result
3237 * Obtain the modem status bits from the tty driver if the feature
3238 * is supported. Return -EINVAL if it is not available.
3240 * Locking: none (up to the driver)
3243 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3245 int retval = -EINVAL;
3247 if (tty->driver->tiocmget) {
3248 retval = tty->driver->tiocmget(tty, file);
3250 if (retval >= 0)
3251 retval = put_user(retval, p);
3253 return retval;
3257 * tiocmset - set modem status
3258 * @tty: tty device
3259 * @file: user file pointer
3260 * @cmd: command - clear bits, set bits or set all
3261 * @p: pointer to desired bits
3263 * Set the modem status bits from the tty driver if the feature
3264 * is supported. Return -EINVAL if it is not available.
3266 * Locking: none (up to the driver)
3269 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3270 unsigned __user *p)
3272 int retval = -EINVAL;
3274 if (tty->driver->tiocmset) {
3275 unsigned int set, clear, val;
3277 retval = get_user(val, p);
3278 if (retval)
3279 return retval;
3281 set = clear = 0;
3282 switch (cmd) {
3283 case TIOCMBIS:
3284 set = val;
3285 break;
3286 case TIOCMBIC:
3287 clear = val;
3288 break;
3289 case TIOCMSET:
3290 set = val;
3291 clear = ~val;
3292 break;
3295 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3296 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3298 retval = tty->driver->tiocmset(tty, file, set, clear);
3300 return retval;
3304 * Split this up, as gcc can choke on it otherwise..
3306 int tty_ioctl(struct inode * inode, struct file * file,
3307 unsigned int cmd, unsigned long arg)
3309 struct tty_struct *tty, *real_tty;
3310 void __user *p = (void __user *)arg;
3311 int retval;
3312 struct tty_ldisc *ld;
3314 tty = (struct tty_struct *)file->private_data;
3315 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3316 return -EINVAL;
3318 /* CHECKME: is this safe as one end closes ? */
3320 real_tty = tty;
3321 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3322 tty->driver->subtype == PTY_TYPE_MASTER)
3323 real_tty = tty->link;
3326 * Break handling by driver
3328 if (!tty->driver->break_ctl) {
3329 switch(cmd) {
3330 case TIOCSBRK:
3331 case TIOCCBRK:
3332 if (tty->driver->ioctl)
3333 return tty->driver->ioctl(tty, file, cmd, arg);
3334 return -EINVAL;
3336 /* These two ioctl's always return success; even if */
3337 /* the driver doesn't support them. */
3338 case TCSBRK:
3339 case TCSBRKP:
3340 if (!tty->driver->ioctl)
3341 return 0;
3342 retval = tty->driver->ioctl(tty, file, cmd, arg);
3343 if (retval == -ENOIOCTLCMD)
3344 retval = 0;
3345 return retval;
3350 * Factor out some common prep work
3352 switch (cmd) {
3353 case TIOCSETD:
3354 case TIOCSBRK:
3355 case TIOCCBRK:
3356 case TCSBRK:
3357 case TCSBRKP:
3358 retval = tty_check_change(tty);
3359 if (retval)
3360 return retval;
3361 if (cmd != TIOCCBRK) {
3362 tty_wait_until_sent(tty, 0);
3363 if (signal_pending(current))
3364 return -EINTR;
3366 break;
3369 switch (cmd) {
3370 case TIOCSTI:
3371 return tiocsti(tty, p);
3372 case TIOCGWINSZ:
3373 return tiocgwinsz(tty, p);
3374 case TIOCSWINSZ:
3375 return tiocswinsz(tty, real_tty, p);
3376 case TIOCCONS:
3377 return real_tty!=tty ? -EINVAL : tioccons(file);
3378 case FIONBIO:
3379 return fionbio(file, p);
3380 case TIOCEXCL:
3381 set_bit(TTY_EXCLUSIVE, &tty->flags);
3382 return 0;
3383 case TIOCNXCL:
3384 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3385 return 0;
3386 case TIOCNOTTY:
3387 if (current->signal->tty != tty)
3388 return -ENOTTY;
3389 no_tty();
3390 return 0;
3391 case TIOCSCTTY:
3392 return tiocsctty(tty, arg);
3393 case TIOCGPGRP:
3394 return tiocgpgrp(tty, real_tty, p);
3395 case TIOCSPGRP:
3396 return tiocspgrp(tty, real_tty, p);
3397 case TIOCGSID:
3398 return tiocgsid(tty, real_tty, p);
3399 case TIOCGETD:
3400 /* FIXME: check this is ok */
3401 return put_user(tty->ldisc.num, (int __user *)p);
3402 case TIOCSETD:
3403 return tiocsetd(tty, p);
3404 #ifdef CONFIG_VT
3405 case TIOCLINUX:
3406 return tioclinux(tty, arg);
3407 #endif
3409 * Break handling
3411 case TIOCSBRK: /* Turn break on, unconditionally */
3412 tty->driver->break_ctl(tty, -1);
3413 return 0;
3415 case TIOCCBRK: /* Turn break off, unconditionally */
3416 tty->driver->break_ctl(tty, 0);
3417 return 0;
3418 case TCSBRK: /* SVID version: non-zero arg --> no break */
3419 /* non-zero arg means wait for all output data
3420 * to be sent (performed above) but don't send break.
3421 * This is used by the tcdrain() termios function.
3423 if (!arg)
3424 return send_break(tty, 250);
3425 return 0;
3426 case TCSBRKP: /* support for POSIX tcsendbreak() */
3427 return send_break(tty, arg ? arg*100 : 250);
3429 case TIOCMGET:
3430 return tty_tiocmget(tty, file, p);
3432 case TIOCMSET:
3433 case TIOCMBIC:
3434 case TIOCMBIS:
3435 return tty_tiocmset(tty, file, cmd, p);
3436 case TCFLSH:
3437 switch (arg) {
3438 case TCIFLUSH:
3439 case TCIOFLUSH:
3440 /* flush tty buffer and allow ldisc to process ioctl */
3441 tty_buffer_flush(tty);
3442 break;
3444 break;
3446 if (tty->driver->ioctl) {
3447 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3448 if (retval != -ENOIOCTLCMD)
3449 return retval;
3451 ld = tty_ldisc_ref_wait(tty);
3452 retval = -EINVAL;
3453 if (ld->ioctl) {
3454 retval = ld->ioctl(tty, file, cmd, arg);
3455 if (retval == -ENOIOCTLCMD)
3456 retval = -EINVAL;
3458 tty_ldisc_deref(ld);
3459 return retval;
3462 #ifdef CONFIG_COMPAT
3463 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
3464 unsigned long arg)
3466 struct inode *inode = file->f_dentry->d_inode;
3467 struct tty_struct *tty = file->private_data;
3468 struct tty_ldisc *ld;
3469 int retval = -ENOIOCTLCMD;
3471 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3472 return -EINVAL;
3474 if (tty->driver->compat_ioctl) {
3475 retval = (tty->driver->compat_ioctl)(tty, file, cmd, arg);
3476 if (retval != -ENOIOCTLCMD)
3477 return retval;
3480 ld = tty_ldisc_ref_wait(tty);
3481 if (ld->compat_ioctl)
3482 retval = ld->compat_ioctl(tty, file, cmd, arg);
3483 tty_ldisc_deref(ld);
3485 return retval;
3487 #endif
3490 * This implements the "Secure Attention Key" --- the idea is to
3491 * prevent trojan horses by killing all processes associated with this
3492 * tty when the user hits the "Secure Attention Key". Required for
3493 * super-paranoid applications --- see the Orange Book for more details.
3495 * This code could be nicer; ideally it should send a HUP, wait a few
3496 * seconds, then send a INT, and then a KILL signal. But you then
3497 * have to coordinate with the init process, since all processes associated
3498 * with the current tty must be dead before the new getty is allowed
3499 * to spawn.
3501 * Now, if it would be correct ;-/ The current code has a nasty hole -
3502 * it doesn't catch files in flight. We may send the descriptor to ourselves
3503 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3505 * Nasty bug: do_SAK is being called in interrupt context. This can
3506 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3508 void __do_SAK(struct tty_struct *tty)
3510 #ifdef TTY_SOFT_SAK
3511 tty_hangup(tty);
3512 #else
3513 struct task_struct *g, *p;
3514 struct pid *session;
3515 int i;
3516 struct file *filp;
3517 struct fdtable *fdt;
3519 if (!tty)
3520 return;
3521 session = tty->session;
3523 tty_ldisc_flush(tty);
3525 if (tty->driver->flush_buffer)
3526 tty->driver->flush_buffer(tty);
3528 read_lock(&tasklist_lock);
3529 /* Kill the entire session */
3530 do_each_pid_task(session, PIDTYPE_SID, p) {
3531 printk(KERN_NOTICE "SAK: killed process %d"
3532 " (%s): task_session_nr(p)==tty->session\n",
3533 task_pid_nr(p), p->comm);
3534 send_sig(SIGKILL, p, 1);
3535 } while_each_pid_task(session, PIDTYPE_SID, p);
3536 /* Now kill any processes that happen to have the
3537 * tty open.
3539 do_each_thread(g, p) {
3540 if (p->signal->tty == tty) {
3541 printk(KERN_NOTICE "SAK: killed process %d"
3542 " (%s): task_session_nr(p)==tty->session\n",
3543 task_pid_nr(p), p->comm);
3544 send_sig(SIGKILL, p, 1);
3545 continue;
3547 task_lock(p);
3548 if (p->files) {
3550 * We don't take a ref to the file, so we must
3551 * hold ->file_lock instead.
3553 spin_lock(&p->files->file_lock);
3554 fdt = files_fdtable(p->files);
3555 for (i=0; i < fdt->max_fds; i++) {
3556 filp = fcheck_files(p->files, i);
3557 if (!filp)
3558 continue;
3559 if (filp->f_op->read == tty_read &&
3560 filp->private_data == tty) {
3561 printk(KERN_NOTICE "SAK: killed process %d"
3562 " (%s): fd#%d opened to the tty\n",
3563 task_pid_nr(p), p->comm, i);
3564 force_sig(SIGKILL, p);
3565 break;
3568 spin_unlock(&p->files->file_lock);
3570 task_unlock(p);
3571 } while_each_thread(g, p);
3572 read_unlock(&tasklist_lock);
3573 #endif
3576 static void do_SAK_work(struct work_struct *work)
3578 struct tty_struct *tty =
3579 container_of(work, struct tty_struct, SAK_work);
3580 __do_SAK(tty);
3584 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3585 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3586 * the values which we write to it will be identical to the values which it
3587 * already has. --akpm
3589 void do_SAK(struct tty_struct *tty)
3591 if (!tty)
3592 return;
3593 schedule_work(&tty->SAK_work);
3596 EXPORT_SYMBOL(do_SAK);
3599 * flush_to_ldisc
3600 * @work: tty structure passed from work queue.
3602 * This routine is called out of the software interrupt to flush data
3603 * from the buffer chain to the line discipline.
3605 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3606 * while invoking the line discipline receive_buf method. The
3607 * receive_buf method is single threaded for each tty instance.
3610 static void flush_to_ldisc(struct work_struct *work)
3612 struct tty_struct *tty =
3613 container_of(work, struct tty_struct, buf.work.work);
3614 unsigned long flags;
3615 struct tty_ldisc *disc;
3616 struct tty_buffer *tbuf, *head;
3617 char *char_buf;
3618 unsigned char *flag_buf;
3620 disc = tty_ldisc_ref(tty);
3621 if (disc == NULL) /* !TTY_LDISC */
3622 return;
3624 spin_lock_irqsave(&tty->buf.lock, flags);
3625 set_bit(TTY_FLUSHING, &tty->flags); /* So we know a flush is running */
3626 head = tty->buf.head;
3627 if (head != NULL) {
3628 tty->buf.head = NULL;
3629 for (;;) {
3630 int count = head->commit - head->read;
3631 if (!count) {
3632 if (head->next == NULL)
3633 break;
3634 tbuf = head;
3635 head = head->next;
3636 tty_buffer_free(tty, tbuf);
3637 continue;
3639 /* Ldisc or user is trying to flush the buffers
3640 we are feeding to the ldisc, stop feeding the
3641 line discipline as we want to empty the queue */
3642 if (test_bit(TTY_FLUSHPENDING, &tty->flags))
3643 break;
3644 if (!tty->receive_room) {
3645 schedule_delayed_work(&tty->buf.work, 1);
3646 break;
3648 if (count > tty->receive_room)
3649 count = tty->receive_room;
3650 char_buf = head->char_buf_ptr + head->read;
3651 flag_buf = head->flag_buf_ptr + head->read;
3652 head->read += count;
3653 spin_unlock_irqrestore(&tty->buf.lock, flags);
3654 disc->receive_buf(tty, char_buf, flag_buf, count);
3655 spin_lock_irqsave(&tty->buf.lock, flags);
3657 /* Restore the queue head */
3658 tty->buf.head = head;
3660 /* We may have a deferred request to flush the input buffer,
3661 if so pull the chain under the lock and empty the queue */
3662 if (test_bit(TTY_FLUSHPENDING, &tty->flags)) {
3663 __tty_buffer_flush(tty);
3664 clear_bit(TTY_FLUSHPENDING, &tty->flags);
3665 wake_up(&tty->read_wait);
3667 clear_bit(TTY_FLUSHING, &tty->flags);
3668 spin_unlock_irqrestore(&tty->buf.lock, flags);
3670 tty_ldisc_deref(disc);
3674 * tty_flip_buffer_push - terminal
3675 * @tty: tty to push
3677 * Queue a push of the terminal flip buffers to the line discipline. This
3678 * function must not be called from IRQ context if tty->low_latency is set.
3680 * In the event of the queue being busy for flipping the work will be
3681 * held off and retried later.
3683 * Locking: tty buffer lock. Driver locks in low latency mode.
3686 void tty_flip_buffer_push(struct tty_struct *tty)
3688 unsigned long flags;
3689 spin_lock_irqsave(&tty->buf.lock, flags);
3690 if (tty->buf.tail != NULL)
3691 tty->buf.tail->commit = tty->buf.tail->used;
3692 spin_unlock_irqrestore(&tty->buf.lock, flags);
3694 if (tty->low_latency)
3695 flush_to_ldisc(&tty->buf.work.work);
3696 else
3697 schedule_delayed_work(&tty->buf.work, 1);
3700 EXPORT_SYMBOL(tty_flip_buffer_push);
3704 * initialize_tty_struct
3705 * @tty: tty to initialize
3707 * This subroutine initializes a tty structure that has been newly
3708 * allocated.
3710 * Locking: none - tty in question must not be exposed at this point
3713 static void initialize_tty_struct(struct tty_struct *tty)
3715 memset(tty, 0, sizeof(struct tty_struct));
3716 tty->magic = TTY_MAGIC;
3717 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3718 tty->session = NULL;
3719 tty->pgrp = NULL;
3720 tty->overrun_time = jiffies;
3721 tty->buf.head = tty->buf.tail = NULL;
3722 tty_buffer_init(tty);
3723 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3724 init_MUTEX(&tty->buf.pty_sem);
3725 mutex_init(&tty->termios_mutex);
3726 init_waitqueue_head(&tty->write_wait);
3727 init_waitqueue_head(&tty->read_wait);
3728 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3729 mutex_init(&tty->atomic_read_lock);
3730 mutex_init(&tty->atomic_write_lock);
3731 spin_lock_init(&tty->read_lock);
3732 INIT_LIST_HEAD(&tty->tty_files);
3733 INIT_WORK(&tty->SAK_work, do_SAK_work);
3737 * The default put_char routine if the driver did not define one.
3740 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3742 tty->driver->write(tty, &ch, 1);
3745 static struct class *tty_class;
3748 * tty_register_device - register a tty device
3749 * @driver: the tty driver that describes the tty device
3750 * @index: the index in the tty driver for this tty device
3751 * @device: a struct device that is associated with this tty device.
3752 * This field is optional, if there is no known struct device
3753 * for this tty device it can be set to NULL safely.
3755 * Returns a pointer to the struct device for this tty device
3756 * (or ERR_PTR(-EFOO) on error).
3758 * This call is required to be made to register an individual tty device
3759 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3760 * that bit is not set, this function should not be called by a tty
3761 * driver.
3763 * Locking: ??
3766 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3767 struct device *device)
3769 char name[64];
3770 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3772 if (index >= driver->num) {
3773 printk(KERN_ERR "Attempt to register invalid tty line number "
3774 " (%d).\n", index);
3775 return ERR_PTR(-EINVAL);
3778 if (driver->type == TTY_DRIVER_TYPE_PTY)
3779 pty_line_name(driver, index, name);
3780 else
3781 tty_line_name(driver, index, name);
3783 return device_create(tty_class, device, dev, name);
3787 * tty_unregister_device - unregister a tty device
3788 * @driver: the tty driver that describes the tty device
3789 * @index: the index in the tty driver for this tty device
3791 * If a tty device is registered with a call to tty_register_device() then
3792 * this function must be called when the tty device is gone.
3794 * Locking: ??
3797 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3799 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3802 EXPORT_SYMBOL(tty_register_device);
3803 EXPORT_SYMBOL(tty_unregister_device);
3805 struct tty_driver *alloc_tty_driver(int lines)
3807 struct tty_driver *driver;
3809 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3810 if (driver) {
3811 driver->magic = TTY_DRIVER_MAGIC;
3812 driver->num = lines;
3813 /* later we'll move allocation of tables here */
3815 return driver;
3818 void put_tty_driver(struct tty_driver *driver)
3820 kfree(driver);
3823 void tty_set_operations(struct tty_driver *driver,
3824 const struct tty_operations *op)
3826 driver->open = op->open;
3827 driver->close = op->close;
3828 driver->write = op->write;
3829 driver->put_char = op->put_char;
3830 driver->flush_chars = op->flush_chars;
3831 driver->write_room = op->write_room;
3832 driver->chars_in_buffer = op->chars_in_buffer;
3833 driver->ioctl = op->ioctl;
3834 driver->compat_ioctl = op->compat_ioctl;
3835 driver->set_termios = op->set_termios;
3836 driver->throttle = op->throttle;
3837 driver->unthrottle = op->unthrottle;
3838 driver->stop = op->stop;
3839 driver->start = op->start;
3840 driver->hangup = op->hangup;
3841 driver->break_ctl = op->break_ctl;
3842 driver->flush_buffer = op->flush_buffer;
3843 driver->set_ldisc = op->set_ldisc;
3844 driver->wait_until_sent = op->wait_until_sent;
3845 driver->send_xchar = op->send_xchar;
3846 driver->read_proc = op->read_proc;
3847 driver->write_proc = op->write_proc;
3848 driver->tiocmget = op->tiocmget;
3849 driver->tiocmset = op->tiocmset;
3853 EXPORT_SYMBOL(alloc_tty_driver);
3854 EXPORT_SYMBOL(put_tty_driver);
3855 EXPORT_SYMBOL(tty_set_operations);
3858 * Called by a tty driver to register itself.
3860 int tty_register_driver(struct tty_driver *driver)
3862 int error;
3863 int i;
3864 dev_t dev;
3865 void **p = NULL;
3867 if (driver->flags & TTY_DRIVER_INSTALLED)
3868 return 0;
3870 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3871 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3872 if (!p)
3873 return -ENOMEM;
3876 if (!driver->major) {
3877 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3878 driver->name);
3879 if (!error) {
3880 driver->major = MAJOR(dev);
3881 driver->minor_start = MINOR(dev);
3883 } else {
3884 dev = MKDEV(driver->major, driver->minor_start);
3885 error = register_chrdev_region(dev, driver->num, driver->name);
3887 if (error < 0) {
3888 kfree(p);
3889 return error;
3892 if (p) {
3893 driver->ttys = (struct tty_struct **)p;
3894 driver->termios = (struct ktermios **)(p + driver->num);
3895 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3896 } else {
3897 driver->ttys = NULL;
3898 driver->termios = NULL;
3899 driver->termios_locked = NULL;
3902 cdev_init(&driver->cdev, &tty_fops);
3903 driver->cdev.owner = driver->owner;
3904 error = cdev_add(&driver->cdev, dev, driver->num);
3905 if (error) {
3906 unregister_chrdev_region(dev, driver->num);
3907 driver->ttys = NULL;
3908 driver->termios = driver->termios_locked = NULL;
3909 kfree(p);
3910 return error;
3913 if (!driver->put_char)
3914 driver->put_char = tty_default_put_char;
3916 mutex_lock(&tty_mutex);
3917 list_add(&driver->tty_drivers, &tty_drivers);
3918 mutex_unlock(&tty_mutex);
3920 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3921 for(i = 0; i < driver->num; i++)
3922 tty_register_device(driver, i, NULL);
3924 proc_tty_register_driver(driver);
3925 return 0;
3928 EXPORT_SYMBOL(tty_register_driver);
3931 * Called by a tty driver to unregister itself.
3933 int tty_unregister_driver(struct tty_driver *driver)
3935 int i;
3936 struct ktermios *tp;
3937 void *p;
3939 if (driver->refcount)
3940 return -EBUSY;
3942 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3943 driver->num);
3944 mutex_lock(&tty_mutex);
3945 list_del(&driver->tty_drivers);
3946 mutex_unlock(&tty_mutex);
3949 * Free the termios and termios_locked structures because
3950 * we don't want to get memory leaks when modular tty
3951 * drivers are removed from the kernel.
3953 for (i = 0; i < driver->num; i++) {
3954 tp = driver->termios[i];
3955 if (tp) {
3956 driver->termios[i] = NULL;
3957 kfree(tp);
3959 tp = driver->termios_locked[i];
3960 if (tp) {
3961 driver->termios_locked[i] = NULL;
3962 kfree(tp);
3964 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3965 tty_unregister_device(driver, i);
3967 p = driver->ttys;
3968 proc_tty_unregister_driver(driver);
3969 driver->ttys = NULL;
3970 driver->termios = driver->termios_locked = NULL;
3971 kfree(p);
3972 cdev_del(&driver->cdev);
3973 return 0;
3975 EXPORT_SYMBOL(tty_unregister_driver);
3977 dev_t tty_devnum(struct tty_struct *tty)
3979 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3981 EXPORT_SYMBOL(tty_devnum);
3983 void proc_clear_tty(struct task_struct *p)
3985 spin_lock_irq(&p->sighand->siglock);
3986 p->signal->tty = NULL;
3987 spin_unlock_irq(&p->sighand->siglock);
3989 EXPORT_SYMBOL(proc_clear_tty);
3991 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3993 if (tty) {
3994 /* We should not have a session or pgrp to here but.... */
3995 put_pid(tty->session);
3996 put_pid(tty->pgrp);
3997 tty->session = get_pid(task_session(tsk));
3998 tty->pgrp = get_pid(task_pgrp(tsk));
4000 put_pid(tsk->signal->tty_old_pgrp);
4001 tsk->signal->tty = tty;
4002 tsk->signal->tty_old_pgrp = NULL;
4005 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
4007 spin_lock_irq(&tsk->sighand->siglock);
4008 __proc_set_tty(tsk, tty);
4009 spin_unlock_irq(&tsk->sighand->siglock);
4012 struct tty_struct *get_current_tty(void)
4014 struct tty_struct *tty;
4015 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
4016 tty = current->signal->tty;
4018 * session->tty can be changed/cleared from under us, make sure we
4019 * issue the load. The obtained pointer, when not NULL, is valid as
4020 * long as we hold tty_mutex.
4022 barrier();
4023 return tty;
4025 EXPORT_SYMBOL_GPL(get_current_tty);
4028 * Initialize the console device. This is called *early*, so
4029 * we can't necessarily depend on lots of kernel help here.
4030 * Just do some early initializations, and do the complex setup
4031 * later.
4033 void __init console_init(void)
4035 initcall_t *call;
4037 /* Setup the default TTY line discipline. */
4038 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
4041 * set up the console device so that later boot sequences can
4042 * inform about problems etc..
4044 call = __con_initcall_start;
4045 while (call < __con_initcall_end) {
4046 (*call)();
4047 call++;
4051 #ifdef CONFIG_VT
4052 extern int vty_init(void);
4053 #endif
4055 static int __init tty_class_init(void)
4057 tty_class = class_create(THIS_MODULE, "tty");
4058 if (IS_ERR(tty_class))
4059 return PTR_ERR(tty_class);
4060 return 0;
4063 postcore_initcall(tty_class_init);
4065 /* 3/2004 jmc: why do these devices exist? */
4067 static struct cdev tty_cdev, console_cdev;
4068 #ifdef CONFIG_UNIX98_PTYS
4069 static struct cdev ptmx_cdev;
4070 #endif
4071 #ifdef CONFIG_VT
4072 static struct cdev vc0_cdev;
4073 #endif
4076 * Ok, now we can initialize the rest of the tty devices and can count
4077 * on memory allocations, interrupts etc..
4079 static int __init tty_init(void)
4081 cdev_init(&tty_cdev, &tty_fops);
4082 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
4083 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
4084 panic("Couldn't register /dev/tty driver\n");
4085 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
4087 cdev_init(&console_cdev, &console_fops);
4088 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
4089 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
4090 panic("Couldn't register /dev/console driver\n");
4091 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
4093 #ifdef CONFIG_UNIX98_PTYS
4094 cdev_init(&ptmx_cdev, &ptmx_fops);
4095 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
4096 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
4097 panic("Couldn't register /dev/ptmx driver\n");
4098 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
4099 #endif
4101 #ifdef CONFIG_VT
4102 cdev_init(&vc0_cdev, &console_fops);
4103 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
4104 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
4105 panic("Couldn't register /dev/tty0 driver\n");
4106 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
4108 vty_init();
4109 #endif
4110 return 0;
4112 module_init(tty_init);