1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2004, 2005 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/jiffies.h>
25 #include <linux/module.h>
27 #include <linux/bio.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/file.h>
31 #include <linux/kthread.h>
32 #include <linux/configfs.h>
33 #include <linux/random.h>
34 #include <linux/crc32.h>
35 #include <linux/time.h>
37 #include "heartbeat.h"
39 #include "nodemanager.h"
46 * The first heartbeat pass had one global thread that would serialize all hb
47 * callback calls. This global serializing sem should only be removed once
48 * we've made sure that all callees can deal with being called concurrently
49 * from multiple hb region threads.
51 static DECLARE_RWSEM(o2hb_callback_sem
);
54 * multiple hb threads are watching multiple regions. A node is live
55 * whenever any of the threads sees activity from the node in its region.
57 static DEFINE_SPINLOCK(o2hb_live_lock
);
58 static struct list_head o2hb_live_slots
[O2NM_MAX_NODES
];
59 static unsigned long o2hb_live_node_bitmap
[BITS_TO_LONGS(O2NM_MAX_NODES
)];
60 static LIST_HEAD(o2hb_node_events
);
61 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue
);
63 static LIST_HEAD(o2hb_all_regions
);
65 static struct o2hb_callback
{
66 struct list_head list
;
67 } o2hb_callbacks
[O2HB_NUM_CB
];
69 static struct o2hb_callback
*hbcall_from_type(enum o2hb_callback_type type
);
71 #define O2HB_DEFAULT_BLOCK_BITS 9
73 unsigned int o2hb_dead_threshold
= O2HB_DEFAULT_DEAD_THRESHOLD
;
75 /* Only sets a new threshold if there are no active regions.
77 * No locking or otherwise interesting code is required for reading
78 * o2hb_dead_threshold as it can't change once regions are active and
79 * it's not interesting to anyone until then anyway. */
80 static void o2hb_dead_threshold_set(unsigned int threshold
)
82 if (threshold
> O2HB_MIN_DEAD_THRESHOLD
) {
83 spin_lock(&o2hb_live_lock
);
84 if (list_empty(&o2hb_all_regions
))
85 o2hb_dead_threshold
= threshold
;
86 spin_unlock(&o2hb_live_lock
);
90 struct o2hb_node_event
{
91 struct list_head hn_item
;
92 enum o2hb_callback_type hn_event_type
;
93 struct o2nm_node
*hn_node
;
97 struct o2hb_disk_slot
{
98 struct o2hb_disk_heartbeat_block
*ds_raw_block
;
101 u64 ds_last_generation
;
102 u16 ds_equal_samples
;
103 u16 ds_changed_samples
;
104 struct list_head ds_live_item
;
107 /* each thread owns a region.. when we're asked to tear down the region
108 * we ask the thread to stop, who cleans up the region */
110 struct config_item hr_item
;
112 struct list_head hr_all_item
;
113 unsigned hr_unclean_stop
:1;
115 /* protected by the hr_callback_sem */
116 struct task_struct
*hr_task
;
118 unsigned int hr_blocks
;
119 unsigned long long hr_start_block
;
121 unsigned int hr_block_bits
;
122 unsigned int hr_block_bytes
;
124 unsigned int hr_slots_per_page
;
125 unsigned int hr_num_pages
;
127 struct page
**hr_slot_data
;
128 struct block_device
*hr_bdev
;
129 struct o2hb_disk_slot
*hr_slots
;
131 /* let the person setting up hb wait for it to return until it
132 * has reached a 'steady' state. This will be fixed when we have
133 * a more complete api that doesn't lead to this sort of fragility. */
134 atomic_t hr_steady_iterations
;
136 char hr_dev_name
[BDEVNAME_SIZE
];
138 unsigned int hr_timeout_ms
;
140 /* randomized as the region goes up and down so that a node
141 * recognizes a node going up and down in one iteration */
144 struct work_struct hr_write_timeout_work
;
145 unsigned long hr_last_timeout_start
;
147 /* Used during o2hb_check_slot to hold a copy of the block
148 * being checked because we temporarily have to zero out the
150 struct o2hb_disk_heartbeat_block
*hr_tmp_block
;
153 struct o2hb_bio_wait_ctxt
{
154 atomic_t wc_num_reqs
;
155 struct completion wc_io_complete
;
159 static void o2hb_write_timeout(void *arg
)
161 struct o2hb_region
*reg
= arg
;
163 mlog(ML_ERROR
, "Heartbeat write timeout to device %s after %u "
164 "milliseconds\n", reg
->hr_dev_name
,
165 jiffies_to_msecs(jiffies
- reg
->hr_last_timeout_start
));
166 o2quo_disk_timeout();
169 static void o2hb_arm_write_timeout(struct o2hb_region
*reg
)
171 mlog(0, "Queue write timeout for %u ms\n", O2HB_MAX_WRITE_TIMEOUT_MS
);
173 cancel_delayed_work(®
->hr_write_timeout_work
);
174 reg
->hr_last_timeout_start
= jiffies
;
175 schedule_delayed_work(®
->hr_write_timeout_work
,
176 msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS
));
179 static void o2hb_disarm_write_timeout(struct o2hb_region
*reg
)
181 cancel_delayed_work(®
->hr_write_timeout_work
);
182 flush_scheduled_work();
185 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt
*wc
,
186 unsigned int num_ios
)
188 atomic_set(&wc
->wc_num_reqs
, num_ios
);
189 init_completion(&wc
->wc_io_complete
);
193 /* Used in error paths too */
194 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt
*wc
,
197 /* sadly atomic_sub_and_test() isn't available on all platforms. The
198 * good news is that the fast path only completes one at a time */
200 if (atomic_dec_and_test(&wc
->wc_num_reqs
)) {
202 complete(&wc
->wc_io_complete
);
207 static void o2hb_wait_on_io(struct o2hb_region
*reg
,
208 struct o2hb_bio_wait_ctxt
*wc
)
210 struct address_space
*mapping
= reg
->hr_bdev
->bd_inode
->i_mapping
;
212 blk_run_address_space(mapping
);
214 wait_for_completion(&wc
->wc_io_complete
);
217 static int o2hb_bio_end_io(struct bio
*bio
,
218 unsigned int bytes_done
,
221 struct o2hb_bio_wait_ctxt
*wc
= bio
->bi_private
;
224 mlog(ML_ERROR
, "IO Error %d\n", error
);
225 wc
->wc_error
= error
;
231 o2hb_bio_wait_dec(wc
, 1);
235 /* Setup a Bio to cover I/O against num_slots slots starting at
237 static struct bio
*o2hb_setup_one_bio(struct o2hb_region
*reg
,
238 struct o2hb_bio_wait_ctxt
*wc
,
239 unsigned int start_slot
,
240 unsigned int num_slots
)
242 int i
, nr_vecs
, len
, first_page
, last_page
;
243 unsigned int vec_len
, vec_start
;
244 unsigned int bits
= reg
->hr_block_bits
;
245 unsigned int spp
= reg
->hr_slots_per_page
;
249 nr_vecs
= (num_slots
+ spp
- 1) / spp
;
251 /* Testing has shown this allocation to take long enough under
252 * GFP_KERNEL that the local node can get fenced. It would be
253 * nicest if we could pre-allocate these bios and avoid this
255 bio
= bio_alloc(GFP_ATOMIC
, nr_vecs
);
257 mlog(ML_ERROR
, "Could not alloc slots BIO!\n");
258 bio
= ERR_PTR(-ENOMEM
);
262 /* Must put everything in 512 byte sectors for the bio... */
263 bio
->bi_sector
= (reg
->hr_start_block
+ start_slot
) << (bits
- 9);
264 bio
->bi_bdev
= reg
->hr_bdev
;
265 bio
->bi_private
= wc
;
266 bio
->bi_end_io
= o2hb_bio_end_io
;
268 first_page
= start_slot
/ spp
;
269 last_page
= first_page
+ nr_vecs
;
270 vec_start
= (start_slot
<< bits
) % PAGE_CACHE_SIZE
;
271 for(i
= first_page
; i
< last_page
; i
++) {
272 page
= reg
->hr_slot_data
[i
];
274 vec_len
= PAGE_CACHE_SIZE
;
275 /* last page might be short */
276 if (((i
+ 1) * spp
) > (start_slot
+ num_slots
))
277 vec_len
= ((num_slots
+ start_slot
) % spp
) << bits
;
278 vec_len
-= vec_start
;
280 mlog(ML_HB_BIO
, "page %d, vec_len = %u, vec_start = %u\n",
281 i
, vec_len
, vec_start
);
283 len
= bio_add_page(bio
, page
, vec_len
, vec_start
);
284 if (len
!= vec_len
) {
288 mlog(ML_ERROR
, "Error adding page to bio i = %d, "
289 "vec_len = %u, len = %d\n, start = %u\n",
290 i
, vec_len
, len
, vec_start
);
302 * Compute the maximum number of sectors the bdev can handle in one bio,
305 * Stolen from oracleasm, thanks Joel!
307 static int compute_max_sectors(struct block_device
*bdev
)
309 int max_pages
, max_sectors
, pow_two_sectors
;
311 struct request_queue
*q
;
313 q
= bdev_get_queue(bdev
);
314 max_pages
= q
->max_sectors
>> (PAGE_SHIFT
- 9);
315 if (max_pages
> BIO_MAX_PAGES
)
316 max_pages
= BIO_MAX_PAGES
;
317 if (max_pages
> q
->max_phys_segments
)
318 max_pages
= q
->max_phys_segments
;
319 if (max_pages
> q
->max_hw_segments
)
320 max_pages
= q
->max_hw_segments
;
321 max_pages
--; /* Handle I/Os that straddle a page */
323 max_sectors
= max_pages
<< (PAGE_SHIFT
- 9);
325 /* Why is fls() 1-based???? */
326 pow_two_sectors
= 1 << (fls(max_sectors
) - 1);
328 return pow_two_sectors
;
331 static inline void o2hb_compute_request_limits(struct o2hb_region
*reg
,
332 unsigned int num_slots
,
333 unsigned int *num_bios
,
334 unsigned int *slots_per_bio
)
336 unsigned int max_sectors
, io_sectors
;
338 max_sectors
= compute_max_sectors(reg
->hr_bdev
);
340 io_sectors
= num_slots
<< (reg
->hr_block_bits
- 9);
342 *num_bios
= (io_sectors
+ max_sectors
- 1) / max_sectors
;
343 *slots_per_bio
= max_sectors
>> (reg
->hr_block_bits
- 9);
345 mlog(ML_HB_BIO
, "My io size is %u sectors for %u slots. This "
346 "device can handle %u sectors of I/O\n", io_sectors
, num_slots
,
348 mlog(ML_HB_BIO
, "Will need %u bios holding %u slots each\n",
349 *num_bios
, *slots_per_bio
);
352 static int o2hb_read_slots(struct o2hb_region
*reg
,
353 unsigned int max_slots
)
355 unsigned int num_bios
, slots_per_bio
, start_slot
, num_slots
;
357 struct o2hb_bio_wait_ctxt wc
;
361 o2hb_compute_request_limits(reg
, max_slots
, &num_bios
, &slots_per_bio
);
363 bios
= kcalloc(num_bios
, sizeof(struct bio
*), GFP_KERNEL
);
370 o2hb_bio_wait_init(&wc
, num_bios
);
372 num_slots
= slots_per_bio
;
373 for(i
= 0; i
< num_bios
; i
++) {
374 start_slot
= i
* slots_per_bio
;
376 /* adjust num_slots at last bio */
377 if (max_slots
< (start_slot
+ num_slots
))
378 num_slots
= max_slots
- start_slot
;
380 bio
= o2hb_setup_one_bio(reg
, &wc
, start_slot
, num_slots
);
382 o2hb_bio_wait_dec(&wc
, num_bios
- i
);
384 status
= PTR_ERR(bio
);
390 submit_bio(READ
, bio
);
396 o2hb_wait_on_io(reg
, &wc
);
397 if (wc
.wc_error
&& !status
)
398 status
= wc
.wc_error
;
401 for(i
= 0; i
< num_bios
; i
++)
410 static int o2hb_issue_node_write(struct o2hb_region
*reg
,
411 struct bio
**write_bio
,
412 struct o2hb_bio_wait_ctxt
*write_wc
)
418 o2hb_bio_wait_init(write_wc
, 1);
420 slot
= o2nm_this_node();
422 bio
= o2hb_setup_one_bio(reg
, write_wc
, slot
, 1);
424 status
= PTR_ERR(bio
);
429 submit_bio(WRITE
, bio
);
437 static u32
o2hb_compute_block_crc_le(struct o2hb_region
*reg
,
438 struct o2hb_disk_heartbeat_block
*hb_block
)
443 /* We want to compute the block crc with a 0 value in the
444 * hb_cksum field. Save it off here and replace after the
446 old_cksum
= hb_block
->hb_cksum
;
447 hb_block
->hb_cksum
= 0;
449 ret
= crc32_le(0, (unsigned char *) hb_block
, reg
->hr_block_bytes
);
451 hb_block
->hb_cksum
= old_cksum
;
456 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block
*hb_block
)
458 mlog(ML_ERROR
, "Dump slot information: seq = 0x%llx, node = %u, "
459 "cksum = 0x%x, generation 0x%llx\n",
460 (long long)le64_to_cpu(hb_block
->hb_seq
),
461 hb_block
->hb_node
, le32_to_cpu(hb_block
->hb_cksum
),
462 (long long)le64_to_cpu(hb_block
->hb_generation
));
465 static int o2hb_verify_crc(struct o2hb_region
*reg
,
466 struct o2hb_disk_heartbeat_block
*hb_block
)
470 read
= le32_to_cpu(hb_block
->hb_cksum
);
471 computed
= o2hb_compute_block_crc_le(reg
, hb_block
);
473 return read
== computed
;
476 /* We want to make sure that nobody is heartbeating on top of us --
477 * this will help detect an invalid configuration. */
478 static int o2hb_check_last_timestamp(struct o2hb_region
*reg
)
481 struct o2hb_disk_slot
*slot
;
482 struct o2hb_disk_heartbeat_block
*hb_block
;
484 node_num
= o2nm_this_node();
487 slot
= ®
->hr_slots
[node_num
];
488 /* Don't check on our 1st timestamp */
489 if (slot
->ds_last_time
) {
490 hb_block
= slot
->ds_raw_block
;
492 if (le64_to_cpu(hb_block
->hb_seq
) != slot
->ds_last_time
)
499 static inline void o2hb_prepare_block(struct o2hb_region
*reg
,
504 struct o2hb_disk_slot
*slot
;
505 struct o2hb_disk_heartbeat_block
*hb_block
;
507 node_num
= o2nm_this_node();
508 slot
= ®
->hr_slots
[node_num
];
510 hb_block
= (struct o2hb_disk_heartbeat_block
*)slot
->ds_raw_block
;
511 memset(hb_block
, 0, reg
->hr_block_bytes
);
512 /* TODO: time stuff */
513 cputime
= CURRENT_TIME
.tv_sec
;
517 hb_block
->hb_seq
= cpu_to_le64(cputime
);
518 hb_block
->hb_node
= node_num
;
519 hb_block
->hb_generation
= cpu_to_le64(generation
);
520 hb_block
->hb_dead_ms
= cpu_to_le32(o2hb_dead_threshold
* O2HB_REGION_TIMEOUT_MS
);
522 /* This step must always happen last! */
523 hb_block
->hb_cksum
= cpu_to_le32(o2hb_compute_block_crc_le(reg
,
526 mlog(ML_HB_BIO
, "our node generation = 0x%llx, cksum = 0x%x\n",
527 (long long)cpu_to_le64(generation
),
528 le32_to_cpu(hb_block
->hb_cksum
));
531 static void o2hb_fire_callbacks(struct o2hb_callback
*hbcall
,
532 struct o2nm_node
*node
,
535 struct list_head
*iter
;
536 struct o2hb_callback_func
*f
;
538 list_for_each(iter
, &hbcall
->list
) {
539 f
= list_entry(iter
, struct o2hb_callback_func
, hc_item
);
540 mlog(ML_HEARTBEAT
, "calling funcs %p\n", f
);
541 (f
->hc_func
)(node
, idx
, f
->hc_data
);
545 /* Will run the list in order until we process the passed event */
546 static void o2hb_run_event_list(struct o2hb_node_event
*queued_event
)
549 struct o2hb_callback
*hbcall
;
550 struct o2hb_node_event
*event
;
552 spin_lock(&o2hb_live_lock
);
553 empty
= list_empty(&queued_event
->hn_item
);
554 spin_unlock(&o2hb_live_lock
);
558 /* Holding callback sem assures we don't alter the callback
559 * lists when doing this, and serializes ourselves with other
560 * processes wanting callbacks. */
561 down_write(&o2hb_callback_sem
);
563 spin_lock(&o2hb_live_lock
);
564 while (!list_empty(&o2hb_node_events
)
565 && !list_empty(&queued_event
->hn_item
)) {
566 event
= list_entry(o2hb_node_events
.next
,
567 struct o2hb_node_event
,
569 list_del_init(&event
->hn_item
);
570 spin_unlock(&o2hb_live_lock
);
572 mlog(ML_HEARTBEAT
, "Node %s event for %d\n",
573 event
->hn_event_type
== O2HB_NODE_UP_CB
? "UP" : "DOWN",
576 hbcall
= hbcall_from_type(event
->hn_event_type
);
578 /* We should *never* have gotten on to the list with a
579 * bad type... This isn't something that we should try
580 * to recover from. */
581 BUG_ON(IS_ERR(hbcall
));
583 o2hb_fire_callbacks(hbcall
, event
->hn_node
, event
->hn_node_num
);
585 spin_lock(&o2hb_live_lock
);
587 spin_unlock(&o2hb_live_lock
);
589 up_write(&o2hb_callback_sem
);
592 static void o2hb_queue_node_event(struct o2hb_node_event
*event
,
593 enum o2hb_callback_type type
,
594 struct o2nm_node
*node
,
597 assert_spin_locked(&o2hb_live_lock
);
599 event
->hn_event_type
= type
;
600 event
->hn_node
= node
;
601 event
->hn_node_num
= node_num
;
603 mlog(ML_HEARTBEAT
, "Queue node %s event for node %d\n",
604 type
== O2HB_NODE_UP_CB
? "UP" : "DOWN", node_num
);
606 list_add_tail(&event
->hn_item
, &o2hb_node_events
);
609 static void o2hb_shutdown_slot(struct o2hb_disk_slot
*slot
)
611 struct o2hb_node_event event
=
612 { .hn_item
= LIST_HEAD_INIT(event
.hn_item
), };
613 struct o2nm_node
*node
;
615 node
= o2nm_get_node_by_num(slot
->ds_node_num
);
619 spin_lock(&o2hb_live_lock
);
620 if (!list_empty(&slot
->ds_live_item
)) {
621 mlog(ML_HEARTBEAT
, "Shutdown, node %d leaves region\n",
624 list_del_init(&slot
->ds_live_item
);
626 if (list_empty(&o2hb_live_slots
[slot
->ds_node_num
])) {
627 clear_bit(slot
->ds_node_num
, o2hb_live_node_bitmap
);
629 o2hb_queue_node_event(&event
, O2HB_NODE_DOWN_CB
, node
,
633 spin_unlock(&o2hb_live_lock
);
635 o2hb_run_event_list(&event
);
640 static int o2hb_check_slot(struct o2hb_region
*reg
,
641 struct o2hb_disk_slot
*slot
)
643 int changed
= 0, gen_changed
= 0;
644 struct o2hb_node_event event
=
645 { .hn_item
= LIST_HEAD_INIT(event
.hn_item
), };
646 struct o2nm_node
*node
;
647 struct o2hb_disk_heartbeat_block
*hb_block
= reg
->hr_tmp_block
;
649 unsigned int dead_ms
= o2hb_dead_threshold
* O2HB_REGION_TIMEOUT_MS
;
650 unsigned int slot_dead_ms
;
652 memcpy(hb_block
, slot
->ds_raw_block
, reg
->hr_block_bytes
);
654 /* Is this correct? Do we assume that the node doesn't exist
655 * if we're not configured for him? */
656 node
= o2nm_get_node_by_num(slot
->ds_node_num
);
660 if (!o2hb_verify_crc(reg
, hb_block
)) {
661 /* all paths from here will drop o2hb_live_lock for
663 spin_lock(&o2hb_live_lock
);
665 /* Don't print an error on the console in this case -
666 * a freshly formatted heartbeat area will not have a
668 if (list_empty(&slot
->ds_live_item
))
671 /* The node is live but pushed out a bad crc. We
672 * consider it a transient miss but don't populate any
673 * other values as they may be junk. */
674 mlog(ML_ERROR
, "Node %d has written a bad crc to %s\n",
675 slot
->ds_node_num
, reg
->hr_dev_name
);
676 o2hb_dump_slot(hb_block
);
678 slot
->ds_equal_samples
++;
682 /* we don't care if these wrap.. the state transitions below
683 * clear at the right places */
684 cputime
= le64_to_cpu(hb_block
->hb_seq
);
685 if (slot
->ds_last_time
!= cputime
)
686 slot
->ds_changed_samples
++;
688 slot
->ds_equal_samples
++;
689 slot
->ds_last_time
= cputime
;
691 /* The node changed heartbeat generations. We assume this to
692 * mean it dropped off but came back before we timed out. We
693 * want to consider it down for the time being but don't want
694 * to lose any changed_samples state we might build up to
695 * considering it live again. */
696 if (slot
->ds_last_generation
!= le64_to_cpu(hb_block
->hb_generation
)) {
698 slot
->ds_equal_samples
= 0;
699 mlog(ML_HEARTBEAT
, "Node %d changed generation (0x%llx "
700 "to 0x%llx)\n", slot
->ds_node_num
,
701 (long long)slot
->ds_last_generation
,
702 (long long)le64_to_cpu(hb_block
->hb_generation
));
705 slot
->ds_last_generation
= le64_to_cpu(hb_block
->hb_generation
);
707 mlog(ML_HEARTBEAT
, "Slot %d gen 0x%llx cksum 0x%x "
708 "seq %llu last %llu changed %u equal %u\n",
709 slot
->ds_node_num
, (long long)slot
->ds_last_generation
,
710 le32_to_cpu(hb_block
->hb_cksum
),
711 (unsigned long long)le64_to_cpu(hb_block
->hb_seq
),
712 (unsigned long long)slot
->ds_last_time
, slot
->ds_changed_samples
,
713 slot
->ds_equal_samples
);
715 spin_lock(&o2hb_live_lock
);
718 /* dead nodes only come to life after some number of
719 * changes at any time during their dead time */
720 if (list_empty(&slot
->ds_live_item
) &&
721 slot
->ds_changed_samples
>= O2HB_LIVE_THRESHOLD
) {
722 mlog(ML_HEARTBEAT
, "Node %d (id 0x%llx) joined my region\n",
723 slot
->ds_node_num
, (long long)slot
->ds_last_generation
);
725 /* first on the list generates a callback */
726 if (list_empty(&o2hb_live_slots
[slot
->ds_node_num
])) {
727 set_bit(slot
->ds_node_num
, o2hb_live_node_bitmap
);
729 o2hb_queue_node_event(&event
, O2HB_NODE_UP_CB
, node
,
735 list_add_tail(&slot
->ds_live_item
,
736 &o2hb_live_slots
[slot
->ds_node_num
]);
738 slot
->ds_equal_samples
= 0;
740 /* We want to be sure that all nodes agree on the
741 * number of milliseconds before a node will be
742 * considered dead. The self-fencing timeout is
743 * computed from this value, and a discrepancy might
744 * result in heartbeat calling a node dead when it
745 * hasn't self-fenced yet. */
746 slot_dead_ms
= le32_to_cpu(hb_block
->hb_dead_ms
);
747 if (slot_dead_ms
&& slot_dead_ms
!= dead_ms
) {
748 /* TODO: Perhaps we can fail the region here. */
749 mlog(ML_ERROR
, "Node %d on device %s has a dead count "
750 "of %u ms, but our count is %u ms.\n"
751 "Please double check your configuration values "
752 "for 'O2CB_HEARTBEAT_THRESHOLD'\n",
753 slot
->ds_node_num
, reg
->hr_dev_name
, slot_dead_ms
,
759 /* if the list is dead, we're done.. */
760 if (list_empty(&slot
->ds_live_item
))
763 /* live nodes only go dead after enough consequtive missed
764 * samples.. reset the missed counter whenever we see
766 if (slot
->ds_equal_samples
>= o2hb_dead_threshold
|| gen_changed
) {
767 mlog(ML_HEARTBEAT
, "Node %d left my region\n",
770 /* last off the live_slot generates a callback */
771 list_del_init(&slot
->ds_live_item
);
772 if (list_empty(&o2hb_live_slots
[slot
->ds_node_num
])) {
773 clear_bit(slot
->ds_node_num
, o2hb_live_node_bitmap
);
775 o2hb_queue_node_event(&event
, O2HB_NODE_DOWN_CB
, node
,
781 /* We don't clear this because the node is still
782 * actually writing new blocks. */
784 slot
->ds_changed_samples
= 0;
787 if (slot
->ds_changed_samples
) {
788 slot
->ds_changed_samples
= 0;
789 slot
->ds_equal_samples
= 0;
792 spin_unlock(&o2hb_live_lock
);
794 o2hb_run_event_list(&event
);
800 /* This could be faster if we just implmented a find_last_bit, but I
801 * don't think the circumstances warrant it. */
802 static int o2hb_highest_node(unsigned long *nodes
,
809 while ((node
= find_next_bit(nodes
, numbits
, node
+ 1)) != -1) {
819 static int o2hb_do_disk_heartbeat(struct o2hb_region
*reg
)
821 int i
, ret
, highest_node
, change
= 0;
822 unsigned long configured_nodes
[BITS_TO_LONGS(O2NM_MAX_NODES
)];
823 struct bio
*write_bio
;
824 struct o2hb_bio_wait_ctxt write_wc
;
826 ret
= o2nm_configured_node_map(configured_nodes
,
827 sizeof(configured_nodes
));
833 highest_node
= o2hb_highest_node(configured_nodes
, O2NM_MAX_NODES
);
834 if (highest_node
>= O2NM_MAX_NODES
) {
835 mlog(ML_NOTICE
, "ocfs2_heartbeat: no configured nodes found!\n");
839 /* No sense in reading the slots of nodes that don't exist
840 * yet. Of course, if the node definitions have holes in them
841 * then we're reading an empty slot anyway... Consider this
843 ret
= o2hb_read_slots(reg
, highest_node
+ 1);
849 /* With an up to date view of the slots, we can check that no
850 * other node has been improperly configured to heartbeat in
852 if (!o2hb_check_last_timestamp(reg
))
853 mlog(ML_ERROR
, "Device \"%s\": another node is heartbeating "
854 "in our slot!\n", reg
->hr_dev_name
);
856 /* fill in the proper info for our next heartbeat */
857 o2hb_prepare_block(reg
, reg
->hr_generation
);
859 /* And fire off the write. Note that we don't wait on this I/O
861 ret
= o2hb_issue_node_write(reg
, &write_bio
, &write_wc
);
868 while((i
= find_next_bit(configured_nodes
, O2NM_MAX_NODES
, i
+ 1)) < O2NM_MAX_NODES
) {
870 change
|= o2hb_check_slot(reg
, ®
->hr_slots
[i
]);
874 * We have to be sure we've advertised ourselves on disk
875 * before we can go to steady state. This ensures that
876 * people we find in our steady state have seen us.
878 o2hb_wait_on_io(reg
, &write_wc
);
880 if (write_wc
.wc_error
) {
881 /* Do not re-arm the write timeout on I/O error - we
882 * can't be sure that the new block ever made it to
884 mlog(ML_ERROR
, "Write error %d on device \"%s\"\n",
885 write_wc
.wc_error
, reg
->hr_dev_name
);
886 return write_wc
.wc_error
;
889 o2hb_arm_write_timeout(reg
);
891 /* let the person who launched us know when things are steady */
892 if (!change
&& (atomic_read(®
->hr_steady_iterations
) != 0)) {
893 if (atomic_dec_and_test(®
->hr_steady_iterations
))
894 wake_up(&o2hb_steady_queue
);
900 /* Subtract b from a, storing the result in a. a *must* have a larger
902 static void o2hb_tv_subtract(struct timeval
*a
,
905 /* just return 0 when a is after b */
906 if (a
->tv_sec
< b
->tv_sec
||
907 (a
->tv_sec
== b
->tv_sec
&& a
->tv_usec
< b
->tv_usec
)) {
913 a
->tv_sec
-= b
->tv_sec
;
914 a
->tv_usec
-= b
->tv_usec
;
915 while ( a
->tv_usec
< 0 ) {
917 a
->tv_usec
+= 1000000;
921 static unsigned int o2hb_elapsed_msecs(struct timeval
*start
,
924 struct timeval res
= *end
;
926 o2hb_tv_subtract(&res
, start
);
928 return res
.tv_sec
* 1000 + res
.tv_usec
/ 1000;
932 * we ride the region ref that the region dir holds. before the region
933 * dir is removed and drops it ref it will wait to tear down this
936 static int o2hb_thread(void *data
)
939 struct o2hb_region
*reg
= data
;
940 struct bio
*write_bio
;
941 struct o2hb_bio_wait_ctxt write_wc
;
942 struct timeval before_hb
, after_hb
;
943 unsigned int elapsed_msec
;
945 mlog(ML_HEARTBEAT
|ML_KTHREAD
, "hb thread running\n");
947 set_user_nice(current
, -20);
949 while (!kthread_should_stop() && !reg
->hr_unclean_stop
) {
950 /* We track the time spent inside
951 * o2hb_do_disk_heartbeat so that we avoid more then
952 * hr_timeout_ms between disk writes. On busy systems
953 * this should result in a heartbeat which is less
954 * likely to time itself out. */
955 do_gettimeofday(&before_hb
);
959 ret
= o2hb_do_disk_heartbeat(reg
);
960 } while (ret
&& ++i
< 2);
962 do_gettimeofday(&after_hb
);
963 elapsed_msec
= o2hb_elapsed_msecs(&before_hb
, &after_hb
);
965 mlog(0, "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
966 before_hb
.tv_sec
, (unsigned long) before_hb
.tv_usec
,
967 after_hb
.tv_sec
, (unsigned long) after_hb
.tv_usec
,
970 if (elapsed_msec
< reg
->hr_timeout_ms
) {
971 /* the kthread api has blocked signals for us so no
972 * need to record the return value. */
973 msleep_interruptible(reg
->hr_timeout_ms
- elapsed_msec
);
977 o2hb_disarm_write_timeout(reg
);
979 /* unclean stop is only used in very bad situation */
980 for(i
= 0; !reg
->hr_unclean_stop
&& i
< reg
->hr_blocks
; i
++)
981 o2hb_shutdown_slot(®
->hr_slots
[i
]);
983 /* Explicit down notification - avoid forcing the other nodes
984 * to timeout on this region when we could just as easily
985 * write a clear generation - thus indicating to them that
986 * this node has left this region.
988 * XXX: Should we skip this on unclean_stop? */
989 o2hb_prepare_block(reg
, 0);
990 ret
= o2hb_issue_node_write(reg
, &write_bio
, &write_wc
);
992 o2hb_wait_on_io(reg
, &write_wc
);
998 mlog(ML_HEARTBEAT
|ML_KTHREAD
, "hb thread exiting\n");
1003 void o2hb_init(void)
1007 for (i
= 0; i
< ARRAY_SIZE(o2hb_callbacks
); i
++)
1008 INIT_LIST_HEAD(&o2hb_callbacks
[i
].list
);
1010 for (i
= 0; i
< ARRAY_SIZE(o2hb_live_slots
); i
++)
1011 INIT_LIST_HEAD(&o2hb_live_slots
[i
]);
1013 INIT_LIST_HEAD(&o2hb_node_events
);
1015 memset(o2hb_live_node_bitmap
, 0, sizeof(o2hb_live_node_bitmap
));
1018 /* if we're already in a callback then we're already serialized by the sem */
1019 static void o2hb_fill_node_map_from_callback(unsigned long *map
,
1022 BUG_ON(bytes
< (BITS_TO_LONGS(O2NM_MAX_NODES
) * sizeof(unsigned long)));
1024 memcpy(map
, &o2hb_live_node_bitmap
, bytes
);
1028 * get a map of all nodes that are heartbeating in any regions
1030 void o2hb_fill_node_map(unsigned long *map
, unsigned bytes
)
1032 /* callers want to serialize this map and callbacks so that they
1033 * can trust that they don't miss nodes coming to the party */
1034 down_read(&o2hb_callback_sem
);
1035 spin_lock(&o2hb_live_lock
);
1036 o2hb_fill_node_map_from_callback(map
, bytes
);
1037 spin_unlock(&o2hb_live_lock
);
1038 up_read(&o2hb_callback_sem
);
1040 EXPORT_SYMBOL_GPL(o2hb_fill_node_map
);
1043 * heartbeat configfs bits. The heartbeat set is a default set under
1044 * the cluster set in nodemanager.c.
1047 static struct o2hb_region
*to_o2hb_region(struct config_item
*item
)
1049 return item
? container_of(item
, struct o2hb_region
, hr_item
) : NULL
;
1052 /* drop_item only drops its ref after killing the thread, nothing should
1053 * be using the region anymore. this has to clean up any state that
1054 * attributes might have built up. */
1055 static void o2hb_region_release(struct config_item
*item
)
1059 struct o2hb_region
*reg
= to_o2hb_region(item
);
1061 if (reg
->hr_tmp_block
)
1062 kfree(reg
->hr_tmp_block
);
1064 if (reg
->hr_slot_data
) {
1065 for (i
= 0; i
< reg
->hr_num_pages
; i
++) {
1066 page
= reg
->hr_slot_data
[i
];
1070 kfree(reg
->hr_slot_data
);
1074 blkdev_put(reg
->hr_bdev
);
1077 kfree(reg
->hr_slots
);
1079 spin_lock(&o2hb_live_lock
);
1080 list_del(®
->hr_all_item
);
1081 spin_unlock(&o2hb_live_lock
);
1086 static int o2hb_read_block_input(struct o2hb_region
*reg
,
1089 unsigned long *ret_bytes
,
1090 unsigned int *ret_bits
)
1092 unsigned long bytes
;
1093 char *p
= (char *)page
;
1095 bytes
= simple_strtoul(p
, &p
, 0);
1096 if (!p
|| (*p
&& (*p
!= '\n')))
1099 /* Heartbeat and fs min / max block sizes are the same. */
1100 if (bytes
> 4096 || bytes
< 512)
1102 if (hweight16(bytes
) != 1)
1108 *ret_bits
= ffs(bytes
) - 1;
1113 static ssize_t
o2hb_region_block_bytes_read(struct o2hb_region
*reg
,
1116 return sprintf(page
, "%u\n", reg
->hr_block_bytes
);
1119 static ssize_t
o2hb_region_block_bytes_write(struct o2hb_region
*reg
,
1124 unsigned long block_bytes
;
1125 unsigned int block_bits
;
1130 status
= o2hb_read_block_input(reg
, page
, count
,
1131 &block_bytes
, &block_bits
);
1135 reg
->hr_block_bytes
= (unsigned int)block_bytes
;
1136 reg
->hr_block_bits
= block_bits
;
1141 static ssize_t
o2hb_region_start_block_read(struct o2hb_region
*reg
,
1144 return sprintf(page
, "%llu\n", reg
->hr_start_block
);
1147 static ssize_t
o2hb_region_start_block_write(struct o2hb_region
*reg
,
1151 unsigned long long tmp
;
1152 char *p
= (char *)page
;
1157 tmp
= simple_strtoull(p
, &p
, 0);
1158 if (!p
|| (*p
&& (*p
!= '\n')))
1161 reg
->hr_start_block
= tmp
;
1166 static ssize_t
o2hb_region_blocks_read(struct o2hb_region
*reg
,
1169 return sprintf(page
, "%d\n", reg
->hr_blocks
);
1172 static ssize_t
o2hb_region_blocks_write(struct o2hb_region
*reg
,
1177 char *p
= (char *)page
;
1182 tmp
= simple_strtoul(p
, &p
, 0);
1183 if (!p
|| (*p
&& (*p
!= '\n')))
1186 if (tmp
> O2NM_MAX_NODES
|| tmp
== 0)
1189 reg
->hr_blocks
= (unsigned int)tmp
;
1194 static ssize_t
o2hb_region_dev_read(struct o2hb_region
*reg
,
1197 unsigned int ret
= 0;
1200 ret
= sprintf(page
, "%s\n", reg
->hr_dev_name
);
1205 static void o2hb_init_region_params(struct o2hb_region
*reg
)
1207 reg
->hr_slots_per_page
= PAGE_CACHE_SIZE
>> reg
->hr_block_bits
;
1208 reg
->hr_timeout_ms
= O2HB_REGION_TIMEOUT_MS
;
1210 mlog(ML_HEARTBEAT
, "hr_start_block = %llu, hr_blocks = %u\n",
1211 reg
->hr_start_block
, reg
->hr_blocks
);
1212 mlog(ML_HEARTBEAT
, "hr_block_bytes = %u, hr_block_bits = %u\n",
1213 reg
->hr_block_bytes
, reg
->hr_block_bits
);
1214 mlog(ML_HEARTBEAT
, "hr_timeout_ms = %u\n", reg
->hr_timeout_ms
);
1215 mlog(ML_HEARTBEAT
, "dead threshold = %u\n", o2hb_dead_threshold
);
1218 static int o2hb_map_slot_data(struct o2hb_region
*reg
)
1221 unsigned int last_slot
;
1222 unsigned int spp
= reg
->hr_slots_per_page
;
1225 struct o2hb_disk_slot
*slot
;
1227 reg
->hr_tmp_block
= kmalloc(reg
->hr_block_bytes
, GFP_KERNEL
);
1228 if (reg
->hr_tmp_block
== NULL
) {
1229 mlog_errno(-ENOMEM
);
1233 reg
->hr_slots
= kcalloc(reg
->hr_blocks
,
1234 sizeof(struct o2hb_disk_slot
), GFP_KERNEL
);
1235 if (reg
->hr_slots
== NULL
) {
1236 mlog_errno(-ENOMEM
);
1240 for(i
= 0; i
< reg
->hr_blocks
; i
++) {
1241 slot
= ®
->hr_slots
[i
];
1242 slot
->ds_node_num
= i
;
1243 INIT_LIST_HEAD(&slot
->ds_live_item
);
1244 slot
->ds_raw_block
= NULL
;
1247 reg
->hr_num_pages
= (reg
->hr_blocks
+ spp
- 1) / spp
;
1248 mlog(ML_HEARTBEAT
, "Going to require %u pages to cover %u blocks "
1249 "at %u blocks per page\n",
1250 reg
->hr_num_pages
, reg
->hr_blocks
, spp
);
1252 reg
->hr_slot_data
= kcalloc(reg
->hr_num_pages
, sizeof(struct page
*),
1254 if (!reg
->hr_slot_data
) {
1255 mlog_errno(-ENOMEM
);
1259 for(i
= 0; i
< reg
->hr_num_pages
; i
++) {
1260 page
= alloc_page(GFP_KERNEL
);
1262 mlog_errno(-ENOMEM
);
1266 reg
->hr_slot_data
[i
] = page
;
1268 last_slot
= i
* spp
;
1269 raw
= page_address(page
);
1271 (j
< spp
) && ((j
+ last_slot
) < reg
->hr_blocks
);
1273 BUG_ON((j
+ last_slot
) >= reg
->hr_blocks
);
1275 slot
= ®
->hr_slots
[j
+ last_slot
];
1276 slot
->ds_raw_block
=
1277 (struct o2hb_disk_heartbeat_block
*) raw
;
1279 raw
+= reg
->hr_block_bytes
;
1286 /* Read in all the slots available and populate the tracking
1287 * structures so that we can start with a baseline idea of what's
1289 static int o2hb_populate_slot_data(struct o2hb_region
*reg
)
1292 struct o2hb_disk_slot
*slot
;
1293 struct o2hb_disk_heartbeat_block
*hb_block
;
1297 ret
= o2hb_read_slots(reg
, reg
->hr_blocks
);
1303 /* We only want to get an idea of the values initially in each
1304 * slot, so we do no verification - o2hb_check_slot will
1305 * actually determine if each configured slot is valid and
1306 * whether any values have changed. */
1307 for(i
= 0; i
< reg
->hr_blocks
; i
++) {
1308 slot
= ®
->hr_slots
[i
];
1309 hb_block
= (struct o2hb_disk_heartbeat_block
*) slot
->ds_raw_block
;
1311 /* Only fill the values that o2hb_check_slot uses to
1312 * determine changing slots */
1313 slot
->ds_last_time
= le64_to_cpu(hb_block
->hb_seq
);
1314 slot
->ds_last_generation
= le64_to_cpu(hb_block
->hb_generation
);
1322 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
1323 static ssize_t
o2hb_region_dev_write(struct o2hb_region
*reg
,
1329 char *p
= (char *)page
;
1330 struct file
*filp
= NULL
;
1331 struct inode
*inode
= NULL
;
1332 ssize_t ret
= -EINVAL
;
1337 /* We can't heartbeat without having had our node number
1338 * configured yet. */
1339 if (o2nm_this_node() == O2NM_MAX_NODES
)
1342 fd
= simple_strtol(p
, &p
, 0);
1343 if (!p
|| (*p
&& (*p
!= '\n')))
1346 if (fd
< 0 || fd
>= INT_MAX
)
1353 if (reg
->hr_blocks
== 0 || reg
->hr_start_block
== 0 ||
1354 reg
->hr_block_bytes
== 0)
1357 inode
= igrab(filp
->f_mapping
->host
);
1361 if (!S_ISBLK(inode
->i_mode
))
1364 reg
->hr_bdev
= I_BDEV(filp
->f_mapping
->host
);
1365 ret
= blkdev_get(reg
->hr_bdev
, FMODE_WRITE
| FMODE_READ
, 0);
1367 reg
->hr_bdev
= NULL
;
1372 bdevname(reg
->hr_bdev
, reg
->hr_dev_name
);
1374 sectsize
= bdev_hardsect_size(reg
->hr_bdev
);
1375 if (sectsize
!= reg
->hr_block_bytes
) {
1377 "blocksize %u incorrect for device, expected %d",
1378 reg
->hr_block_bytes
, sectsize
);
1383 o2hb_init_region_params(reg
);
1385 /* Generation of zero is invalid */
1387 get_random_bytes(®
->hr_generation
,
1388 sizeof(reg
->hr_generation
));
1389 } while (reg
->hr_generation
== 0);
1391 ret
= o2hb_map_slot_data(reg
);
1397 ret
= o2hb_populate_slot_data(reg
);
1403 INIT_WORK(®
->hr_write_timeout_work
, o2hb_write_timeout
, reg
);
1406 * A node is considered live after it has beat LIVE_THRESHOLD
1407 * times. We're not steady until we've given them a chance
1408 * _after_ our first read.
1410 atomic_set(®
->hr_steady_iterations
, O2HB_LIVE_THRESHOLD
+ 1);
1412 reg
->hr_task
= kthread_run(o2hb_thread
, reg
, "o2hb-%s",
1413 reg
->hr_item
.ci_name
);
1414 if (IS_ERR(reg
->hr_task
)) {
1415 ret
= PTR_ERR(reg
->hr_task
);
1417 reg
->hr_task
= NULL
;
1421 ret
= wait_event_interruptible(o2hb_steady_queue
,
1422 atomic_read(®
->hr_steady_iterations
) == 0);
1424 kthread_stop(reg
->hr_task
);
1425 reg
->hr_task
= NULL
;
1437 blkdev_put(reg
->hr_bdev
);
1438 reg
->hr_bdev
= NULL
;
1444 struct o2hb_region_attribute
{
1445 struct configfs_attribute attr
;
1446 ssize_t (*show
)(struct o2hb_region
*, char *);
1447 ssize_t (*store
)(struct o2hb_region
*, const char *, size_t);
1450 static struct o2hb_region_attribute o2hb_region_attr_block_bytes
= {
1451 .attr
= { .ca_owner
= THIS_MODULE
,
1452 .ca_name
= "block_bytes",
1453 .ca_mode
= S_IRUGO
| S_IWUSR
},
1454 .show
= o2hb_region_block_bytes_read
,
1455 .store
= o2hb_region_block_bytes_write
,
1458 static struct o2hb_region_attribute o2hb_region_attr_start_block
= {
1459 .attr
= { .ca_owner
= THIS_MODULE
,
1460 .ca_name
= "start_block",
1461 .ca_mode
= S_IRUGO
| S_IWUSR
},
1462 .show
= o2hb_region_start_block_read
,
1463 .store
= o2hb_region_start_block_write
,
1466 static struct o2hb_region_attribute o2hb_region_attr_blocks
= {
1467 .attr
= { .ca_owner
= THIS_MODULE
,
1468 .ca_name
= "blocks",
1469 .ca_mode
= S_IRUGO
| S_IWUSR
},
1470 .show
= o2hb_region_blocks_read
,
1471 .store
= o2hb_region_blocks_write
,
1474 static struct o2hb_region_attribute o2hb_region_attr_dev
= {
1475 .attr
= { .ca_owner
= THIS_MODULE
,
1477 .ca_mode
= S_IRUGO
| S_IWUSR
},
1478 .show
= o2hb_region_dev_read
,
1479 .store
= o2hb_region_dev_write
,
1482 static struct configfs_attribute
*o2hb_region_attrs
[] = {
1483 &o2hb_region_attr_block_bytes
.attr
,
1484 &o2hb_region_attr_start_block
.attr
,
1485 &o2hb_region_attr_blocks
.attr
,
1486 &o2hb_region_attr_dev
.attr
,
1490 static ssize_t
o2hb_region_show(struct config_item
*item
,
1491 struct configfs_attribute
*attr
,
1494 struct o2hb_region
*reg
= to_o2hb_region(item
);
1495 struct o2hb_region_attribute
*o2hb_region_attr
=
1496 container_of(attr
, struct o2hb_region_attribute
, attr
);
1499 if (o2hb_region_attr
->show
)
1500 ret
= o2hb_region_attr
->show(reg
, page
);
1504 static ssize_t
o2hb_region_store(struct config_item
*item
,
1505 struct configfs_attribute
*attr
,
1506 const char *page
, size_t count
)
1508 struct o2hb_region
*reg
= to_o2hb_region(item
);
1509 struct o2hb_region_attribute
*o2hb_region_attr
=
1510 container_of(attr
, struct o2hb_region_attribute
, attr
);
1511 ssize_t ret
= -EINVAL
;
1513 if (o2hb_region_attr
->store
)
1514 ret
= o2hb_region_attr
->store(reg
, page
, count
);
1518 static struct configfs_item_operations o2hb_region_item_ops
= {
1519 .release
= o2hb_region_release
,
1520 .show_attribute
= o2hb_region_show
,
1521 .store_attribute
= o2hb_region_store
,
1524 static struct config_item_type o2hb_region_type
= {
1525 .ct_item_ops
= &o2hb_region_item_ops
,
1526 .ct_attrs
= o2hb_region_attrs
,
1527 .ct_owner
= THIS_MODULE
,
1532 struct o2hb_heartbeat_group
{
1533 struct config_group hs_group
;
1537 static struct o2hb_heartbeat_group
*to_o2hb_heartbeat_group(struct config_group
*group
)
1540 container_of(group
, struct o2hb_heartbeat_group
, hs_group
)
1544 static struct config_item
*o2hb_heartbeat_group_make_item(struct config_group
*group
,
1547 struct o2hb_region
*reg
= NULL
;
1548 struct config_item
*ret
= NULL
;
1550 reg
= kcalloc(1, sizeof(struct o2hb_region
), GFP_KERNEL
);
1552 goto out
; /* ENOMEM */
1554 config_item_init_type_name(®
->hr_item
, name
, &o2hb_region_type
);
1556 ret
= ®
->hr_item
;
1558 spin_lock(&o2hb_live_lock
);
1559 list_add_tail(®
->hr_all_item
, &o2hb_all_regions
);
1560 spin_unlock(&o2hb_live_lock
);
1568 static void o2hb_heartbeat_group_drop_item(struct config_group
*group
,
1569 struct config_item
*item
)
1571 struct o2hb_region
*reg
= to_o2hb_region(item
);
1573 /* stop the thread when the user removes the region dir */
1575 kthread_stop(reg
->hr_task
);
1576 reg
->hr_task
= NULL
;
1579 config_item_put(item
);
1582 struct o2hb_heartbeat_group_attribute
{
1583 struct configfs_attribute attr
;
1584 ssize_t (*show
)(struct o2hb_heartbeat_group
*, char *);
1585 ssize_t (*store
)(struct o2hb_heartbeat_group
*, const char *, size_t);
1588 static ssize_t
o2hb_heartbeat_group_show(struct config_item
*item
,
1589 struct configfs_attribute
*attr
,
1592 struct o2hb_heartbeat_group
*reg
= to_o2hb_heartbeat_group(to_config_group(item
));
1593 struct o2hb_heartbeat_group_attribute
*o2hb_heartbeat_group_attr
=
1594 container_of(attr
, struct o2hb_heartbeat_group_attribute
, attr
);
1597 if (o2hb_heartbeat_group_attr
->show
)
1598 ret
= o2hb_heartbeat_group_attr
->show(reg
, page
);
1602 static ssize_t
o2hb_heartbeat_group_store(struct config_item
*item
,
1603 struct configfs_attribute
*attr
,
1604 const char *page
, size_t count
)
1606 struct o2hb_heartbeat_group
*reg
= to_o2hb_heartbeat_group(to_config_group(item
));
1607 struct o2hb_heartbeat_group_attribute
*o2hb_heartbeat_group_attr
=
1608 container_of(attr
, struct o2hb_heartbeat_group_attribute
, attr
);
1609 ssize_t ret
= -EINVAL
;
1611 if (o2hb_heartbeat_group_attr
->store
)
1612 ret
= o2hb_heartbeat_group_attr
->store(reg
, page
, count
);
1616 static ssize_t
o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group
*group
,
1619 return sprintf(page
, "%u\n", o2hb_dead_threshold
);
1622 static ssize_t
o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group
*group
,
1627 char *p
= (char *)page
;
1629 tmp
= simple_strtoul(p
, &p
, 10);
1630 if (!p
|| (*p
&& (*p
!= '\n')))
1633 /* this will validate ranges for us. */
1634 o2hb_dead_threshold_set((unsigned int) tmp
);
1639 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold
= {
1640 .attr
= { .ca_owner
= THIS_MODULE
,
1641 .ca_name
= "dead_threshold",
1642 .ca_mode
= S_IRUGO
| S_IWUSR
},
1643 .show
= o2hb_heartbeat_group_threshold_show
,
1644 .store
= o2hb_heartbeat_group_threshold_store
,
1647 static struct configfs_attribute
*o2hb_heartbeat_group_attrs
[] = {
1648 &o2hb_heartbeat_group_attr_threshold
.attr
,
1652 static struct configfs_item_operations o2hb_hearbeat_group_item_ops
= {
1653 .show_attribute
= o2hb_heartbeat_group_show
,
1654 .store_attribute
= o2hb_heartbeat_group_store
,
1657 static struct configfs_group_operations o2hb_heartbeat_group_group_ops
= {
1658 .make_item
= o2hb_heartbeat_group_make_item
,
1659 .drop_item
= o2hb_heartbeat_group_drop_item
,
1662 static struct config_item_type o2hb_heartbeat_group_type
= {
1663 .ct_group_ops
= &o2hb_heartbeat_group_group_ops
,
1664 .ct_item_ops
= &o2hb_hearbeat_group_item_ops
,
1665 .ct_attrs
= o2hb_heartbeat_group_attrs
,
1666 .ct_owner
= THIS_MODULE
,
1669 /* this is just here to avoid touching group in heartbeat.h which the
1670 * entire damn world #includes */
1671 struct config_group
*o2hb_alloc_hb_set(void)
1673 struct o2hb_heartbeat_group
*hs
= NULL
;
1674 struct config_group
*ret
= NULL
;
1676 hs
= kcalloc(1, sizeof(struct o2hb_heartbeat_group
), GFP_KERNEL
);
1680 config_group_init_type_name(&hs
->hs_group
, "heartbeat",
1681 &o2hb_heartbeat_group_type
);
1683 ret
= &hs
->hs_group
;
1690 void o2hb_free_hb_set(struct config_group
*group
)
1692 struct o2hb_heartbeat_group
*hs
= to_o2hb_heartbeat_group(group
);
1696 /* hb callback registration and issueing */
1698 static struct o2hb_callback
*hbcall_from_type(enum o2hb_callback_type type
)
1700 if (type
== O2HB_NUM_CB
)
1701 return ERR_PTR(-EINVAL
);
1703 return &o2hb_callbacks
[type
];
1706 void o2hb_setup_callback(struct o2hb_callback_func
*hc
,
1707 enum o2hb_callback_type type
,
1712 INIT_LIST_HEAD(&hc
->hc_item
);
1715 hc
->hc_priority
= priority
;
1717 hc
->hc_magic
= O2HB_CB_MAGIC
;
1719 EXPORT_SYMBOL_GPL(o2hb_setup_callback
);
1721 int o2hb_register_callback(struct o2hb_callback_func
*hc
)
1723 struct o2hb_callback_func
*tmp
;
1724 struct list_head
*iter
;
1725 struct o2hb_callback
*hbcall
;
1728 BUG_ON(hc
->hc_magic
!= O2HB_CB_MAGIC
);
1729 BUG_ON(!list_empty(&hc
->hc_item
));
1731 hbcall
= hbcall_from_type(hc
->hc_type
);
1732 if (IS_ERR(hbcall
)) {
1733 ret
= PTR_ERR(hbcall
);
1737 down_write(&o2hb_callback_sem
);
1739 list_for_each(iter
, &hbcall
->list
) {
1740 tmp
= list_entry(iter
, struct o2hb_callback_func
, hc_item
);
1741 if (hc
->hc_priority
< tmp
->hc_priority
) {
1742 list_add_tail(&hc
->hc_item
, iter
);
1746 if (list_empty(&hc
->hc_item
))
1747 list_add_tail(&hc
->hc_item
, &hbcall
->list
);
1749 up_write(&o2hb_callback_sem
);
1752 mlog(ML_HEARTBEAT
, "returning %d on behalf of %p for funcs %p\n",
1753 ret
, __builtin_return_address(0), hc
);
1756 EXPORT_SYMBOL_GPL(o2hb_register_callback
);
1758 int o2hb_unregister_callback(struct o2hb_callback_func
*hc
)
1760 BUG_ON(hc
->hc_magic
!= O2HB_CB_MAGIC
);
1762 mlog(ML_HEARTBEAT
, "on behalf of %p for funcs %p\n",
1763 __builtin_return_address(0), hc
);
1765 if (list_empty(&hc
->hc_item
))
1768 down_write(&o2hb_callback_sem
);
1770 list_del_init(&hc
->hc_item
);
1772 up_write(&o2hb_callback_sem
);
1776 EXPORT_SYMBOL_GPL(o2hb_unregister_callback
);
1778 int o2hb_check_node_heartbeating(u8 node_num
)
1780 unsigned long testing_map
[BITS_TO_LONGS(O2NM_MAX_NODES
)];
1782 o2hb_fill_node_map(testing_map
, sizeof(testing_map
));
1783 if (!test_bit(node_num
, testing_map
)) {
1785 "node (%u) does not have heartbeating enabled.\n",
1792 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating
);
1794 int o2hb_check_node_heartbeating_from_callback(u8 node_num
)
1796 unsigned long testing_map
[BITS_TO_LONGS(O2NM_MAX_NODES
)];
1798 o2hb_fill_node_map_from_callback(testing_map
, sizeof(testing_map
));
1799 if (!test_bit(node_num
, testing_map
)) {
1801 "node (%u) does not have heartbeating enabled.\n",
1808 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback
);
1810 /* Makes sure our local node is configured with a node number, and is
1812 int o2hb_check_local_node_heartbeating(void)
1816 /* if this node was set then we have networking */
1817 node_num
= o2nm_this_node();
1818 if (node_num
== O2NM_MAX_NODES
) {
1819 mlog(ML_HEARTBEAT
, "this node has not been configured.\n");
1823 return o2hb_check_node_heartbeating(node_num
);
1825 EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating
);
1828 * this is just a hack until we get the plumbing which flips file systems
1829 * read only and drops the hb ref instead of killing the node dead.
1831 void o2hb_stop_all_regions(void)
1833 struct o2hb_region
*reg
;
1835 mlog(ML_ERROR
, "stopping heartbeat on all active regions.\n");
1837 spin_lock(&o2hb_live_lock
);
1839 list_for_each_entry(reg
, &o2hb_all_regions
, hr_all_item
)
1840 reg
->hr_unclean_stop
= 1;
1842 spin_unlock(&o2hb_live_lock
);
1844 EXPORT_SYMBOL_GPL(o2hb_stop_all_regions
);